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1. Introduction and Overview
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Introduction

Adaptive Decision Trees are widely used in academia and industry.

» CART: Breiman, Friedman, Olshen & Stone (1984).
» Adaptivity: incorporate data features in their construction.
» Popularity: prime example of “modern” machine learning toolkit.

» Preferred for interpretability or pointwise learning:
yi = p(xq) + &4, Ele; | xi] =0, ]E[Ef | xi] = o*(xi),
where x; = (%1, Ti2, ..., Tip)’ covariates supported on X.

» Today: two foundational results for Adaptive Decision Trees.

» Axis-aligned: pointwise inconsistent == uniformly inconsistent.

» Oblique: mean square consistent <= Single-hidden layer NN performance.
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Adaptive Oblique Decision Tree (OCART)
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CCK (2024): for “full-sample” trees and p € Barron class,

~ H/LH%IE[maXtG[TK] P;tl (h)} . 2Kdlog(np/d) log?(n)

E[Ia(Tx) — ull’] £ . !

o /plogd(n)\2/(2+0)
E[IA(Tops) — )] S (pl%](”)) " ~ Optimal rate 1-HL NN.
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Single-Hidden Layer Neural Network with K Hidden Nodes

OCART += ¢(-) = ReLU

» More generally, from the optimization community, feed-forward neural networks
with Heaviside activations can be transformed into oblique decision trees with
the same training error. See Bertsimas et al. (2018, 2021).
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2. Pointwise Inconsistency of Axis-Aligned Decision Trees
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Decision Trees for Heterogeneous Causal Effects

Recursive partitioning for heterogeneous causal effects

Susan Athey*' and Guido Imbens®

*Stanford Graduate School of Business, Stanford University, Stanford, CA 94305

Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved May 20, 2016 (received for review June 25, 2015)

In this paper we propose hods for estimating k y in
causal effects in experimental and observational studles and for
conducting hypothesis tests about the magnitude of differences in
treatment effects across subsets of the population. We provide a
data-driven approach to partition the data into subpopulatlons

PRI faz P

Within the prediction-based machine learning literature, re-
gression trees differ from most other methods in that they pro-
duce a partition of the population according to covariates,
whereby all units in a partition receive the same prediction. In
this paper, we focus on the analogous goal of deriving a part

“..enables researchers to let the data discover relevant subgroups while pre-
serving the wvalidity of confidence intervals constructed on treatment effects

within subgroups...”

» Qur paper challenges this claim.
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Motivation: Heterogeneous TE, Policy Decisions, Design RCTs, etc.
> {(yi,x;,d;) i =1,2,...,n}iid., and y; = y;(1) - d; + 3:(0) - (1 — d;).
» RCT: (y:(0),5:(1),xF) L d; and € =P(d; = 1) € (0,1), so

Taare (%) = Efys (1) — 1:(0) | x; = x]
=Ely; | xi, di =1] — E[y; | x4, di = 0]

“Honest” Causal Decision Trees (Athey and Imbens, 2019):

» Regression-based heterogeneity discovery:

~ 1 1
TREG(TK)(X) - #{Xl ct:d; = 1} Z b #{X1 ct:d; = 0} Z

x;Et:d;=1 x;€t:d; =0

» [PW-based heterogeneity discovery:

R B 1 di =&
e (Tr) (%) = #{x; € t} > Yer-o

x; €t

» Adaptive tree Tk with sample splitting, and t denotes the unique (terminal)
node containing x € X.



Setup: Constant (Treatment Effect/Regression) Model

yi = p(xs) + &4, E[&' \ Xz‘] =0, E[E? | Xi] = OQ(Xi)

The following conditions hold.
1. (yi,x5),1=1,2,...,n, is a random sample.
. pu(x) = p is constant for all x € X C RP.
. X; has a continuous distribution.
x; Leg foralli=1,2,... ,n.

. E[leil*™] < oo for some v > 0.

SIS

CKT (2024): axis-aligned adaptive (CART) decision trees.
1. Decision stumps (K = 1) split with high probability “near” the boundaries.

2. 1(T1)(x) has at best polylog(n) convergence rate near boundaries.

3. “Honest” fi(Tk)(x) are uniformly inconsistent as soon as K 2 loglog(n).
» n =1 billion implies depth log log(n) ~ 3.
> Inconsistency occurs at countable many points on support, not just at boundaries.

