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Introduction

Adaptive Decision Trees are widely used in academia and industry.

▶ CART: Breiman, Friedman, Olshen & Stone (1984).

▶ Adaptivity: incorporate data features in their construction.

▶ Popularity: prime example of “modern” machine learning toolkit.

▶ Preferred for interpretability or pointwise learning:

yi = µ(xi) + εi, E[εi | xi] = 0, E
[
ε2i | xi

]
= σ2(xi),

where xi = (xi1, xi2, . . . , xip)
′ covariates supported on X .

▶ Today: two foundational results for Adaptive Decision Trees.

▶ Axis-aligned: pointwise inconsistent =⇒ uniformly inconsistent.

▶ Oblique: mean square consistent ⇐⇒ Single-hidden layer NN performance.
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Adaptive Axis-Aligned Decision Tree (CART)

t0

x

K = 0, 2K = 1

for each K : min
j=1,2,··· ,p

min
β1,β2,τ

∑
xi∈t

(
yi − β11(xij ≤ τ)− β21(xij > τ)

)2
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Adaptive Axis-Aligned Decision Tree (CART)
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Adaptive Axis-Aligned Decision Tree (CART)
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Adaptive Axis-Aligned Decision Tree (CART)
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Adaptive Axis-Aligned Decision Tree (CART)

x1

x
2

t3 t4

t6t5
t0

t2t1

t6t5t4t3

x2 ≤ b1 x2 > b1

x1 ≤ b2 x1 ≤ b3x1 > b2 x1 > b3

µ̂(TK)(x) = yt =
1

n(t)

∑
xi∈t

yi, n(t) =
∑
xi∈t

1(xi ∈ t).

CKT (2024): for “honest” trees and µ(x) = µ,

P
(
sup
x∈X

|µ̂(TK)(x)− µ| > C
)
> C2 if K ≳ log log(n),

E
[
∥µ̂(TK)− µ∥2

]
= E

[ ∫
X
(µ̂(TK)(x)− µ)2Px(dx)

]
≤ 2K+1σ2

n+ 1
.
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Adaptive Axis-Aligned Decision Tree (CART)
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Adaptive Oblique Decision Tree (OCART)

x1

x
2

t3

t4

t6

t5
t0

t2t1

t6t5t4t3

aT
1 x ≤ b1 aT

1 x > b1

aT
2 x ≤ b2 aT

3 x ≤ b3aT
2 x > b2 aT

3 x > b3

µ̂(TK)(x) = yt =
1

n(t)

∑
xi∈t

yi, n(t) =
∑
xi∈t

1(xi ∈ t).

CCK (2024): for “full-sample” trees and µ ∈ Barron class,

E
[
∥µ̂(TK)− µ∥2

]
≲

∥µ∥2L1
E
[
maxt∈[TK ] P

−1
At

(κ)
]

κK
+

2Kd log(np/d) log2(n)

n
,

E
[
∥µ̂(Topt)− µ∥2

]
≲
(p log3(n)

n

)2/(2+q)

≈ Optimal rate 1-HL NN.
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Single-Hidden Layer Neural Network with K Hidden Nodes

x1

x2

xp

...

φ(aT1 x)

φ(aT2 x)

φ(aTKx)

...

g

OCART ⇐⇒ ϕ(·) = ReLU

▶ More generally, from the optimization community, feed-forward neural networks
with Heaviside activations can be transformed into oblique decision trees with
the same training error. See Bertsimas et al. (2018, 2021).
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Decision Trees for Heterogeneous Causal Effects

“...enables researchers to let the data discover relevant subgroups while pre-
serving the validity of confidence intervals constructed on treatment effects
within subgroups...”

▶ Our paper challenges this claim.
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Motivation: Heterogeneous TE, Policy Decisions, Design RCTs, etc.

▶ {(yi,x′
i, di) : i = 1, 2, . . . , n} i.i.d., and yi = yi(1) · di + yi(0) · (1− di).

▶ RCT: (yi(0), yi(1),x
T
i ) ⊥⊥ di and ξ = P(di = 1) ∈ (0, 1), so

τCATE(xi) = E[yi(1)− yi(0) | xi = x]

= E[yi | xi, di = 1]− E[yi | xi, di = 0]

= E
[
yi

di − ξ

ξ(1− ξ)
| xi

]
.

