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a b s t r a c t

This paper studies the efficient estimation of a large class of multi-valued treatment effects as implicitly
defined by a collection of possibly over-identified non-smooth moment conditions when the treatment
assignment is assumed to be ignorable. Two estimators are introduced together with a set of sufficient
conditions that ensure their

√
n-consistency, asymptotic normality and efficiency. Under mild assump-

tions, these conditions are satisfied for theMarginalMean Treatment Effect and theMarginal Quantile Treat-
ment Effect, estimands of particular importance for empirical applications. Previous results for average
and quantile treatments effects are encompassed by the methods proposed here when the treatment is
dichotomous. The results are illustrated by an empirical application studying the effect ofmaternal smok-
ing intensity during pregnancy on birth weight, and a Monte Carlo experiment.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

A large fraction of the literature on program evaluation fo-
cuses on efficient, flexible estimation of treatment effects under
the assumption of unconfoundedness. This literature concentrates
almost exclusively on the special case of binary treatment as-
signments, despite the fact that in many empirical applications
treatments are implicitly or explicitly multi-valued in nature. For
example, in training programs participants receive different hours
of training, in anti-poverty programs households receive different
levels of transfers, and in educational interventions individuals are
assigned to different classroom sizes. In cases such as these, a com-
mon empirical practice is to collapse the multi-valued treatment
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status into a binary indicator for eligibility or participation, a pro-
cedure that allows for the application of available semiparamet-
ric econometric techniques at the expense of a considerable loss
of information. Important phenomena such as non-linearities and
differential effects across treatment levels cannot be captured by
the classical dichotomous treatment literature. This is especially
important in a policy-making context where this additional infor-
mation may provide a better understanding of the policy under
consideration.
In addition, considering multi-valued treatment effects allows

for potential efficiency gains in the estimationwhenever additional
information is available. Restrictions on the treatment effects be-
tween and across treatment levels are usually justified by the un-
derlying economic theory (or other sources of knowledge about the
data generating process) in specific applications, and are by con-
struction ignored in the binary treatment effect literature. For ex-
ample, in labor economics it is often assumed that the relationship
between log-income and education is linear, leading to a simple
restriction between different levels of educational attainment, or,
in public finance, different levels of marginal tax rates may have
a proportional effect on labor supply whenever the corresponding
elasticity is assumed to be constant. In cases such as these, simple
restrictions across treatment effects are available that may be ex-
ploited to improve efficiency in the estimation of the multi-valued
treatment effects.
This paper is concerned with optimal joint inference for a

general class of finite multi-valued treatment effects when the
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treatment assignment is assumed to be ignorable, that is, when
treatment is assigned at random conditional on a set of observable
characteristics and a common support condition holds. Results
available in the literature for ignorable binary treatment effects
may be applied to the context of multiple treatments, leading to
efficient estimators of one treatment effect at the time. However,
an important limitation of these results is that they do not allow
for either joint inferences across and between multiple treatment
levels, or efficiency gains in the estimation obtained from
exploiting over-identification restrictions. The results presented
in this paper overcome these limitations by allowing for the joint
efficient estimation of multiple treatments.
Two estimation procedures for a population parameter implic-

itly defined by a possibly over-identified non-smooth collection
of moment conditions are proposed, together with a set of suffi-
cient conditions that guarantees that these estimators be efficient
in large samples. This general model covers important estimands
for applied work such as the Marginal Mean Treatment Effect and
the Marginal Quantile Treatment Effect, and provides the basis for
the analysis of a rich set of population parameters by allowing not
only for comparisons across and within treatment levels, but also
for the construction of other quantities of interest. For example,
measures of inequality, differential treatment effects, and hetero-
geneous treatment effects may be easily constructed by consider-
ing different functions of means and quantiles such as pairwise
differences, interquantile ranges and incremental ratios. In addi-
tion, by allowing for over-identification, themain results of the pa-
permay provide further efficiency gains and cover other situations
of interest such as the explicit use of cross-equation restrictions.
A unified framework for the efficient estimation of a large class

of multi-valued treatment effects is developed, which not only
includes as particular cases important results from the program
evaluation literature when the treatment is binary, but also allows
for the efficient estimation of other estimands of interest. The
theoretical results are developed in the context of a two-step
semiparametric GMM model, where the treatment effects are
implicitly defined through possibly non-smooth over-identified
moment conditions and the first step estimation procedure is fully
nonparametric. This general model has the advantage of being
flexible and covering typical problems in econometrics, but it
requires more technical machinery to handle both the potential
lack of smoothness in the moment conditions as well as the
preliminary nonparametric estimators. These technical issues are
resolved by resorting to empirical process theory that, combined
with semiparametric theory in the context of GMM estimation,
allows for the semiparametric efficient estimation of a large class
of population parameters of interest. Thus, the results are general
in that they impose only typical restrictions in the class of moment
functions and infinite-dimensional nuisance parameters.
The analysis begins by deriving the Efficient Influence Function

(EIF) and Semiparametric Efficiency Bound (SPEB) for the general
population parameter of interest using the methodology outlined
in Bickel et al. (1993). Based on these results, two estimators
of multi-valued treatment effects are introduced and motivated
as the solution to a general GMM model, which circumvents
the fundamental problem of causal inference by forming sample
analogues of twomoment conditions that dependonly onobserved
data. For the first estimator, the observed moment condition is
obtained by means of an inverse probability weighting scheme
based on the Generalized Propensity Score (GPS) which may be
interpreted as a moment condition exploiting a portion of the
EIF. For the second estimator, the observed moment condition is
obtained by using the complete form of the EIF and involves both
theGPS and another conditional expectation. Because the observed
moment conditions include not only the treatment effects of
interest but also some infinite-dimensional nuisance parameters,
both estimators are of the two-step variety. In the first step, the
infinite-dimensional nuisance parameters are estimated and, in
the second step, the corresponding GMM problem is solved.
The large sample results are derived in two basic stages. In the

first stage, the consistency, asymptotic normality and efficiency of
both estimators are established bymeans of imposing a set of mild
sufficient conditions concerning the underlying moment identi-
fication functions, and well-known high-level conditions involv-
ing the nonparametric estimators. The former conditions are easily
verified in applications, as shown in the examples discussed below,
while the latter generally require additional work. For this reason,
in the second stage a detailed discussion of the nonparametric es-
timation of the two nuisance parameters for the particular case of
series estimation is provided. Since both nuisance parameters are
conditional expectations, results from the nonparametric series es-
timation literaturemay be applied directly. However, since theGPS
is a conditional probability, a nonparametric estimator is proposed
which is based on series estimation and captures the specific fea-
tures of this nuisance parameter. Using these nonparametric es-
timators, simple primitive conditions that guarantee the efficient
estimation of general multi-valued treatment effects are provided.
Using these results, other important population parameters of

interest may be efficiently estimated bymeans of transformations.
Intuitively, because semiparametric efficiency is preserved by a
standard delta-method argument, other treatment effects that
may be written as functions of the general population parameter
of interest are also efficiently estimated. For the case of binary
treatments, this implies that the results of Hahn (1998), Hirano
et al. (2003), and Firpo (2007) may be seen as particular cases
of the procedures developed here. Furthermore, the results also
allow for the efficient estimation of restricted treatment effects
by means of a simple minimum distance estimator based on
efficiently estimated, unrestricted treatment effects.
The theoretical results are illustrated by means of an empiri-

cal application and a Monte Carlo experiment. The empirical ap-
plication shows how joint inference using multi-valued treatment
effects may be conducted. It is based on the analysis of Almond
et al. (2005), who studied the effect of maternal smoking on birth
weight, defining maternal smoking as a binary treatment. Exploit-
ing the fact that their database includes the number of cigarettes-
per-day smoked by the mother, their analysis is extended to a
multi-valued treatment setup in order to study the effect of ma-
ternal smoking intensity on birth weight. The new findings sug-
gest the presence of a non-linear negative effect where two thirds
of the full impact of smoking on birthweight are due to the first five
cigarettes, while the remaining third is explained by the next five
cigarettes, with no important effects beyond the tenth cigarette-
per-day smoked. Moreover, these effects appear to be additive,
shifting the entire distribution of birth weight in parallel along
the smoking intensity. To complement the empirical illustration,
a Monte Carlo experiment is also reported that shows how the
methods proposed here achieve efficiency gains in the estimation
of multi-valued treatment effects when over-identification and
cross-equation restrictions are available.
This paper contributes to the large portion of the program eval-

uation literature that focuses on the identification and semipara-
metric (efficient) estimation of different population parameters of
interest using a conditional independence assumption. (Heckman
andVytlacil (2007) and Imbens andWooldridge (2009) provide de-
tailed recent reviews.) Although for concreteness the discussion in
this paper uses terminology from the program evaluation litera-
ture, the results are also closely related (and contribute) to other
literatures in econometrics and statistics that rely on a conditional
independence assumption such as the missing data, measurement
error and data combination literatures. (A review and discussion of
the links between these literatures may be found in Tsiatis (2006),
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Bang and Robins (2005), Chen et al. (2005), Chen et al. (2004, 2008),
and Wooldridge (2007), among others.)
In the context of program evaluation and for the particular case

of binary treatments, great effort has been devoted to the effi-
cient estimation of the Average Treatment Effect (ATE) and Aver-
age Treatment Effect on the Treated using either nonparametric
regression methods (Hahn, 1998; Heckman et al., 1998; Imbens
et al., 2006), matching techniques (Abadie and Imbens, 2006), or
procedures based on the nonparametric estimation of the propen-
sity score (Hirano et al., 2003). Recently, Firpo (2007) considered
a different population parameter by studying the efficient estima-
tion of Quantile Treatment Effects (QTEs) for dichotomous treat-
ment assignments using a nonparametrically estimated propensity
score. In the closely related context of missing data, Robins et al.
(1994), Robins and Rotnitzky (1995) and Robins et al. (1995) de-
velop a general (locally) efficient estimation strategy for models
where the missingness indicator is binary that involves the para-
metric estimation of both a regression function and the propensity
score, while Chen et al. (2005) and Chen et al. (2008) study effi-
cient GMM estimation in the context of (non-classical) measure-
ment error models when two samples are available (i.e., with a
binary missingness indicator).
Considerably less work is available in these literatures for

the case of multiple treatment assignments. In the context of
program evaluation under ignorability, Imbens (2000) derives a
generalization of the propensity score and shows that the re-
sults of Rosenbaum and Rubin (1983) continue to hold when
the treatment is multi-valued. (See also Hirano and Imbens
(2004) and Imai and van Dyk (2004) for extensions of this
idea.) Concerning identification and estimation, Imbens (2000)
and Lechner (2001) discuss marginal mean treatment effects
but do not assess the asymptotic properties of their estima-
tors, while Abadie (2005) studies the large sample proper-
ties of an estimator for the marginal mean treatment effect
conditional on a treatment level in the context of a difference-in-
differences model. Heckman and Vytlacil (2007) and Imbens and
Wooldridge (2009) provide recent reviews of the results available
in this literature, while Bang and Robins (2005) discuss similar re-
sults in the context of missing data. The results presented here
include and extend those available in these literatures by con-
sidering the joint semiparametric efficient estimation of a large
class of multi-valued treatment effects, which allows one to con-
duct joint inference within and across treatment effects and to ob-
tain efficiency gains whenever over-identification restrictions are
available.
The rest of the paper is organized as follows. Section 2 intro-

duces the model and discusses identification. Section 3 includes
the semiparametric efficiency calculations andpresents the EIF and
SPEB. Section 4 describes the two estimators proposed. Section 5
presents the large sample results. Section 6 discusses two leading
examples and presents the empirical illustration and Monte Carlo
study. Section 7 concludes. All proofs are collected in Appendices A
and B.

2. Statistical model and identification

This section describes themulti-valued treatment effect model,
discusses identification of the general population parameter of
interest, and introduces the notation.

2.1. The model

A finite collection of multiple treatment status (categorical or
ordinal) indexed by t ∈ T is assumed where, without loss of
generality, T = {0, 1, 2, . . . , J} with J ∈ N fixed. The random
variables Y (0), Y (1) , . . . , Y (J), with Y (t) ∈ Y ⊂ R for all t ∈ T ,
denote the collection of potential outcomes under each treatment
level, while the random variable T ∈ T indicates which of the J+1
potential outcomes is observed. Thus, the observed outcome is the
random variable Y =

∑
t∈T DtY (t), where Dt = 1 {T = t} for all

t ∈ T and 1 {·} is the indicator function. There exists a random
vector X ∈ X ⊂ Rdx , dx ∈ N, which is always observed. It is
assumed that a random sample of size n from (Y , T , X) is available,
denoted by (Yi, Ti, Xi), i = 1, 2, . . . , n, and with Dt,i = 1 {Ti = t}
for t ∈ T . This leads to a cross-sectional random sampling scheme
where only the potential outcome corresponding to T = t is
observed, which implies that effectively the sample comes from
the conditional distribution of Y (t) given T = t rather than from
themarginal distribution of Y (t), a fact thatwill in general induce a
bias in the estimation of functionals of the latter distribution. In this
model the fundamental problem of causal inference is exacerbated
since only one of the J + 1 potential outcomes is observed for each
unit (Holland, 1986).
The population parameter of interest is the vector β∗ =

[β∗′0 , β
∗′

1 , . . . , β
∗′

J ]
′, where β∗t ∈ B ⊂ Rdβ for t ∈ T and dβ ∈

N. This parameter is assumed to uniquely solve a collection of
J + 1 (possibly over-identified, non-smooth) identifying moment
conditions denoted bym : Y ×B → Rdm with dm ≥ dβ .1

Assumption 1. For all t ∈ T , β∗ satisfies E [m (Y (t);βt)] = 0 if
and only if βt = β∗t .

