
because method effects are now part of the resi-
duals. Moreover, the CTUM model does not
allow correlations between residuals of different
methods. This might be necessary in the case of
structurally different methods. Problems that
are caused by trait-specific method effects can
be appropriately handled in multiple indicator
models.

Multiple Indicator Models

In multiple indicator models, there are several
indicators for one trait–method unit. In the less
restrictive model, there is one factor for all indi-
cators belonging to the same trait–method unit.
The correlations between these factors constitute
a latent MTMM matrix. The correlation coeffi-
cients of this latent MTMM matrix are not dis-
torted by measurement error and allow a more
appropriate application of the Campbell and Fiske
criteria for evaluating the MTMM matrix. Multi-
ple indicator models allow the definition of trait-
specific method factors and, therefore, the separa-
tion of measurement error and method-specific
influences in a more appropriate way. Eid and col-
leagues have shown how different models of CFA
can be defined for different types of methods. In
the case of interchangeable methods, a multilevel
CFA model can be applied that allows the specifi-
cation of trait-specific method effects. In contrast
to the extension of the CTCU model to multiple
indicators, the multilevel approach has the advan-
tage that the number of methods (e.g., raters) can
differ between targets. In the case of structurally
different raters, an extension of the CTC(M � 1)
model to multiple indicators can be applied. This
model allows a researcher to test specific hypothe-
ses about the generalizability of method effects
across traits and methods. In the case of a combi-
nation of structurally different and interchangeable
methods, a multilevel CTC(M � 1) model would
be appropriate.

Michael Eid
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MULTIVALUED TREATMENT

EFFECTS

The term multivalued treatment effects broadly
refers to a collection of population parameters that
capture the impact of a given treatment assigned
to each observational unit, when this treatment
status takes multiple values. In general, treatment
levels may be finite or infinite as well as ordinal or
cardinal, leading to a large collection of possible
treatment effects to be studied in applications.
When the treatment effect of interest is the mean
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outcome for each treatment level, the resulting
population parameter is typically called the dose–
response function in the statistical literature, reg-
ardless of whether the treatment levels are finite or
infinite. The analysis of multivalued treatment
effects has several distinct features when compared
with the analysis of binary treatment effects,
including the following: (a) A comparison or con-
trol group is not always clearly defined, (b) new
parameters of interest arise capturing distinct phe-
nomena such as nonlinearities or tipping points,
(c) in most cases correct statistical inferences
require the joint estimation of all treatment effects
(as opposed to the estimation of each treatment
effect at a time), and (d) efficiency gains in statisti-
cal inferences may be obtained by exploiting
known restrictions among the multivalued treat-
ment effects. This entry discusses the treatment
effect model and statistical inference procedures
for multivalued treatment effects.

Treatment Effect Model

and Population Parameters

A general statistical treatment effect model with
multivalued treatment assignments is easily des-
cribed in the context of the classical potential out-
comes model. This model assumes that each
unit i in a population has an underlying collec-
tion of potential outcome random variables
fYi ¼ YiðtÞ : t ∈T g, where T denotes the collec-
tion of possible treatment assignments. The ran-
dom variables YiðtÞ are usually called potential
outcomes because they represent the random out-
come that unit i would have under treatment
regime t∈ T . For each unit i and for any two treat-
ment levels, t1 and t2, it is always possible to
define the individual treatment effect given by
Yiðt1Þ � Yiðt2Þ, which may or may not be a degen-
erate random variable. However, because units are
not observed under different treatment regimes
simultaneously, such comparisons are not feasible.
This idea, known as the fundamental problem of
causal inference, is formalized in the model by
assuming that for each unit i only (Yi;Ti) is
observed, where Yi ¼ YiðTiÞ and Ti ∈ T . In words,
for each unit i, only the potential outcome for
treatment level Ti ¼ t is observed while all other
(counterfactual) outcomes are missing. Of course,

in most applications, which treatment each unit
has taken up is not random and hence further
assumptions would be needed to identify the treat-
ment effect of interest.