“Honest” Causal Decision Trees (Athey and Imbens, 2019):

▶ Regression-based heterogeneity discovery:

τ̂REG(TK)(x) =
1

#{xi ∈ t : di = 1}
∑

xi∈t:di=1

yi −
1

#{xi ∈ t : di = 0}
∑

xi∈t:di=0

yi

▶ IPW-based heterogeneity discovery:

τ̂IPW(TK)(x) =
1

#{xi ∈ t}
∑
xi∈t

yi
di − ξ

ξ(1− ξ)

▶ Adaptive tree TK with sample splitting, and t denotes the unique (terminal)
node containing x ∈ X .
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Setup: Constant (Treatment Effect/Regression) Model

yi = µ(xi) + εi, E[εi | xi] = 0, E
[
ε2i | xi

]
= σ2(xi)

The following conditions hold.

1. (yi,x
′
i), i = 1, 2, . . . , n, is a random sample.

2. µ(x) ≡ µ is constant for all x ∈ X ⊆ Rp.

3. xi has a continuous distribution.

4. xi ⊥⊥ εi for all i = 1, 2, . . . , n.

5. E
[
|εi|2+ν

]
<∞ for some ν > 0.

CKT (2024): axis-aligned adaptive (CART) decision trees.

1. Decision stumps (K = 1) split with high probability “near” the boundaries.

2. µ̂(T1)(x) has at best polylog(n) convergence rate near boundaries.

3. “Honest” µ̂(TK)(x) are uniformly inconsistent as soon as K ≳ log log(n).

▶ n = 1 billion implies depth log log(n) ≈ 3.

▶ Inconsistency occurs at countable many points on support, not just at boundaries.

4. Pruning does not solve the inconsistency; other regularization requires care...
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Decision Stumps: polylog(n) Convergence Rate Near Boundaries

Recall: for each level K, adaptive (CART) decision trees solve

min
j=1,2,··· ,p

min
β1,β2,τ

∑
xi∈t

(
yi − β11(xij ≤ τ)− β21(xij > τ)

)2
,

which is equivalent to maximizing the so-called impurity gain∑
xl∈t

(yl − µ)2 −
∑
xl∈t

(
yl − ytL1(xlj ≤ τ)− ytR1(xlj > τ)

)2
=

1

i(n(t)− i)

( 1√
n(t)

i∑
l=1

(yl − µ)− i

n(t)

1√
n(t)

n(t)∑
l=1

(yl − µ)
)2

with respect to index i and variable j, after reordering the data =⇒ (̂ı, ȷ̂).

▶ Darling-Erdös (1956) limit law (Berkes & Weber, 2006): for any non-decreasing
function 1 ≤ h(m) ≤ m for which limm→∞ h(m) = ∞ and any w ∈ R,

P

(
max

m/h(m)≤i≤m

∣∣∣∣∣ 1√i
i∑

l=1

(yl − µ)

∣∣∣∣∣ < λ(h(m), w)

)
→ ee

−w

,

as m→ ∞, where λ(·, ·) is known.
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Decision Stumps: polylog(n) Convergence Rate Near Boundaries
Careful study of maximum over different ranges of the split index gives:

Theorem

Suppose p = 1. Let µ̂(T1)(x) be the CART estimator of the regression function at the
root node. For any a, b ∈ (0, 1) with a < b, we have

lim inf
n→∞

inf
x∈Xn

P
(
|µ̂(T1)(x)− µ| ≥ σn−b/2

√
(2 + o(1)) log log(n)

)
≥ b− a

e
,

where Xn = [0, (1 + o(1))na−1) ∪ (1− (1 + o(1))na−1, 1].

▶ Decision stumps cannot converge at a polynomial rate, i.e., its rate is slower
than any polynomial-in-n.

▶ With arbitrary high probability, split index ı̂ will concentrate near its extremes,
from the beginning of any tree construction.

▶ The first split generates cell containing, at most, loga(n) observations, with
probability at least (log(n))−b, up to constant factors.

▶ Too few observations will be available on one of the cells after the first split for
CART to deliver a polynomial-in-n consistent estimator of µ.

20/36



“Honest” (Decision/Causal) Trees: Uniform Inconsistency

Iterating nearly inconsistent decision stumps can only make things worse... Thus,
employing “honesty” (i.e., sample splitting), we have:

Theorem

Suppose p = 1. Consider a maximal depth Kn ≳ log log(n) tree TKn constructed with
CART+ methodology. Then, there exists a positive constant C such that

lim inf
n→∞

P

(
sup
x∈X

|µ̃(TKn)(x)− µ| > C

)
> 0.

▶ Shallow “Honest” decision/causal trees are uniformly inconsistent.

▶ Inconsistency due to variance issue, not to boundary/misspecification bias.