Assumption 1 imposes a conventional high-level identification
condition for GMM estimation. As discussed in more detail below,
this model covers several examples of particular relevance for ap-
plied work. For instance, the mean response of some outcome of
interest to each treatment level may be recovered by considering
the collection of moment conditions m (Y (t);µt) = Y (t) − µt ,
t ∈ T , which leads to µ∗t = E [Y (t)]. This estimand, labeled the
Marginal Mean Treatment Effect (MMTE), may be used to general-
ize the idea of average treatment effect and is sometimes called
the Dose–Response Function in the statistical literature, and the
Average Structural Function in the econometrics literature. Sim-
ilarly, it is also possible to focus on the effect of multiple treat-
ments for the τ -th quantile of the underlying potential outcome
distributions by employing the collection of moment conditions
m (Y (t); qt (τ )) = 1 {Y (t) ≤ qt (τ )} − τ , t ∈ T , which leads to
q∗t (τ ) ∈ inf

{
q : FY (t) (q) ≥ τ

}
, where FY (t) is the c.d.f. of Y (t). This

alternative estimand, labeled the Marginal Quantile Treatment Ef-
fect (MQTE),may be used to capture and extend the idea of quantile
treatment effects.

2.2. Identification

The population parameter of interest defined in Assumption 1 is
not identifiable from the data on (Y , T , X). Following the program
evaluation literature, this paper considers a ‘‘selection on observ-
ables’’ assumption to achieve identification:

Assumption 2. For all t ∈ T : (a) Y (t) y Dt |X; and (b) 0 < pmin ≤
P [T = t|X].

1 This model corresponds to a specialized case of a general GMM model with
multi-level missing data. The results presented here apply without major changes
to a more general model where the potential outcomes may be multi-dimensional,
Y (t)may include some components of X , and the moment conditions may depend
on t ∈ T . The discussion is based on the multi-valued treatment effect model only
for simplicity.
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In the context of multi-valued treatment effects, Assumption 2
is sometimes referred to as Ignorability and the conditional
probabilities p∗t (X) ≡ P [T = t|X], t ∈ T , are known as the
Generalized Propensity Score (Imbens, 2000).
Part (a) of Assumption 2 is usually called Unconfoundedness

(or Missing at Random) and it ensures that the distribution of
each potential outcome and the treatment level indicator are
conditionally independent. Intuitively, this assumption guarantees
that, after conditioning on X , the conditional distribution of Y (t)
given T = t and the marginal distribution of Y (t) be identical. Part
(b) of Assumption 2 is important for identification (in the absence
of functional form restrictions), and is also a necessary condition
for finiteness of the semiparametric efficiency bound for regular
estimators of β∗.
Assumptions 1 and 2 provide identification of β∗ because, for

example, it is easily verified that

E [E [m (Y ;βt) |T = t, X]] = E [m (Y (t);βt)] = 0

if and only if βt = β
∗

t , ∀t ∈ T , (1)

E
[
Dtm (Y ;βt)
p∗t (X)

]
= E [m (Y (t);βt)] = 0

if and only if βt = β
∗

t , ∀t ∈ T , (2)

and

E
[
DtE [m (Y ;βt) |X]

p∗t (X)

]
= E [m (Y (t);βt)] = 0

if and only if βt = β
∗

t , ∀t ∈ T , (3)

leading to three moment conditions based solely on observed
random variables.
These assumptions lead to a collection of alternative, asymp-

totically equivalent efficient estimators. This paper studies two of
these estimators for the case ofmulti-valued treatment effects. The
first estimator is based on Eq. (2), while the second estimator is
based on a different moment condition that may be constructed
as a linear combination of Eqs. (1)–(3). The first estimator is mo-
tivated by its simplicity, while the second estimator is motivated
from the semiparametric efficiency calculations, as discussed fur-
ther below. In the special case of binary treatment effects, these
estimators are asymptotically equivalent to those available in the
literature.

2.3. Notation

Two important functions are the J + 1 vector-valued function
representing the GPS, denoted by p∗ (·) = [p∗0 (·) , . . . , p

∗

J (·)]
′,

and the (J + 1) dm vector-valued function of conditional expecta-
tions denoted by e∗ (·;β) = [e∗0 (·;β0)

′ , · · · , e∗J
(
·;βJ

)′
]
′, where

e∗t (X;βt) = E [m (Y (t);βt) |X]. It is assumed that p∗t (·) ∈ P and
e∗t (·;βt) ∈ E for all βt ∈ B and t ∈ T , where P and E rep-
resent two subspaces of (smooth) functions on X, endowed with
the supremum norm. These classes of functions will be further re-
stricted later in the paper to enable the nonparametric estimation
of these nuisance parameters. For simplicity, the arguments of the
functions considered are droppedwhenever they are clear from the
context. In addition, |·| denotes the matrix norm given by |A| =√
trace (A′A) for any matrix A, while ‖·‖∞ denotes the sup-norm
in all arguments for functions. In particular, for all t ∈ T , ‖pt‖∞ =
supx∈X |pt (x)| for any pt ∈ P , ‖et (βt)‖∞ = supx∈X |et (x;βt)| and
‖et‖∞ = supβt∈B,x∈X |et (x;βt)| for any et (βt) ∈ E , and similarly
for the vector-valued functions p and e. Finally, define

m (Y , T , X;β, p)

=

[
D0
p0 (X)

m (Y ;β0)′ , . . . ,
DJ
pJ (X)

m
(
Y ;βJ

)′]′
and

α (T , X; p, e (β))

=

[
D0 − p0 (X)
p0 (X)

e0 (X;β0)′ , . . . ,
DJ − pJ (X)
pJ (X)

eJ
(
X;βJ

)′]′
,

for some p ∈ P J+1 and e (β) ∈ E J+1 for all β ∈ B J+1.

3. Semiparametric efficiency calculations

This section provides semiparametric efficiency calculations es-
sential for the construction of efficient estimators of β∗. (See Bickel
et al. (1993), Newey (1990) and van der Vaart (1998) for sur-
veys.) The semiparametric efficiency theory provides the necessary
ingredients for the construction of efficient estimators of finite-
dimensional parameters in the context of semiparametric models
under some mild regularity conditions. First, it provides the ana-
logue concept of the Cramer–Rao Lower Bound for semiparametric
models, that is, an efficiency benchmark for regular estimators of
the population parameter of interest. Second, it provides a way of
constructing efficient estimators using the EIF or the efficient score
of the model. In the simplest possible case, the construction of an
efficient estimator starts by deriving the EIF in the model and then
verifying that the proposed estimator admits an asymptotic linear
representation based on this function.
Several semiparametric efficiency calculations are available

when some formof Assumption 2 is imposed. In the context of pro-
gram evaluation with binary treatments, efficient influence func-
tions and efficiency bounds have been computed by Hahn (1998),
Hirano et al. (2003) and Firpo (2007) for average and quantile
treatment effects. In models of missing data, Robins et al. (1994)
and Robins and Rotnitzky (1995) develop a general methodology
to construct efficient scores and compute the corresponding ef-
ficiency bounds when the missingness indicator is binary. Chen
et al. (2004, 2008) provide semiparametric efficiency calculations
for GMM models when the treatment or missingness indicator is
binary. Section 5.5 discusses how the efficiency bounds for differ-
ent population parameters, including those from the binary treat-
ment program evaluation literature, may be recovered from the
calculations presented here.

Assumption 3. For all t ∈ T : (a) E[|m (Y (t);βt)|2] < ∞

and E [m (Y (t);βt)] is differentiable in βt ∈ B at β∗t ; and (b)
rank (Γ∗) = (J + 1) dβ , where

Γ∗ =


Γ ∗0 0 · · · 0
0 Γ ∗1 · · · 0
...

...
. . .

...
0 0 · · · Γ ∗J

 ,
where 0 is a dm × dβ matrix of zeros and

Γ ∗t =
∂

∂β ′t
E [m (Y (t);βt)]

∣∣∣∣
βt=β

∗
t

.

The main role of Assumption 3 (together with part (b) of As-
sumption 2) is to ensure that the bound is finite, while the full col-
umn rank assumption on the gradient matrix Γ∗ ensures a local
identification condition. The following theorem provides the gen-
eral formof the EIF and SPEB for themodel considered in this paper.

Theorem 1 (EIF and SPEB). Let Assumptions 2 and 3 hold. Then the
EIF for any regular estimator of β∗ is given by

Ψ
(
y, t, x;β∗, p∗, e∗

(
β∗
))

= −
(
Γ ′
∗
V−1
∗
Γ∗
)−1

Γ ′
∗
V−1
∗
ψ
(
y, t, x;β∗, p∗, e∗

(
β∗
))
,
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where V∗ = V [ψ (Y , T , X;β∗, p∗, e∗ (β∗))] and ψ(y, t, x;
β∗, p∗, e∗(β∗)) = m (y, t, x;β∗, p∗) − α (t, x;β∗, p∗, e∗ (β∗)).
Consequently, the SPEB for any regular estimator of β∗ is given by
V ∗ =

(
Γ ′
∗
V−1
∗
Γ∗
)−1.

The results in Theorem 1 may be directly compared to those
presented inNewey (1994). This leads to a natural interpretation of
the EIF, where the vector-valued function α (·) corresponds to the
‘‘adjustment term’’ in the influence function due to the presence of
the unknownnuisance parameter (GPS)when the estimator is con-
structed from the sample analogue of the moment condition (2).
To provide additional intuition on the structure of the SPEB,

note that

V∗ = E
[
V
[
m
(
Y , T , X;β∗, p∗

)
|X
]]

+E
[
e∗
(
X;β∗

)
e∗
(
X;β∗

)′]
.

Using this decomposition, it is seen that the results in Theorem 1
include the SPEBpresented in Theorem1of Chen et al. (2004, 2008)
in the context of measurement error with ‘‘verify-in-sample’’ aux-
iliary data. In addition, by proceeding as in Hahn (1998), Hirano
et al. (2003) or Chen et al. (2004, 2008), it is possible to verify that
(i) the GPS is ancillary for the estimation of β∗, and (ii) if the distri-
bution of X is known or correctly specified the SPEB is reduced.
The calculations presented here explicitly allow for the compo-

nents β∗0 , . . . , β
∗

J of the population parameter β
∗ to be different.

As illustrated by the Monte Carlo experiment, when further infor-
mation about the components of β∗ is available, this may be incor-
porated in the model to obtain restricted treatment effects and a
reduction in the SPEB.
One important simplification in Theorem 1 is achieved in the

case of exact identification:

Corollary 1. If dm = dβ , then Theorem 1 implies that the EIF for
any regular estimator of β∗ is given byΨ (y, t, x;β∗, p∗, e∗ (β∗)) =
Γ −1
∗
ψ (y, t, x;β∗, p∗, e∗ (β∗)). Consequently, the SPEB for any

regular estimator of β∗ is given by V ∗ = Γ −1
∗
V∗Γ ′−1∗ .

In the just-identified case Γ∗ = diag
(
Γ ∗0 , . . . ,Γ

∗

J

)
and Corol-

lary 1 implies that the EIFmay be constructed by collecting the effi-
cient influence functions corresponding to each β∗0 , . . . , β

∗

J . Thus,
in this case it is possible to estimate β∗ efficiently by estimating
each β∗0 , . . . , β

∗

J separately.

4. Estimation procedures

This section briefly describes the two estimators for the multi-
valued treatment effects considered. For simplicity, in the over-
identified case, the construction of the two-step semiparametric
GMM estimators employs a consistent estimator of the corre-
sponding weighting matrix. In particular, it is assumed that An is a
(J + 1) dβ × (J + 1) dm (random) matrix such that An = A+ op (1)
for some positive semidefinite matrixW = A′A. (A generalization
to a continuously updated two-step semiparametric GMM model
is straightforward provided the corresponding additional regular-
ity conditions are imposed.)

4.1. Inverse probability weighting estimator (IPWE)

Eq. (2) leads to a moment condition based only on observed
random variables, which involves both the finite-dimensional
parameter of interest, β∗, and an infinite-dimensional nuisance
parameter (GPS). This suggests that if a preliminary estimator for
the GPS that converges to the true GPS sufficiently fast is avail-
able, it would still be possible to consistently estimate the finite-
dimensional parameter of interest.
These ideas lead to a simple semiparametric two-step GMM
estimation procedure where the parameter β∗ is estimated after
a preliminary nonparametric estimator for the GPS has been
constructed. To save notation, define the moment condition
M IPW (β, p) = E [m (Y , T , X;β, p)], and its sample analogue

M IPWn (β, p) =
1
n

n∑
i=1

m (Yi, Ti, Xi;β, p) .

The IPWE may be described by the following steps. First, con-
struct a nonparametric estimator of the GPS based on the full sam-
ple, denoted p̂ =

[
p̂0, . . . , p̂J

]′. Second, the IPWE for β∗ is given by
β̂ IPW = arg min

β∈BJ+1

∣∣AnM IPWn (
β, p̂

)∣∣+ op(n−1/2).
This estimationprocedure has the important advantage of being

based only on the nonparametric estimator of the GPS. Note that
the infinite-dimensional component does not depend on β and
therefore it needs to be estimated once to form the GMM problem,
leading to a very simple two-step procedure. On the other hand,
this estimation procedure has an important drawback. Because it
only involves the first part of the EIF, to ensure its semiparametric
efficiency the nonparametric estimator p̂ will have to play two
roles simultaneously: it has to approximate p∗ fast enough and it
also has to approximate the absent term in the moment condition
so that the limiting GMMproblem becomes a GMMproblem based
on the EIF. This pointwasmade byHirano et al. (2003) in the binary
treatment effects model; they showed that p̂ = p∗ will in general
not lead to an efficient estimator. Newey (1994) provides a general
discussion of this type of situations in semiparametric models.

