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Abstract

This paper presents new uniform Gaussian strong approximations for empirical processes

indexed by classes of functions based on d-variate random vectors (d ≥ 1). First, a uniform

Gaussian strong approximation is established for general empirical processes indexed by Lip-

schitz functions, encompassing and improving on all previous results in the literature. When

specialized to the setting considered by Rio (1994), and certain constraints on the function

class hold, our result improves the approximation rate n−1/(2d) to n−1/max{d,2}, up to the same

polylog n term, where n denotes the sample size. Remarkably, we establish a valid uniform

Gaussian strong approximation at the optimal rate n−1/2 log n for d = 2, which was previously

known to be valid only for univariate (d = 1) empirical processes via the celebrated Hungarian

construction (Komlós et al., 1975). Second, a uniform Gaussian strong approximation is estab-

lished for a class of multiplicative separable empirical processes indexed by Lipschitz functions,

which address some outstanding problems in the literature (Chernozhukov et al., 2014, Section

3). In addition, two other uniform Gaussian strong approximation results are presented for

settings where the function class takes the form of a sequence of Haar basis based on gener-

alized quasi-uniform partitions. We demonstrate the improvements and usefulness of our new

strong approximation results with several statistical applications to nonparametric density and

regression estimation.
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1 Introduction

Let xi ∈ X ⊆ Rd, i = 1, 2, . . . , n, be independent and identical distributed (i.i.d.) random vectors

supported on a background probability space (Ω,F ,P). The classical empirical process is

Xn(h) :=
1√
n

n∑
i=1

(
h(xi)−E[h(xi)]

)
, h ∈ H, (1)

where H is a (possibly n-varying) class of functions. Following the empirical process literature, and

assuming H is “nice”, the stochastic process (Xn(h) : h ∈ H) is said to be Donsker if it converges

(as n → ∞) weakly to a Gaussian process in ℓ∞(H), the space uniformly bounded real functions

on H. This convergence in law result is typically denoted by

Xn ⇝ Z, in ℓ∞(H), (2)

where (Z(h) : h ∈ H) is a mean-zero Gaussian process with covariance function E[Z(h1)Z(h2)] =

E[h1(xi)h2(xi)]−E[h1(xi)]E[h2(xi)] for all h1, h2 ∈ H when H is not n-varying. See van der Vaart

and Wellner (2013) and Giné and Nickl (2016) for textbook reviews.

A more challenging endeavour is to construct a uniform Gaussian strong approximation for the

empirical process Xn. That is, if the background probability space is “rich” enough, or is otherwise

properly enlarged, the goal is to construct a sequence of mean-zero Gaussian processes (Zn(h) :

h ∈ H) with the same covariance structure as Xn (i.e., E[Xn(h1)Xn(h2)] = E[Zn(h1)Zn(h2)] for

all h1, h2 ∈ H) such that

∥Xn − Zn∥H := sup
h∈H

∣∣Xn(h)− Zn(h)
∣∣ = O(ϱn) almost surely (a.s.), (3)

for a non-random sequence ϱn → 0 as n → ∞. Such a refined approximation result is useful in a

variety of contexts. For example, it gives a distributional approximation for non-Donsker empirical

processes, for which (2) does not hold, and it also offers a precise quantification of the quality of

the distributional approximation when (2) holds. In addition, (3) is typically obtained from precise

probability concentration inequalities that can be used to construct statistical inference procedures

requiring uniformity over H and/or the class of underlying data generating processes. Furthermore,

because the sequence of Gaussian processes Zn are “pre-asymptotic”, they can offer better finite

sample approximations to the sampling distribution of Xn when compared to the large sample

approximation based on the limiting Gaussian process Z as in (2).

There is a large literature on strong approximations for empirical processes, offering different

tightness levels for the bound ϱn in (3). In particular, the univariate case (d = 1) is mostly

settled. A major breakthrough was accomplished by Komlós et al. (1975, KMT hereafter), who

introduced the celebrated Hungarian construction to prove the optimal result ϱn = n−1/2 log n

for the special case of the uniform empirical distribution process: X = [0, 1], xi ∼ Uniform(X ),

and H = {1(· ≤ x) : x ∈ [0, 1]}, where 1(·) denotes the indicator function. See Bretagnolle and
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Massart (1989) and Mason and Van Zwet (2011) for more technical discussions on the Hungarian

construction, and Csörgó and Revész (1981) and Pollard (2002) for textbook introductions. The

KMT result was later extended by Giné et al. (2004) and Giné and Nickl (2010) to univariate

empirical processes indexed by functions with uniformly bounded total variation: for X = R and

xi ∼ PX continuously distributed, the authors obtained

ϱn = n−1/2 log n, (4)

in (3), with H satisfying a bounded variation condition (see Remark 2 below for details). More

recently, Cattaneo et al. (2024b, Lemma SA26 in their supplemental appendix) gave a self-contained

proof of a slightly generalized KMT result allowing for a larger class of distributions PX . As a

statistical application, Giné et al. (2004) and Giné and Nickl (2010) considered univariate kernel

density estimation with bandwidth b → 0 as n → ∞, and demonstrated that the optimal univariate

KMT strong approximation rate (nb)−1/2 log n is achievable, where nb is the effective sample size.

Establishing strong approximations for general empirical processes with d ≥ 2 is substantially

more difficult, since the KMT approach does not easily generalize to multivariate data. Foun-

dational results in the multidimensional context include Massart (1989), Koltchinskii (1994), and

Rio (1994). In particular, assuming the function class H is uniformly bounded, has bounded total

variation, and satisfies a VC-type condition, among other regularity conditions discussed precisely

in the upcoming sections, Rio (1994) obtained

ϱn = n−1/(2d)
√

log n, d ≥ 2, (5)

in (3). This result is tight under the conditions imposed (Beck, 1985), and demonstrates an unfor-

tunate dimension penalty in the convergence rate for d-variate uniform Gaussian strong approxi-

mation. As a statistical application, Rio (1994) also considered the kernel density estimator with

bandwidth b → 0 as n → ∞, and established (3) with

ϱn = (nbd)−1/(2d)
√

log n, d ≥ 2,

where nbd is the effective sample size.

While Rio (1994)’s KMT strong approximation result is unimprovable under the conditions he

imposed, it has two limitations:

(1) The class of functions H may be too large, and further restrictions can open the door for

improvements. For example, in his application to kernel density estimation, Rio (1994, Section

4) assumed that the class H is Lipschitzian to verify the sufficient conditions of his strong

approximation theorem, but his theorem did not exploit the Lipschitz property in itself. (The

Lipschitzian assumption is essentially without loss of generality in the kernel density estimation

application.) It is an open question whether the optimal univariate KMT strong approximation

rate (4) is achievable when d ≥ 2, under additional restrictions onH (e.g., Lipschitz continuity).
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(2) As discussed by Chernozhukov et al. (2014, Section 3), applying Rio (1994)’s strong approxi-

mation result directly to nonparametric local smoothing regression, a “local empirical process”

in their terminology, leads to an even more suboptimal strong approximation rate in (3). For

example, in the case of kernel regression estimation with d-dimensional covariates, Rio (1994)’s

strong approximation would treat all d + 1 variables (covariates and outcome) symmetrically,

and thus it will give a strong approximation rate in (3) of the form

ϱn = (nbd+1)−1/(2d+2)
√
log n, d ≥ 1, (6)

where b → 0 as n → ∞, and under standard regular conditions. The main takeaway is that the

resulting effective sample size is now nbd+1 when in reality it should be nbd, since only the d-

dimensional covariates are smoothed out for estimation of the conditional expectation. It is this

unfortunate fact that prompted Chernozhukov et al. (2014) to developed strong approximation

methods that target the scalar suprema of the stochastic process, suph∈H |Xn(h)|, instead of

the stochastic process itself, (Xn(h) : h ∈ H), as a way to circumvent the suboptimal strong

approximation rates that would emerge from deploying directly results in the literature.

This paper presents new uniform Gaussian strong approximation results for empirical processes

that address the two aforementioned limitations. To begin, Section 3 studies the general empirical

process (1), and presents two main results. Theorem 1 establishes a uniform Gaussian strong

approximation explicitly allowing for the possibility that H is Lipschitzian. This result not only

encompasses, but also generalizes all previous results in the literature by allowing for d ≥ 1 under

more generic entropy conditions. For comparison, if we impose the regularity conditions in Rio

(1994) and also assume H is Lipschitzian, then our result (Corollary 2) verifies (3) with

ϱn = n−1/d
√
log n+ n−1/2 log n, d ≥ 1,

thereby substantially improving (5), in addition to matching (4) when d = 1; see Remark 2 for

details. Remarkably, we demonstrate that the optimal univariate KMT strong approximation

rate n−1/2 log n is achievable when d = 2, in addition to achieving the better approximation rate

n−1/d
√
log n when d ≥ 3. For example, applying our result to the kernel density estimation exam-

ple, we obtain the improved strong approximation rate (nbd)−1/d
√
log n + (nbd)−1/2 log n, d ≥ 1,

under the same conditions imposed in prior literature. We thus show that the optimal univariate

KMT uniform Gaussian strong approximation holds in (3) for bivariate kernel density estimation.

Theorem 1 also considers other entropy notions for H beyond the classical VC-type condition,

which allows us to demonstrate improvements over Koltchinskii (1994); see Remark 3 for details.

Section 3 also discusses how our rate improvements are achieved, and outlines the outstanding

roadblocks in our proof strategy, which prevents us from achieving the univariate KMT uniform

Gaussian strong approximation for the general empirical process (1) with d ≥ 3. In essence, and

following Rio (1994) and others, our proof first approximate in mean square the class of functions H

using a Haar basis over carefully constructed disjoint dyadic cells, and then applies the celebrated
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Tusnády’s Lemma (Pollard, 2002, Chapter 10, for a textbook introduction) to construct a strong

approximation. Thus, our proof requires balancing two approximation errors: (i) a “bias” error

emerging from the mean square projection based on a Haar basis, and (ii) a “variance” error

emerging from the coupling construction for the projected process. A key observation in our

paper is that both errors can be improved by explicitly exploiting a Lipschitz assumption on H.

However, it appears that to achieve the univariate KMT uniform Gaussian strong approximation

for the general empirical process (1) with d ≥ 3, a mean square projection based on a higher-order

function class would be needed, for which there are no coupling methods available in the literature.