▶ Inconsistency can occur at countable many points on the entire support X .

▶ Pruning does not mitigate the inconsistency.

▶ Non-constant µ have similar problems: e.g., piecewise heterogeneity.

21/36



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

22/36



Simulations: Decision Stumps (K = 1) for Constant (Treatment) Model
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(a) Pointwise RMSE of decision stump.
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(b) Pointwise RMSE of causal decision
stump.
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Simulations: Decision Stumps (K = 1) with Pruning
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(a) Pointwise RMSE for pruned tree at
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T .
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(b) Pointwise RMSE for pruned causal tree

at x = (0, x2)
T .
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Motivation

▶ Popular belief: decision trees compromise accuracy for being easy to use and
understand, whereas neural networks are more accurate but less transparent.

▶ However, growing body of empirical work in optimization literature shows that
certain trees are competitive with neural networks.

Number Oblique Decision Tree 2-Layer NN
Classification Dataset n p of Classes DT depth Error Width Error

Bank Marketing 45,211 17 2 3 89.6% 8 89.6%
Framingham Heart Study 3,658 15 2 2 83.3% 4 82.1%

Image Segmentation 210 18 7 4 86.0% 16 88.4%
Letter Recognition 20,000 16 26 6 72.0% 64 66.8%

Magic Gamma Telescope 19,020 10 2 5 88.6% 16 87.5%
Skin Segmentation 245,057 3 2 4 99.9% 16 99.9%

Thyroid Disease ANN 3,772 21 3 3 99.9% 8 97.7%

Bertsimas et al., (2018)

▶ Question: Is there a theoretical basis for this?

▶ Key advantages of binary (adaptive) decision trees:
▶ Interpretability.
▶ Connection to rule-based decision-making.
▶ Mimics way doctor or business manager thinks.
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Adaptive Axis-Aligned vs. Oblique Decision Tree (CART vs. OCART)

x1

x
2

t3 t4

t6t5 t0

t2t1

t6t5t4t3

x2 ≤ b1 x2 > b1

x1 ≤ b2 x1 ≤ b3x1 > b2 x1 > b3

x1

x
2

t3

t4

t6

t5 t0

t2t1

t6t5t4t3

aT
1 x ≤ b1 aT

1 x > b1

aT
2 x ≤ b2 aT

3 x ≤ b3aT
2 x > b2 aT

3 x > b3

▶ Maximal decision trees with depth K = 2.

▶ OCART: splits occur along hyperplanes =⇒ partitions are convex polytopes.

µ̂(TK)(x) = yt =
1

n(t)

∑
xi∈t

yi, n(t) =
∑
xi∈t

1(xi ∈ t).
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Oblique Tree Construction

▶ CART methodology: parent node t (region in Rp) is divided into two child
nodes, tL and tR, by finding least squares decision stump

ψ(x) = β11(a
′x ≤ b) + β21(a

′x > b).

▶ Maximize decrease in sum-of-squares error

∆̂(b,a, t) =
∑
xi∈t

(yi − yt)
2 −

∑
xi∈t

(yi − ψ(xi))
2

with respect to (b,a).

▶ Greedy Refinement of Partition: Optimizers (b̂, â) produce refinement of parent
node t via child nodes

tL = {x ∈ t : â′x ≤ b̂}, tR = {x ∈ t : â′x > b̂}.

▶ Child nodes become new parent nodes at next level and can be further refined in
same manner until desired depth D is reached.
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Computational Challenges and Framework

▶ Challenging to find direction â that minimizes squared error.

▶ Restrict search space to more tractable subset of candidate directions a ∈ At

and allow slackness factor κ:

PAt(κ) = PAt

(
max

(b,a)∈R×At

∆̂(b,a, t) ≥ κ max
(b,a)∈R1+p

∆̂(b,a, t)

)

▶ Choose meaningful method for generating At so that PAt(κ) ≥ ρ > 0, a.s.

▶ Deterministic. Direct optimization, i.e., At = Rp; solve least squares problem
using mixed-integer linear optimization.

▶ Purely random. Generate candidate directions At uniformly at random (à la
random forests).

▶ Data-driven. Use dimension-reduction techniques on separate sample, e.g., At

defined in terms of top principle components produced by PCA or LDA, or,
similarly, in terms of relevant variables selected by Lasso.
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Function Class Approximations: 2-Layer NN vs. Tree Expansions

▶ 2-Layer Neural Networks: distributed hierarchical representations{
g(x) =

∑
k

ckϕ(a
′
kx), ck ∈ R, ak ∈ Rp

}
Fixed activation function ϕ (e.g., ReLU).