4.2. Efficient influence function estimator (EIFE)

This estimator is based on the EIF derived in Theorem 1, which
provides another collection of moment conditions that can be
exploited to obtain a GMM estimator. Define the moment con-
dition MEIF (β, p, e (β)) = E [ψ (Y , T , X;β, p, e (β))], and its
sample analogue

MEIFn (β, p, e (β)) =
1
n

n∑
i=1

ψ (Yi, Ti, Xi;β, p, e (β)) .

The EIFE may be described by the following steps. First, con-
struct a nonparametric estimator of the GPS, denoted p̂ =[
p̂0, . . . , p̂J

]′, and for each β ∈ B J+1 construct a nonparametric
estimator of e (β), denoted ê (β) = [ê0 (β)′ , . . . , êJ (β)′]′. Second,
the EIFE for β∗ is given by

β̂EIF = arg min
β∈BJ+1

∣∣AnMEIFn (
β, p̂, ê (β)

)∣∣+ op(n−1/2).
This estimator appears to be in general more complicated than

the IPWE because it requires the nonparametric estimation of two
infinite-dimensional parameters, one of which is a function of β it-
self. On the other hand, it has the attractive feature of being based
on the EIF and therefore each nonparametric estimator would be
required to approximate well only its own population counter-
part. For example, it is now possible to consider the extreme case
of p̂ = p∗ and still obtain an efficient estimator, as discussed
below (cf. Chen et al. (2004, 2008)). Furthermore, the additional
term included in this estimation proceduremay be interpreted as a
‘‘bias-correction’’ term that may lead to finite sample performance
improvements. A theoretical comparison between these two es-
timators (and other first-order asymptotically equivalent estima-
tors) is beyond the scope of this paper, and is a topic of future
research. Section 6.3 reports a comparison between these two
estimators using simulations.
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5. Large sample properties

This section presents the main large sample results of the
paper using the general theory of Pakes and Pollard (1989).2 All
references to the literature of empirical processes are based on van
der Vaart and Wellner (1996). (For reviews on this literature see,
e.g., Andrews (1994) and van der Vaart (1998).)

5.1. Consistency

Two mild conditions imposed on the underlying identifying
functionm (·;β) are sufficient to establish consistency of the IPWE.

Assumption 4. For all t ∈ T : (a) the class of functions {βt 7→
m (·;βt) : βt ∈ B} is Glivenko–Cantelli, and (b)E[supβt∈B |m(Y (t);
βt)|] <∞.

Part (a) of Assumption 4 restricts the class of functions that
may be considered to implicitly define the population parame-
ter of interest. Functions in this class enjoy an important prop-
erty: sample averages of these functions are uniformly consistent
in β for their population mean. Although consistency may be es-
tablished by other means, requiring a uniform consistency prop-
erty of the underlying sample moment conditions is standard in
the GMM literature (Newey and McFadden, 1994). A simple set of
sufficient conditions for Assumption 4(a) areB compact,m (·;βt)
continuous in βt , and Assumption 4(b). Although this set of condi-
tions is reasonably weak, it is still stronger than necessary. In fact,
to cover interesting non-smooth cases it is necessary to rely on
slightly stronger results such as those presented in the empirical
process literature. From this literature, many classes of functions
are known to be Glivenko–Cantelli and many other classes may be
formed by some ‘‘permanence’’ theorem.3 Part (b) of Assumption 4
is a usual dominance condition.

Theorem 2 (Consistency of IPWE). Let Assumptions 1, 2 and 4 hold.
Assume that the following additional condition holds:

(2.1)
∥∥p̂− p∗∥∥

∞
= op (1).

Then, β̂ IPW = β∗ + op (1).
The additional condition in Theorem 2, Condition (2.1), is very

weak, requiring only that the nonparametric estimator of the GPS
is uniformly consistent.
The following additional assumption is required for consistency

of the EIFE.

Assumption 5. For all t ∈ T : the class of functions {βt 7→
e∗t (·;βt) : βt ∈ B} is Glivenko–Cantelli.

Assumption 5 captures the ideas implied by Assumption 4(a). In
this case, however, this assumptionmay be easier to verify because
the functions e∗t (·;βt) are conditional expectations and therefore
it is natural to assume that they are smooth in βt .

Theorem 3 (Consistency of EIFE). Let Assumptions 1, 2, 4 and 5 hold.
Assume that the following additional condition holds:

2 It is also possible to apply the general large sample theory of Chen et al.
(2003). However, since the criterion function is smooth in the infinite-dimensional
nuisance parameter, the results from Pakes and Pollard (1989) turn out to be
sufficient. The general theory of Ai and Chen (2003) does not apply directly to
this problem since the moment conditions are non-smooth. In contrast, the recent
results of Chen and Pouzo (2009) may be applied to this problem, leading to
different (but asymptotically equivalent) estimators.
3 Primitive conditions that ensure a given class of functions to be Glivenko–
Cantelli (or Donsker) usually involve some explicit assumption concerning the
‘‘size’’ of the class as measured by some version of the entropy numbers.
(3.1)
∥∥p̂− p∗∥∥

∞
= op (1) and

∥∥ê− e∗∥∥
∞
= op (1).

Then, β̂EIF = β∗ + op (1).

Since this estimator uses the full form of the EIF, Theorem 3
also requires the nonparametric estimator ê to be uniformly
consistent for e∗ in both arguments. This condition is still weak and
reasonable for most nonparametric estimators.

5.2. Asymptotic normality and efficiency

The following assumption provides sufficient conditions for
asymptotic normality and efficiency of the IPWE.

Assumption 6. For all t ∈ T and some δ > 0: (a) {βt 7→ m (·;βt) :∣∣βt − β∗t ∣∣ < δ} is a Donsker class; (b) there exist constant
C > 0 and r ∈ (0, 1) such that E[sup

|βt−β̃t |<δ
|m(Y (t);βt) −

m(Y (t); β̃t)|2] ≤ Cδ2r for all β̃t ∈ B; and (c) E[sup|βt−β∗t |<δ |
m (Y (t);βt) |2] <∞.

Similar to the requirement for consistency, parts (a) and (b) of
Assumption 6 restrict the class of identifying functions that may
be considered. These restrictions are standard from the empirical
process literature, ensuring that a uniform (in βt ) central limit the-
orem holds and a certain degree of smoothness (in βt ) is enjoyed
by the moment conditions. In turn, these results guarantee that a
stochastic equicontinuity condition applies, which allows one to
obtain an asymptotic linear representation for the estimator. For
most applications, Assumption 6(a) is already established or can
be easily verified by some ‘‘permanence theorem’’, while Assump-
tion 6(b) may be verified directly. Assumption 6(c) is a usual dom-
inance condition.

Theorem 4 (Asymptotic Linear Representation of IPWE). Let β∗ ∈
int
(
B J+1

)
, β̂ IPW = β∗ + op (1), and Assumptions 2, 3 and 6 hold.

Assume that the following additional conditions hold:

(4.1)
∥∥p̂− p∗∥∥

∞
= op

(
n−1/4

)
.

(4.2) M IPWn
(
β∗, p̂

)
= MEIFn (β∗, p∗, e∗ (β∗))+ op

(
n−1/2

)
.

Then, β̂ IPW − β∗ = −
(
Γ ′
∗
WΓ∗

)−1
Γ ′
∗
WMEIFn (β∗, p∗, e∗ (β∗))+

op(n−1/2).

Asymptotic normality of β̂ IPW follows directly from Theorem 4
while the efficiency is easily obtained by an appropriate choice
of the limiting weighting matrix W . This theorem requires two
important additional conditions involving the estimator of the
GPS, which imply certain restrictions in terms of smoothness
for the class of functions P and E , depending on the chosen
nonparametric estimator and the dimension ofX.
Condition (4.1) is standard and imposes a lower bound in the

uniform rate of convergence of p̂, requiring this estimator to con-
verge faster than n−1/4. Condition (4.2) is crucial. This condition
involves the sample moment condition (at β = β∗) and the non-
parametric estimator, and requires that a particular linear expan-
sion based on the efficient influence function holds (Newey, 1994).
This assumption is important because it employs the exact form
of the EIF to guarantee that the resulting estimator is efficient
(provided the weighting matrix is chosen appropriately). If Condi-
tion (4.2) holds for a function different thanMEIFn (β∗, p∗, e∗ (β∗)),
then the estimator cannot be efficient. For example, as mentioned
above, if the GPS is known and p̂ is replaced by p∗ in M IPWn

(
β∗, p̂

)
when constructing the estimation procedure, the resulting es-
timator will not be efficient. In this sense, Condition (4.2) im-
poses an ‘‘upper bound’’ on the uniform rate of convergence of p̂.
Intuitively, the estimator p̂ estimates p∗ nonparametrically and si-
multaneously approximates the correction term α (·; p, e (β)) in
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the EIF nonparametrically. Consequently, even if the GPS is known,
one may obtain an efficient estimator only if the GPS is nonpara-
metrically estimated.
Oneway to avoid requiring p̂ to play this dual role is to consider

the full efficient influence function when constructing the estima-
tor, which leads to the EIFE. This estimator will be asymptotically
normal if the following additional assumption holds.

Assumption 7. For all t ∈ T , some δ > 0, and for all x ∈ X
and all βt such that

∣∣βt − β∗t ∣∣ < δ: (a) e∗t (x;βt) is continuously
differentiablewith derivative given by ∂βt e

∗
t (x;βt) ≡

∂
∂βt
e∗t (x;βt)

with E[sup|βt−β∗t |<δ
∣∣∂βt e∗t (X;βt)∣∣] < ∞; and (b) there exists

ε > 0 and a measurable function b (x), with E [|b (X)|] < ∞,
such that

∣∣∂βt et (x;βt)− ∂βt e∗t (x;βt)∣∣ ≤ b (x) ∥∥et − e∗t ∥∥ε∞ for all
functions et (βt) ∈ E such that

∥∥et − e∗t ∥∥∞ < δ.

Assumption 7 restricts the class of functions G = {et : et (β) ∈
E,
∥∥et − e∗t ∥∥∞ < δ and

∣∣βt − β∗t ∣∣ < δ}, where e∗t ∈ G by con-
struction. Part (a) of this assumption only imposes mild smooth-
ness conditions on the conditional expectation et (βt) in βt as well
as a usual dominance condition. Thiswill imply the smoothness re-
quirement in Assumption 3 whenever integration and differentia-
tionmay be interchanged. Part (b) of Assumption 7 further restricts
the possible class of functions by requiring that functions that are
uniformly close also have their derivatives close.

Theorem 5 (Asymptotic Linear Representation of EIFE). Let β∗ ∈
int
(
B J+1

)
, β̂EIF = β∗ + op (1) and Assumptions 2, 3, 6 and 7 hold.

Assume that the following additional conditions hold:

(5.1)
∥∥p̂− p∗∥∥

∞
= op

(
n−1/4

)
.

(5.2) sup|β−β∗|<δ
∥∥ê (β)− e∗ (β)∥∥

∞
= op (1) , for some δ > 0.

(5.3) MEIFn
(
β∗, p̂, ê (β∗)

)
= MEIFn (β∗, p∗, e∗ (β∗))+ op(n−1/2).

Then, β̂EIF − β∗ = −
(
Γ ′
∗
WΓ∗

)−1
Γ ′
∗
WMEIFn (β∗, p∗, e∗ (β∗)) +

op
(
n−1/2

)
.

Asymptotic normality of β̂EIF also follows directly from Theo-
rem 5, where three additional conditions involving the nonpara-
metric estimators are imposed. Condition (5.1) is the same as
Condition (4.1) in Theorem 4. Condition (5.2) further requires uni-
form consistency of the nonparametric estimator of e∗ in both ar-
guments, although in this case no particular rate is required. This
result follows from the additional smoothness assumptions im-
posed in this theorem. Finally, Condition (5.3) is the analogue of
Condition (4.2) in Theorem 4, although much easier to verify in
general. In this case, additional knowledge about the GPS may be
easily incorporated in the estimation without affecting the asymp-
totic variance, provided the asymptotic linear representation
continues to hold.
The efficiency of the estimators follows directly from Theo-

rems 4 and 5:

Corollary 2. If dm = dβ (just-identified case) or W = V−1∗ (as given
in Theorem 1), then the IPWE and EIFE are efficient for β∗.

This corollary distinguishes two cases. First, if the problem
is exactly identified then the estimators are efficient without
further work. Alternatively, if the problem is over-identified then
a consistent estimator of the matrix V−1

∗
is needed, inducing an

intermediate step in the construction of the GMMproblems for the
IPWE and EIFE. A consistent estimator for V−1

∗
is easy to construct

without further assumptions, as shown in the next section.
5.3. Optimal weighting matrix and uncertainty estimation

This section considers the estimation of V∗ and Γ∗, the variance
of the efficient influence function and the ‘‘sandwich’’ matrix
appearing in the SPEB, respectively.
The natural plug-in estimator of V∗ is given by

V̂ =
1
n

n∑
i=1

ψ(Yi, Ti, Xi, β̂, p̂, ê(β̂))ψ(Yi, Ti, Xi, β̂, p̂, ê(β̂))′,

for some consistent estimator β̂ of β∗. Theorem 6 gives a set of
simple sufficient conditions that ensure that V̂ is consistent for V∗.