As a way to circumvent the technical limitations underlying the proof strategy of Theorem

1, Section 3 also presents Theorem 2. This second main theorem establishes a uniform Gaussian

strong approximation under the assumption that H is spanned by a possibly increasing sequence

of finite Haar basis based on generic quasi-uniform cells. This theorem shuts down the projection

error, and also relies on a generalized Tusnády’s Lemma proven in the supplemental appendix, to

establish a valid coupling over more general partitioning schemes. In this specialized setting, we

demonstrate that a uniform Gaussian strong approximation at the optimal univariate KMT rate

based on the corresponding effective sample size is possible for all d ≥ 1 under certain regularity

conditions. As a statistical application in this special setting, we consider the classical multivariate

histogram density estimator. Furthermore, the ideas underlying Theorem 2 provide the basis for

analyzing certain nonparametric regression estimation procedures based on tree or partitioning-

based regression methods.

Section 4 is devoted to addressing the second aforementioned limitation in prior uniform Gaus-

sian strong approximation results. Specifically, that section focuses on the following residual-based

empirical process:

Rn(g, r) :=
1√
n

n∑
i=1

(
g(xi)r(yi)−E[g(xi)r(yi)|xi]

)
, (g, r) ∈ G× R, (7)

where our terminology reflects the fact that g(xi)r(yi)−E[g(xi)r(yi)|xi] = g(xi)ϵi(r) with ϵi(r) :=

r(yi)−E[r(yi)|xi], which can be interpreted as a residual in nonparametric local smoothing regres-

sion settings. In statistical applications, g(·) is typically a local smoother based on kernel, series,

or nearest-neighbor methods, while r(·) is some transformation of interest such as r(y) = y for con-

ditional mean estimation or r(y) = 1(y ≤ ·) for conditional distribution estimation. Chernozhukov

et al. (2014, Section 3.1) call these special cases of Rn a “local empirical process”.

The residual-based empirical process (Rn(g, r) : (g, r) ∈ G × R) may be viewed as a general

empirical process (1) based on independent sample (zi = (xi, yi) : 1 ≤ i ≤ n), and thus available

strong approximation results can be applied directly, including Rio (1994) and our new Theorem 1.

However, those off-the-shelf results require over-stringent assumption and can deliver sub-optimal

approximation rates. First, available results require zi to admit a positive Lebesgue density on

[0, 1]d+1, possibly after some transformation that is bounded with bounded total variation, thereby

imposing strong restrictions on the marginal distribution of yi. Second, available results can lead
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to the incorrect effective sample size for the strong approximation rate. For example, for a local

empirical process where g denotes local smoothing weights such as a kernel function with bandwidth

b → 0 as n → ∞, and r(y) = y, Rio (1994) gives the approximation rate (6), and our refined

Theorem 1 for general empirical processes indexed by Lipschitz functions gives a uniform Gaussian

strong approximation rate

ϱn = (nbd+1)−1/(d+1)
√
log n+ (nbd)−1/2 log n, (8)

where the effective sample size is still nbd+1. This is necessarily suboptimal because the (pointwise)

effective sample size for the local (kernel) regression estimator is nbd.

A key observation underlying the potential sub-optimality of strong approximation results for

local regression empirical processes is that all components of zi = (xi, yi) are treated symmetrically.

More precisely, as explained previously, the Gaussian strong approximation error balances a “bias”

part, which captures the error made in project functions to piecewise constant on carefully chosen

cells, and a “variance” part, which is the Gaussian strong approximation error for empirical process

indexed by projected functions. Results for general empirical processes treat all coordinates of H =

G×R symmetrically, despite the fact that in certain statistical applications, such as nonparametric

smoothing regression, G and R are distinctively different. For example, in the kernel regression case,

G is an n-varying class of functions (via the bandwidth b) with envelope proportional to b−d/2, a

Lipschitz constant proportional to b−d/2−1, and complexity measures depending on b and n as well,

while R may be a singleton or otherwise have complexity independent of n. Therefore, a design of

cells for projection and coupling that is asymmetric in the direction of xi and yi components may

improve the uniform Gaussian strong approximation.

Theorem 3 in Section 4 presents a novel uniform Gaussian strong approximation for the residual-

based empirical process (Rn(g, r) : (g, r) ∈ G × R), which explicitly exploits the multiplicative

separability of H = G×R and the Lipschitz continuity of the function class G, while also removing

the over-stringent assumptions imposed on the distribution yi. When applied to local regression

smoothing empirical processes, our result gives a uniform Gaussian strong approximation rate of

ϱn = (nbd)−1/(d+2)
√
log n+ (nbd)−1/2 log n, (9)

thereby improving over both Rio (1994) leading to (5), and Theorem 1 leading to (8). In Section 4.1,

we leverage Theorem 3 and present a substantive statistical application establishing the best known

uniform Gaussian strong approximation result for local polynomial regression estimators (Fan and

Gijbels, 1996). It follows that our results offer a strong approximation rate with the correct effective

sample size nbd under substantially weaker conditions on the underlying data generating process

and function index set H = G× R.

In general, however, neither Theorem 1 in Section 3 nor Theorem 3 in Section 4 dominates each

other, and therefore both are of interest depending on the statistical problem under consideration.

Furthermore, building on the ideas underlying Theorem 2, Section 4 also presents Theorem 4 where
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G is further assumed to be spanned by a possibly increasing sequence of Haar basis based on generic

quasi-uniform cells, while R is an arbitrary function class satisfying some mild regularity conditions.

Remarkably, we are able to adapt our proof strategy to leverage the multiplicative structure of the

residual-based empirical process (Rn(g, r) : (g, r) ∈ G×R) in such a way that we establish a uniform

Gaussian strong approximation at the optimal univariate KMT rate based on the effective sample

size for all d ≥ 1, up to a polylog n term, where polylogn := logκ(n) for some κ > 0, and an

additional “bias” term reflecting exclusively the projection error associated with R, which is zero

when R is a singleton. As a substantive statistical application of our last main result Theorem 4,

we establish a valid, optimal (up to a polylog n term) uniform Gaussian strong approximation for

a large class of Haar partitioning-based regression estimators such as certain regression trees and

related methods (Breiman et al., 1984; Huang, 2003; Cattaneo et al., 2020).

1.1 Related Literature

This paper contributes to the literature on strong approximations for empirical processes, and

their applications to uniform inference for nonparametric smoothing methods. For foundational

introductions and overviews, see Csörgó and Revész (1981), Einmahl and Mason (1998), Berthet

and Mason (2006), Mason and Zhou (2012), Giné and Nickl (2016), Pollard (2002), Zaitsev (2013),

and references therein. See also Chernozhukov et al. (2014, Section 3) for discussion and further

references concerning local empirical processes and their role in nonparametric curve estimation.

The celebrated KMT construction (Komlós et al., 1975), Yurinskii’s coupling (Yurinskii, 1978),

and Zaitsev’s coupling (Zaitsev, 1987) are three well-known approaches that can be used for con-

structing uniform Gaussian strong approximations for empirical processes. Among them, the KMT

approach often offers the tightest approximation rates when applicable, and is the focus of our

paper: closely related literature includes Massart (1989), Koltchinskii (1994), Rio (1994), Giné

et al. (2004), and Giné and Nickl (2010), among others. As summarized in the introduction, our

main first result (Theorem 1) encompasses and substantially improves on all prior results in that

literature. Furthermore, Theorems 2, 3, and 4 offer new results for more specific settings of in-

terest in statistics, in particular addressing some outstanding problems in the statistical literature

(Chernozhukov et al., 2014, Section 3). We provide detailed comparisons to the prior literature in

the upcoming sections.

We do not discuss the other coupling approaches because they deliver slower strong approxima-

tion rates under the assumptions imposed in this paper: see Cattaneo et al. (2024d) for results based

on Yurinskii’s coupling, and Settati (2009) for results based on Zaitsev’s coupling. Finally, employ-

ing a different approach, Dedecker et al. (2014) obtain a uniform Gaussian strong approximations for

the multivariate empirical process indexed by half plane indicators with a dimension-independent

approximation rate, up to polylog n terms.
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2 Notation and Main Definitions

We employ standard notations from the empirical process literature, suitably modified and spe-

cialized to improve exposition. See, for example, van der Vaart and Wellner (2013) and Giné and

Nickl (2016) for background definitions and more details.

Sets. Suppose U and V are subsets of Rd. m(U) denotes the Lebesgue measure of U , and
U + V := {x+ y : x ∈ U ,y ∈ V}. Suppose G and R are sets of functions from measure space (S,S)
to R and (T, T ) to R, respectively. Then G×R denotes {(g, r) : (S×T,S ⊗T ) → R, g ∈ G, r ∈ R},
where S ⊗R denotes the product σ-algebra on S × T . Denote ∥U∥∞ := sup{∥x−y∥∞ : x,y ∈ U}.

Norms. For vectors, ∥·∥ denotes the Euclidean norm and ∥·∥∞ denotes the supremum norm.

For a real-valued random variable X, ∥X∥p = E[|X|p]
1
p for 1 ≤ p < ∞. For α > 0, ∥X∥ψα =

min{λ > 0 : E[exp((|X|/λ)α)] ≤ 2}. For a real-valued function g defined on a measure space

(S,S, Q), defineQg :=
∫
gdQ and define ∥g∥Q,p := (Q|g|p)1/p for 1 ≤ p < ∞, ∥g∥∞ := supx∈S |g(x)|.

In the case that S ⊆ Rl for some l ∈ N, define ∥g∥Lip := supx,x′∈S |g(x)− g(x′)|/∥x− x′∥∞. Lp(Q)

is the class of all measurable functions g from S to R such that ∥g∥Q,p < ∞, 1 ≤ p < ∞. For α > 0,

define the Cα-norm of a real valued function on (Rd,B(Rd)) by ∥f∥Cα = max|k|≤⌊α⌋ supx |Dkf(x)|+
max|k|=α supx ̸=y

|Dkf(x)−Dkf(y)|
∥x−y∥α−⌊α⌋

2

. eQ and ρQ are the semi-metrics on L2(Q) such that eQ(f, g) =

∥f − g∥Q,2 and ρQ(f, g) =
√
∥f − g∥2Q,2 − (Qf −Qg)2. For a class of measurable functions F ⊆

L2(Q), C(F, ρP) is the class of all continuous functionals in (F, ρP).

Asymptotics. For reals sequences |an| = o(|bn|) if lim sup an
bn

= 0, |an| ≲ |bn| if there exists

some constant C and N > 0 such that n > N implies |an| ≤ C|bn|. |an| ≲α |bn| if there exists some

constant Cα and Nα only depending on α such that |an| ≤ Cαbn for all n ≥ Nα. For sequences of

random variables an = oP(bn) if plimn→∞
an
bn

= 0, |an| ≲P |bn| if lim supM→∞ lim supn→∞ P [|anbn | ≥
M ] = 0.

