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Abstract

This supplement appendix reports some additional results not discussed in the main paper to conserve

space, and provides all the technical proofs.
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SA-I Additional Results

This section presents additional results not reported in the paper to conserve space and streamline the

presentation.

SA-I.1 General Empirical Process

The following corollaries provide additional results for their counterparts in Section 3.1 of the paper. In
particular, the results reported here allow for exponentially decaying tails, and for a more general expression

under polynomial entropy condition.

Corollary SA.1 (VC-Type Bounded Functions). Suppose the conditions of Corollary 1 hold. Then,

M
Sn(t) = mn,d\/Mg-((t + dgc log(cacn))TVac + 4/ %{ min{+/log nv/Ms¢, vVKgc + Mgc } (¢ + dge log(caen))

in Theorem 1.

Corollary SA.2 (VC-Type Lipschitz Functions). Suppose the conditions of Corollary 2 hold. Then,

Sn(t) = min {my gvMsc, ln,av/Lac } V/ (t + doc log(cgen))TVag
+4/ M%{ min{+/log nvMsc, vKg¢ + Mg }(t + dgc log(caen))

in Theorem 1.
Corollary SA.3 (Polynomial-Entropy Functions). Suppose the conditions of Corollary 2 hold. Then,
S, (t) = age(2 — bge) "2 min{SP%(¢t), SLP(¢), ST (1)}

in Theorem 1, where

Sbd (1) = m,, gv/dci Mg TV (VE + (mith;&Tv}()—b%‘)
My | . .
P i T i, e W)+ (2, ) ),
SUP(t) = 1, av/der CaLacTVac (VE + (12 M5 2LacTVsc) ™ )
My | _ .
” ﬁmln{M@M, VBesKa +Mac}(t + (12 My2LocTVs) ™ 2),
SET(¢) = min{my, av/Mac, bn.av/eaLag }v/der TVac (VI + n oo )
M . 1
4 \/Tfmin{@\/@, P T} (t ) 1 g
n

SA-1.2 Multiplicative-Separable Empirical Process

This section considers uniform Gaussian strong approximation for the following multiplicative-separable

empirical process:

M,(g,7):= % '

2

(9(xi)r(yi) — Elg(xi)r(yi)])s (g;7) € Gx R (SA-1)

1 n
=1



For example, the local empirical process discussed in Section 4 can also be represented as (M, (g,7) : (g,7) €
G x R) with § = {b~2K((- —x)/b) : x € X} and R = {Id}, but calculated based on a centered sample
((x5,97) 1 1 < i <), with y; = y; — Elyi[x].

The results and proof techniques for the multiplicative-separable empirical process are similar to those

for the residual-based empirical process studied in the paper, but we report them here for completeness.
Theorem SA.1. Suppose Assumption B holds with X = [0,1]¢, and the following two conditions hold.
(i) § is a real-valued pointwise measurable class of functions on (X,B(X),Px) such that J(G,Mg,1) < co.

(ii) R be a real-valued pointwise measurable class of functions on (R, B(R), Py) such that J(R, My, 1) < oo.
Furthermore, one of the following holds:
(a) Mr S 1 and pTVg S 1, and set =0, or

(b) Mx(y) < 1+ [yl* and pTVg (_jypypy S 1+ [y|* for all y € R and for some a > 0, and

~

Supycx Elexp(y:)|x; = x| < 2.

Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaussian processes

(ZM(g,7) : (g,7) € G x R)) with almost surely continuous trajectory such that:
o E[M,(g1,71)Mn(g2,72)] = E[Z3" (91,71) 2, (92,72)] for all (91,71), (92,72) € § x R, and
o P[| M, — ZM||gxr > C1C,TM ()] < Coe™t for all t > 0,

where Cy and Cy are universal constants, C, = max{1 + (2a)%,1 + (4a)*} and

T, (t) = min {A}(t,6) + F)(t,0)}
6€(0,1)

with

cngTV%Mg+1)2@ﬁH) <cfcgE§M§Tngg
b

MGTVELE ) T L 1+ tog(tl 6/ 2 (6/2) V"))