Theorem 6 (Consistent Estimator of V ∗). Let Assumptions 2, 3, 6 and
7(a)with E[sup|βt−β∗t |<δ

∣∣∂βt e∗t (X;βt)∣∣2] < ∞ hold. If β̂ = β∗ +

op (1),
∥∥p̂− p∗∥∥

∞
= op (1) and sup|β−β∗|<δ

∥∥ê (β)− e∗ (β)∥∥
∞
=

op (1), for some δ > 0, then V̂ = V∗ + op (1).

The conditions imposed in Theorem 6 are the same as those
assumed in Theorem 4 plus a mild smoothness and dominance
condition on e∗.
For the estimation of Γ∗ there are several alternatives. First, it

is possible to consider a numerical derivative approach directly
applied to the sample analogue (e.g., Pakes and Pollard (1989)).
Second, in some cases, the estimator may be constructed by taking
into consideration the explicit form of the matrix (e.g., Γt

(
β∗t
)
=

f ∗Y (t)
(
q∗t
)
for MQTE). As a third alternative, under the assumptions

already imposed, it is also possible to construct a generic estimator
provided that integration and differentiation can be interchanged.
In this case, for all t ∈ T ,

Γ ∗t =
∂

∂βt
E [m (Y (t);βt)] |βt=β∗t = E

[
∂

∂βt
et (X;βt)

∣∣∣∣
βt=β

∗
t

]
,

which suggests the plug-in estimator given by

Γ̂t =
1
n

n∑
i=1

∂

∂βt
êt (X;βt)

∣∣∣∣
βt=β̂t

,

where in applications the derivative operatormay be implemented
by means of a finite difference operator (e.g., a numerical deriva-
tive approach). The following theorem provides the sufficient con-
ditions needed and establishes the consistency of this plug-in
estimator.

Theorem 7 (Consistent Estimator of Γ∗). Let Assumptions 2, 3 and
7 hold. If β̂ = β∗ + op (1) and sup|β−β∗|<δ

∥∥ê (β)− e∗ (β)∥∥
∞
=

op (1), for some δ > 0, then Γ̂t = Γ ∗t + op (1).

From Theorem 7 it is straightforward to form a consistent
estimator of the gradient matrix Γ∗.

5.4. Nonparametric estimation of nuisance parameters

The results presented so far have been obtained by imposing
high-level assumptions concerning the nonparametric estimators
of the infinite-dimensional nuisance parameters. This section con-
siders a particular form of such estimators and discusses explicitly
the nonparametric estimation of p∗ and e∗, and verifies the high-
level conditions imposed in Theorems 4 and 5.
Since both p∗ and e∗ are (possibly high-dimensional) condi-

tional expectations, this section considers a nonparametric series
estimator (Newey, 1994; Chen, 2007). Let g (X) = E [Z |X] be the
unknown regression function of interest for some random variable
Z and random vector X , and let {rk (x)}∞k=1 be a sequence of known
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approximating functions with the property that a linear combi-
nation of RK (x) = [r1 (x) , . . . , rK (x)]′ can approximate g (x) for
K = 1, 2, . . .. An approximating function is formed by g (X; γK ) =
RK (X)′ γK and the series estimator based on an i.i.d. random sam-
ple (Zi, Xi), i = 1, 2, . . . , n, is given by ĝ (X) = g

(
X; γ̂K

)
, with

γ̂K = argminγK
∑n
i=1 (Zi − g (Xi; γK ))

2, where the closed-form
solution is

γ̂K =

(
n∑
i=1

RK (Xi) RK (Xi)′
)− n∑

i=1

RK (Xi) Zi (4)

with A− denoting a generalized inverse of the matrix A.
By choosing the approximating basis appropriately and under

suitable conditions on the function g (·) and growth rate of K it is
possible to establish the consistency and rate of convergence (in
both L2 and uniform sense) of this nonparametric estimator. Two
common choices for an approximating basis are power series and
splines, leading to polynomial regression and spline regression,
respectively.
This nonparametric estimator may be used directly to estimate

the vector valued function e∗. For all t ∈ T , let Z (βt) = m (Y ;βt)′

and let γ̂t,K (βt) be defined as in Eq. (4), but when only the data
for T = t are used. Then, for all t ∈ T , the series nonpara-
metric estimator of e∗t (X;βt), βt ∈ B, is given by êt (X;βt)′ =
RK (X)′ γ̂t,K (βt), where

γ̂t,K (βt) =

(
n∑
i=1

Dt,iRK (Xi) RK (Xi)′
)−

×

n∑
i=1

Dt,iRK (Xi)m (Yi;βt)′ .

A nonparametric series estimator for p∗may be constructed in a
similarway. However, theGPS is not only a conditional expectation
but also a conditional probability, which imposes additional re-
strictions that cannot be captured by this standard nonparametric
estimator. Thus, in this case it is natural to consider a nonpara-
metric estimator consistent with these additional requirements.
In particular, this paper studies a generalization of the estima-
tor introduced by Hirano et al. (2003) in the context of binary
treatments, labeled the Multinomial Logistic Series Estimator
(MLSE), which may be interpreted as a non-linear sieve estimation
procedure.
Using the notation above, for all t ∈ T , let g

(
X; γt,K

)
=

RK (X)′ γt,K be the approximating function, and for notational sim-
plicity let γK = (γ ′0,K , γ

′

1,K , . . . , γ
′

J,K )
′. When the coefficients γt,K ,

t ∈ T , are chosen as in Eq. (4) with Z = Dt the resulting estima-
tor is the usual series estimator for the components of p∗. Alter-
natively, the MLSE chooses all the vectors in γK simultaneously by
solving the maximum likelihood multinomial logistic problem

γ̂K = arg max
γK |γ

′
0,K=0K

n∑
i=1

J∑
t=0

Dt,i log

 exp
(
g
(
Xi; γt,K

))
J∑
j=0
exp

(
g
(
Xi; γt,K

))
 ,

where 0K represents a K × 1 vector of zeros used to impose the
usual normalization γK ,0 = 0K necessary for identification. In this
case, the nonparametric estimator p̂ (·) has typical t-th element
given by

p̂t (X) =
exp

(
RK (X)′ γ̂t,K

)
1+

J∑
j=1
exp

(
RK (X)′ γ̂t,K

) .
It is straightforward to verify that this nonparametric estimator
satisfies the additional restrictions underlying the GPS. The rates of
convergence of this non-linear sieve estimator are established in
Appendix B. For simplicity, this section considers the special case
of power series and splines.

Assumption 8. (a) For all t ∈ T , p∗t (·) and e
∗
t

(
·, β∗t

)
are s times

differentiable with s/dx > 5η/2 + 1/2, where η = 1 or η = 1/2
depending on whether power series or splines are used as basis
functions, respectively; (b) X is continuously distributedwith den-
sity bounded and bounded away from zero on its compact support
X; and (c) for all t ∈ T and some δ > 0,V [m (Y (t) ;βt) |X = x] is
uniformly bounded for all x ∈ X and allβt such that

∣∣βt − β∗t ∣∣ < δ.

Part (a) of Assumption 8 provides the exact restrictions needed
on the spaces P and E , describing the minimum smoothness re-
quired as a function of the dimension of X and the choice of basis
of approximation. Part (b) of Assumption 8 restricts X to be con-
tinuous on a compact support with ‘‘well-behaved’’ density. These
assumptions may be relaxed considerably at the expense of some
additional notation. For example, it is possible to allow some com-
ponents of X to be discretely distributed, and to permit X to be
unbounded by changing the norm used and restricting the tail be-
havior of the density of X (see Chen et al. (2005) for an example).
Part (c) of Assumption 8 is standard.

Theorem 8 (Nonparametric Estimation). Let Assumptions 2 and
8 hold. Then, Conditions (4.1) and (4.2) in Theorem 4, and
Conditions (5.1), (5.2) and (5.3) in Theorem 5 are satisfied by the
nonparametric estimators introduced in this section if K = nν
with 4s/dx − 6η > 1/v > 4η + 2, where η = 1 or η =
1/2 depending on whether power series or splines are used as basis
functions, respectively.

5.5. Other population parameters and hypothesis testing

Inmany applications the population parameters of interestmay
be not only the marginal treatment effects but also other quanti-
ties involving possibly more than one marginal treatment effect.
Because differentiable transformations of efficient estimators of
Euclidean parameters lead to efficient estimators for the corre-
sponding population parameters, a simple delta-method argument
provides a procedure to easily recover any collection of treatment
effects that can be written as (or approximated by) a differentiable
function of the marginal treatment effects.
As an application of this idea, and because the ATE and QTEs are

continuous transformationsof the MMTE and MQTE, respectively,
it is also possible to obtain the important results of Hahn (1998),
Hirano et al. (2003) and Firpo (2007) from the binarytreatment
effect literature as particular cases of the procedures discussed
here. For instance, assuming that E[Y (t)2] < ∞ and noting that
Γ ∗t = 1 for all t ∈ T in the case of MMTE, Theorem 1 implies that
the SPEB for the MMTE is given by

V ∗ = E


σ 20 (X)
p0 (X)

+
(
µ0 (X)− µ∗0

)2 (
µ0 (X)− µ∗0

) (
µ1 (X)− µ∗1

)
(
µ0 (X)− µ∗0

) (
µ1 (X)− µ∗1

) σ 21 (X)
p1 (X)

+
(
µ1 (X)− µ∗1

)2
 ,

where σ 2t (X) = V [Y (t) |X], µt (X) = E [Y (t) |X], for all t ∈
T = {0, 1}. Since the ATE can be written as ∆ATE ≡ E [Y (1)] −
E [Y (0)] = v′µ∗, where v = (−1, 1)′, it follows directly using
Theorem 4 or Theorem 5 that

√
n(∆̂ATE −∆ATE)

d
−→N

[
0, v′V ∗v

]
,

where ∆̂ATE = µ̂1 − µ̂2,

v′V ∗v = E
[
σ 20 (X)
p (0, X)

+
σ 21 (X)
p (1, X)

+
(
∆ATE (X)−∆ATE

)2]
,
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and∆ATE (X) = µ1 (X)− µ0 (X). In this case, the asymptotic vari-
ance is the SPEB found by Hahn (1998) and the resulting estimator
in the case of Theorem 4 is essentially the same as the one consid-
ered in Hirano et al. (2003) (see also Imbens et al. (2006) for an-
other similar modification of this estimator). The same result can
be verified for the case of quantiles since the QTEmay also be writ-
ten as ∆QTE ≡ q∗1 (τ ) − q

∗

0 (τ ) = v
′q∗ (τ ). In this case, the asymp-

totic variance coincides with the SPEB derived in Firpo (2007) and
the resulting estimator in the case of Theorem 4 corresponds to the
Z-estimator version of Firpo’s QTE estimator.
In some applications, incorporating additional information

about the treatment effects in a general over-identifiedmodelmay
be challenging. However, it is possible to consider an alternative
approach to the efficient estimation of multiple restricted treat-
ment effects. Suppose that the restrictions of interest can be im-
posed by writing the marginal treatment effects as a function of
the parameters π∗, and denote this function by β (π∗). Then, un-
der mild regularity conditions, an efficient estimator of π∗ may be
obtained as

π̂ = argmin
π
[β̂ − β (π)]′(Γ̂ ′V̂−1Γ̂ )[β̂ − β (π)],

where β̂ is an efficient estimator of β∗, Γ̂ is a consistent estimator
of Γ∗, and V̂ is a consistent estimator of V∗. In this case,

√
n
(
π̂ − π∗

) d
−→N

[
0,
(
∂β
(
π∗
)′
Γ ′
∗
V−1
∗
Γ∗∂β

(
π∗
))−1]

,

where ∂β (π∗) = ∂
∂π
β (π) |π=π∗ . A consistent estimator of the co-

variance matrix of π̂ may also be constructed using a plug-in ap-
proach, as discussed previously.
To fix ideas, consider the case where the underlying distribu-

tion of the potential outcomes is assumed to be symmetric. This
assumption may be incorporated to form an over-identified GMM
problem for the estimation of the MMTE. Alternatively, it is possi-
ble to first jointly estimate (µ∗, q∗ (.5)) using either of the proce-
dures discussed previously and then solve

π̂ = argmin
π

[
µ̂− π

q̂ (0.5)− π

]′
(Γ̂ ′V̂−1Γ̂ )

[
µ̂− π

q̂ (0.5)− π

]
,

which leads to amore efficient estimator of themulti-valued treat-
ment effects for location under symmetry. This idea may be used
to incorporate other restrictions.
Finally, because testing procedures based on efficient estima-

tors are optimal (possibly after restricting the class of allowed
tests), it is straightforward to perform optimal testing of different
hypotheses concerning multi-valued treatment effects. This may
be done within and across treatment levels for marginal treatment
effects, for treatment effects obtained by means of some transfor-
mation of these parameters, and for restricted treatment effects by
relying on classical testing strategies.

6. Examples and illustrations

This section analyzes two leading examples of particular impor-
tance for applied work, the Marginal Mean Treatment Effect and
the Marginal Quantile Treatment Effect, and illustrates the main
results of this paper by means of an empirical application and a
simulation study.