Empirical Processes. Let (S, d) be a semi-metric space. The covering number N(S, d, ε) is

the minimal number of balls Bs(ε) := {t : d(t, s) < ε} needed to cover S. A P-Brownian bridge is

a centered Gaussian random function Wn(f), f ∈ L2(X ,P) with the covariance E[WP(f)WP(g)] =

P(fg)−P(f)P(g), for f, g ∈ L2(X ,P). A class F ⊆ L2(X ,P) is P-pregaussian if there is a version

of P-Brownian bridge WP such that WP ∈ C(F ; ρP) almost surely.

2.1 Main Definitions

Let F be a class of measurable functions from a measure space (S,S, µ) to R, S ⊆ Rq for some

q ∈ N. We first introduce several definitions that capture different properties of F.

Definition 1. F is pointwise measurable if it contains a countable subset G such that for any

f ∈ F, there exists a sequence (gm : m ≥ 1) ⊆ G such that limm→∞ gm(x) = f(x) for all x ∈ S.

Definition 2. For any C ∈ S that is non-empty, the uniform total variation of F over C is

TVF,C = sup
f∈F

sup
ϕ∈Dq(C)

∫
f(x) div(ϕ)(x)dx/∥∥ϕ∥2∥∞,
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where Dq (C) denote the space of C∞ functions from Rq to Rq with compact support in C. To save

notation, we set TVF = TVF,Rq .

Definition 3. The local uniform total variation constant of F restricted to a subset of S, D ∈ S,
is a positive number KF such that for any cube C that is a subset of D with edges of length ℓ parallel

to the coordinate axises,

TVF,C ≤ KF,Dℓ
d−1.

To save notation, we set KF = KF ,Rq .

Definition 4. The envelopes of the class F are

MF = ∥MF∥∞, MF(x) = sup
f∈F

|f(x)|, x ∈ S.

Note that in the case that F is pointwise measurable, MF is measurable.

Definition 5. The Lipschitz constant for the class F is

LF = sup
f∈F

sup
x,x′∈S

|f(x)− f(x′)|
∥x− x′∥∞

= sup
f∈F

∥f∥Lip,

Definition 6. The uniform entropy integral for the class F is

J(δ,F,MF) =

∫ δ

0
sup
Q

√
1 + logN(F, eQ, ε∥MF∥Q,2)dε,

where the supremum is taken over all finite discrete measures on (S,S). Here we assume that

MF(x) is finite for every x ∈ S.

Definition 7. The uniform covering number of the class F is

NF(δ) := sup
Q

N(F, eQ, δ∥MF∥Q,2), δ ∈ (0,∞),

where the supremum is taken over all finite discrete measures on (S,S). Here we assume that

MF(x) is finite for every x ∈ S.

Definition 8. F is a VC-type class with envelope MF if (i) MF is measurable and MF(x) is finite

for every x ∈ S, and (ii) there exists some positive constants cF and dF such that for all 0 < ε < 1

sup
Q

N(F, eQ, ε∥MF∥Q,2) ≤ cFε
−dF ,

where the supremum is taken over all finite discrete measures on (S,S).
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Definition 9. F is a Polynomial-entropy class with envelope MF if (i) MF is measurable and

MF(x) is finite for every x ∈ S, and (ii) there exists some positive constants aF and bF < 2 such

that for all 0 < ε < 1

log sup
Q

N(F, eQ, ε∥MF∥Q,2) ≤ aFε
−bF ,

where the supremum is taken over all finite discrete measures on (S,S).

Definition 10. The uniform L1 bound for the class F is

EF = sup
f∈F

∫
S
|f |dµ.

3 General Empirical Process

This section presents improved, in some cases optimal, strong approximations for the general empir-

ical process (Xn(h) : h ∈ H) defined in (1). We impose the following assumption on the underlying

data generation.

Assumption A. (xi : 1 ≤ i ≤ n) are i.i.d. random vectors taking values in (X ,B(X )) with X
compact, and their common law PX admits a Lebesgue density fX continuous and positive on X .

The next theorem gives our first main strong approximation result. Let

c1 =
f
2
X

f
X

, c2 =
fX
f
X

and c3 = (2
√
d)d−1 f

d+1
X

fd
X

.

where fX := supx∈X fX(x) and f
X

:= infx∈X fX(x), and

mn,d :=

n−1/2
√
log n if d = 1

n−1/(2d) if d ≥ 2
and ln,d :=


1 if d = 1

n−1/2
√
log n if d = 2

n−1/d if d ≥ 3

.

Theorem 1. Suppose Assumption A holds with X = [0, 1]d, and H is a class of real-valued pointwise

measurable functions on (X ,B(X ),PX) such that MH < ∞ and J(1,H, MH) < ∞. Then, on a

possibly enlarged probability space, there exists a sequence of mean-zero Gaussian processes (ZXn (h) :

h ∈ H) with almost sure continuous trajectories such that:

• E[Xn(h1)Xn(h2)] = E[Z
X
n (h1)Z

X
n (h2)] for all h1, h2 ∈ H, and

• P
[
∥Xn − ZXn ∥H > C1Sn(t)

]
≤ C2e

−t for all t > 0,

where C1 and C2 are universal constants, and

Sn(t) = min
δ∈(0,1)

{An(t, δ) + Fn(t, δ)},

9



with

An(t, δ) := min
{
mn,d

√
MH, ln,d

√
c2LH

}√
dc1TVH

√
t+ log NH(δ)

+ n−1/2min
{√

log n
√
MH,

√
d3c3KH

}√
MH(t+ log NH(δ))

and

Fn(t, δ) := J(δ,H, MH)MH +
MHJ

2(δ,H, MH)

δ2
√
n

+ δMH
√
t+

MH√
n
t.

This theorem on uniform Gaussian strong approximation is given in full generality to accom-

modate different applications. Section 3.1 below discusses leading special cases, and compares our

results to prior literature. The proof of Theorem 1 is in Section SA-II of the supplemental ap-

pendix, but we briefly outline the general proof strategy here to highlight our improvements on

prior literature and some open questions. The proof begins with the standard “discretization” or

“meshing” decomposition:

∥Xn − ZXn ∥H ≤ ∥Xn −Xn ◦ πHδ
∥H + ∥Xn − ZXn ∥Hδ

+ ∥ZXn ◦ πHδ
− ZXn ∥H,

where ∥Xn−ZXn ∥Hδ
captures the coupling between the empirical process and the Gaussian process

on a δ-net of H, which is denoted by Hδ, while the terms ∥Xn − Xn ◦ πHδ
∥H and ∥ZXn ◦ πHδ

−
ZXn ∥H capture the “fluctuations” or “ocillation” relative to the meshing for each of the stochastic

processes. The latter two errors are handled using standard empirical process results, which give

the contribution F(δ) emerging from Talagrand’s inequality (Giné and Nickl, 2016, Theorem 3.3.9)

combined with a standard maximal inequality (Chernozhukov et al., 2014, Theorem 5.2). See

Section SA-II.3 of the supplemental appendix for details.

Following Rio (1994), the “coupling” term ∥Xn − ZXn ∥Hδ
is further decomposed using a mean

square projection onto a Haar function space:

∥Xn − ZXn ∥Hδ
≤ ∥Xn − Π0Xn∥Hδ

+ ∥Π0Xn − Π0Z
X
n ∥Hδ

+ ∥Π0ZXn − ZXn ∥Hδ
, (10)

where Π0Xn(h) = Xn◦Π0h with Π0 the L2 projection from L2([0, 1]
d) to piecewise constant functions

on a carefully chosen partition of X . Section SA-II.1 introduces a class of recursive quasi-dyadic

cells expansions of X , which we employ to generalize prior results in the literature. Section SA-II.2

then describes the properties of the L2 projection onto a Haar basis based on quasi-dyadic cells.

The term ∥Π0Xn−Π0Z
X
n ∥Hδ

in (10) represents the strong approximation error for the projected

process over a recursive dyadic collection of cells partitioning X . Handling this error boils down to

the coupling of Bin(n, 12) with N(n2 ,
n
4 ), due to the fact that the constant approximation within each

recursive partitioning cell generates count data. Building on the celebrated Tusnády’s Lemma, Rio

(1994, Theorem 2.1) established a remarkable coupling result for bounded functions L2-projected

on a dyadic cells expansion of X . Our Lemma SA.10 builds on his powerful ideas, and establishes

an analogous result for the case of Lipschitz functions L2-projected on dyadic cells expansions of X ,

thereby obtaining a tighter coupling error. A limitation of these results is that they only apply to

10



a dyadic cell expansion due to the specifics of Tusnády’s Lemma. Section 3.2 below discusses this

limitation further, and presents some generalized results, which are further exploited in Section 4.

The terms ∥Xn− Π0Xn∥Hδ
and ∥Π0ZXn −ZXn ∥Hδ

in (10) represent the L2 projection errors onto

a Haar basis based on quasi-dyadic cells expansion of X . Lemma SA.9 handles this error using

Bernstein inequality, taking into account explicitly the potential Lipschitz structure of the functions

and the generic cell structure. Balancing these approximation errors with that of ∥Π0Xn−Π0Z
X
n ∥Hδ

gives term An(t, δ) in Theorem 1. Section SA-II of the supplemental appendix provides all technical

details, and some additional results that may be of independent theoretical interest.

Theorem 1 restricts the data to be continuously distributed on the d-dimensional unit cube, a

normalized tensor product of compact intervals. This restriction simplifies our proof because we

employ the Rosenblatt transform (Lemma SA.12) to account for general distributions supported

on X = [0, 1]d. However, as the next remark discusses, the support restriction and the other

assumptions in Theorem 1 can be weakened in certain cases.

Remark 1. Theorem 1 imposes Assumption A with X = [0, 1]d, but these restrictions can be

relaxed as follows.

Univariate case. When d = 1, we can remove all the restrictions on the distribution of xi

in Assumption A and allow for X = R, by directly applying the Rosenblatt transform so that

ui = FX(xi) ∼ Uniform[0, 1] i.i.d., i = 1, 2, . . . , n, where FX(x) := PX [xi ≤ x]. It follows that

Xn(h) = 1√
n

∑n
i=1(h ◦ F−1

X )(ui) − E[(h ◦ F−1
X )(ui)]. Then, H̃ = {h ◦ F−1

X : h ∈ H} is pointwise

measurable because H is assumed to be so, M
H̃

= MH, TVH̃ = TVH, J(H̃, H, δ) = J(H, H, δ), and

Theorem 1 holds with LH = ∞ and c1 = c2 = c3 = 1. A similar argument can be found in Giné

et al. (2004, Section 2) and in Cattaneo et al. (2024b, Lemma SA20). See Remark 2 below for

related discussion.