AM(t,8) := Vdmin { (

n

(log n)*(t + log(nNg (8/2)Nx (3/2)N*))**,

N \/min{Mg(M* + N*),Mg(c3KgMy, + MgLy,, +Mg)}
n

FM(t,6) := J(0)Mg +

(logn)*/*Mg J*(5) & Mg Mg
—5 .\t + (logn)™ —=t°
62\/5 +WJ+(Ogn) \/ﬁ )

and

Vg :={0(,r) :x— E[r(y)|x; = x],x € X,r € R},
J(8) := V/2J(G,Mg,0/V/2) + V2J (R, Mg, 5/V2),

nTVe\ a5 /nLeTVq\ atz

M* = Llongin{(ig)dH (79 9)*”
Eg EgMg

n2M29d+2 1

nM%H T+ a2
N* = {longax{( d) ’(741 y 2) }—‘
EgTVE TVELIED

Corollary SA.4 (VC-Type Lipschitz Functions). Suppose the conditions of Theorem SA.1 hold. In addition,

assume that G is a VC-type class with respect to envelope function Mg with constant cg > e and exponent




dg > 1, and R is a VC-type class with respect to Mg with constant cg > e and exponent dg > 1. Suppose
there exists a constant cq such that |logy Eg|+]|log, TV|+|log, Mg| < c4logy n, where TV = max{TVg, TVgxv,, }
with Vg :={0(-,r) : x — E[r(y;)|x; = x],x € X,r € R}. Then,

cIEGTVEMEIT! ) D (cfcgEg METVELE
3

n2

TM(t) = Vdmin { ( )2@71%) }(t + cqlogy(n) + dlog(cn))**!

n

(logn)®(t + c4logy(n) 4+ dlog(cn))* ™.

N \/min{03 logy (n)Mg, Mg (c3KgMy,, + MgLy, + Mg)}
n

in Theorem SA.1, where ¢ = cgcg, d = dg + dx.

Theorem SA.2. Suppose (z; = (xi,v:),1 < i < n) are i.i.d. random variables taking values in (X x
R, B(X x R)) with X C R?, and the following conditions hold.

i) G is a class of functions on (X,B(X),[Px) such that Mg < oo and § C Span{la, : 0 < < L}, where
L
{A;:0 <1< L} forms a quasi-uniform partition of X in the sense that

maxo<i<r, Px(A;)
ming<i<r, Px(A;)

X - |—|0§l<LAl and < p < 00.

In addition, J(G,Mg,1) < co.

(ii) R is a real-valued pointwise measurable class of functions on (R, B(R), Py ), such that J(R, Mx,1) < oo.

Furthermore, one of the following holds:

(a) Mr <1 and pTVg S 1, and set o =0, or

(b) Mz (y) < 1+[yl%, PTVg iyl S 1HIY* for ally € R and for some o > 0, and supye x Elexp(y;)|x; =
x| < 2.

(iii) There exists a constant cs such that |logs Eg| + |logs Mg| + | logy L] < c5logy n.

Then, on a possibly enlarged probability space, there exists mean-zero Gaussian processes (ZM(g,r) : g €

G,r € R) with almost sure continuous trajectory such that:
o E[M,(g1,71)Mn(g2,72)] = E[Z) (91,71) Z} (g2, 72)] for all (g1,71), (g2,72) € G X R, and
o P[|M, — ZM||gxx > C1C,C, minge(o)l)(Hf‘f(t,é) +FM(t,6))] < Coet + Le=Co™/L for all t > 0,

where Cy and Co are universal constants, C, = max{l + (2a)%,1 + (4a)*}, C, is a constant that only

depends on p,

LMcE a+i
HM (¢, 6) = ,/% (t + logNg(6/2) + log N (6/2) + logy N*)**2
+\/min{L+N*7S%}

n

Mg (logn)® (t + logNg(d/2) + logNx (d/2) + log, N*)GH ,

with ¢ = cgeg, d =dg +dx, N* = [10822 (%ﬂ’ Sg = suPyeg Yoy L(Supp(g) N A # 0).



SA-1.3 Residual-Based Empirical Process
The following theorem presents a generalization of Theorem 3 in the paper.
Theorem SA.3. Suppose Assumption B holds with X = [0,1]¢, and the following two conditions hold.
(i) § is a real-valued pointwise measurable class of functions on (X,B(X),Px) such that J(G,Mg,1) < co.

(ii) R be a real-valued pointwise measurable class of functions on (R, B(R), Py ) such that J(R, Mz, 1) < occ.

Furthermore, one of the following holds:

(a) Mr <1 and pTVg S 1, and set =0, or

(b) Mz (y) < 1+[yl%, PTVg iyl S 1HIY* for ally € R and for some o > 0, and supye x Elexp(y;)|x; =
x| < 2.

Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaussian processes

(ZE(g,7) : (g,7) € G x R)) with almost surely continuous trajectory such that:
1. B[Ra(g1,71) Ra(g2,72)] = BIZ;H(91,71) Z; (92, 72)] for all (g1,71), (92,72) € § x R.
2. P[||Rn — ZE||gxn > C1C,TE(#)] < Coe™" for all t > 0,

where Cy and Cy are universal constants, C,, = max{1 + (2a)%,1 + (4a)*}, and and

TR _ . AR FR
n (1) ég(léfll){ n(t,6) +Fr(t,0)}

with

CIETVIMET | st/ cdcdE2M2 TVI19\ sits
AR(t,8) = Vmin { (S8 )T (SRS S I (1 tog(nig (6/2)N(8/2)N.)) !