6.1. Leading examples: MMTE and MQTE

To avoid the discussion of technical regularity conditions, this
section presents the main results in two propositions that do not
include detailed primitive assumptions. The discussion focuses on
the implementation of the theoretical results previously discussed
to these examples.
First consider the Marginal Mean Treatment Effect. This esti-

mand is denoted byµ∗ =
[
µ∗0, µ

∗

1, . . . , µ
∗

J

]′, and it solves the mo-
ment condition in Assumption 1 with m (Y (t);µt) = Y (t) − µt ,
for all t ∈ T , leading to µ∗t = E [Y (t)]. In this case identification
follows immediately after assuming finite first moments of the po-
tential outcomes. The exact form of the SPEB was given in the pre-
vious section, after assuming thatE[Y (t)2] <∞, which is denoted
here by V ∗µ with typical (i, j)-th element

V ∗µ,[i,j] = E
[
1 {i = j}

σ 2i (X)
pi (X)

+
(
µi (X)− µ∗i

) (
µj (X)− µ∗j

)]
,

where σ 2t (X) = V [Y (t) |X], µt (X) = E [Y (t) |X], for all t ∈ T .
The estimators may be expressed in closed form as

µ̂IPWt =

(
n∑
i=1

Dt,i
p̂t (Xi)

)−1 n∑
i=1

Dt,iYi
p̂t (Xi)

,

and similarly for µ̂EIFt , for t ∈ T . Notice that in this case the IPWE
corresponds to a properly re-weighted average for each treatment
level. Under regularity conditions, these estimators satisfy:

Proposition 1.
√
n(µ̂IPW − µ∗)

d
−→N

(
0, V ∗µ

)
and
√
n(µ̂EIF −

µ∗)
d
−→N

(
0, V ∗µ

)
.

This proposition gives root-n consistency (and asymptotic
equivalence) of both the IPWE and EIFE for the estimation of the
MMTE. These results are obtained as a direct consequence of The-
orems 4 and 5, respectively, together with Theorem 8 when the
nonparametric procedures described in Section 5.4 are employed.
For this example, a simple set of primitive conditions includes B
compact, supx∈X E[|Y (t)|2 |X = x] < ∞ for all t ∈ T , and the
other conditions listed in Assumption 8. In this example Assump-
tions 6 and 7 are easily satisfied.
Next consider theMarginal Quantile Treatment Effect. For some

τ ∈ (0, 1), this estimand is denoted by q∗ (τ ) = [q∗0 (τ ) , q
∗

1 (τ ) ,
. . . , q∗J (τ )]

′, and it solves the moment condition in Assumption 1
with m (Y (t); qt (τ )) = 1 {Y (t) ≤ qt (τ )} − τ , for all t ∈ T ,
which leads to the estimand q∗t (τ ) ∈ inf

{
q : FY (t) (q) ≥ τ

}
with FY (t) the c.d.f. of Y (t). In this case, a sufficient condition
for identification is that Y (t) be a continuous random variable
with density fY (t)

(
q∗t (τ )

)
> 0. To compute the SPEB note that

using Leibniz’s rule Γ ∗t = f ∗Y (t)
(
q∗t (τ )

)
> 0 for t ∈ T . Thus,

Assumption 3 is satisfied and Theorem 1 implies that the SPEB for
the MQTE is given by V ∗q(τ ) with typical (i, j)-th element

V ∗q(τ ),[i,j] = E

[
1 {i = j}

σ 2i (X; τ)

f ∗Y (i)
(
q∗i (τ )

)2 p∗i (X)
+

qi (X; τ) qj (X; τ)
f ∗Y (i)

(
q∗i (τ )

)
fY (j)

(
q∗j (τ )

)] ,
where σ 2i (X; τ) = V

[
1
{
Y (i) ≤ q∗i (τ )

}
|X
]
, qi (X; τ) = E[1{Y (i)

≤ q∗i (τ )}−τ |X], for all i ∈ T . In this case it is not possible to obtain
a closed-form solution to the minimization problem and therefore
the IPWE is implicitly defined by

q̂IPWt (τ ) = argmin
q∈B

∣∣∣∣∣1n
n∑
i=1

Dt,i (1 {Yi ≤ q} − τ)
p̂t (Xi)

∣∣∣∣∣ ,
and similarly for q̂EIFt (τ ), with e∗t (X;βt) = F∗Y (t) (qt (τ ) |X) −
τ and F̂Y (t) (y|x) representing some nonparametric estimator of
F∗Y (t) (y|x), the c.d.f. of Y (t)|X , for t ∈ T . Under standard regularity
conditions, these estimators satisfy:
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Proposition 2.
√
n(q̂IPW (τ )−µ∗)

d
−→N (0, V ∗q(τ )) and

√
n(q̂EIF (τ )

− µ∗)
d
−→N (0, V ∗q(τ )).

As in the case of the MMTE, this proposition gives root-n con-
sistency (and asymptotic equivalence) of both the IPWE and EIFE
for the estimation of the MQTE. These results are also obtained
as a direct a consequence of Theorems 4 and 5, respectively,
together with Theorem 8 when the nonparametric procedures
described in Section 5.4 are employed. This example requires a dif-
ferent set of regularity conditions, including F∗Y (t) (y|x) continuous
in y for every x, and the other conditions listed in Assumptions 7
and8. Assumption 6 is easily satisfied,while Assumption 7 requires
further restrictions on the conditional distributions of Y (t)|X , t ∈
T .

6.2. Empirical application

In a recent paper, Almond et al. (2005) study the economic costs
of low birth weight using different non-experimental techniques.
Using a rich database of singletons in Pennsylvania, the authors
find a strong negative effect of about 200–250 g of maternal smok-
ing on birth weight using both subclassification on the propen-
sity score and regression adjusted methods. Their results may be
extended by considering the effect of maternal smoking intensity
during pregnancy on birth weight, since the database records the
number of cigarettes-per-day smoked by the mother during preg-
nancy. This additional information allows one to consider multi-
valued treatment effects and address several interesting questions,
including whether the effect of smoking is constant across levels
of smoking and whether there exist differential and/or heteroge-
neous treatment effects.
This empirical illustration uses the same database as in Al-

mond et al. (2005, Section IV.C). The pre-intervention covariates
include age, education and health indicators for the mother and
father, among others. Approximately 80% of mothers in the sam-
ple did not smoke during pregnancy, while for the remaining 20%
the data exhibit important mass points approximately every 5
cigarettes ranging from 1 to 25. This suggests collapsing the num-
ber of smoked cigarettes into six 5-cigarette-bin categories (J = 5)
{0, 1–5, 6–10, 11–15, 16–20, 21+}. Five quantiles (.9,.75,.5,.25,.1),
the mean and standard deviation for each potential outcome are
jointly estimated, leading to 42 treatment effects. For the estima-
tion of both nonparametric nuisance parameters, the analysis uses
cubic B-splines and to reduce the computational burden an ad-
ditive separability assumption on the approximating functions is
used. The results appear to be robust to different choices of these
specifications and tuning parameters.
Since this model is exactly identified, it is possible to estimate

each treatment effect separately and then form the full EIF to
estimate the SPEB. The point and uncertainty estimates for the 42
treatment effects were calculated using both the IPWE and the
EIFE. Very similar results were obtained for both IPWE and EIFE,
as well as for estimates of the gradient matrix Γ∗ when using
a plug-in estimator of its exact form and the general numerical
derivative approach. Fig. 1 shows the point estimates and their
95% (marginal) confidence intervals for the case of the MMTE
and MQTE using the IPWE and a plug-in estimator of the exact
form of Γ∗. Interestingly, this figure shows a parallel shift in the
entire distribution of birth weight along the smoking intensity.
There is a large reduction of about 150 g when the mother starts
to smoke (1–5 cigarettes-per-day), an additional reduction of
approximately 70 g when changing from 1–5 to 6–10 cigarettes-
per-day, and no additional effects once the mother smokes at
least 11 cigarettes. These findings provide qualitative evidence that
differential treatment effects are non-linear and approximately
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Fig. 1. Effect of maternal smoking intensity on birth weight (5-cigarette bins).

homogeneous along the distribution of the potential outcomes. In
particular, a close-to-symmetric distribution with approximately
constant dispersion (as measured by both interquartile ranges and
standard deviation) is observed.
The qualitative results summarized in Fig. 1 may be formally

tested. Table 1 presents a collection of hypothesis tests regarding
pairwise differences and difference-in-differences of marginal
mean treatment effects. On the diagonal, pairwise differences
across treatment levels are reported. For example, the reduction
in birth weight induced by increasing maternal smoking from
0 to 1–5 cigarettes is 146 g (statistically significant), while the
corresponding reduction induced by increasing maternal smoking
from 6–10 to 11–15 cigarettes-per-day is 37 g (not statistically
significant). This table also reports the difference-in-differences
comparisons which may be used to test for non-linearities. For
example, increasing maternal smoking from 0 to 1–5 cigarettes-
per-day induces an additional 75 gram reduction in birth weight
when compared to the corresponding reduction induced by
increasing maternal smoking from 1–5 to 6–10 cigarettes-per-
day. This differential effect is statistically significant and provides
formal evidence of non-linear treatment effects. Importantly,
the non-linearities disappear beyond the tenth cigarette-per-day
smoked during pregnancy. Similar results are obtained when
analyzing the MQTE.
Table 2 illustrates additional joint hypothesis tests. In the first

row, a joint test for the hypothesis of no treatment effect (as
measured by mean, quantile and spread) for the highest three
treatment levels is reported, while in the second and third rows
analogous tests considering the highest four and highest five
treatment levels are shown, respectively. As exhibited in this table,
increasing the smoking intensity beyond 10 cigarettes-per-day has
no further effect on birth weight. The remaining rows in Table 3
test for different hypotheses involving possible distributional
effects across and within treatment levels. Small but statistically
significant differences on the interquantile ranges are found.
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Table 1
Hypothesis tests for pairwise differences and difference-in-differences effects.

T1-T0 T2-T0 T3-T0 T4-T0 T5-T0 T2-T1 T3-T1 T4-T1 T5-T1 T3-T2 T4-T2 T5-T2 T4-T3 T5-T3 T5-T4

T1−T0 −146* 75* 38 37* 40* 109* 108* 111* 145* 148* 149*

T2−T0 −217* 146* 109* 108* 111* 180* 179* 182* 216* 219* 220*

T3−T0 −254* 183* 146* 145* 148* 217* 216* 219* 253* 256* 257*

T4−T0 −255* 184* 147* 146* 149* 218* 217* 220* 254* 257* 258*

T5−T0 −252* 181* 144* 143* 146* 215* 214* 217* 251* 254* 255*

T2−T1 −71* 34 33* 36 70* 73* 74*

T3−T1 −108* 71* 70* 73* 107* 110* 111*

T4−T1 −109* 72* 71* 74* 108* 111* 112*

T5−T1 −106* 69* 68* 71* 105* 108* 109*
T3−T2 −37 36 39 40
T4−T2 −38* 37 40 41
T5−T2 −35* 34 37 38*
T4−T3 −1 4
T5−T3 2 1
T5−T4 3
Notes: (i) Treatments T0, T1, T2, T3, T4 and T5 are 0, 1–5, 6–10, 11–15, 16–20 and 21+ cigarettes-per-day smoked, respectively.
(ii) Pairwise differences are reported on the diagonal, and difference-in-differences are reported outside the diagonal.
(iii) In all cases the null hypothesis is zero differential effect.
* Significant at 5%.
Table 2
Joint hypotheses tests (IPWE).

Joint null hypotheses Number of restrictions Wald test statistic p-value

Equal treatment effects (mean, quantiles, spread) for (11–15, 16–20, 21+) 14 16.60 0.2781
Equal treatment effects (mean, quantiles, spread) for (6–10, 11–15, 16–20, 21+) 21 55.86 0.0001
Equal treatment effects (mean, quantiles, spread) for (1–5, 6–10, 11–15, 16–20, 21+) 28 246.88 0.0000
Equal mean and median for each treatment 6 1402.62 0.0000
Equal mean–median difference (MMD) across treatments 5 3.78 0.5809
Equal standard deviation across treatments 5 25.38 0.0001
Equal interquartile range (IQR) across treatments 5 25.32 0.0001
Equal Q.9-Q.1 range (Q.9-Q.1) across treatments 5 21.98 0.0005
Equal MMD, IQR and Q.9-Q.1 across treatments 15 38.59 0.0007

Note: All tests have been computed using the IPWE and its corresponding limiting distribution.
Table 3
Estimated models in the Monte Carlo experiment.