Multivariate case. When d > 1, the support restriction X = [0, 1]d in Assumption A can be

relaxed by assuming that there exists a diffeomorphism χ : X 7→ [0, 1]d. In this case our results

continue to hold with c1, c2 and c3 replaced by, respectively,

c1 =
f
2
X

f
X

Sχ, c2 =
fX
f
X

Sχ, and c3 = (2
√
d)d−1 f

d+1
X

fd
X

Sdχ,

where Sχ =
sup

x∈[0,1]d
| det(∇χ−1(x))|

inf
x∈[0,1]d

| det(∇χ−1(x))| ∥∥∇χ−1∥2∥∞ with ∇χ−1(x) denoting the Jacobian of χ−1(x),

the inverse function of χ(x), and det(·) denoting the determinant of its argument. □

The previous remark can be illustrated as follows. Suppose (xi : 1 ≤ i ≤ n) are i.i.d. Uniform(X )

with X = ×d
l=1[al, bl]. Then, the Rosenblatt transform (Lemma SA.12) gives χ(x1, · · · , xd) =

((b1 − a1)
−1(x1 − a1), · · · , (bd − ad)

−1(xd − ad)), Sχ = max1≤l≤d |bl − al|, c1 = max1≤l≤d |bl −
al|

∏d
l=1 |bl − al|−1, c2 = max1≤l≤d |bl − al| and c3 = (2

√
d)d−1max1≤l≤d |bl − al|d

∏d
l=1 |bl − al|−1.

Then, when d = 1, we have TV
H̃

= TVH. However, when d > 1, TV
H̃

is strictly greater than TVH.

This example illustrates the dimension penalty implied by the Rosenblatt transform when d > 1.
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3.1 Special Cases and Related Literature

Theorem 1 can be specialized to several useful particular cases, which can be employed to compare

our main results with prior literature. To this end, we introduce our first statistical example.

Example 1 (Kernel Density Estimation). The classical kernel density estimator of fX(x) is

f̂X(x) =
1

n

n∑
i=1

1

bd
K
(xi − x

b

)
,

where K : Rd → R be a compact supported continuous function such that
∫
Rd K(x)dx = 1. In

statistical applications, the bandwidth b → 0 as n → ∞ to enable nonparametric estimation (Wand

and Jones, 1995). Consider establishing a strong approximation for the “localized” empirical process

(ξn(x) : x ∈ X ), where

ξn(x) :=
√
nbd

(
f̂X(x)−E[f̂X(x)]

)
= Xn(h), h ∈ H,

with H = {b−d/2K((· − x)/b) : x ∈ X}. It follows that MH ≲ b−d/2. ▲

Variants of Example 1 have been discussed extensively in prior literature because the process

ξn is non-Donsker whenever b → 0, and hence standard weak convergence results for empirical

processes can not be used. For example, Giné et al. (2004) and Giné and Nickl (2010) established

strong approximations for the univariate case (d = 1) under i.i.d. sampling with X unbounded,

Cattaneo et al. (2024c) established strong approximations for the univariate case (d = 1) under

i.i.d. sampling with X compact, Rio (1994) established strong approximations for the multivariate

case (d > 1) under i.i.d. sampling with X compact, Sakhanenko (2015) established strong approx-

imations for the multivariate case (d > 1) under i.i.d. sampling with X unbounded, and Cattaneo

et al. (2024b) established strong approximations for the univariate case (d = 1) under non-i.i.d.

dyadic data with X compact. Chernozhukov et al. (2014, Remark 3.1) provides further discussion

and references. See also Cattaneo et al. (2024a) for an application of Rio (1994) to uniform inference

for conditional density estimation.

3.1.1 VC-type Bounded Functions

Our first corollary considers a VC-type class H (Definition 8) of uniformly bounded functions

(MH < ∞), but without assuming they are Lipschitz functions (LH = ∞).

Corollary 1 (VC-type Bounded Functions). Suppose the conditions of Theorem 1 hold. In addi-

tion, assume that H is a VC-type class with respect to envelope function MH with constant cH ≥ e

and exponent dH ≥ 1. Then, (3) holds with

ϱn = mn,d

√
log n

√
MHTVH +

log n√
n

min{
√
log n

√
MH,

√
KH + MH}

√
MH.
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This corollary recovers the main result in Rio (1994, Theorem 1.1) when d ≥ 2, where mn,d =

n−1/(2d). It also covers d = 1, where mn,1 = n−1/2
√
log n, thereby allowing for a precise comparison

with prior KMT strong approximation results in the univariate case (Giné et al., 2004; Giné and

Nickl, 2010; Cattaneo et al., 2024b). Thus, Corollary 1 contributes to the literature by covering

all d ≥ 1 cases simultaneously. While not presented here to streamline the exposition, the proof of

Corollary 1 further contributes to the literature by making explicit the dependence on d, X , and

other features of the underlying data generating process. This additional contribution can be useful

for non-asymptotic probability concentration arguments, or for truncation arguments in cases where

the random variables have low Lebesgue density (e.g., random variables with unbounded support);

see Sakhanenko (2015) for an example. Nonetheless, for d ≥ 2, the main intellectual content of

Corollary 1 is due to Rio (1994); we present it here for completeness and as a prelude for the

discussion of our upcoming results.

For d = 1, Corollary 1 delivers an optimal KMT result when KH ≲ 1, which employs a weaker

notion of total variation relative to prior literature, but at the expense of requiring an additional

VC-type condition, as the following remark explains.

Remark 2. In Section 2 of Giné et al. (2004) and the proof of Giné and Nickl (2010), the authors

considered univariate (d = 1) i.i.d. continuously distributed random variables, and established the

strong approximation:

P

(
∥Xn − ZXn ∥H >

pTVH(t+ C1 log n)√
n

)
≤ C2 exp(−C3t),

where C1, C2, C3 are absolute constants, and pTVH is the pointwise total variation

pTVH := sup
h∈H

sup
n≥1

sup
x1≤···≤xn

n−1∑
i=1

|h(xi+1)− h(xi)|.

Cattaneo et al. (2020, Lemma SA20) slightly generalized the result (e.g., PX is not required to be

absolutely continuous with respect to the Lebesgue measure), and provided a self-contained proof.

The notion of total variation used in Theorem 1 is related to, but different than, pTVH. From

Ambrosio et al. (2000, Theorem 3.27), for any h that is locally integrable with respect to the

Lebesgue measure, denoted by h ∈ L1
loc(R), then

TV{g} = inf
{
pTV{g} : g = h,Lebesgue-a.e. in R

}
,

and the infimum is achieved. Because MH < ∞, then H ⊆ L1
loc(R), and hence TVH ≤ pTVH. Thus,

our result employs a weaker notation of total variation but imposes additional entropy conditions.

In contrast, the results in Giné et al. (2004), Giné and Nickl (2010), and Cattaneo et al. (2024b)

do not have additional complexity requirements on H and allow for PX not be dominated by the

Lebesgue measure, but their proof strategy is only applicable when d = 1. □

We illustrate the usefulness of Corollary 1 with Example 1.
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Example 1 (continued). Let the conditions of Theorem 1 hold, and nbd/ log n → ∞. Prior

literature further assumed K is Lipschitz to verify the conditions of Corollary 1 with TVH ≲ bd/2−1

and KH ≲ 1. Then, for Xn = ξn, (3) holds with ϱn = (nbd)−1/(2d)
√
log n+ (nbd)−1/2 log n. ▲

The resulting uniform Gaussian approximation convergence rate in Example 1 matches prior

literature for d = 1 (Giné et al., 2004; Giné and Nickl, 2010; Cattaneo et al., 2024b) and d ≥ 2 (Rio,

1994). This result concerns the uniform Gaussian strong approximation of the entire stochastic

process, which can then be specialized to deduce a strong approximation for the scalar suprema

of the empirical process ∥ξn∥H. As noted by Chernozhukov et al. (2014, Remark 3.1(ii)), the

(almost sure) strong approximation rate in Example 1 is better than their strong approximation

rate (in probability) for ∥ξn∥H when d = 1, 2, 3, but their approach specifically tailored to the scalar

suprema delivers better strong approximation rates when d ≥ 4.

Following prior literature, Example 1 imposed the additional condition that K is Lipschitz to

verify that H = {b−d/2K((· − x)/b) : x ∈ X} forms a VC-type class, as well as other conditions in

Corollary 1. The Lipschitz restriction is easily verified for most kernel functions used in practice.

One notable exception is the uniform kernel, which is nonetheless covered by Corollary 1, and prior

results in the literature, but with slightly sub-optimal strong approximation rates (an extra
√
log n

term appears when d ≥ 2).

3.1.2 VC-type Lipschitz Functions

It is known that the uniform Gaussian strong approximation rate in Corollary 1 is optimal under

the assumptions imposed (Beck, 1985). However,the class of functions H often has additional

structure in statistical applications that can be exploited to improve on Corollary 1. In Example

1, for instance, prior literature further assumed K is Lipschitz to verify the sufficient conditions.

Therefore, our next corollary considers a VC-type class H now allowing for the possibility of

Lipschitz functions (LH < ∞). This is one of the main contributions of our paper.

Corollary 2 (VC-type Lipschitz Functions). Suppose the conditions of Theorem 1 hold. In addi-

tion, assume that H is a VC-type class with respect to envelope function MH with constant cH ≥ e

and exponent dH ≥ 1. Then, (3) holds with

ϱn = min{mn,d

√
MH, ln,d

√
LH}

√
log n

√
TVH +

log n√
n

min{
√
log n

√
MH,

√
KH + MH}

√
MH.

Temporarily putting aside the potential contributions of MH and TVH, this corollary shows that

if LH < ∞ then the rate of strong approximation can be substantially improved. In particular,

for d = 2, mn,2 = n−1/4 but ln,2 = n−1/2
√
log n, implying that ϱn = n−1/2 log n whenever KH ≲ 1.

Therefore, to the best of our knowledge, Corollary 2 is the first result in the literature establishing

a uniform Gaussian strong approximation for general empirical processes based on bivariate data

that can achieve the optimal univariate KMT approximation rate. (An additional
√
log n penalty

would appear if KH = ∞.)

