
Along with those three equations is the additional
equation

4. π61þπ62þπ63¼ 1.

An arithmetic manipulation of these four equa-
tions results in numerical solutions for the three
unknowns: π61¼π62¼π63¼ 1/3¼ .33. These sta-
tionary probabilities indicate that Harry would be
at any of the three locations with equal likelihood
after many steps in the random walk.2

Conclusion

If there is a sequence of random events such that
a future event is dependent only on the present
event and not on past events, then the sequence is
likely a Markov chain, and the work of Markov
and others may be used to extract useful informa-
tion from an analysis of the sequence. The topic of
the Markov chain has become one of the most
captivating, generative, and useful topics in proba-
bility and statistics.

William M. Bart and Thomas Bart

See also Matrix Algebra; Probability, Laws of
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MATCHING

The term matching refers to the procedure of find-
ing for a sample unit other units in the sample that
are closest in terms of observable characteristics.
The units selected are usually referred to as matches,
and after repeating this procedure for all units (or
a subgroup of them), the resulting subsample of
units is called the matched sample. This idea is typi-
cally implemented across subgroups of a given sam-
ple, that is, for each unit in one subgroup, matches
are found among units of another subgroup. A

matching procedure requires defining a notion of
distance, selecting the number of matches to be
found, and deciding whether units will be used mul-
tiple times as a potential match. In applications,
matching is commonly used as a preliminary step in
the construction of a matched sample, that is, a sam-
ple of observations that are similar in terms of
observed characteristics, and then some statistical
procedure is computed with this subsample. Typi-
cally, the term matching estimator refers to the case
when the statistical procedure of interest is a point
estimator, such as the sample mean. The idea of
matching is usually employed in the context of
observational studies, in which it is assumed that
selection into treatment, if present, is based on
observable characteristics. More generally, under
appropriate assumptions, matching may be used as
a way of reducing variability in estimation, combin-
ing databases from different sources, dealing with
missing data, and designing sampling strategies,
among other possibilities. Finally, in the economet-
rics literature, the term matching is sometimes used
more broadly to refer to a class of estimators that
exploit the idea of selection on observables in the
context of program evaluation. This entry focuses
on the implementation of and statistical inference
procedures for matching.

Description and Implementation

A natural way of describing matching formally is
in the context of the classical potential outcomes
model. To describe this model, suppose that a ran-
dom sample of size n is available from a large
population, which is represented by the collection
of random variables (Yi;Ti;XiÞ, i ¼ 1;2; . . . ; n;
where Ti ∈ f0;1g,

Yi ¼
Y0i if Ti ¼ 0
Y1i if Ti ¼ 1

�

and Xi represents a (possibly high-dimensional)
vector of observed characteristics. This model aims
to capture the idea that while the set of character-
istics Xi is observed for all units, only one of the
two random variables (Y0i;Y1i) is observed for
each unit, depending on the value of Ti. The
underlying random variables Y0i and Y1i are usu-
ally referred to as potential outcomes because they
represent the two potential states for each unit.
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For example, this model is routinely used in the
program evaluation literature, where Ti represents
treatment status and Y0i and Y1i represent out-
comes without and with treatment, respectively. In
most applications the goal is to establish statistical
inference for some characteristic of the distribution
of the potential outcomes such as the mean or
quantiles. However, using the available sample
directly to establish inference may lead to impor-
tant biases in the estimation whenever units have
selected into one of the two possible groups
(Ti ¼ 0 or Ti ¼ 1). As a consequence, researchers
often assume that the selection process, if present,
is based on observable characteristics. This idea is
formalized by the so-called conditional indepen-
dence assumption: conditionally on Xi; the ran-
dom variables (Y0i;Y1i) are independent of Ti: In
other words, under this assumption, units having
the same observable characteristics Xi are assigned
to each of the two groups (Ti ¼ 0 or Ti ¼ 1Þ inde-
pendently of their potential gains, captured by
(Y0i;Y1i). Thus, this assumption imposes random
treatment assignment conditional on Xi: This
model also assumes some form of overlap or com-
mon support: For some c> 0; c≤PðTi ¼ 1jXiÞ≤
1� c: In words, this additional assumption ensures
that there will be observations in both groups hav-
ing a common value of observed characteristics if
the sample size is large enough. The function
pðXiÞ ¼ PðTi ¼ 1jXiÞ is known as the propensity
score and plays an important role in the literature.
Finally, it is important to note that for many appli-
cations of interest, the model described above
employs stronger assumptions than needed. For
simplicity, however, the following discussion does
not address these distinctions.