Model 1 (no restrictions) Model 3 (between restrictions)
µ1, µ2, µ3, q1, q2, q3 unrestricted µ2 = µ1 +∆µ , µ3 = µ2 +∆µ ,

q2 = q1 +∆q , q3 = q2 +∆q
µ1,∆µ, q1,∆q unrestricted

Model 2 (within restrictions) Model 4 (within & between restrictions)
µ1 = q1 ,µ2 = q2 ,µ3 = q3 µ1 = q1 , µ2 = q2 , µ3 = q3 ,

µ2 = µ1 +∆µ , µ3 = µ2 +∆µ
µ1, µ2, µ3 unrestricted µ1,∆µ unrestricted

6.3. Monte Carlo evidence

To complement the evidence provided by the above empirical
illustration, this section presents a small Monte Carlo study that
shows how efficiency in the estimation of multi-valued treatment
effects may be increased by incorporating over-identification
restrictions. A multi-valued treatment model is considered where
the potential outcomes distributions have certain restrictions. In
particular, the data generating process (DGP) leads to distributions
with equal mean and median, and constant incremental changes
along the treatment levels. As discussed in Section 1, these
restrictions may be naturally justified by an underlying economic
model. For example, in some returns-to-schoolingmodels, changes
in log-income are assumed to be proportional and constant across
different levels of educational attainment.
The simulations consider a DGP with three treatment levels,

T = {0, 1, 2} (J = 2), where µt = qt for all t ∈ T (letting
qt (0.5) = qt to save notation), and µ2 = µ1 + ∆ and µ3 =
µ2 + ∆. In this case, ∆ may be interpreted as the ‘‘treatment
effect’’ for location. If these restrictions were ignored, results
from the literature on binary treatment effects would still provide
consistent and asymptotically normal estimators for ∆. However,
such estimators would not enjoy the efficiency gains of the
procedures proposed in this paper because they would not exploit
the over-identification restrictions within and across treatment
levels. The simulation study reported here confirms these results
and shows that considering joint (over-identified) multi-valued
treatment effects provides efficiency gains in the estimation.
The Monte Carlo experiment uses S = 5000 replications,

n = 1000 observations, and an i.i.d. sample of mutually in-
dependent randomvariables (X1,i, X2,i, ε0,i, ε1,i, ε2,i, v0,i, v1,i, v2,i),
i = 1, 2, . . . , n. The observed characteristics Xi, with dx = 2,
are generated by Xi = (X1i, X2i)′ with X1,i and X2,i independent
uniform (−1/2, 1/2) random variables. The treatment assign-
ment is generated by Ti = argmaxt∈T {T ∗t,i}, where T

∗

t,i = W
′

i γt,i +

εt,i, t ∈ T , Wi = (1, X1,i, X2,i, X21,i, X1,iX2,i)
′, γ0 = (0, 0, 0, 0, 0)′,

γ1 = (1, 1, 1, 1, 1)′, γ2 = (2, 2, 2, 2, 2)′, and where ε0,i, ε1,i and
ε2,i are independent gumbel (0, 1) random variables, leading to
the multinomial logistic model. The potential outcomes are gen-
erated by Yi (t) = µt +0.5X1,i+0.5X2,i+ vt,i, t ∈ T , withµ0 = 0,
µ1 = 1, µ2 = 2, and v0,i, v1,i and v2,i independent laplace (0, 1)
random variables. This setup leads to a DGP with µ0 = q0 = 0,
µ1 = q1 = 1, µ2 = q2 = 2, and ∆ = µ2 − µ1 = µ3 − µ2 = 1.
(Different variants of this DGP were considered, and in all cases
similar results were obtained.)
Four different models were estimated using data simulated

from the DGP described above. These models are summarized in
Table 3.
Model 1 corresponds to the unrestricted MMTE and MQTE,

which leads to the estimation of ∆ as it would be done in
the context of binary treatment effects. Model 2 imposes over-
identification restrictions within each treatment level, while
Model 3 imposes over-identification restrictions across treatment
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Fig. 2. Kernel density estimates of IPW and EIF estimators.
levels (i.e., cross-equation restrictions) for each estimand of
location. Finally, Model 4 simultaneously imposes all over-
identification restrictions considered in Table 3. This setup leads
to a partial ordering in terms of efficiency, since all restrictions de-
scribed in Table 3 are simultaneously true in the DGP. In particular,
the estimators fromModel 1 are dominated by the estimators from
Model 2 andModel 3,while in turn these estimators are dominated
by those obtained fromModel 4. Of course, there is no general rank-
ing between the estimators from Model 2 and Model 3.
The results are presented in Fig. 2, which reports both the IPW

and the EIF estimators for µ3 − µ2 in Models 1 and 2, and ∆µ in
Models 3 and 4. These estimators are constructed using the non-
parametric estimators described in Section 5.4 with a polynomial
basis of approximation with a second-order tensor product based
on Xi. (The results reported here were robust to different choices
of K and to the use of splines instead of polynomials.) In Fig. 2,
the solid line corresponds to the semiparametric average treat-
ment effect estimator that would be constructed using classical re-
sults from the binary treatment effect literature, while the other
three lines are obtained by the results presented in this paper. The
efficiency gains from over-identification restrictions are substan-
tial, being particularly important the cross-equation restrictions
across treatment levels. Interestingly, the IPWE performed as well
as the EIFE, despite the fact that the latter includes the correction
term that may be interpreted as a bias-correction procedure. Of
course, these results are design specific, and it remains an open
question whether this correction term is important from a the-
oretical (and empirical) perspective. Further theoretical research
comparing these estimators is underway.

7. Final remarks

This paper has studied the efficient estimation of a large class
of multi-valued treatment effects implicitly defined by a possibly
over-identified non-smooth collection of moment conditions. Two
alternative estimators were proposed based on standard GMM ar-
guments combined with the corresponding modifications needed
to circumvent the fundamental problem of causal inference. The
resulting estimators are of the two-stage semiparametric GMMva-
riety, where the first step is fully nonparametric. Under regularity
conditions, these estimators were shown to be root-n consistent,
asymptotically normal and efficient for the general population pa-
rameter of interest. Using these estimators it was also shown how
other estimands of interest may be efficiently estimated, allow-
ing the researcher to recover a rich class of population param-
eters. Important results in the literature of program evaluation
with binary treatment assignmentsmay be seen as particular cases
of the procedures discussed in this paper when the treatment is
dichotomous.
Considering multi-valued treatment assignments provides the

opportunity for a better characterization of the program under
study. As illustrated in the empirical application, collapsing a
multiple treatment into a binary indicator may prevent the
researcher from detecting the presence of important non-linear
effects. More generally, in many applications it is natural to expect
multiple differential impacts within and across treatments, which
highlights the relevance of considering multi-valued treatments,
when possible, for making informed policy decisions.
Although this paper has focused on estimands based on the

marginal distribution of the potential outcomes, it may be also
be of interest to consider multi-valued weighted treatment effects
(Hirano et al., 2003) leading to estimands based on the conditional
distribution of the potential outcome given some treatment
level. Efficient estimation procedures for these estimands may be
derived directly by following and extending the work presented
here.

Appendix A. Proofs of theorems

Let C denote a generic positive constant which may vary de-
pending on the context. For any vector v, its t-th element is de-
noted by v[t], while λmin(A) and λmax(A) denote the minimum and
maximum eigenvalue of the matrix A, respectively. Standard qual-
ifications such as ‘‘almost surely’’, ‘‘with probability approaching
one’’, or ‘‘for n large enough’’ are omitted to conserve space.

Proof of Theorem 1. The proof given is based on the theoretical
approach described in Bickel et al. (1993), and follows the results
in Hahn (1998) and Chen et al. (2004, 2008). The derivation is
completed in three steps: characterization of the tangent space,
verification of pathwise differentiability of the parameter of
interest, and SPEB computation. Let L20 (FW ) be the usual Hilbert
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space of zero-mean, square-integrable functions with respect to
the distribution function FW .
First, consider a (regular) parametric submodel of the joint

distribution of (Y , T , X), the observed data model, with c.d.f.
F(y, t, x; θ) and log-likelihood given by

log f (y, t, x; θ)

=

∑
j∈T

1 {t = j}
[
log fj (y|x; θ)+ log pj (x; θ)

]
+ log fX (x; θ) ,

which equals log f (y, t, x) when θ = θ0, and where fj (y|x; θ)
corresponds to the density of Y (j) |X , pj (x; θ) = P

[
Dj = 1|x; θ

]
and pj (x; θ0) = p∗j (x) for all j ∈ T . The corresponding score is
given by

S (y, t, x; θ0) =
d
dθ
log f (y, t, x; θ) |θ0

= Sy (y, t, x)+ Sp (t, x)+ Sx (x) ,

where

Sy (y, t, x) =
∑
j∈T

1 {t = j} sj (y, x) ,

sj (y, x) =
d
dθ
log fj (y|x; θ) |θ0 ,

Sp (t, x) =
∑
j∈T

1 {t = j}
ṗ∗j (x)

p∗j (x)
, ṗ∗j (x) =

d
dθ
pj (x; θ) |θ0 ,

Sx (x) =
d
dθ
log fX (x; θ) |θ0 .

Therefore, the tangent space of this statistical model is charac-
terized by the set of functionsH ≡ Hy +Hp +Hx, where

Hy =
{
Sy (Y , T , X) : sj (Y , X) ∈ L20

(
FY (t)|X

)
,∀j ∈ T

}
,

Hp =
{
Sp (T , X) : Sp (T , X) ∈ L20

(
FT |X

)}
,

Hx =
{
Sx (X) : Sx (X) ∈ L20 (FX )

}
,

where E
[
Sp (T , X) |X

]
=

∑
t∈T ṗ

∗
t (X) and E[Sp (T , X)2 |X] =∑

t∈T ṗ
∗
t (X)

2 /p∗t (X), and hence it is required that p
∗
t (x) and

ṗt (x; θ0) be measurable functions such that
∑
t∈T ṗ

∗
t (X) = 0 and∑

t∈T ṗ
∗
t (X)

2 /p∗t (X) < ∞. The first condition implies that by
varying the model the probabilities should change in such a way
that they still add up to one. The second condition is verified by
Assumption 2(b) and the fact that T is finite.
Next, let m (β) = [m (Y (0) ;β0)′ , . . . ,m

(
Y (J) ;βJ

)′
] and note

that, for any (dβ (J + 1)× dm (J + 1)) positive semidefinite matrix
A, the population parameter satisfies AE[m (β)] = 0 if and only if
β = β∗. Thus, the implicit function theorem implies that

∂

∂θ
β∗ (θ) = − (AΓ∗)−1 AΥ (θ0) ,

where Γ∗ = ∂
∂β

E
[
m (β)

]
|β=β∗ , Υ (θ0) = ∂

∂θ
Eθ
[
m (β∗)

]
|θ=θ0 =

∂
∂θ

∫
m (β∗) dF (y, t, x; θ) |θ=θ0 , and observe that Υ (θ0) =

[
∂
∂θ

Eθ
[
m (Y (0) ;β0)′

]
|θ=θ0 , . . . ,

∂
∂θ

Eθ
[
m
(
Y (J) ;βJ

)′]
|θ=θ0 ]with

typical element j ∈ T ,

∂

∂θ
Eθ
[
m
(
Y (j) ;β∗j

)′]
|θ=θ0

= E
[
m
(
Y (j) ;β∗j

)
sj (Y (j) |X)

]
+ E

[
e∗j
(
X;β∗j

)
Sx (X)

]
.

The parameter is pathwise differentiable if there exits a
dβ (J + 1)-valued functionΨβ (y, t, x; A) ∈ H such that for all reg-
ular parametric submodels

∂

∂θ
β∗ (θ) = E

[
Ψβ (Y , T , X; A) S (Y , T , X; θ0)

]
.

It is not difficult to verify that the function satisfying such a con-
dition is given by

Ψβ (Y , T , X; A) = − (AΓ∗)−1 Aψ
(
Y , T , X;β∗, p∗, e∗

(
β∗
))
,

for a fixed choice of the matrix A.
Finally, the EIF is obtainedwhenA = Γ ′

∗
V−1
∗
, leading to the SPEB

given by V ∗ = (Γ∗V−1∗ Γ ′
∗
)−1. �

Proof of Theorem 2. The result follows from Corollary 3.2 in
Pakes and Pollard (1989) after setting θ = β , θ0 = β∗, Gn (β) =
AnM IPWn

(
β, p̂

)
, G (β) = AM IPW (β, p∗), and verifying their con-

dition (iii). Because An − A = op (1), to verify condition (iii) it
is enough to show that supβ∈B |M IPW[t],n

(
β, p̂t

)
− M IPW[t]

(
β, p∗t

)
| =

op (1), for all t ∈ T . The result follows because

sup
β∈B

∣∣M IPW[t],n (β, p̂t)−M IPW[t],n (β, p∗t )∣∣
≤ C

∥∥p̂t − p∗t ∥∥∞ 1n
n∑
i=1

Dt,i
p∗t (Xi)

sup
βt∈B
|m (Yi;βt)| = op (1) ,

by Assumption 4(b), and

sup
β∈B

∣∣M IPW[t],n (β, p∗t )−M IPW[t] (β, p∗t )∣∣
= sup

βt∈B

∣∣∣∣∣1n
n∑
i=1

Dt,im (Yi;βt)
p∗t (Xi)

− E
[
Dtm (Y ;βt)
p∗t (X)

]∣∣∣∣∣ = op (1)
because the class of functionsFt = {βt 7→ 1 {· = t}m (·;βt) /p∗t (·)
: βt ∈ B} is Glivenko–Cantelli by Assumptions 2(b) and 4 (van der
Vaart and Wellner, 2000). �

Proof of Theorem 3. The result also follows from Corollary 3.2 in
Pakes and Pollard (1989) after setting θ = β , θ0 = β∗, Gn (θ) =
AnMEIFn

(
β, p̂, ê

)
, G (θ) = AMEIF (β, p∗, e∗), and verifying their suf-

ficient condition (iii). Using the proof and the conclusion of Theo-
rem 2, the conclusion follows after noting that, for all t ∈ T ,

sup
β∈B

∣∣∣∣∣1n
n∑
i=1

Dt,i − p̂t (Xi)
p̂t (Xi)

êt (Xi;β)

∣∣∣∣∣
= sup

βt∈B

∣∣∣∣∣1n
n∑
i=1

Dt,i − p∗t (Xi)
p∗t (Xi)

e∗t (Xi;βt)

∣∣∣∣∣+ op (1) = op (1) ,
becauseE[supβ∈B |e∗t (X;β) |]<∞ (Assumption4(b)),

∥∥êt − e∗t ∥∥∞
= op (1) and the class of functions Ft = {βt 7→

e∗t (·;βt)
(
1 {· = t} − p∗t (·)

)
/p∗t (·) : βt ∈ B} is Glivenko–Cantelli

by Assumptions 2(b) and 4 (van der Vaart andWellner, 2000). �

Proof of Theorem 4. The result follows from Theorem 3.3 and
Lemma 3.5 in Pakes and Pollard (1989) after setting θ = β ,
θ0 = β∗, Gn (β) = AnM IPWn

(
β, p̂

)
, G (β) = AM IPW (β, p∗),

and verifying stochastic equicontinuity (condition (iii)), since
their other sufficient conditions hold by the construction of the
estimator, Assumptions 3 and 6, and Condition (2.1) in this case.
To establish the sufficient condition, it suffices to show that, for all
positive sequences δn = o (1),

sup
|βt−β

∗
t |≤δn

√
n
∣∣M IPW[t],n (β, p̂)−M IPW[t] (β, p∗)−M IPW[t],n (β∗, p̂)∣∣

1+ C
√
n |βt − β∗t |

= op (1) , (A.1)

for all t ∈ T . To verify this final condition define

∆[t],n
(
β, p− p∗

)
= −

1
n

n∑
i=1

Dt,im (Yi;βt)
p∗t (Xi)

2

(
pt (Xi)− p∗t (Xi)

)
,

and note that the left-hand side of (A.1) is bounded by R1n + R2n +
R3n + R4n, where
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R1n = sup
|βt−β∗t |≤δn

‖et−e∗t ‖∞≤δn

√
n
∣∣∣∣ 1n n∑
i=1

(
∂
∂β
et(Xi; β̃t)− ∂

∂β
e∗t
(
Xi;β∗t

)) (
βt − β

∗
t

) (
Dt,i − p̂t (Xi)

)
/p̂t (Xi)

∣∣∣∣
1+ C

√
n |βt − β∗t |

.