14



For d ≥ 3, Corollary 2 also provides improvements relative to prior literature, but falls short

of achieving the optimal univariate KMT approximation rate. Specifically, mn,d = n−1/(2d) but

ln,d = n−1/d for d ≥ 3, implying that ϱn = n−1/d
√
log n. It remains an open question whether further

improvements are possible at this level of generality (cf. Section 3.2 below): the main roadblock

underlying the proof strategy is related to the coupling approach based on the celebrated Tusnády’s

inequality for binomial counts, which in turn are generated by the aforementioned mean square

approximation of the functions h ∈ H by local constant functions on carefully chosen partitions

of X . Our key observation underlying Corollary 2, and hence the limitation, is that for Lipschitz

functions (LH < ∞) both the projection error arising from the mean square approximation and the

KMT coupling error by Rio (1994, Theorem 2.1) can be improved. However, further improvements

for smoother functions appears to necessitate an approximation approach that would not generate

dyadic binomial counts, thereby rendering current coupling approaches inapplicable. Section 3.2

discusses an extension based on a generalization of Tusnády’s inequality for a special case of interest

in statistics, and we also apply those ideas to other cases of interest in Section 4.

We revisit the kernel density estimation example to illustrate the power of Corollary 2.

Example 1 (continued). Under the conditions already imposed, LH ≲ b−d/2−1, and Corollary 2

implies that, for Xn = ξn, (3) holds with ϱn = (nbd)−1/d
√
log n+ (nbd)−1/2 log n. ▲

Returning to the discussion of Chernozhukov et al. (2014, Remark 3.1(ii)), Example 1 illustrates

that our almost sure strong approximation rate for the entire empirical process is now better than

their strong approximation (in probability) rate for the scalar suprema ∥ξn∥H when d ≤ 6. On the

other hand, their approach delivers a better strong approximation rate in probability for ∥ξn∥H
when d ≥ 7. Our improvement is obtained without imposing additional assumptions because Rio

(1994, Section 4) already assumed K is Lipschitizian for the verification of the conditions imposed

by his strong approximation result (cf. Corollary 1).

3.1.3 Polynomial-Entropy Functions

Koltchinskii (1994) also considered uniform Gaussian strong approximations for the general em-

pirical process under other notions of entropy for H, thereby allowing for more complex classes

of functions when compared to Rio (1994). Furthermore, Koltchinskii (1994) employed a Haar

approximation condition, which plays a similar role as to the total variation and the Lipschitz con-

ditions exploited in our paper. Thanks to the generality of our Theorem 1, and to enable a precise

comparison to Koltchinskii (1994), the next corollary considers a class H satisfying a polynomial

entropy condition (Definition 9).

Corollary 3 (Polynomial-Entropy Functions). Suppose the conditions of Theorem 1 hold, and that

H is a polynomial-entropy class with respect to envelope function MH with constant aH > 0 and

exponent 0 < bH < 2. Then, (3) holds as follows:
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(i) If LH ≤ ∞, then

ϱn = mn,d

√
MHTVH(

√
log n+ (m2

n,dM
−1
H TVH)

− bH
4 )

+

√
MH

n
min{

√
log n

√
MH,

√
KH + MH}(log n+ (m2

n,dM
−1
H TVH)

− bH
2 ),

(ii) If LH < ∞, then

ϱn = ln,d
√
LHTVH(

√
log n+ (l2n,dM

−2
H LHTVH)

− bH
4 )

+

√
MH

n
min{

√
log n

√
MH,

√
KH + MH}(log n+ (l2n,dM

−2
H LHTVH)

− bH
2 ).

This corollary reports a simplified version of our result, which is the best possible bound for the

discussion in this section. See Corollary SA.3 in the supplemental appendix for the general case.

It is possible to apply Corollary 3 to Example 1, although the result is sub-optimal relative to the

previous results leveraging a VC-type condition.

Example 1 (continued). Under the conditions already imposed, for any 0 < bH < 2, we can

take aH = log(d + 1) + db−1
H so that H is a polynomial-entropy class with constants (aH, bH).

Then, Corollary 3(ii) implies that, for Xn = ξn, (3) holds with ϱn = a2H(nb
d)−

1
d
(1− bH

2
)b−dbH +

a2H(nb
d)−

1
2
+

bH
d b−

dbH
2 . ▲

Our running example shows that a uniform Gaussian strong approximation based on polynomial

entropy conditions can lead to sub-optimal KMT approximation rates. However, for other (larger)

classes of functions, those results are useful. The following remark discusses an example studied in

Koltchinskii (1994), and further compares our contributions to his work.

Remark 3. Suppose Assumption A holds with PX the uniform distribution on X = [0, 1]d, and

H a subclass of Cq(X ) with Cq-norm uniformly bounded by 1 and 2 ≤ d < q. Koltchinskii (1994,

page 111) discusses this example after his Theorem 11.3, and reports a uniform Gaussian strong

approximation n
− q−d

2qd polylog n.

Corollary 3 is applicable to this case. More precisely, MH = 1, TVH = 1, LH = 1, and van der

Vaart and Wellner (2013, Theorem 2.7.1) shows that H is a polynomial-entropy class with constants

aH = K and bH = d/q, where K is a constant only depending on q and d. Then, Corollary 3(ii)

implies that, for Xn = ξn, (3) holds with

ϱn =

n
− 1

2
+ 1

q polylog n if d = 2

n
− 2q−d

2dq polylog n if d > 2
,

which gives a faster convergence rate than the one obtained by Koltchinskii (1994).

The improvement is explained by two differences between Koltchinskii (1994) and our approach.

First, we explicitly incorporate the Lipschitz condition, and hence we can take β = 2
d instead of
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β = 1
d in Equation (3.1) of Koltchinskii (1994). Second, using the uniform entropy condition

approach, we get logN(H, ePX
, ε) ≤ Kε−d/q, while Koltchinskii (1994) started with the bracketing

number condition logN[ ](F, L1(P), ε) = O(ε−d/q) and, with the help of his Lemma 8.4, applied

Theorem 3.1 with α = d
d+q in his Equation (3.2). As a result, because the proof of his Theorem

3.1 leverages the fact that Equation (3.2) implies that logN(H, ePX
, ε) = O(ε−2d/q), and his

approximation rate is looser by a power of two when compared to the uniform entropy condition

underlying our Corollary 3.

Setting LH = ∞, bH = 2d
q , and keeping the other constants the same, Corollary 3(i) would give

ϱn = n
− q−d

2qd polylog n, which is the same rate as in Koltchinskii (1994). Finally, Theorem 3.2 in

Koltchinskii (1994) allows for logN(H, ePX
, ε) = O(ε−2ρ) where ρ is not implied by his Equation

(3.2), in which case his result would give the strong approximation rate n
− 2q−d

4qd polylog n. □

3.2 Quasi-Uniform Haar Basis

Theorem 1 established that the general empirical process (1) indexed by VC-type Lipschitz functions

can admit a strong approximation (3) at the optimal univariate KMT rate ϱn = n−1/2 log n when

d ∈ {1, 2}, and at the improved (but possibly suboptimal) rate ϱn = n−1/d
√
log n when d ≥ 3, in

both cases putting aside the potential additional contributions controlled by MH, LH, TVH, and KH.

When applied to kernel density estimation (Example 1), our results showed that ϱn = (nbd)−1/2 log n

when d = 1, 2, and ϱn = (nbd)−1/d
√
log n when d ≥ 3, where nbd is the “effective sample” size.

The possibly suboptimal strong approximation rate ϱn = n−1/d
√
log n for d ≥ 3 arises from

the L2 approximation of the functions h ∈ H by a Haar basis expansion based on a carefully

chosen dyadic partition of X . In this section, we demonstrate that the general empirical process

(1) can admit a univariate KMT optimal strong approximation when H belongs to the span of

Haar basis based on a quasi-uniform partition of X with cardinality L, which can be viewed as

an approximation based on L → ∞ as n → ∞. More precisely, the following theorem showcases

a setting where the univariate KMT optimal approximation rate based on the “effective sample”

size n/L is achieved for all d ≥ 1. Our formulation leverages and generalizes two ideas from the

regression Splines literature (Huang, 2003): (i) the cells forming the Haar basis are assumed to be

quasi-uniform with respect to PX ; and (ii) the number of active cells of the Haar basis affect the

strong approximation.

Theorem 2. Suppose (xi : 1 ≤ i ≤ n) are i.i.d. random vectors taking values in (X ,B(X )) with

common law PX , X ⊆ Rd, and H is a class of functions on (X ,B(X ),PX) such that MH < ∞ and

H ⊆ Span{1∆l
: 0 ≤ l < L}, where {∆l : 0 ≤ l < L} forms a quasi-uniform partition of X in the

sense that

X ⊆ ⊔0≤l≤L∆l and
max0≤l<LPX(∆l)

min0≤l<LPX(∆l)
≤ ρ < ∞.
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Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaussian pro-

cesses (ZXn (h) : h ∈ H) with almost sure continuous trajectories such that:

• E[Xn(h1)Xn(h2)] = E[Z
X
n (h1)Z

X
n (h2)] for all h1, h2 ∈ H, and

• P
[
∥Xn − ZXn ∥H > C1CρPn(t)

]
≤ C2e

−t + Le−Cρn/L for all t > 0,

where C1 and C2 are universal constants, Cρ is a constant that only depends on ρ, and

Pn(t) = min
δ∈(0,1)

{
Hn(t, δ) + Fn(t, δ)

}
,

with

Hn(t, δ) :=

√
MHEH

n/L

√
t+ log NH(δ) +

√
min{log2(L), S2H}

n
MH(t+ log NH(δ)),

where SH = suph∈H
∑L

l=1 1(Supp(h) ∩∆l ̸= ∅).

This theorem shows that if n−1L logL → 0, then a valid strong approximation can be achieved

with exponential probability concentration. The proof of Theorem 2 leverages the fact that the L2

projection error is zero by assumption, but recognizes that Rio (1994, Theorem 2.1) does not apply

because the partitions are quasi-dyadic, preventing the use of the celebrated Tusnády’s inequality.

Instead, in Section SA-II of the supplemental appendix, we present two technical results to circum-

vent that limitation: (i) Lemma SA.6 combines Brown et al. (2010, Lemma 2) and Sakhanenko

(1996, Lemma 2) to establish a new version of Tusnády’s inequality that allows for more general

binomial random variables Bin(n, p) with p ≤ p ≤ p, the error bound holding uniformly in p, as

required by the quasi-dyadic partitioning structure; and (ii) Lemma SA.7 presents a generalization

of Rio (1994, Theorem 2.1) to the case of quasi-dyadic partitions of X .

Assuming a VC-type condition on H, and putting aside the potential contributions of MH, EH,

and SH, it follows that (3) holds with ϱn = log(L)/(n/L), thereby achieving the optimal univariate

KMT approximation rate for all d ≥ 1 with “effective sample” size n/L. More precisely, we have

the following corollary.

Corollary 4 (VC-type Haar Basis). Suppose the conditions of Theorem 2 hold. In addition, assume

that H is a VC-type class with respect to envelope function MH with constant cH ≥ e and exponent

dH ≥ 1. Then, (3) holds with

ϱn =

√
MHEH

n/L

√
log n+

√
min{log2(L), S2H}

n
MH log n.