+ 29 (log ) (¢ + og(nNg (8/2)N (8/2)N.))**,

Jn

FE(t,6) := J(0)Mg + log(n)MgJ*(d) = Mg Mg

N + %\/5.4_ (logn)aﬁto‘7

and

TV := InaX{TV9,TV9><VR}, L:= max{Lg,Lngm},
Vg :=A{0(r) : x = Elr(y:)
d
=

) nTV\ aft (nLTVg\ 7tz
= [togo min { (£5) ™" (Towg ) ™ 3
Eg EgMg
N.:=[lo max{<nMg+l)‘Hl'l (”2M§d+2)rzi2ﬂ
" 82 EgTve/ " \TVILIEZ '

The following theorem presents a generalization of Theorem 4 in the paper.

|x; = x],x € X,r € R},

=

Theorem SA.4. Suppose (z; = (Xi,9:),1 < i < n) are i.i.d. random variables taking values in (X X

R, B(X x R)) with X C R?, and the following conditions hold.



(i) G is a class of functions on (X,B(X),Px) such that Mg < oo and § C Span{la, : 0 <1 < L}, where
{A;:0 <1< L} forms a quasi-uniform partition of X in the sense that

maxo<i<r, Px(4A;)
ming<;<z, Px(4A;)

X - |—|0§l<LAl and < p < 00.

In addition, J(G,Mg,1) < co.

(ii) R is a real-valued pointwise measurable class of functions on (R, B(R), Py ), such that J(R, My,1) < oo.

Furthermore, one of the following holds:

(a) Mr <1 and pTVg S 1, and set =0, or

(b) Mx(y) S 1+[y*, PTVg iy, yp S 1H+[y[* for ally € R and for some o > 0, and supyc x Elexp(y;)[x;
x| < 2.

(iii) There exists a constant cs such that |logs Eg| + |logs Mg| + | logy L] < c5logy n.

Then, on a possibly enlarged probability space, there exists mean-zero Gaussian processes (ZI(g,r) : g €

G,r € R) with almost sure continuous trajectory such that:
o E[R(g1,71)Rn(g2,72)] = E[Z](g1,71) 2 (g2, r2)] for all (g1,71),(92,72) € § X R, and

e P[|R, — ZF||gun > Ci1C(C, min(;e(o,l)(Hf(t,(S) + FE(t,8)) + W,(1)] < Coe™t + Le=Cen/L for all
t>0,

where C1 and Cy are universal constants, C, = max{l + (2a)2,1 + (4a)®}, C, is a constant that only

depends on p,

HE(t, 8) = 1/ 9B (4 4 log g (6/2) + log N (5/2) + logy N*)+H
n
M o
+ \/—Sﬁ(logn)a (t 4+ logNg(6/2) + logNx(d/2) + log, N*) +1 ,
W, (4) := 1(card(R) > 1)\/M9E9(Orgla<xL||Al||oo)Lv:R Vt+ logNg(8/2) + log Nx(6/2) + logy N*.

with Vg .= {0(-,7) : x = E[r(y;)|x; = x|,x € X,r € R}.

SA-1.4 Local Polynomial Estimators

The following lemma provides the sufficient conditions for the results discussed in Section 4.1 in the paper.
Lemma SA.1. Consider the setup of Section 4.1, and assume the following reqularity conditions hold:
(a) Assumption B holds.

(b) x — O(x;7) is (p + 1)-times continuously differentiable with bounded (p + 1)th partial derivatives
uniformly over x € X and r € Ry, 1 = 1,2, for some p > 0.

(c) K: R? — R is non-negative, Lipschitz, and compact supported.



If (nb®)~1logn — 0, then
sup |e]—(ﬁ;1 . H;l)Sx,r| = O((nb%) "' logn) a.s., and
xeX ,reER
sup  [E[0(x,7)|x1,- - x0] = 0(x,7)| = O0™P)  as, 1=1,2.

xEX,TER;

If, in addition, supycy Elexp(y;)|x; = x] < 2, then

sup ‘e]—(ﬁ;l - H;l)Sx,r’ = O((nb®) " logn + (nb?)~3/%(logn)>/?) a.s.
xXEX,reER,
Notice that aside for the condition sup,cy Elexp(y;)|x; = x] < 2 for Ry, the other assumptions in
Theorem 3 are satisfied in this example.
The following two examples provides the omitted details concerning uniform Gaussian strong approxi-

mation rates obtained via other methods, which are discussed in Section 4.1 of the paper.