This setup naturally motivates matching: obser-
vations sharing common (or very similar) values of
the observable characteristics Xi are assumed to be
free of any selection biases, rendering the statistical
inference that uses these observations valid. Of
course, matching is not the only way of conducting
correct inference in this model. Several parametric,
semiparametric, and nonparametric techniques are
available, depending on the object of interest and
the assumptions imposed. Nonetheless, matching
is an attractive procedure because it does not
require employing smoothing techniques and
appears to be less sensitive to some choices of user-
defined tuning parameters.

To describe a matching procedure in detail, con-
sider the special case of matching that uses the
Euclidean distance to obtain M ≥ 1 matches with
replacement for the two groups of observations
defined by Ti ¼ 0 and Ti ¼ 1, using as a reservoir
of potential matches for each unit i the group
opposite to the group this unit belongs to. Then,
for unit i the mth match, m¼ 1, 2, . . . , M is given
by the observation having index jmðiÞ such that

TjmðiÞ 6¼Ti andXn

j¼1

1fTj 6¼Tig1fkXj�Xik ≤ kXjmðiÞ �Xikg¼m:

(The function 1f·g is the indicator function and k·k
represents the Euclidean norm.) In words, for the
ith unit, the mth match corresponds to the
mth nearest neighbor among those observations
belonging to the opposite group of unit i, as mea-
sured by the Euclidean distance between their
observable characteristics. For example, if m¼ 1,
then j1ðiÞ corresponds to the unit’s index in the
opposite group of unit i with the property that
kXj1ðiÞ;�Xik ≤ kXj �Xik for all j such that
Tj 6¼ Ti; that is, XjmðiÞ is the observation closest to
Xi among all the observations in the appropriate
group. Similarly, Xj1ðiÞ;Xj2ðiÞ; . . . ;XjMðiÞ are the sec-
ond closest, third closest, and so forth, observa-
tions to Xi, among those observations in the
appropriate subsample. Notice that to simplify the
discussion, this definition assumes existence and
uniqueness of an observation with index jmðiÞ. (It
is possible to modify the matching procedure to
account for these problems.)

In general, the always observed random vector
Xi may include both discrete and continuous ran-
dom variables. When the distribution of (a subvec-
tor of) Xi is discrete, the matching procedure may
be done exactly in large samples, leading to so-
called exact matching. However, for those compo-
nents of Xi that are continuously distributed,
matching cannot be done exactly, and therefore in
any given sample there will be a discrepancy in
terms of observable characteristics, sometimes
called the matching discrepancy. This discrepancy
generates a bias that may affect inference even
asymptotically.

The M matches for unit i are given by the obser-
vations with indexes JMðiÞ ¼ fj1ðiÞ; . . . ; jMðiÞg, that
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is, Yj1ðiÞ;Xj1ðiÞ
� 	

; . . . ; YjMðiÞ;XjMðiÞ
� 	

. This procedure
is repeated for the appropriate subsample of units to
obtain the final matched sample. Once the matched
sample is available, the statistical procedure of inter-
est may be computed. To this end, the first step is to
‘‘recover’’ those counterfactual variables not observed
for each unit, which in the context of matching is
done by imputation. For example, first define

Ŷ0i ¼
Yi if Ti ¼ 0

1

M

X
j∈ JMðiÞ

Yj if Ti ¼ 1

8><
>: and

Ŷ1i ¼
1

M

X
j∈ JMðiÞ

Yj if Ti ¼ 0

Yi if Ti ¼ 1

8><
>:

that is, for each unit the unobserved counterfactual
variable is imputed using the average of its M
matches. Then simple matching estimators are easy
to construct: A matching estimator for μ1 ¼ E½Y1i�,
the mean of Y1i is given by μ̂1 ¼ 1

n

Pn
i¼1 Ŷ1i; while

a matching estimator for τ ¼ μ1� μ0 ¼ E½Y1i� �
E½Y0i�; the difference in means between
both groups, is given by τ̂ ¼ μ̂1 � μ̂0, where
μ̂0 ¼ 1

n

Pn
i¼1 Ŷ0i. The latter estimand is called the

average treatment effect in the literature of program
evaluation and has received special attention in the
theoretical literature of matching estimation.

Matching may also be carried out using esti-
mated rather than observed random variables. A
classical example is the so-called propensity score
matching, which constructs a matched sample
using the estimated propensity score (rather than
the observed Xi) to measure the proximity bet-
ween observations. Furthermore, matching may
also be used to estimate other population para-
meters of interest, such as quantiles or dispersion
measures, in a conceptually similar way. Intui-
tively, in all cases a matching estimator imputes
values for otherwise unobserved random variables
using the matched sample. This imputation pro-
cedure coincides with an M nearest neighbor
(M � NN) nonparametric regression estimator.