To provide a simple illustration of Theorem 2 to statistics, we consider the classical histogram

density estimator.
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Example 2 (Histogram Density Estimation). The histogram density estimator of fX is

f̌(x) =
1

n

n∑
i=1

L−1∑
l=0

1(xi ∈ ∆l)1(x ∈ ∆l),

where {∆l : 0 ≤ l < L} forms a quasi-uniform partition of X , where the partition size L → ∞
as n → ∞ in statistical applications. We consider establishing a strong approximation for the

“localized” empirical process (ζn(x) : x ∈ X ), where

ζn(x) :=
√
nL

(
f̌(x)−E[f̌(x)]

)
= Xn(h), h ∈ H,

with H the collection of Haar basis functions based on the partition {∆l : 0 ≤ l < L}.
The conditions of Theorem 2 are satisfied with MH = L1/2, EH = L−1/2, and SH = 1. It follows

that, for Xn = ζn, (3) holds with

ϱn =
log(nL)√

n/L
,

provided that log(nL)L/n → 0. ▲

Theorem 2, and in particular Example 2, showcases the existence of a class of stochastic pro-

cesses for which a valid uniform Gaussian strong approximation is established with optimal uni-

variate KMT rate in terms of the effective sample size n/L for all d ≥ 1. This result is achieved

because there is no error arising from the mean square approximation (H is assumed to be spanned

by a Haar space), and with the help of our generalized Tusnády’s inequality (Lemma SA.6).

Because the setup of Theorem 2 is rather special, the finding in this subsection is mostly of

theoretical interest. However, our key ideas will be leveraged in the next section when studying

regression estimation problems, where the quasi-uniform partitioning arises naturally in setting like

regression trees (Breiman et al., 1984) or nonparametric partitioning-based estimation (Cattaneo

et al., 2020).

4 Residual-Based Empirical Process

This section establishes improved uniform Gaussian strong approximation for the residual empirical

process (Rn(g, r) : (g, r) ∈ G× R) defined in (7). We impose the following assumption.

Assumption B. (zi = (xi, yi) : 1 ≤ i ≤ n) are i.i.d. random vectors taking values in (X×R,B(X×
R)) with X compact, and xi ∼ PX admits a Lebesgue density fX continuous and positive on X .

This assumption incorporates the presence of random variables yi ∼ PY , but otherwise imposes

the same regularity conditions as Assumption A for the marginal distribution PX of xi. In par-

ticular, it does not restrict the support of PY nor requires PY to be dominated by the Lebesgue

measure, which is important for some statistical applications.
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To motivate this section, consider first the simple local empirical process discussed in Cher-

nozhukov et al. (2014, Section 3.1):

Sn(x) =
1

nbd

n∑
i=1

K
(xi − x

b

)
yi, x ∈ X . (11)

Using our notation for residual empirical process,
(√

nbd(Sn(x)−E[Sn(x)|x1, · · · ,xn]) : x ∈ X
)
=

(Rn(g, r) : g ∈ G, r ∈ R) with G = {b−d/2K( ·−x
b ) : x ∈ X} and R = {Id}, where Id denotes

the identity map from R to R. This setting corresponds to kernel regression estimation with K

interpreted as the equivalent kernel; see Section 4.1 for details. As noted in Chernozhukov et al.

(2014, Remark 3.1(iii)), a direct application of Rio (1994), or of our Theorem 1, views zi as the

underlying (d + 1)-dimensional vector of random variables entering the general empirical process

Xn defined in (1). Specifically, under some regularity conditions on K and non-trivial restrictions

on the joint distribution PZ , Rio (1994)’s strong approximation result verifies (3) with (6), which

is also verified via Corollary 1. Furthermore, employing a Lipschitz property of G×R, Corollary 2

would give the improved strong approximation result (8), under regularity conditions.

The strong approximation results for Sn(x) illustrate two fundamental limitations because all

the elements in zi = (xi, yi) are treated symmetrically. First, the effective sample size emerging

in the strong approximation rate is nbd+1, which is necessarily suboptimal because only the d-

dimensional covariate xi are being smoothed out. In other words, since the pointwise variance

of the process is of order n−1b−d, the correct effective sample size should be nbd, and therefore

applying Rio (1994), or our improved Theorem 1, leads to a suboptimal uniform Gaussian strong

approximation for Sn(x). Second, applying Rio (1994), or our improved Theorem 1, requires

zi = (xi, yi) ∼ PZ to be continuously distributed and supported on [0, 1]d+1, possibly after applying

the Rosenblatt transform (Lemma SA.12), as discussed in Remark 1. This requirement imposes

non-trivial restrictions on the joint distribution PZ , and in particular on the marginal distribution

of the outcome yi, which limit the applicability of the resulting strong approximation results. For

example, it could be assumed that (xi, yi) = (xi, φ(xi, ui)) where (xi, ui) satisfies Assumption A

and φ is bounded with bounded uniform variation and local uniform variation; see Chernozhukov

et al. (2014, Remark 3.1(iii)) for more discussion.

Motivated by the aforementioned limitations, the following theorem explicitly studies the resid-

ual empirical process (Rn(g, r) : (g, r) ∈ G×R) defined in (7), leveraging its intrinsic multiplicative

separable structure. We present our result under a VC-type condition on G× R to streamline the

discussion, but a result at the same level of generality as Theorem 1 is given in the supplemental

appendix (Section SA-I.2 and SA-I.3).

Theorem 3. Suppose Assumption B holds with X = [0, 1]d, and the following conditions hold.

(i) G is a real-valued pointwise measurable class of functions on (X ,B(X ),PX), and a VC-type

class with respect to envelope function MG with constant cG ≥ e and exponent dG ≥ 1.

(ii) R is a real-valued pointwise measurable class of functions on (R,B(R),PY ), and a VC-type
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class with respect to MR with constant cR ≥ e and exponent dR ≥ 1. Furthermore, one of the

following holds:

(a) MR ≲ 1 and pTVR ≲ 1, and set α = 0, or

(b) MR(y) ≲ 1 + |y|α and pTVR,(−|y|,|y|) ≲ 1 + |y|α for all y ∈ R and for some α > 0, and

supx∈X E[exp(yi)|xi = x] ≤ 2.

(iii) There exists a constant c4 such that | log2 EG| + | log2 TV| + | log2 MG| ≤ c4 log2 n, where TV =

max{TVG, TVG×VR
} with VR := {θ(·, r), r ∈ R}, and θ(·, r) : X → R is the function defined by

θ(x, r) = E[r(yi)|xi = x],x ∈ X .

Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaussian pro-

cesses (ZRn (g, r) : g ∈ G, r ∈ R) with almost sure continuous trajectories such that:

• E[Rn(g1, r1)Rn(g2, r2)] = E[Z
R
n (g1, r1)Z

R
n (g2, r2)] for all (g1, r1), (g2, r2) ∈ G× R, and

• P
[
∥Rn − ZRn ∥G×R > C1CαTn(t)

]
≤ C2e

−t for all t > 0,

where C1 and C2 are universal constants, Cα = max{1 + (2α)
α
2 , 1 + (4α)α}, and

Tn(t) := An(t+ c4 log2 n+ d log(cn))α+
3
2

√
d+

MG√
n
(t+ c4 log2 n+ d log(cn))α+1,

An := min

{(
cd1M

d+1
G TVdEG

n

) 1
2d+2

,

(
c

d
2
1 c

d
2
2 MGEGTV

d
2 L

d
2

n

) 1
d+2

}
,

and c = cGcR, d = dG + dR, L = max{LG, LG×VR
}.

This theorem establishes a uniform Gaussian strong approximation for the residual stochastic

process (Rn(g, r) : (g, r) ∈ G × R) defined in (7) under regularity conditions specifically tailored

to leverage its multiplicative separable structure. Condition (i) in Theorem 3 is analogous to the

conditions imposed in Corollaries 1 and 2 for the general empirical process. This is a mild, standard

restriction on the portion of the stochastic process corresponding to the covariates xi. Condition

(ii) in Theorem 3 is a new, mild condition on the portion of the stochastic process corresponding

to the outcome yi. This condition either assume r(yi) to be uniformly bounded, or restricts the

tail decay of the function class R without requiring specific strong assumptions on the distribution

PY and hence the joint distribution PZ (cf. Chernozhukov et al. (2014, Remark 3.1(iii))). Finally,

Condition (iii) is weak and imposed only to simplify the exposition; see Section SA-I.2 and SA-I.3

in the supplemental appendix for the general result. We require pTV conditions on R in (ii), and

TV conditions on G and G×VR in (iii), because xi has a Lebesgue density but yi may not have one,

which means values of R at a Lebesgue measure-zero set can affect the value of Rn(g, r), but values

of G and G× VR at a Lebesgue measure-zero set do not.

The proof strategy of Theorem 3 is the same as for the general empirical process (Theorem 1).

First, we discretize to a δ-net to obtain

∥Rn − ZRn ∥G×R ≤ ∥Rn −Rn ◦ π(G×R)δ∥G×R + ∥Rn − ZRn ∥(G×R)δ + ∥ZRn ◦ π(G×R)δ − ZRn ∥G×R,
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where the terms capturing fluctuation off-the-net, ∥Rn − Rn ◦ π(G×R)δ∥G×R and ∥ZRn ◦ π(G×R)δ −
ZRn ∥G×R, are handled via standard empirical process methods. Second, the remaining term ∥Rn −
ZRn ∥(G×R)δ , which captures the finite-class Gaussian approximation error, is once again decomposed

via a suitable mean square “projection” from L2(Rd × R) to the class of piecewise constant Haar

functions on a carefully chosen collection of cells partitioning the support of PZ . This is our point

of departure from prior literature.

We design of cells based on two key observations: (i) regularity conditions are often imposed

on the conditional distribution yi|xi (as opposed to their joint distribution); and (ii) G and R

often require different regularity conditions. For example, in the classical regression case discussed

previously, R is just the singleton identity function but PY may have unbounded support, while G

is a VC-type class of n-varying functions with PX compact supported. Thus, the dimension of yi

is a nuisance for the strong approximation, making results like Theorem 1 suboptimal in general.

These observations suggest choosing dyadic cells by an asymmetric iterative splitting construction,

where first the support of each dimension of xi is partitioned, and only after the support of yi is

partitioned based on the conditional distribution of yi|xi. See Section SA-III.1 in the supplemental

appendix for details of our proposed dyadic cells expansion.