Example SA.1 (Strong Approximation via Rio (1994)). Consider the setup of Section 4.1, and assume the

following regularity conditions hold:

(a) (xi,vi) = (x4, 0(x4,u;)), where z; = (X;,u;) satisfies Assumption A and Mg,y < oo, Supyeg TV} supp(e)x[0,1] S

sup,eg m(Supp(g) x [0, 1]) < oo and K,y < 00,
(b) sup,eg Vv, supp(g) S SUPgeg M(Supp(g)) < oo and Kio(. r)rex,y < 00, for I =1,2.
l
(c) K :R% — R is non-negative, Lipschitz, and compactly supported.

For Ry, take 3, = {ho¢,' : h € ﬂtﬁl}, where H(; = {(x,u) € X x [0,1] — g(x)p(x,u) — g(x)0(x,1d) :
g €5}, ¢z is the Rosenblatt transformation (Lemma SA.12) based on the Lebesgue density of z; = (X, u;),
and G = {b=92Xx(FX) : x € X} with Kx(u) = e] Hy'p(u)K (u). Then, using the notation introduced in
the paper,
Myc, = MgMyy < b-42,

—2 —2
Tust, = $2(Tvg + Mg supm(Supp(g))) < 1264271,
iZ 9g€eS iz
7d+1 ?d+1 (SA-2)
Kse, < (2Vd) 2~ (Kg + MgKy,} + MgKy,) S (2Vd) =L —b/2,
Lz 7

Ny, (&) S g~d L,

Rio (1994) implies that (X, (k) : h € H;) = (Vnble] H'Sx, @ x € [0,1]%,7 € Ry) admits a uniform

Gaussian strong approximation with rate

—d+1

72 d—1
Sn(t) — Cd,z,a,l Ci'tfiz(nderl)fl/(anLQ) /t + (d + 1) logn + Cd,gp,lmfdfz(nbd)l/Q(t + (d + 1) log n)7
Lz Z

where Cq,p,1 15 a quantity that only depends on d and .
For Ry, take Hy = {hoo,' :h e Ho}, where Hy = {(x,u) € X x [0,1] —~ g(x)r 0 p(x,u) — g(x)0(x,7) :
g € G,r € Ra}. Suppose ¢ is continuously differentiable with min y ,)c(0,17¢+1 [Oup(X,u)| > 0. Then, using



the notation introduced in the paper,

Mg, = MM,y S b™Y2,
72 -
Iz MmMax(x v)elo,1]d+1 |Oup(x, u)| [z d/2—1
TVa, < ZZ(TV 4 + Eg + Mg sup m(supp(g —= - S ==b )
. iz( 5.00.1] 5 Mg sup (supp(9))) Wy (01105 1Dup(5, )] © f

Nog, (&) < g~d 1,

~

Rio (1994) implies that (X, (h) : h € Hz) = (Vnble] H'Sx . : x € [0,1]%,r € Ra) admits a Gaussian strong

approximation with rate function

dﬁ 1
Sn(t) = Cap2 J{Z( bd+1 —1/(2d+2) | /4 + (d+1)logn+ Cqp 24/ Ogn(tJr (d+1)logn),

=7

where Cq,,2 15 a quantity that only depends on d and .
The strong approximation rates stated in Section 4.1 now follow directly from the strong approximation

results above. A

Example SA.2 (Strong Approximation via Theorem 1). Consider the setup of Section 4.1, and assume the

following regularity conditions hold:

(a) (x4,9i) = (xi, p(x4,u;)), where z; = (X4, u;) satisfies Assumption A and Mipy < 00, 8upyeg TV (v} supp(g) <
sup,eg m(Supp(g)) < 00, Kguy < 00, and L,y < oo.

(b) $up, car, SuPsy e 100,7) — 6y, 7)|/IIx — ¥llow < 00 for £ =1,2.
(c) K :R? = R is non-negative, Lipschitz, and compactly supported.

Then, Equations (SA-2) hold, and

Lz S Ly fTZ < (LoMyg) + MLy +Mgly,) 22 <p=t22 2,
7z

\kﬁ‘kﬁ\
N

=Z

Theorem 1 implies (X, (h) : h € Hy) = (Vnble] H'Sx, : x € [0,1]%,7 € Ry) admits a uniform Gaussian

strong approximation with rate

o /q)d—1F41
Sn(t) =Caps df (b)Y @D/t (d 4 1) logn 4 Cap s ( \[) Iz (nbH)~Y2(t + (d + 1) logn).

-7 iZ

where Cq,,.3 15 a quantity that only depends on d and ¢.
The strong approximation rate stated in Section 4.1 in the paper now follow directly from the strong

approzimation result above. A

Example SA.3 (Strong Approximation via Theorem 3). Consider the setup of Section 4.1 and assume the

following regularity conditions hold:

(a) Assumption B holds.



(b) 5up, e, 5P ye e [00%,7) — 0y, 1)/ — ylloo < 00 for £ =1,2.
(c) K :R? = R is non-negative, Lipschitz, and compact supported.