Box I.
R1n = sup
|βt−β

∗
t |≤δn

×

√
n
∣∣M IPW[t],n (β, p∗)−M IPW[t] (β, p∗)−M IPW[t],n (β∗, p∗)∣∣

1+ C
√
n |βt − β∗t |

,

R2n = sup
|βt−β

∗
t |≤δn

×

√
n
∣∣M IPW[t],n (β, p̂)−M IPW[t],n (β, p∗)−∆[t],n (β, p̂− p∗)∣∣

1+ C
√
n |βt − β∗t |

,

R3n = sup
|βt−β

∗
t |≤δn

×

√
n
∣∣M IPW[t],n (β∗, p̂)+M IPW[t],n (β∗, p∗)−∆[t],n (β∗, p̂− p∗)∣∣

1+ C
√
n |βt − β∗t |

,

R4n = sup
|βt−β

∗
t |≤δn

×

√
n
∣∣M IPW[t],n (β∗, p̂)+M IPW[t],n (β∗, p∗)−∆[t],n (β∗, p̂− p∗)∣∣

1+ C
√
n |βt − β∗t |

.

Now, R1n = op (1) because the class of functions Ft = {βt 7→

1 {· = t}m (·;βt) /p∗t (·) :
∣∣βt − β∗t ∣∣ ≤ δ} is Donsker with finite

integrable envelope by Assumption 6 (Theorem 2.10.6 of van der
Vaart and Wellner (1996)) and L2 continuous by Assumptions 3
and 6, while R2n = op (1) and R3n = op (1) using elementary
inequalities and Condition (2.1) and Assumption 2. Finally, R4n =
op (1) by the triangular inequality and because the class of
functions Ft = {βt 7→ 1 {· = t}

∣∣m (·;βt)−m (·;β∗t )∣∣ /p∗t (·) :∣∣βt − β∗t ∣∣ ≤ δ} is Donsker with finite integrable envelop by
Assumption 6 (Theorem 2.10.6 of van der Vaart and Wellner
(1996)) and L2 continuous by Assumptions 3 and 6. This establishes
condition (iii) of Theorem 3.3 in Pakes and Pollard (1989). �

Proof of Theorem 5. The proof follows the same logic of the proof
of Theorem 4. Apply Theorem 3.3 and Lemma 3.5 in Pakes and
Pollard (1989) after setting θ = β , θ0 = β∗, Gn (θ) =
AnMEIFn

(
β, p̂, ê

)
, G (θ) = AMEIF (β, p∗, e∗), and verifying their

condition (iii). This condition is verified if for all sequences δn =
o (1),

sup
|βt−β

∗
t |≤δn

×

√
n
∣∣MEIF[t],n (β, p̂, ê)−MEIF[t] (β, p∗, e∗ (β))−MEIF[t],n (β∗, p̂, ê)∣∣

1+ C
√
n |βt − β∗t |

= op (1) ,

for all t ∈ T . Furthermore, using the results in Theorem 4, it only
remains to show that

sup
|βt−β

∗
t |≤δn

×

√
n
∣∣∣∣ 1n n∑
i=1

(
êt (Xi;βt)− êt

(
Xi;β∗t

)) (
Dt,i − p̂t (Xi)

)
/p̂t (Xi)

∣∣∣∣
1+ C

√
n |βt − β∗t |

= op (1) . (A.2)
Now, the left-hand side of (A.2) is bounded by R1n + R2n, where
the expression shown in Box I holds for some convex linear com-
bination β̃t (between βtand β∗t ) and

R2n = sup
|βt−β

∗
t |≤δn

×

√
n
∣∣∣∣ 1n n∑
i=1

∂
∂β
e∗t
(
Xi;β∗t

) (
βt − β

∗
t

) (
Dt,i − p̂t (Xi)

)
/p̂t (Xi)

∣∣∣∣
1+ C

√
n |βt − β∗t |

.

Finally,

R1n ≤ C sup
|βt−β∗t |≤δn

‖et−e∗t ‖∞≤δn

1
n

n∑
i=1

∣∣∣∣ ∂∂β et (Xi;βt)− ∂

∂β
e∗t (Xi;βt)

∣∣∣∣
+ C sup
|βt−β

∗
t |≤δn

∣∣∣∣∣1n
n∑
i=1

(
∂

∂β
e∗t (Xi;βt)

−
∂

∂β
e∗t
(
Xi;β∗t

)) Dt,i − p∗t (Xi)
p∗t (Xi)

∣∣∣∣
+
C
n

n∑
i=1

sup
|βt−β

∗
t |≤δn

∣∣∣∣ ∂∂β e∗t (Xi;βt)
∣∣∣∣

×

∣∣∣∣Dt,i − p̂t (Xi)p̂t (Xi)
−
Dt,i − p∗t (Xi)
p∗t (Xi)

∣∣∣∣ ,
and R1n = op (1) because the first term is op (1) by Assump-
tion 7(b), the second term is op (1) because the class of functions
Ft = {βt 7→

(
∂βt e

∗
t (·;βt)− ∂βt e

∗
t

(
·;β∗t

)) (
1 {· = t} − p∗t (·)

)
/p∗t

(·) :
∣∣βt − β∗t ∣∣ ≤ δ} is Glivenko–Cantelli for some δ > 0 by As-

sumption 7(a) (van der Vaart and Wellner, 2000), and the third
term is op (1) by Assumption 7(a). Similarly, R2n = op (1) by As-
sumption 7(a). This establishes condition (iii) of Theorem 3.3 in
Pakes and Pollard (1989). �

Proof of Theorem 6. Let Vn = n−1
∑n
i=1 ψ(Yi, Ti, β

∗, p∗, e∗ (β∗))
ψ (Yi, Ti, β∗, p∗, e∗ (β∗))′. Using Holder’s Inequality it follows that
|V̂n − V∗| ≤ |V̂n − Vn| + |Vn − V∗| = op (1), provided that, for all
sequences δn = o (1) and for all t ∈ T ,

1
n

n∑
i=1

∣∣∣m(Yi, Ti, Xi; β̂, p̂)−m (Yi, Ti, Xi;β∗, p∗)∣∣∣2 = op (1) (A.3)

and

1
n

n∑
i=1

∣∣∣α(Ti, Xi; p̂, ê(β̂))− α (Ti, Xi; p∗, e∗ (β∗))∣∣∣2 = op (1) . (A.4)
The first (A.3) follows by the same arguments and assumptions

used in Theorem4and an application of Theorem2.10.14 of vander
Vaart and Wellner (1996), while the second (A.4) is verified using
the assumptions of the theorem. �

Proof of Theorem 7. Follows directly by the same arguments
given in the proof of Theorem 5. �

Proof of Theorem 8. Using the notation and results of Appendix B,
for the case of power series and splines ζ (K) = K η with η = 1 and
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η = 1/2, respectively, while Assumption 8 implies Assumption B-
1 with α = s/dx (Newey, 1994). Theorem B-1 gives

n1/4 sup
x∈X

∣∣p̂ (x)− p∗ (x)∣∣ = n1/4Op (K ηK 1/2n−1/2 + K ηK 1/2K−s/dx)
= op (1) ,

under the assumptions of the theorem, and therefore Condition
(4.1) in Theorem 4 holds.
Next, to verify Condition (4.2) in Theorem 4 it is enough

to consider the typical t-th component,
√
n|M IPW[t],n

(
β∗t , p̂t

)
−

MEIF[t],n(β
∗
t , p
∗
t , e
∗
t (β
∗
t ))| ≤ R1n + R2n + R3n, where

R1n =

∣∣∣∣∣ 1√n
n∑
i=1

{
Dt,im

(
Yi;β∗t

)
p̂t (Xi)

−
Dt,im

(
Yi;β∗t

)
p∗t (Xi)

+
Dt,im

(
Yi;β∗t

)
p∗t (Xi)

2

(
p̂t (Xi)− p∗t (Xi)

)}∣∣∣∣∣ ,
R2n =

∣∣∣∣∣ 1√n
n∑
i=1

{
−
Dt,im

(
Yi;β∗t

)
p∗t (Xi)

2

(
p̂t (Xi)− p∗t (Xi)

)
+
e∗t
(
Xi;β∗t

)
p∗t (Xi)

(
p̂t (Xi)− p∗t (Xi)

)}∣∣∣∣∣ ,
R3n =

∣∣∣∣∣ 1√n
n∑
i=1

{
−
e∗t
(
Xi;β∗t

)
p∗t (Xi)

(
p̂t (Xi)− p∗t (Xi)

)
+
e∗t
(
Xi;β∗t

)
p∗t (Xi)

(
Dt,i − p∗t (Xi)

)}∣∣∣∣∣ .
For the first term,

R1n ≤ C
√
n
∥∥p̂t − p∗t ∥∥2∞ 1n

n∑
i=1

Dt,i
∣∣m (Yi;β∗t )∣∣
p∗t (Xi)

= Op
(√
n(K ηK 1/2n−1/2 + K ηK 1/2K−s/dx)2

)
.

For the second term,

R2n ≤

∣∣∣∣∣ 1√n
n∑
i=1

(
e∗t
(
Xi;β∗t

)
p∗t (Xi)

−
Dt,im

(
Yi;β∗t

)
p∗t (Xi)

2

) (
p̂t (Xi)− p0K ,t (Xi)

)∣∣∣∣∣ (A.5)

+

∣∣∣∣∣ 1√n
n∑
i=1

(
e∗t
(
Xi;β∗t

)
p∗t (Xi)

−
Dt,im

(
Yi;β∗t

)
p∗t (Xi)

2

) (
p0K ,t (Xi)− p

∗

t (Xi)
)∣∣∣∣∣ , (A.6)

using the notation introduced in Appendix B. To obtain a bound
on the term ((A.5)), first notice that by a second-order Taylor
expansion and using the results in Appendix B it follows that, for
some γ̃K such that

∣∣γ̃K − γ 0K ∣∣ ≤ ∣∣γ̂K − γ 0K ∣∣,∣∣∣∣∣ 1√n
n∑
i=1

(
e∗t
(
Xi;β∗t

)
p∗t (Xi)

−
Dt,im

(
Yi;β∗t

)
p∗t (Xi)

2

) (
p̂t (Xi)− p0K ,t (Xi)

)∣∣∣∣∣
≤
∣∣γ̂K − γ 0K ∣∣

∣∣∣∣∣ 1√n
n∑
i=1

(
e∗t
(
Xi;β∗t

)
p∗t (Xi)

−
Dt,im

(
Yi;β∗t

)
p∗t (Xi)

2

)

×
[
L̇t
(
g−0

(
Xi, γ 0K

))
⊗ RK (Xi)′

] ∣∣∣∣∣
+
√
n
∣∣γ̂K − γ 0K ∣∣2 1n

n∑
i=1

∣∣∣∣∣ e∗t
(
Xi;β∗t

)
p∗t (Xi)

−
Dt,im

(
Yi;β∗t

)
p∗t (Xi)

2

∣∣∣∣∣
×
∣∣IJ ⊗ RK (Xi) RK (Xi)′∣∣

= Op
(
K 1/2n−1/2 + K 1/2K−s/dx

)
Op
(
K 1/2

)
+Op

(√
n(K 1/2n−1/2 + K 1/2K−α)2

)
Op (K) ,

while for the term (A.6),∣∣∣∣∣ 1√n
n∑
i=1

(
e∗t
(
Xi;β∗t

)
p∗t (Xi)

−
Dt,im

(
Yi;β∗t

)
p∗t (Xi)

2

) (
p0K ,t (Xi)− p

∗

t (Xi)
)∣∣∣∣∣

= Op
(
K−s/dx

)
= op (1) .