Given our dyadic expansion exploiting the structure of the residual empirical process Rn, we

decompose the term ∥Rn − ZRn ∥(G×R)δ similarly to (10), leading to a “projected” piecewise con-

stant process and the corresponding two projection errors. However, instead of employing the

L2-projection Π0 as in (10), we now use another mapping Π2 from L2(Rd×R) to piecewise constant

functions that explicitly factorizes the product g(xi)r(yi). In fact, as we discuss in the supplemental

appendix (Section SA-III.2), each base level cell C produced by our asymmetric dyadic splitting

scheme can be written as a product of the form Xl ×Ym, where Xl denotes the l-th cell for xi and

Ym denotes the m-th cell for yi. Thus, Π2 is carefully chosen so that once we know x ∈ Xl for some

l, Π2[g, r](x, y) =
∑2N−1

m=0 1(y ∈ Ym)E[r(yi)|yi ∈ Ym,xi ∈ Xl]E[g(xi)|xi ∈ Xl], which only depends

on y, and has envelope and total variation no greater than those for r.

Finally, our Tusnády’s lemma for more general binomial counts (Lemma SA.6) allows for the

Gaussian coupling of any piecewise-constant functions over our asymmetrically constructed dyadic

cells. A generalization of Rio (1994, Theorem 2.1) enables upper bounding the Gaussian approx-

imation error for processes indexed by piecewise constant functions by summing up a quadratic

variation from all layers in the cell expansion. By the above choice of cells and projections, the

contribution from the last layers corresponding to splitting yi amounts to a sum of one-dimensional

KMT coupling error from all possible Xl cells. In fact, we know one-dimensional KMT coupling is

optimal and, as a consequence, requiring a vanishing contribution of yi layers to the approximation

error does not add extra requirements besides conditions on envelope functions and an L1 bound

for G. This explains why we can obtain strong approximation rates reflecting the correct effective

sample size underlying the empirical process for the kernel regression (or “local empirical process”)

example. The supplemental appendix contains all the technical details.

The following corollary summarizes the main result from Theorem 3.
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Corollary 5 (Strong Approximation Residual Empirical Process). Suppose the conditions of The-

orem 3 hold. Then, ∥Rn − ZRn ∥G×R = O(ϱn) a.s. with

ϱn = min
{(Md+1

G TVdEG)
1

2d+2

n1/(2d+2)
,
(MGTV

d
2 EGL

d
2 )

1
d+2

n1/(d+2)

}
(log n)α+3/2 +

(log n)α+1

√
n

MG.

This corollary shows that our best attainable uniform Gaussian strong approximation rate for

the residual empirical process Rn is n−1/(d+2) polylog n, putting aside the contributions from MG,

TV = max{TVG, TVG×VR
}, EG, and L = max{LG, LG×VR

}. It is not possible to provide a strict ranking

between Corollary 2 and Corollary 5. On the one hand, Corollary 2 treats all components in zi

symmetrically, and thus imposes stronger regularity conditions on PZ , but leads to the better

approximation rate n−min{1/(d+1),1/2} polylog n, putting aside the potential contributions of MG×R,

TVG×R, LG×R. On the other hand, as discussed previously, Corollary 5 can deliver a tighter strong

approximation under much weaker regularity conditions whenever H = G×R and G varies with n,

as it is the case of the local empirical processes arising from nonparametric statistics. The following

section offers a substantive application illustrating this point.

4.1 Example: Local Polynomial Regression

We demonstrate the applicability and improvements of Theorem 3 and Corollary 5 with a substan-

tive application to nonparametric local polynomial regression (Fan and Gijbels, 1996). Assume

(x1, y1), . . . , (xn, yn) satisfy Assumption B, and consider the estimand

θ(x; r) = E[r(yi)|xi = x], x ∈ X , r ∈ R, (12)

where we focus on two leading cases to streamline the discussion: (i) R1 := {Id} corresponds to the

conditional expectation µ(x) := E[yi|xi = x], and (ii) R2 := {1(yi ≤ y) : y ∈ R} corresponds to the

conditional distribution function F (y|x) := E[1(yi ≤ y)|xi = x]. In the first case, R is a singleton

but the identify function calls for the possibility of PY not being dominated by the Lebesgue

measure or perhaps being continuously distributed with unbounded support. In the second case,

R is a VC-type class of indicator functions, and hence r(yi) is uniformly bounded, but establishing

uniformity over R is of statistical interest (e.g., to construct specification hypothesis tests based on

conditional distribution functions).

Suppose the kernel function K : Rd → R is non-negative, Lipschitz, and compact supported.

Using standard multi-index notation, p(u) denotes the (d+p)!
d!p! -dimensional vector collecting the

ordered elements uν/ν! for 0 ≤ |ν| ≤ p, where uν = uν11 uν22 · · ·uνdd , ν! = ν1!ν2! · · · νd! and |ν| =
ν1+ν2+ · · ·+νd, for u = (u1, u2, · · · , ud)⊤ and ν = (ν1, ν2, · · · , νd)⊤. A local polynomial regression

estimator of θ(x; r) is

θ̂(x; r) := e⊤1 β̂(x, r), β̂(x, r) := argmin
β

n∑
i=1

(
r(yi)− p(xi − x)⊤β

)2
K
(xi − x

b

)
,
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with x ∈ X , r ∈ R1 or r ∈ R2, and e1 denoting the first standard basis vector. The estimation

error can be decomposed into three terms (linearization, non-linearity error, and smoothing bias):

θ̂(x, r)− θ(x, r) = e⊤1 H
−1
x Sx,r︸ ︷︷ ︸

linearization

+ e⊤1 (Ĥ
−1
x −H−1

x )Sx,r︸ ︷︷ ︸
non-linearity error

+E[θ̂(x, r)|x1, · · · ,xn]− θ(x, r)︸ ︷︷ ︸
smoothing bias

,

where Ĥx = 1
n

∑n
i=1 p(

xi−x
b )p(xi−x

b )⊤b−dK(xi−x
b ), Hx = E[p(xi−x

b )p(xi−x
b )⊤b−dK(xi−x

b )], and

Sx,r =
1
n

∑n
i=1 p(

xi−x
b )b−dK(xi−x

b )(r(yi)−E[r(yi)|xi]).
It follows immediately that the linear term is

√
nbde⊤1 H

−1
x Sx,r =

1√
nbd

n∑
i=1

Kx

(xi − x

b

)
(r(yi)−E[r(yi)|xi]) = Rn(g, r), g ∈ G, r ∈ Rl,

for l = 1, 2, and where G = {b−d/2Kx(
·−x
b ) : x ∈ X} with Kx(u) = e⊤1 H

−1
x p(u)K(u) the equivalent

boundary-adaptive kernel function. Furthermore, under the regularity conditions given in the

supplemental appendix (Lemma SA.1), which relate to uniform smoothness and moment restrictions

for the conditional distribution of yi|xi, we have that

sup
x∈X ,r∈R1

∣∣e⊤1 (Ĥ−1
x −H−1

x )Sx,r

∣∣ = O((nbd)−1 log n+ (nbd)−3/2(log n)5/2) a.s.,

sup
x∈X ,r∈R2

∣∣e⊤1 (Ĥ−1
x −H−1

x )Sx,r

∣∣ = O((nbd)−1 log n) a.s.,

sup
x∈X ,r∈Rl

∣∣E[θ̂(x, r)|x1, · · · ,xn]− θ(x, r)
∣∣ = O(b1+p) a.s., l = 1, 2.

Therefore, the goal reduces to establishing a Gaussian strong approximation for the residual-based

empirical process (Rn(g, r) : g ∈ G, r ∈ Rl), l = 1, 2. In the remaining of this subsection we discuss

different attempts to establish such approximation result, culminating with the application of our

Theorem 3.

As discussed in Chernozhukov et al. (2014, Remark 3.1), a first attempt is to deploy Theorem

1.1 in Rio (1994) (or, equivalently, Corollary 1). Viewing the empirical process as based on the

random sample zi = (xi, yi), i = 1, 2, · · · , n, the theorem requires PZ be continuously distributed

with positive Lebesgue density on its support X = [0, 1]d+1 (using the notation of Assumption

A). For this reason, Chernozhukov et al. (2014, Remark 3.1) assumes that (xi, yi) = (xi, φ(xi, ui))

where (xi, ui) has continuous and positive Lebesgue density supported on X . Thus, if M{φ} < ∞,

supg∈G TV{φ},supp(g) ≲ supg∈Gm(Supp(g)) < ∞, K{φ} < ∞, and other regularity conditions hold,

then we show in the supplemental appendix (Example SA.1) that applying Rio (1994) to (Xn(h) :

h ∈ H) with H = {(g · φ) ◦ ϕ−1
Z }, where ϕZ is the Rosenblatt transformation (see Lemma SA.12),

gives a Gaussian strong approximation for (Rn(g, r) : g ∈ G, r ∈ Rl), l = 1, 2, with rate (6).

Without the condition on local uniform variation K{φ} < ∞, an additional
√
log n multiplicative

factor appears.

The previous result does not exploit Lipschitz continuity, so a natural second attempt is to
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employ Corollary 2 to improve it. Retaining the same setup and assumptions, but now also assuming

that φ is Lipschitz, our Theorem 1 gives a Gaussian strong approximation for (Rn(g, r) : g ∈ G, r ∈
R1) with rate (8). See Example SA.2 in the supplemental appendix. Importantly, Theorem 1 does

not give an improvement for R2 because the Lipschitz condition is not satisfied.

The two attempts so far impose strong assumptions on the joint distribution of the data,

and deliver approximation rates based on the incorrect effective sample size (and thus require

nbd+1 → ∞). Our Theorem 3 addresses both problems: suppose Assumption B holds and K :

Rd → R is a compact supported Lipschitz continuous function, then we verify in the supplemental

appendix (Example SA.3) that MG ≲ b−d/2, EG ≲ bd/2, TV ≲ bd/2−1, and L ≲ b−d/2−1, which gives

∥Rn − ZRn ∥G×R2 = O(ϱn) a.s. with

ϱn = (nbd)−1/(d+2)
√
log n+ (nbd)−1/2 log n.

If, in addition, we assume supx∈X E[exp(yi)|xi = x] < ∞, then ∥Rn − ZRn ∥G×R1 = O(ϱn) a.s. with

ϱn = (nbd)−1/(d+2)
√
log n+ (nbd)−1/2(log n)2.

As a consequence, our results verify that there exist valid uniform Gaussian approximations as

follows:

• Let µ̂(x) := θ̂(x; r) for r ∈ R1. If b
p+1(nbd)(d+4)/(2d+4)(log n)−1/2+(nbd)−(d+1)/(d+2)(log n)2 =

O(1), then

sup
x∈X

∣∣√nbd
(
µ̂(x)− µ(x)

)
− ZRn (x)

∣∣ ≲ ((log n)1+d/2
nbd

) 1
d+2

a.s.,

where Cov(ZRn (x), Z
R
n (x

′)) = nbdCov(e⊤1 H
−1
x Sx,r, e

⊤
1 H

−1
x′ Sx′,r) for all x,x

′ ∈ X and r ∈ R1.