A binary treatment effect model has
T ¼ f0;1g, a finite multivalued treatment effect
model has T ¼ f0; 1; . . . ; Jg for some positive inte-
ger J, and a continuous treatment effect model has
T ¼ ½0; 1�. (Note that the values in T are ordinal,
that is, they may be seen just as normalizations of
the underlying real treatment levels in a given
application.) Many applications focus on a binary
treatment effects model and base the analysis on
the comparison of two groups, usually called treat-
ment group ðTi ¼ 1Þ and control group ðTi ¼ 0Þ.
A multivalued treatment may be collapsed into
a binary treatment, but this procedure usually
would imply some important loss of information
in the analysis. Important phenomena such as non-
linearities, differential effects across treatment
levels or tipping points, cannot be captured by
a binary treatment effect model.

Typical examples of multivalued treatment eff-
ects are comparisons between some characteristic
of the distributions of the potential outcomes.
Well-known examples are mean and quantile com-
parisons, although in many applications other fea-
tures of these distributions may be of interest. For
example, assuming, to simplify the discussion, that
the random potential outcomes are equal for all
units (this holds, for instance, in the context of
random sampling), the mean of the potential
outcome under treatment regime t ∈ T is given by
μðtÞ ¼ E½YiðtÞ�. The collection of these means is
the so-called dose–response function. Using this
estimand, it is possible to construct different multi-
valued treatment effects of interest, such as pair-
wise comparisons (e.g., μðt2Þ � μðt1ÞÞ or differ-
ences in pairwise comparisons, which would
capture the idea of nonlinear treatment effects. (In
the particular case of binary treatment effects, the
only possible pairwise comparison is μð1Þ � μð0Þ,
which is called the average treatment effect.) Using
the dose–response function, it is also possible to
consider other treatment effects that arise as
nonlinear transformations of μðtÞ, such as ratios,
incremental changes, tipping points, or the maxi-
mal treatment effect μ * ¼ maxt ∈ T μðtÞ, among
many other possibilities. All these multivalued
treatment effects are constructed on the basis of
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the mean of the potential outcomes, but similar
estimands may be considered that are based on
quantiles, dispersion measures, or other character-
istics of the underlying potential outcome distribu-
tion. Conducting valid hypothesis testing about
these treatment effects requires in most cases the
joint estimation of the underlying multivalued
treatment effects.

Statistical Inference

There exists a vast theoretical literature proposing
and analyzing different statistical inference proce-
dures for multivalued treatment effects. This large
literature may be characterized in terms of the key
identifying assumption underlying the treatment
effect model. This key assumption usually takes the
form of a (local) independence or orthogonality con-
dition, such as (a) a conditional independence
assumption, which assumes that conditional on a set
of observable characteristics, selection into treatment
is random, or (b) an instrumental variables assump-
tion, which assumes the existence of variables that
induce exogenous changes in the treatment assign-
ment. With the use of an identifying assumption
(together with other standard model assumptions), it
has been shown in the statistical and econometrics
literatures that several parametric, semiparametric,
and nonparametric procedures allow for optimal
joint inference in the context of multivalued treat-
ments. These results are typically obtained with the
use of large sample theory and justify (asymptoti-
cally) the use of classical statistical inference proce-
dures involving multiple treatment levels.

Matias D. Cattaneo
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MULTIVARIATE ANALYSIS

OF VARIANCE (MANOVA)

Multivariate analysis of variance (MANOVA)
designs are appropriate when multiple depen-
dent variables are included in the analysis. The
dependent variables should represent continuous
measures (i.e., interval or ratio data). Dependent
variables should be moderately correlated. If
there is no correlation at all, MANOVA offers
no improvement over an analysis of variance
(ANOVA); if the variables are highly correlated,
the same variable may be measured more than
once. In many MANOVA situations, multiple
independent variables, called factors, with multi-
ple levels are included. The independent vari-
ables should be categorical (qualitative). Unlike
ANOVA procedures that analyze differences
across two or more groups on one dependent vari-
able, MANOVA procedures analyze differences
across two or more groups on two or more depen-
dent variables. Investigating two or more depen-
dent variables simultaneously is important in
various disciplines, ranging from the natural and
physical sciences to government and business and
to the behavioral and social sciences. Many
research questions cannot be answered adequately
by an investigation of only one dependent variable
because treatments in experimental studies are
likely to affect subjects in more than one way. The
focus of this entry is on the various types of MAN-
OVA procedures and associated assumptions. The
logic of MANOVA and advantages and disadvan-
tages of MANOVA are included.

MANOVA is a special case of the general linear
models. MANOVA may be represented in a basic
linear equation as Y ¼ Xβþ ε, where Y represents
a vector of dependent variables, X represents
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