Recall that § = {b‘d/2fo(?) :x € X}. Then, using the notation introduced in the paper,
Mg b2 Eg S TV BV, L SH2N Ng(e) S e il

Theorem 8 implies that (R, (g,7): g € G,r € Ry) = (Vnble] H 'Sy, : x € [0,1]%,r € Ry) admits a uniform

Gaussian strong approximation with rate function

3 —d __
Sp(t) = (j:;() o Vid(nd?) =42 (¢t 4 (d+ 1) logn)>/? + (nbh) "2t + (d + 1) log n).
Ix

If, in addition, supxejo 1y« Elexp(yi)|xi = x| < 2, then Theorem 3 implies (R,(g,7) : g € G,7 € R1) =

(Vnble] H 'Sy, : x € [0,1]4,r € Rq) admits a uniform Gaussian strong approzimation with rate function

3 _d
S, (t) = (j};‘) b D (4 1 (d 1) log n)?/2 + (nbh)~V2(t + (d + 1) log ).
X

The strong approzimation rate stated in Section 4.1 in the paper now follow directly from the strong approx-

imation result above. A

SA-1.5 Haar Basis Regression Estimators

The following lemma gives precise regularity conditions for Example 3 in the paper.

Lemma SA.2 (Haar Basis Regression Estimators). Consider the setup in Ezample 3, and assume the

following regularity conditions hold:
(a) Assumption B holds with [0, 1]¢.
(b) SUPrcx, SUPx yecx |0(X7 ’f‘) - H(yﬂ")‘/HX - YHOO <0 fOT (=1,2.
(c) K :R? = R is non-negative, Lipschitz, and compact supported.

Iflog(nL)L/n — 0, then

sup sup |p(x)T(Q_1 - Q NT,| = O(log(nL)L/n) a.s., and
reRso xeX

E{9 e Xn] =0 )] =0 Atllos s, l=1,2.
sup sup [BA(x, e, -+ x0] = 606 7)| = O max [Adllec) oo

If, in addition, supycy Elexp(y;)|x; = x] < 2, then

sup sup ’p(x)T(Q_l - Q_I)T,«| = O(log(nL)L/n + (logn)(log(nL)L/n)*?) a.s.

rcRs xeX
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SA-II General Empirical Process: Proofs

We first introduce quasi-dyadic expansions of R?, and the associated Ly (R?) projection of functions onto the
class of piecewise constant functions on those cells. This enables us to couple a general empirical process
indexed by piecewise constant functions with a Gaussian process. We then present a sequence of technical
lemmas that bound the different approximation error terms discussed in Section 3 with different levels of

generality. The proofs of these preliminary lemmas can be found in the supplemental appendix.

SA-I1.1 Cell Expansions

Definition SA.1 (Quasi-Dyadic Expansion of R?). A collection of Borel measurable sets in RY, Cx (P, p) =
{Cix 1 0< k< 2K-7 0 < j < K}, is called a quasi-dyadic expansion of R? of depth K with respect to
probability measure P if the following three conditions hold:

1. Cj,k: = ijl,Qk: |—|Cj71,2k+17 fO’f' all 0 <k < 2K_j, 1<5< K,
2. P(Ck,) =1, and

8. maxg<p<ox P(Cok)/ mingcpcox P(Cox) < p.
When p =1, Cx (PP, 1) is called a dyadic expansion of R? of depth K with respect to PP.

This definition implies %%p <P(Cj—1,2k)/P(Cj 1) < %% forall 0 < k < 25771 < j < K, since each
Cj_1, is a disjoint union of 27=1 cells of the form Co,k, which implies the third condition in Definition SA.1.
Furthermore, in the special case that p = 1, P(Cj_1,2x) = P(Cj_1,2641) = %IP(ijk), that is, the child level
cells are obtained by splitting the parent level cells dyadically in probability.

The next definition specializes the dyadic expansion scheme to axis-aligned splits.

Definition SA.2 (Axis-Aligned Quasi-Dyadic Expansion of R%). A collection of Borel measurable sets in
R?, Ag (P, p) = {Cjr:0<k< 2K=7 0 < j < K}, is an axis-aligned quasi-dyadic expansion of R? of depth

K with respect to probability measure P if it can be constructed via the following procedure:
1. Initialization (¢ = 0): Take Cx_40 = X where X CR? is the support of P.

2. Tteration (¢ = 1,...,K): Given Cx_ ) for 0 <1< q—1,0 <k < 2!, take s = (¢ mod d) + 1, and
construct Cre_qor = Crx—qr1ix N{x € R:e/x < cx_gr16} and Cx_gors1 = Cx—gr1r N{x € R :
elx > cx_ji1k} such that P(Cx—qok)/P(Cr—qi1,k) € | for all 0 < k < 2971, Continue
until (Co : 0 < k < 25) has been constructed.