4. Pruning does not solve the inconsistency; other regularization requires care...



Decision Stumps: polylog(n) Convergence Rate Near Boundaries

Recall: for each level K, adaptive (CART) decision trees solve

2
~ min  min (yi — Bil(zij < 7)— Bol(wij > T)) ,
J=1,2,---,p /31,/82,7’,(_6

which is equivalent to maximizing the so-called impurity gain
_ _ 2
St —w? = (=T, Ly <7) = o, Lwyy; > 7))
x €t x €t

1

1 i1 R 2

with respect to index i and variable j, after reordering the data = (3, }).

» Darling-Erdds (1956) limit law (Berkes & Weber, 2006): for any non-decreasing
function 1 < h(m) < m for which lim,;,— o h(m) = co and any w € R,

—w

< A(h(m),w)) —e°

2w

P( max

as m — oo, where A(+,-) is known.
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Decision Stumps: polylog(n) Convergence Rate Near Boundaries
Careful study of maximum over different ranges of the split index gives:
Theorem

Suppose p = 1. Let i(T1)(z) be the CART estimator of the regression function at the
root node. For any a,b € (0,1) with a < b, we have

liminf inf ]P’(|,u(T1)( ) — | > anfb/2\/(2+o(1))loglog(n)) > b—a7

n—oo TrEXp (&

where X, = [0, (1 4+ o(1))n* 1)U (1 — (1 4 o(1))n*"*, 1].

» Decision stumps cannot converge at a polynomial rate, i.e., its rate is slower
than any polynomial-in-n.

» With arbitrary high probability, split index ¢ will concentrate near its extremes,
from the beginning of any tree construction.

» The first split generates cell containing, at most, log®(n) observations, with
probability at least (log(n)) ™", up to constant factors.

» Too few observations will be available on one of the cells after the first split for
CART to deliver a polynomial-in-n consistent estimator of p.



“Honest” (Decision/Causal) Trees: Uniform Inconsistency

Iterating nearly inconsistent decision stumps can only make things worse... Thus,
employing “honesty” (i.e., sample splitting), we have:
Theorem

Suppose p = 1. Consider a mazimal depth K,, = loglog(n) tree Tk, constructed with
CART+ methodology. Then, there exists a positive constant C such that

n—oo TEX

liminf]P’<sup |2(Tk, ) (x) — p| > C) > 0.

v

Shallow “Honest” decision/causal trees are uniformly inconsistent.

v

Inconsistency due to variance issue, not to boundary/misspecification bias.

» Inconsistency can occur at countable many points on the entire support X.

v

Pruning does not mitigate the inconsistency.

v

Non-constant p have similar problems: e.g., piecewise heterogeneity.






Simulations: Decision Stumps (K = 1) for Constant (Treatment) Model
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(b) Pointwise RMSE of causal decision
stump.



Simulations: Decision Stumps (K = 1) with Pruning
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3. Mean-Square Optimality of Oblique Decision Trees
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Motivation

» Popular belief: decision trees compromise accuracy for being easy to use and
understand, whereas neural networks are more accurate but less transparent.

» However, growing body of empirical work in optimization literature shows that
certain trees are competitive with neural networks.

Number | Oblique Decision Tree 2-Layer NN
Classification Dataset n p | of Classes | DT depth Error Width | Error
Bank Marketing 45,211 17 2 3 89.6% 8 89.6%
Framingham Heart Study 3,658 15 2 2 83.3% 4 82.1%
Image Segmentation 210 18 7 4 86.0% 16 88.4%
Letter Recognition 20,000 16 26 6 72.0% 64 66.8%
Magic Gamma Telescope 19,020 | 10 2 5 88.6% 16 87.5%
Skin Segmentation 245,057 | 3 2 4 99.9% 16 99.9%
Thyroid Disease ANN 3,772 | 21 3 3 99.9% 8 97.7%

Bertsimas et al., (2018)

» Question: Is there a theoretical basis for this?

» Key advantages of binary (adaptive) decision trees:

> Interpretability.

» Connection to rule-based decision-making.

» Mimics way doctor or business manager thinks.



Adaptive Axis-Aligned vs. Oblique Decision Tree (CART vs. OCART)

22

» Maximal decision trees with depth K = 2.

» OCART: splits occur along hyperplanes = partitions are convex polytopes.

A0 =T = i S n(t)= Y1),

x; €t x; €t

N}

~



Oblique Tree Construction

» CART methodology: parent node t (region in R”) is divided into two child
nodes, tz, and tg, by finding least squares decision stump

P(x) = fil(a'x <b) + fol(a'x > b).

» Maximize decrease in sum-of-squares error

Aat)= > (i —7)° = D (yi — d(xi))’

X, €t x; €t
with respect to (b, a).

» Greedy Refinement of Partition: Optimizers (i), a) produce refinement of parent
node t via child nodes

tr={xect:ax<b}, tr={xet:a'x>b}

» Child nodes become new parent nodes at next level and can be further refined in
same manner until desired depth D is reached.