• Let F̂ (ry|x) := θ̂(x; ry) for ry ∈ R2. If bp+1(nbd)(d+4)/(2d+4)(log n)−1/2 = O(1), and also

(nbd)−1 log n = o(1), then

sup
x∈X ,y∈R

∣∣√nbd
(
F̂ (y|x)− F (y|x)

)
− ZRn (y,x)

∣∣ ≲ ((log n)1+d/2
nbd

) 1
d+2

a.s.,

where Cov(ZRn (x), Z
R
n (x

′)) = nbdCov(e⊤1 H
−1
x Sx,ry , e

⊤
1 H

−1
x′ Sx′,ry′

) for all (x, y), (x′, y′) ∈ X ×
R and ry, ry′ ∈ R2.

This example gives a substantive statistical application where Theorem 3 offers a strict improve-

ment on the accuracy of the Gaussian strong approximation over Rio (1994), and over Theorem

1 after incorporating the additional Lipschitz condition on the class of functions when applicable.

It remains an open question whether the result in this section provides the best Gaussian strong

approximation for local empirical processes or, in particular, for the local polynomial regression

estimator. The results obtained are the best known in the literature to our knowledge, but we are

unaware of lower bounds that would confirm the approximation rates are unimprovable.
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4.2 Quasi-Uniform Haar Basis

In Section 3.2, we showed that when H lies in the span of a Haar basis, the Gaussian strong

approximation rate can be optimal in the sense of achieving the univariate KMT approximation

rate as a function of the effective sample size. This was a consequence of having no L2-projection

error in the construction of the strong approximation. In this section, we leverage the same idea to

show that when G lies in the span of a Haar basis, it is possible to achieve nearly optimal Gaussian

strong approximation rates for local empirical processes. This result has direct applicability to

regression estimators based on Haar basis, including certain regression trees (Breiman et al., 1984)

and nonparametric partitioning-based estimators (Cattaneo et al., 2020).

The following theorem gives our main result, which does not require that R lies in a Haar space,

thereby highlighting once again the asymmetric roles that G and R play.

Theorem 4. Suppose (zi = (xi, yi), 1 ≤ i ≤ n) are i.i.d. random variables taking values in

(X × R,B(X × R)) with X ⊆ Rd, and the following conditions hold.

(i) G is a class of functions on (X ,B(X ),PX) such that MG < ∞ and G ⊆ Span{1∆l
: 0 ≤ l < L},

where {∆l : 0 ≤ l < L} forms a quasi-uniform partition of X in the sense that

X ⊆ ⊔0≤l<L∆l and
max0≤l<LPX(∆l)

min0≤l<LPX(∆l)
≤ ρ < ∞.

In addition, G is a VC-type class with respect to envelope function MG with constant cG ≥ e

and exponent dG ≥ 1.

(ii) R is a real-valued pointwise measurable class of functions on (R,B(R),PY ), and a VC-type

class with respect to MR with constant cR ≥ e and exponent dR ≥ 1. Furthermore, one of the

following holds:

(a) MR ≲ 1 and pTVR ≲ 1, and set α = 0, or

(b) MR(y) ≲ 1 + |y|α, pTVR,(−|y|,|y|) ≲ 1 + |y|α for all y ∈ R and for some α > 0, and

supx∈X E[exp(yi)|xi = x] ≤ 2.

(iii) There exists a constant c5 such that | log2 EG|+ | log2 MG|+ | log2 L| ≤ c5 log2 n.

Then, on a possibly enlarged probability space, there exists mean-zero Gaussian processes (ZRn (g, r) :

g ∈ G, r ∈ R) with almost sure continuous trajectory such that:

• E[Rn(g1, r1)Rn(g2, r2)] = E[Z
R
n (g1, r1)Z

R
n (g2, r2)] for all (g1, r1), (g2, r2) ∈ G× R, and

• P[∥Rn − ZRn ∥G×R > C1Cα(CρUn(t) + Vn(t))] ≤ C2e
−t + Le−Cρn/L for all t > 0,

where C1 and C2 are universal constants, Cα = max{1 + (2α)
α
2 , 1 + (4α)α}, Cρ is a constant that

only depends on ρ,

Un(t) :=

√
dMGEG
n/L

(t+ c5 log2(n) + d log(cn))α+1 +
MG√
n
(log n)α(t+ c5 log2(n) + d log(cn))α+1
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with c = cGcR, d = dG + dR, and

Vn(t) := 1(card(R) > 1)
√
MGEG

(
max
0≤l<L

∥∆l∥∞
)
LVR

√
t+ c5 log2(n) + d log(cn),

with VR := {vr : x 7→ E[r(yi)|xi = x],x ∈ X , r ∈ R}.

The first term (Un(t)) can be interpreted as a “variance” contribution based on “effective sample

size” n/L, up to polylog(n) terms, while the second term (Vn(t)) can be interpreted as a “bias”

term that arises from the projection error for the conditional mean function θ(·, r), which may

not necessarily lie in the span of Haar basis. In the special case when R = {r} is a singleton we

can construct the cells based on the condition distribution of r(yi) − E[r(yi)|xi], thereby making

the conditional mean function (and hence the “bias” term) zero, while that is not possible when

uniformity over R is desired.

Theorem 4 gives the following uniform Gaussian strong approximation result.

Corollary 6 (Haar Basis Residual Empirical Process). Suppose the conditions of Theorem 4 hold.

Then, ∥Rn − ZRn ∥G×R = O(ϱn) a.s. with

ϱn =

√
MGEG

n/L
(log n)α+1 +

MG√
n
(log n)2α+1 + 1(card(R) > 1)

√
MGEG

(
max
0≤l<L

∥∆l∥∞
)√

log n

Setting aside the roles of MG and EG, the approximation rate is effectively (log n)α+1(n/L)−1/2+

1(card(R) > 1)max0≤l<L∥∆l∥∞
√
log n, which can achieve the optimal univariate KMT strong

approximation rate based on the effective sample size n/L, up to a polylog(n) term, when R is a

singleton function class.

We illustrate the applicability to statistics of Theorem 4 with the following example considering

nonparametric regression based on Haar basis approximation.

Example 3 (Haar Basis Regression Estimators). Suppose (zi = (xi, yi), 1 ≤ i ≤ n) are i.i.d.

random variables taking values in (X ×R,B(X ×R)) with X ⊆ Rd. As in Section 4.1, consider the

regression estimand (12), focusing once again on the two leading examples R1 and R2. However,

instead of local polynomial regression, now consider the Haar partitioning-based estimator:

θ̌(x, r) = p(x)⊤γ̂(r), γ̂(r) = argmin
g∈RL

n∑
i=1

(
r(yi)− p(xi)

⊤g
)2
,

where p(u) = (1(u ∈ ∆l) : 0 ≤ l < L) and {∆l : 0 ≤ l < L} forms a quasi-uniform partition

of X as defined in Theorem 4. The estimation error can again be decomposed into three terms

(linearization, non-linearity error, and smoothing bias)

θ̌(x, r)− θ(x, r) = p(x)⊤Q−1Tr︸ ︷︷ ︸
linearization

+p(x)⊤(Q̂−1 −Q−1)Tr︸ ︷︷ ︸
non-linearity error

+E[θ̌(x, r)|x1, · · · ,xn]− θ(x, r)︸ ︷︷ ︸
smoothing bias

,
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where Q = E[p(xi)p(xi)
⊤], Q̂ = 1

n

∑n
i=1 p(xi)p(xi)

⊤, and Tr =
1
n

∑n
i=1 p(xi)(r(yi)−E[r(yi)|xi]).

In this example, the linear term takes the form

√
n/Lp(x)⊤Q−1Tr =

1√
n

n∑
i=1

kx(xi)(r(yi)−E[r(yi)|xi]) = Rn(g, r), g ∈ G, r ∈ Rl,

for l = 1, 2, where G = {kx(·) : x ∈ X} with kx(u) = L−1/2
∑

0≤l<L 1(x ∈ ∆l)1(u ∈ ∆l)/PX(∆l)

the equivalent kernel. Under standard regularity conditions including smoothness and moment

assumptions (Lemma SA.2 in the supplemental appendix), we verify that

sup
r∈R1

∣∣e⊤1 (Q̂−1 −Q−1)Tr

∣∣ = O(log(nL)L/n+ (log(nL)L/n)3/2 log n) a.s.,

sup
r∈R2

∣∣e⊤1 (Q̂−1 −Q−1)Tr

∣∣ = O(log(nL)L/n) a.s.,

sup
x∈X ,r∈Rl

∣∣E[θ̌(x, r)|x1, · · · ,xn]− θ(x, r)
∣∣ = O

(
max
0≤l<L

∥∆l∥∞
)

a.s., l = 1, 2.

Finally, for the residual-based empirical process (Rn(g, r) : g ∈ G, r ∈ Rl), l = 1, 2, we apply

Theorem 4. First, MG = L1/2 and EG = L−1/2, and we can take cG = L and dG = 1 because G has

finite cardinality L. For the singleton case R1, we can take cR1 = 1 and dR1 = 1, and Condition

(ii)(a) in Theorem 4 holds, which implies that ∥Rn − ZRn ∥G×R1 = O(ϱn) a.s. with

ϱn =
(log(nL))2√

n/L
,

provided that (log(nL)L/n → 0. For the VC-Type class R2, we can verify Condition (ii)(b) in

Theorem 4 with α = 1 if supx∈X E[exp(yi)|xi = x] ≤ 2, and we can take cR2 to be some absolute

constant and dR2 = 2 by van der Vaart and Wellner (2013, Theorem 2.6.7), which implies that

∥Rn − ZRn ∥G×R1 = O(ϱn) a.s. with

ϱn =
log(nL)√

n/L
+ max

0≤l<L
∥∆l∥∞,

provided that (log(nL)L/n → 0.

A uniform Gaussian strong approximation for (
√

n/L(θ̌(x, r) − θ(x, r)) : (x, r) ∈ X × Rl),

l = 1, 2, follows directly from the results obtained above, as previously discussed in Section 4.1. ▲

This example illustrates a substantive statistical application where the optimal univariate KMT

strong approximation rate based on the effective sample size n/L, up to polylog(n) terms and the

complexity of R.
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Csörgó, M. and Revész, P. (1981). Strong Approximations in Probability and Statistics, Probability

and Mathematical Statistics : a series of monographs and textbooks: Academic Press.
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