1 2]
1+p7 1+p
When p =1 and P is continuous, Ak (IP, p) is unique.

SA-I1.2 Projection onto Piecewise Constant Functions

For a quasi-dyadic expansion Cg (P, p), the mean square projection from Lo(R?) to the associated span of
the terminal cells & := Span{le¢,, : 0 <k < 2K} is

]]‘CO.k

Mo (Cx (P, p))[h] := P(Co 1)

0<k<2K

/ h(u)dP(u),  h € Ly(RY). (SA-3)
Co,k

Oy (Cx (P, p))[h] is a linear combination of a Haar-type basis, which gives the following orthogonal decompo-

sition.

11



Lemma SA.3. For any h € Ly(R?),

Do (Cx (P, p))[h] = Bro(Mexo+ D D Biwlh)Er,

1<j<K 0<k<2K-J

where
1 o~
Bjk(h) == (o /C h(u)dP (u), Bin(h) := Bi_1.21(h) — Bj—1.2641(h),
7 ok
s o PG P(C;_
ek =1e;,, €k = P(Cj—r2r+1) (Cj—1,2k)

IP(C’j7k) €j—1,2k — 7P(Cj 0 €j—1,2k+1,
for0<k<2K-7 1<j<K.

To save notation, we will use Iy as a short hand for Ilo(Cx (P, p)) in what follows. In the special case of
axis aligned quasi-dyadic expansion, we use II4,., as a short hand for Iy (Ax (P, p)).

SA-II.3 Strong Approximation Constructions

Suppose (Ejk :0< k<2871 <j<K) areiid. standard Gaussian random variables. Take Fijky,m to

be the cumulative distribution function of (S;x —mp; x)/+/mp;jx(1 — pj k), where p;r = P(C;j—1.2x)/P(C; 1)
and Sj j, is a Bin(m, pj ) random variable, and G r),m(t) = sup{z : F(; p).m(z) < t}. We define Uy, (7]'7k’s

via the following iterative scheme:
1. Initialization: Take Uk o = n.

2. Iteration: Suppose we have define U, . for j <1 < K,0 < k < 25! then solve for Uj ’s such that

U = \/Uj,kpj,k(l —iR) G000 © P ),

Uik = (1 =pj)Uj—126 — PjkUj—1,2k41 = Uj—1,2k — Dj.kUj ks
Ui—iok +Uj—10k41 =Uji, 0<k< 2K=d,

Continue till we have defined Uy for 0 < k < 2K

Then {U;,:0<j < K,0<k< 2K=31 have the same joint distribution as > ein(x):0<j <K, 0<
k < 2K=J7}. By Vorob’ev—Berkes—Philipp theorem (Dudley, 2014, Theorem 1.31), {g]k 0<k<2K71<
j < K} can be constructed on a possibly enlarged probability space such that the previously constructed
Uj 1, satisfies U, = 327 e, x(x;) almost surely for all 0 < j < K,0 < k < 257, We will show &; ;s can be

given as a Brownian bridge indexed by €;x’s.

Lemma SA.4. Suppose H is a class of real-valued pointwise measurable functions on (X,B(X),Px) such
that Mg¢ < oo and J(1,H,My) < oo, and Ck is a quasi-dyadic expansion of R? of depth K with respect to
Px. Then, HUZH U Ei is P x-pregaussian.

Then by Skorohod Embedding lemma (Dudley, 2014, Lemma 3.35), on a possibly enlarged probability

12



space, we can construct a Brownian bridge (Z:X(h) : h € H) that satisfies

]P(Cj k) X i~
7 Zn €5.k),
VP(Ci1,26)P(Cj-1,2841) (€i)

&k =

for 0 < k < 2K-7,1 < j < K. Moreover, call

~ ~ P(C; ~
Vid = \/ﬁzg(ej’k)’ Vi := vz, (€5 Sik = \/nIP(C, 1 2(k)]lfl’€()C- 1 2k+1)Vj)k.
-1, j—1,

for 0 < k < 2K-71 < j < K. Notice that for all h € €, we have

K K
VX (h) =Y > B Uik, VaZX() =Y > Bix(h)Vix-
J=10<k<2K-i

j=10<k<2K—j j

The difference between X,,(h) and Z:X(h) will rely on the coefficient Bj,k(h) and the coupling between lNIJk
and V1., which is the essence of Theorem 2.1 in Rio (1994). Although Theorem 2.1 in Rio (1994) is stated
for i.i.d uniformly distributed on [0, 1] random variables, the underlying process only depends through the
counts of the random variables taking values in each interval of the form [k277, (k + 1)277), which have the

same distribution as the counts of x;’s in C;’s. Hence, we have a direct corollary of Theorem 2.1 in Rio
(1994) as follows:

Lemma SA.5. Given a dyadic expansion Cx(Px, 1), for any g € Ex and any t > 0,

P (Vat|Xulo) — 2 ()| > 24\ lgl3, 2+ 4y/Cg7) < 2exp(—a),

> ~
where HQH%K = Zj:l Zogk<2K—j B?,k(g), and
Cy=supmin{ sup [> (G -DG—1+1)277 Y G| IfILK
fes (]’k) 1<j m:szmng,k/

The above lemma relies on coupling of Bin(m,1/2) random variables with Gaussian random variables.
The coupling also holds for Bin(m,p) with the error term only depending on how far away p is bounded

away from 0 and 1:

Lemma SA.6. Suppose X ~ Bin(n,p) where 0 < p < p <p < 1. Then there exists a standard Gaussian
random variable Z ~ N(0,1) and constants cg,c1,ca,c3 > 0 only depending on p and p such that whenever
the event A = {|X —np| < exn} occurs and co\/n > 1, we have

‘X —np —+/np(1l —p)Z‘ < 7% + ¢,
1
| X —np| < %+2\/np(1—p)\Z|-

In particular, we can take cog > 0 to be the solution of

3 3
1-— 1-— D
60coD <1 / pp) exp <2 ’ pc()) +60co(1 — p) ( 1fp> =1,
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and take ¢y = 15¢/p(1 = D), c2 = 1/(15¢0),c3 = 1/co and Z can be taken via quantile transformation, that
is, define F(xz) =P(X —np < /np(1 —p)x) and let ® be the cumulative distribution function of a N(0,1)
random variable, then Z can be defined via Z :== ® 1o F ((X —np)/+/np(1l —p)).

This enables the following strong approximation for the quasi-dyadic case:
Lemma SA.7. Given a quasi-dyadic expansion Cx (Px,p), p > 1, for any g € Ex and any t > 0,

P (Vi |[Xal9) = ZX(9)] = e\ /I9l12 @ + cp\/Crgp2)

< 2exp(—z) + 2K 2 exp ( — cpn27K),

where ||g||3 . = Z]K:l D 0<k<aK—j Eik(g), ¢, s a constant that only depends on p and Cyigy is defined in
Lemma SA.5.

SA-I1.4 Meshing Error

For 0 < § < 1, consider the (dMg¢)-net of (3, ep), with cardinality no larger than Ng¢(0): define mg¢; : H — H
such that ||mg¢, (h) — h|lpy,2 < 0Mg for all h € H.

Lemma SA.8. Forallt >0 and 0< 4§ <1,

P (|| X — Xy 0 Ta¢s|l3c > CFu(t,6)] < exp(—t),
]P[HZ,? O T s — Zf”{}( > C(M}(J((S,j‘f,M{}() + 5M}(\/£)] S exp(—t),

where C 1s a universal constant.

SA-I1.5 L2 Projection Error

For X,,, ZX and Iy as defined above, and for H; a 6-net of (3, ep, ) with cardinality no greater than Ng¢(6),

the following lemma controls the mean square projection onto piecewise constant functions.

Lemma SA.9. Let Cx(Px,p) = {Cjx : 0 < k <25770<j < K},p>1 be a quasi-dyadic expansion of
R? of depth K. Define

V = Up<i<2x (Cok — Cok) -

Then for all t > 0,

4B
I t] < Mg (8)e™,

3v/n
1P[||fo — ZX ol |5, > \/4\/}(54 < 2Mge(H)e,

IP[||Xn — X, 0Tllse, > /AVac,t +

where

2
Vg, = min{2Mg¢, Log, || V]| 0o } (SHE fX(x)) 25m(V)||V]|soTVs¢s,  Bac, =: min{2Ms¢, Lo, |[|V]|oo }-
PS
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In particular, if x; HLt Unif ([0,1]%) and the cells Ax (P, 1) are axis-aligned dyadic expansion of depth
K, then

4min{2M3{5,Lg{62_K}
NG
IP[||Z§ —ZX ol |, > \/4dmin{2MgC5,L}(52*K}2*KTV5{54 < 2Mge(8)e",

P} X, — X 0 Ty llocs > \/Admin{2M5c,, Loe, 2K }2-KTvge, t 4 t] < 2Wac (),

for all ¢ > 0.

SA-11.6 Strong Approximation Errors

The next lemma controls the strong approximation error for projected processes.