Computational Challenges and Framework

» Challenging to find direction a that minimizes squared error.

» Restrict search space to more tractable subset of candidate directions a € Ag
and allow slackness factor x:

~ ~

P =P A(b,a, t) > A(b,a,t
Ag ("i) Ag (b,a%%@.);At ( ,a, ) = H(b,gleaﬂkxl‘*':" ( ya, )

» Choose meaningful method for generating A¢ so that P4, (k) > p > 0, a.s.

» Deterministic. Direct optimization, i.e., Ay = RP; solve least squares problem
using mixed-integer linear optimization.

» Purely random. Generate candidate directions At uniformly at random (& la
random forests).

» Data-driven. Use dimension-reduction techniques on separate sample, e.g., At
defined in terms of top principle components produced by PCA or LDA, or,
similarly, in terms of relevant variables selected by Lasso.
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Function Class Approximations: 2-Layer NN vs. Tree Expansions

» 2-Layer Neural Networks: distributed hierarchical representations
{g(x) = chcﬁ(a;X), ck €ER, a; € Rp}
k

Fixed activation function ¢ (e.g., ReLU).

» Decision Trees:

{g(x) = ch]l(x € tr) : ek € R, t disjoint convex polytope}
k

Regions t; are determined by sequence of linear constraints, a’x < b or a’x > b.

» Very different functional forms.




Three Key Assumptions

1. Local Variation: Define norm of pu(x) = Y, cx¢(ajx) on region t by

lillerwy =D lexlVa(t),
k

where Vi (t) is total variation of ¢ on interval [minxet afvx, maXxet akx}.
» Measures how much p varies on region t.
> Example: If u(x) = @', then ||l , (jo.1y2) = 18], -

2. Global Variation: There exist V > 0 and ¢ > 2 such that

Z |M||q51(t)] <V

teTy

E

» ¢, constraint on total variations of p across all terminal nodes of tree.
> Ensures compatibility between tree and ridge expansion.

3. Node Size: There exist A = polylog(n) and v > 1+ 2/(¢ — 2) such that

()]s

> No region contains disproportionately more observations than average (n/2%).

» Allows for some regions to contain very few observations.
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Expected Training / Prediction Error
> Training error of tree: ||y — i(Tx)|ln = 2 5, (yi — B(Tk ) (x:))?
> Prediction error of tree: ||u — A(Tk)||> = [(u(x) — i(Tk)(x))*dPx
Theorem
-~ _ _ 2
For any depth K > 1, E[Jly — B(Tk)|12 — ly — pll2] < 4-K-D/a4r2,
Furthermore, if K ~ 2%-(1 log,(n/p), then

% 2/(2+q)
E[|3(Tx) - ul’] < ©(2)

Statistical Accuracy Comparisons:

» When g =~ 2, convergence rate

(p)2/(2+q) (p)1/2
n “\n

same as for least squares neural network estimators (Barron, 1994).
» ¢ plays role of effective dimension, not ambient dimension p.

» If u is smooth, we expect ¢ < p, and so convergence rate always at least as fast
as minimax optimal rate: (1/n)% +7),



Discussion
» Pruned Tree: same guarantees hold for pruned subtree that minimizes

penalized risk
Tope € argmin { ly = (T2 + AT},
=T,

A max

where A 2 p/n. Optimal subtree Top¢ can be found efficiently.

» Key Technical Idea: tree output 1i(7p) is orthogonal projection of y onto
span of orthonormal functions ¥y = 1¢(b,a). That is,

A(Tp)(x) = > (y,ve) e (%),

teTp

where (y,¥¢) = L 3. (y; — Y )bt (x;) is empirical inner product, maximized at

least squares solution (b, a).

» Connections to Linear Regression: similar to forward-stepwise regression.
At each current decision node t, tree is grown by selecting “feature”, ¢, most
correlated with residuals, y; — ¥, and adding chosen feature along with
coeflicient, (y, %), to tree output:

H(Tp+41)(x) = i(Tp)(x) + (¥, Pe) e (x).
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4. Takeaways
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Takeaways

Adaptive Decision Trees are a leading component of the machine learning toolkit.

» Today: two foundational results for Adaptive Decision Trees.

» Axis-aligned: pointwise inconsistent == uniformly inconsistent.

» Oblique: mean square consistent <= Single-hidden layer NN performance.
» Adaptive ML methods have advantages and disadvantages.
» Statistical and algorithmic implementations must be studied together.
» Mechanical implementations of machine learning can be detrimental.

» Open question: do other machine learning methods have similar problems?
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