The implementation of matching is based on sev-
eral user-defined options (metric, number of matches,
etc.), and therefore numerous variants of this proce-
dure may be considered. In all cases, a fast and reli-
able algorithm is needed to construct a matched
sample. Among the available implementations, the

so-called genetic matching, which uses evolutionary
genetic algorithms to construct the matched sample,
appears to work well with moderate sample sizes.
This implementation allows for a generalized notion
of distance (a reweighted Euclidean norm that
includes the Mahalanobis metric as a particular case)
and an arbitrary number of matches with and with-
out replacement.

There exist several generalizations of the basic
matching procedure described above, a particularly
important one being the so-called optimal full
matching. This procedure generalizes the idea of pair
or M matching by constructing multiple submatched
samples that may include more than one observation
from each group. This procedure encompasses the
simple matching procedures previously discussed and
enjoys certain demonstrable optimality properties.

Statistical Inference

In recent years, there have been important theoreti-
cal developments in statistics and econometrics con-
cerning matching estimators for average treatment
effects under the conditional independence assump-
tion. These results establish the validity and lack of
validity of commonly used statistical inference pro-
cedures involving simple matching estimators.

Despite the fact that in some cases, and under
somewhat restrictive assumptions, exact (finite
sample) statistical inference results for matching
estimators exist, the most important theoretical
developments currently available have been deri-
ved for large samples and under mild, standard
assumptions. Naturally, these asymptotic results
have the advantage of being invariant to particular
distributional assumptions and the disadvantage of
being valid only for large enough samples.

First, despite the relative complexity of matching
estimators, it has been established that these estima-
tors for averages with and without replacement
enjoy root-n consistency and asymptotic normality
under reasonable assumptions. In other words, the
estimators described in the previous section (as well
as other variants of them) achieve the parametric
rate of convergence having a Gaussian limiting dis-
tribution after appropriate centering and rescaling.
It is important to note that the necessary conditions
for this result to hold include the restriction that at
most one dimension of the observed characteristics
is continuously distributed, regardless of how many
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discrete covariates are included in the vector of
observed characteristics used by the matching pro-
cedure. Intuitively, this restriction arises as a conse-
quence of the bias introduced by the matching
discrepancy for continuously distributed observed
characteristics, which turns out not to vanish even
asymptotically when more than one continuous
covariate are included. This problem may be fixed
at the expense of introducing further bias reduction
techniques that involve nonparametric smoothing
procedures, making the ‘‘bias corrected’’ matching
estimator somehow less appealing.

Second, regarding the (asymptotic) precision of
matching estimators for averages, it has been
shown that these estimators do not achieve the
minimum possible variance, that is, these estima-
tors are inefficient when compared with other
available procedures. However, this efficiency loss
is relatively small and decreases fast with the num-
ber of matches to be found for each observation.

Finally, in terms of uncertainty estimates of
matching estimators for averages, two important
results are available. First, it has been shown that
the classical bootstrap procedure would provide an
inconsistent estimate of the standard errors of the
matching estimators. For this reason, other resam-
pling techniques must be used, such as m out of n
bootstrap or subsampling, which do deliver consis-
tent standard error estimates under mild regularity
conditions. Second, as an alternative, it is possible to
construct a consistent estimator of the standard
errors that does not require explicit estimation of
nonparametric parameters. This estimator uses the
matched sample to construct a consistent estimator
of the asymptotic (two-piece) variance of the match-
ing estimator.

In sum, the main theoretical results available jus-
tify asymptotically the use of classical inference pro-
cedures based on the normal distribution, provided
the standard errors are estimated appropriately.
Computer programs implementing matching, which
also compute matching estimators as well as other
statistical procedures based on a matched sample,
are available in commonly used statistical comput-
ing software such as MATLAB, R, and Stata.

Matias D. Cattaneo

See also Observational Research; Propensity Score

Analysis; Selection
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MATRIX ALGEBRA

James Joseph Sylvester developed the modern con-
cept of matrices in the 19th century. For him
a matrix was an array of numbers. He worked
with systems of linear equations; matrices provided
a convenient way of working with their coeffi-
cients, and matrix algebra was to generalize num-
ber operations to matrices. Nowadays, matrix
algebra is used in all branches of mathematics and
the sciences and constitutes the basis of most statis-
tical procedures.

Matrices: Definition

A matrix is a set of numbers arranged in a table.
For example, Toto, Marius, and Olivette are look-
ing at their possessions, and they are counting how
many balls, cars, coins, and novels they each pos-
sess. Toto has 2 balls, 5 cars, 10 coins, and 20
novels. Marius has 1, 2, 3, and 4, and Olivette has
6, 1, 3, and 10. These data can be displayed in
a table in which each row represents a person and
each column a possession:
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