For the last term, using the first-order condition for MLSE,
which implies that

∑n
i=1(Dt,i−p̂t (Xi))RK (Xi) = 0, and by choosing

θ ∈ RK appropriately,

R3n ≤

∣∣∣∣∣ 1√n
n∑
i=1

(
e∗t
(
Xi;β∗t

)
p∗t (Xi)

− RK (Xi)′ θ

) (
Dt,i − p∗t (Xi)

)∣∣∣∣∣
+

∣∣∣∣∣ 1√n
n∑
i=1

(
e∗t
(
Xi;β∗t

)
p∗t (Xi)

− RK (Xi)′ θ

) (
p∗t (Xi)− p̂t (Xi)

)∣∣∣∣∣
≤ Op

(
K−s/dx

)
+ n1/2O

(
K−s/dx

)
Op

×
(
K ηK 1/2n−1/2 + K ηK 1/2K−s/dx

)
.

Condition (4.2) in Theorem4 followsdirectly under the assump-
tions of this theorem.
Next, consider Theorem 5. Conditions (5.1) and (5.2) follow di-

rectly from previous calculations and the first part of Proposition
A1 in Chen et al. (2005), respectively. It remains to show Condition
(5.3) in Theorem 5. From Newey (1994),

n1/4 sup
x∈X

∣∣ê (x;β∗)− e∗ (x;β∗)∣∣
= n1/4Op

(
K ηK 1/2n−1/2 + K ηK−s/dx

)
= op (1) .

To establish the final condition is enough to show the re-
sult for the typical t-th component. From the previous calcula-
tions and using the identity â/b̂ = a/b + (â − a)/b − a(b̂ −
b)/b2 + a(b̂ − b)2/(b2b̂) − (â − a)(b̂ − b)/(bb̂) it follows that√
n|MEIF[t],n

(
β∗t , p̂t , êt

(
β∗t
))
−MEIF[t],n

(
β∗t , p

∗
t , e
∗
t

(
β∗t
))
| ≤ R4n+R5n+

R6n + op (1), where

R4n =

∣∣∣∣∣ 1√n
n∑
i=1

Dt,i
(
m
(
Yi;β∗t

)
− e∗t

(
Xi;β∗t

))
p∗t (Xi)

2

(
p̂t (Xi)− p∗t (Xi)

)∣∣∣∣∣ ,
R5n =

∣∣∣∣∣ 1√n
n∑
i=1

Dt,i − p∗t (Xi)
p∗t (Xi)

(
êt
(
Xi;β∗t

)
− e∗t

(
Xi;β∗t

))∣∣∣∣∣ ,
R6n =

∣∣∣∣∣ 1√n
n∑
i=1

(
êt
(
Xi;β∗t

)
− e∗t

(
Xi;β∗t

))∣∣∣∣∣ .
Finally, by the same arguments used for term R2n above it is ver-

ified that R4n = op (1), while by similar arguments but for the case
of series it is also verified R6n = op (1) under the assumptions of
this theorem. Therefore Condition (5.3) in Theorem 5 holds. �

Appendix B. Multinomial Logistic Series Estimator

This appendix derives uniform rates of convergence for the
non-linear sieve estimator proposed for the estimation of the
Generalized Propensity Score. These results encompass those in
Hirano et al. (2003), and further allow for an arbitrary number
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of outcomes, arbitrary choice of approximating basis, and less
stringent smoothness requirements.
Under the conditions imposed below and by choosing an ap-

propriate non-singular linear transformation, assumewithout loss
of generality that E

[
RK (X) RK (X)′

]
= IK , where IK is the K ×

K identity matrix (see Newey (1994) for details). Let ζ (K) =
supx∈X |RK (x)| and define p−0 (X) =

[
p1 (X) , . . . , pJ (X)

]′
∈

RJ , γ−0,K = [γ ′K ,1, . . . , γ
′

K ,J ]
′
∈ RJK , and g−0 (X, γK ) =

[RK (X)′ γK ,1, . . . , RK (X)′ γK ,J ]′ ∈ RJ . Recall that p∗0 (X) = 1 −∑J
j=1 p

∗

j (X) by construction. In addition, define for a vector z ∈ RJ ,
z =

[
z1, . . . , zJ

]′, the functions Lt : RJ → R and L−1t : RJ → R,
for all t = 1, 2, . . . , J , Lt (z) = exp (zt) /(1 +

∑J
j=1 exp

(
zj
)
),

L−1t (z) = log(zt/(1 −
∑J
j=1 exp

(
zj
)
)) and set L0 (z) = 1 −∑J

j=1 Lj (z). The gradient of Lt : RJ → R is denoted by L̇t (z)
and satisfies supz |L̇t (z) | < C since

∣∣Lt (z) Lj (z)∣∣ < 1 and
Lt (z) (1− Lt (z)) < 1/4. Define the vector-valued function L (z) =
[L1 (z) , . . . , LJ (z)]′ and L−1 (z) = [L−11 (z) , . . . , L−1J (z)]′ and ob-
serve that the function L (·) is differentiable with gradient (ma-
trix) L̇ (z) = [L̇1 (z) , . . . , L̇J (z)] ∈ RJ×J and supz |L̇ (z) | < C ,
for some constant C that only depends on J . With this notation,
pt
(
X; γt,K

)
= Lt (g−0 (X, γK )) for t ∈ T (recall γK ,0 = 0K for iden-

tification purposes).
The multinomial logistic log-likelihood is `n (γK ) =

∑n
i=1∑J

t=0 Dt,i log (Lt (g−0 (Xi, γK ))), with solution γ̂K = argmaxγK `n
(γK ) and estimated probabilities given by p̂t (X) = Lt(g−0(Xi, γ̂K )),
for all t ∈ T . Letting Di = [D1,i,D2,i · · · ,DJ,i]′, it follows that

∂

∂γK
`n (γK ) =

n∑
i=1

[Di − L (g−0 (Xi, γK ))]⊗ RK (Xi) ,

∂2

∂γK∂γ
′

K
`n (γK ) = −

n∑
i=1

H (Xi, γK )⊗ RK (Xi) RK (Xi)′ ,

where H (Xi, γK ) = diag (L (g−0 (Xi, γK ))) − L (g−0 (Xi, γK )) L(g−0
(Xi, γK ))′.
The followings conditions are sufficient to derive the uniform

rates of convergence.

Assumption B-1. (a) The smallest eigenvalue of E
[
RK (X) RK (X)′

]
is bounded away from zero uniformly in K ; (b) there is a sequence
of constants ζ (K) satisfying supx∈X |RK (x)| ≤ ζ (K), for K =
K (n) → ∞ and ζ (K) K 1/2n−1/2 → 0, as n → ∞; and (c) for
all t ∈ T there exists γ 0t,K ∈ RK and α > 0 such that

sup
x∈X

∣∣∣∣log(p∗t (x)p∗0 (x)

)
− RK (x)′ γ 0t,K

∣∣∣∣ = O (K−α) ,
and ζ (K) K 1/2K−α → 0.

Assumption B-1 is automatically satisfied in the case of power
series or splines if the GPS is smooth enough. Parts (a) and (b) are
standard assumptions, while part (c) is slightly stronger than its
counterpart for linear series because it imposes a lower bound in
α > 0. Part (c) guarantees the existence of an approximating
sequence that can approximate the function uniformly well. For
notational simplicity, such a sequence is denoted by p0t,K (X) =
Lt
(
g−0

(
X, γ 0K

))
, for all t ∈ T , so that p0K = [p

0
0,K , . . . , p

0
J,K ]
′.

The following theorem provides the uniform rate of conver-
gence for the MLSE.

Theorem B-1 (Uniform Rate of Convergence of MLSE). Let Assump-
tions 2 (b) and B-1. Then,

(i)
∥∥p0K − p∗∥∥∞ = O (K−α),
(ii)
∣∣γ̂K − γ 0K ∣∣ = Op (K 1/2n−1/2 + K 1/2K−α),

and hence
∥∥p̂− p∗∥∥

∞
= Op(ζ (K) K 1/2n−1/2 + ζ (K) K 1/2K−α).

Proof of Theorem B-1. Since the map L (·) is differentiable with
supz |L̇ (z) | < C , the mean value theorem and Assumption B-1(c)
give

sup
x∈X

∣∣p∗
−0 (x)− L

(
g−0

(
x, γ 0K

))∣∣
≤ C sup

x∈X

∣∣L−1 (p∗
−0 (x)

)
− g−0

(
x, γ 0K

)∣∣
= O

(
K−α

)
,

giving part (i).
For part (ii), recall that Lt (g−0 (x, γ )) > 0, for all t ∈ T ,

and
∑J
t=1 Lt (g−0 (x, γ )) < 1. The form of the matrix H (x, γ )

and Theorem 1 in Tanabe and Sagae (1992) show that H (x, γ )
is symmetric positive definite with 0 < λmin (H (x, γ )) ≤
λmax (H (x, γ )) < 1,which implies thatH (x, γ ) ≥ λmin (H (x, γ )) IJ
and λmin (H (x, γ )) ≥ det (H (x, γ )). These results and the ex-
act Cholesky decomposition of H (x, γ ) give infx∈X H (x, γ ) ≥
infx∈X

∏J
t=0 Lt (g−0 (x, γ )) IJ , in a positive semidefinite sense.

For Ω̂K = n−1
∑n
i=1 RK (Xi) RK (Xi)

′, Newey (1994) showed
that |Ω̂K − IK | = Op(ζ (K) K 1/2n−1/2). Define the event An =

{λmin(Ω̂K ) > 1/2}, and note that by Assumption B-1(b) P [An]→
1. Let ∂`n (γ ) /∂γ = ˙̀n (γ ) and note that

E
[∣∣∣∣1n ˙̀n (γ 0K )

∣∣∣∣] ≤ C (1nE
[∣∣(Di − p∗−0 (Xi))⊗ RK (Xi)∣∣2])1/2

+ C sup
x∈X

∣∣p∗
−0 (x)− L

(
g−0

(
x, γ 0K

))∣∣E [|RK (X)|]
= O

(
K 1/2n−1/2 + K 1/2K−α

)
;

then by Markov’s Inequality it follows that | 1n ˙̀n
(
γ 0K
)
| =

Op
(
K 1/2n−1/2 + K 1/2K−α

)
. This implies that for any fixed constant

ς > 0 the probability of the event Bn (ς) = {|
1
n
˙̀n
(
γ 0K
)
| <

ς(K 1/2n−1/2 + K−α+1/2)} approaches one, i.e., P [Bn (ς)]→ 1.
Let δ = infx∈X

∏J
t=0 Lt

(
g−0

(
x, γ 0K

))
and observe that for K

large enough δ > 0 by part (i) and Assumption 2(b). Define the
sets Γ δ

K = {γ ∈ RJK : infx∈X
∏J
t=0 Lt (g−0 (x, γ )) > δ/2}, and

Γ 0K (%) =
{
γ ∈ RJK :

∣∣γ − γ 0K ∣∣ ≤ % (K 1/2n−1/2 + K 1/2K−α)} for
any % > 0. Because (for some intermediate point γ̃K )

sup
x∈X,γ∈Γ 0K (%)

∣∣L (g−0 (x, γ ))− L
(
g−0

(
x, γ 0K

))∣∣
≤ sup
x∈X,γ∈Γ 0K (%),γ̃K

∣∣L̇ (g−0 (x, γ̃K ))⊗ RK (Xi)′∣∣ ∣∣γ − γ 0K ∣∣
≤ Cζ (K) sup

γ∈Γ 0K (%)

∣∣γ − γ 0K ∣∣
= O

(
ζ (K) K 1/2n−1/2 + ζ (K) K 1/2K−α

)
= o (1)

by Assumption B-1(b) and (c), it follows that for n for large enough
Γ δ
K ⊂ Γ

0
K (%).

To finish the argument, choose n large enough so that Γ δ
K ⊂

Γ 0K (C), P [An] ≥ 1 − ε/2 and P [Bn (δC/8)] ≥ 1 − ε/2, for some
C > 0. Then for any γK ∈ Γ 0K it follows that

−
∂

∂γ ∂γ ′
`n (γK ) =

1
n

n∑
i=1

H (Xi, γK )⊗ RK (Xi) RK (Xi)′

≥
1
n

n∑
i=1

[
inf
x∈X

J∏
t=0

Lt (g−0 (x, γK )) IJ

]
⊗ RK (Xi) RK (Xi)′

≥
δ

2

[
IJ ⊗ Ω̂K

]
,
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which implies thatwith probability at least (1− ε),λmin(−∂`n(γK )
/∂γ ∂γ ′) ≥ δ/4. Moreover, under the same conditions (i.e., also
with probability at least (1− ε)) and for any γK ∈ Γ 0K \

{
γ 0K
}
it is

verified that

`n (γK )− `n
(
γ 0K
)
= ˙̀n

(
γ 0K
) (
γK − γ

0
K

)
−
1
2

(
γK − γ

0
K

)′ [
−

∂

∂γ ∂γ ′
`n (γ̃K )

] (
γK − γ

0
K

)
≤

(∣∣ ˙̀n (γ 0K )∣∣− δ8C (K 1/2n−1/2 + K 1/2K−α)
) ∣∣γK − γ 0K ∣∣ < 0,

for some γ̃K such that
∣∣γ̃K − γ 0K ∣∣ ≤ ∣∣γK − γ 0K ∣∣. Since `n (γK ) is

continuous and concave, it follows that γ̂K maximizes `n (γK ) and
γ̂K satisfies the first-order condition with probability approaching
one. Now the result follows directly. �
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