▶ Decision Trees:{
g(x) =

∑
k

ck1(x ∈ tk) : ck ∈ R, tk disjoint convex polytope

}

Regions tk are determined by sequence of linear constraints, a′x ≤ b or a′x > b.

▶ Very different functional forms.

x1

x2

xp

...

φ(aT1 x)

φ(aT2 x)

φ(aTKx)

...

g

t0

t2t1

t6t5t4t3

aT
1 x ≤ b1 aT

1 x > b1

aT
2 x ≤ b2 aT

3 x ≤ b3aT
2 x > b2 aT

3 x > b3
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Three Key Assumptions

1. Local Variation: Define norm of µ(x) =
∑

k ckϕ(a
′
kx) on region t by

∥µ∥L1(t) =
∑
k

|ck|Vk(t),

where Vk(t) is total variation of ϕ on interval
[
minx∈t a

′
kx, maxx∈t a

′
kx
]
.

▶ Measures how much µ varies on region t.
▶ Example: If µ(x) = β′x, then ∥µ∥L1([0,1]p) = ∥β∥ℓ1 .

2. Global Variation: There exist V > 0 and q > 2 such that

E

[ ∑
t∈TK

∥µ∥qL1(t)

]
≤ V q

▶ ℓq constraint on total variations of µ across all terminal nodes of tree.
▶ Ensures compatibility between tree and ridge expansion.

3. Node Size: There exist A = polylog(n) and ν ≥ 1 + 2/(q − 2) such that(
E
[(

max
t∈TK

n(t)

)ν])1/ν

≤ An

2K

▶ No region contains disproportionately more observations than average (n/2K).
▶ Allows for some regions to contain very few observations.
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Expected Training / Prediction Error

▶ Training error of tree: ∥y − µ̂(TK)∥2n = 1
n

∑
i(yi − µ̂(TK)(xi))

2

▶ Prediction error of tree: ∥µ− µ̂(TK)∥2 =
∫
(µ(x)− µ̂(TK)(x))2dPx

Theorem

For any depth K ≥ 1, E
[
∥y − µ̂(TK)∥2n − ∥y − µ∥2n

]
≤ 4−(K−1)/q AV 2

ρκ
.

Furthermore, if K ≈ q
2+q

log2(n/p), then

E
[
∥µ̂(TK)− µ∥2

]
≤ C

( p
n

)2/(2+q)

Statistical Accuracy Comparisons:

▶ When q ≈ 2, convergence rate( p
n

)2/(2+q)

≈
( p
n

)1/2
same as for least squares neural network estimators (Barron, 1994).

▶ q plays role of effective dimension, not ambient dimension p.

▶ If µ is smooth, we expect q ≤ p, and so convergence rate always at least as fast
as minimax optimal rate: (1/n)2/(2+p).
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Discussion

▶ Pruned Tree: same guarantees hold for pruned subtree that minimizes
penalized risk

Topt ∈ argmin
T⪯Tmax

{
∥y − µ̂(T )∥2n + λ|T |

}
,

where λ ≳ p/n. Optimal subtree Topt can be found efficiently.

▶ Key Technical Idea: tree output µ̂(TD) is orthogonal projection of y onto
span of orthonormal functions ψt = ψt(b,a). That is,

µ̂(TD)(x) =
∑
t∈TD

⟨y, ψt⟩ψt(x),

where ⟨y, ψt⟩ = 1
n

∑
i(yi − yt)ψt(xi) is empirical inner product, maximized at

least squares solution (b̂, â).

▶ Connections to Linear Regression: similar to forward-stepwise regression.
At each current decision node t, tree is grown by selecting “feature”, ψt, most
correlated with residuals, yi − yt, and adding chosen feature along with
coefficient, ⟨y, ψt⟩, to tree output:

µ̂(TD+1)(x) = µ̂(TD)(x) + ⟨y, ψt⟩ψt(x).
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Takeaways

Adaptive Decision Trees are a leading component of the machine learning toolkit.

▶ Today: two foundational results for Adaptive Decision Trees.

▶ Axis-aligned: pointwise inconsistent =⇒ uniformly inconsistent.

▶ Oblique: mean square consistent ⇐⇒ Single-hidden layer NN performance.

▶ Adaptive ML methods have advantages and disadvantages.

▶ Statistical and algorithmic implementations must be studied together.

▶ Mechanical implementations of machine learning can be detrimental.

▶ Open question: do other machine learning methods have similar problems?
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