Lemma SA.10. Let Cx(Px,1) = {Cj) : 0 <k <2K-7,0 < j < K} be a dyadic ezpansion of R of depth
K as in Definition SA.1. For each 1 < j < K, define

Uj = Ug<rar—i (Cj—1,264+1 — Cj—1,2k)-

Suppose X,,, ZX and Iy are as defined above and Hs is a §-net of (H,ep, ) with cardinality no greater than
Ngc(8). Then for allt > 0,

R (K ¢
P12, 0 — 23 oMol > ) 8 gy [ ] <oy i),

where Ry (Hs) is defined to be

K 2
Z min{Mgfav HUj HOOLg‘fa }2K_j min { (Sug f(X)) 92(K=1) Huj ||00m(uj)TV'Jf5a HUj HOOLiHa s Eg¢s } :
x€

Jj=1

Lemma SA.11. Let Cx(Px,p) = {Cjr : 0 < j < K,0 < k < 2573}, p > 1 be an approximate dyadic
expansion of R? of depth K as in Definition SA.1. For each 1 < j < K, define

Uj == Up<iecar—i (Cj—1,2k+1 — Cj—1,2k)-

Suppose H is a class of real-valued pointwise measurable functions in (X,B(X),Px) such that My < oo and
J(1,H,Mg¢) < 0o. Suppose X, ZX Ty, Hs and Ry are defined as in Lemma SA.10. Then for all t > 0,

R (K c
P|||X, 0Tl — ZX oTly|sc, > C, %Hoﬂ/ : t} < Mg (6)e" + 2 exp (—Cpn2~K)

where C, is a constant only depending on p.
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SA-I1I.7 Rosenblatt Reduction

Lemma SA.12. Suppose X = (X1,...,Xq) is a random variable taking values in R? with Lebesque density
fx supported on [0,1]%. Define the Rosenblatt transformation ¢x based on density of x; by

P(Xl le)
P (Xy < 22| X1 = 1) J
ox(1,...,2q) = ) , (x1,...,24) €[0,1])%.

P(Xg<wxg| Xy =21,...,Xg-1 = Tq-1)

Define ¥ := {ho bx'}. Suppose u; L Unif([0,1]9), 1 <i < n. Then

7 ?2 ?d+1

X X d—1J X

Mg =Mse, Ly SLocp™, TV STUscFS, Ky < Kge(2vVd) 1 22—
LX =X <X

Ez = Egq, Nﬁ(E)ZNg{(E),VO<€< 1.

SA-I1.8 Proof of Lemma SA.3

First, we show that {exao} U{€r :1<j < Kd,0 <k < 25477} is an orthogonal basis. For notational
simplicity, denote J = {(j,k): 1 < j < Kd,0 < k < 2K977}. Let (j,k) € J. Then

_ P(Cj_1,2%+1) / P(Cj—1,2k)
S L) = —_— e, d — ————"e,_ 3 d
(erd05€jk) /Rd PC) ej—1,2k(u)du TP ej—1,2k+1(u)du
PCij—1,26+1)P(Ci—126) P(Cj-1,26)P(Cj—1,2k+1)

= B(C,.) B P(C ) -0

Now let (j1,k1), (j2, k2) € 7.
Case 1: ji = j; and ki # kg, then €;, j, and €j, k, have different support, hence (€, k,, €y k,) = 0.

Case 2: j; # jo and w.lo.g. we will assume j; < jo. By (1) in Definition SA.1, either Cj, x, NCjy b, = 0
or Cj, x; C Cjyky- In the first case, we also have (€}, r,,€j,,k,) = 0. In the second case, using (1) in
Definition SA.1 again, either Cj, x, C Cj,—1.2k, O Cjy g, € Cjy—1,2kp+1. W.lo.g we assume Cj, i, € Cjy—1,2k,-
Then

~ ~ ~ P(Cjp—1,2k5)
(€j1.k1» €hn ko) = (€y s W%—l,zkz)

P(Cjy—1,2k,) / P(Cj,—1,2k1+1) / P(C;, - 1.2k,)
= ) ) 6'1* 1 udu— 7’6'1, 2k udu
IP(Cijz) R4 P(le,lﬁ) j1—1,2k ( ) o IP(le,k1) j1—1,2k +1( )

=0.

This shows that {exq0} U{€jx:1<j < Kd,0<k < 25977} is an orthogonal basis for €y C L2(R?) and

hence

h,exd,0 h,ejr) ~
Moh = “7>6Kd,0 + ) > Mem, Vh € Ly(RY).
(eKd,0,€Kd,0) | TR o<k caKds (€K, €jk)
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The coefficients are given by

(h.€k) fRd u)e; ,(u)du
i) Jpa e x(WE K (W)du
_PCi1,2k41)P(Cjm1.20)P(Ciin) 1 Bj 1.2k (h) = P(Cj—1,26)P(Cj—1.2641) P (Cjon) ~* Bj—1.2k41 ()
P(Cj-1,26+1)?P(Cj—1,26)P(Cj ) =2 + P(Cj1,2)*P(Cj—1,26+1)P(Cj 1) 2
CP(Ci1,2k+1)P(Cio1,206)P(Ciik) ' Bj—1,2k () = P(Cjm1,26)P(Cj—1,26+1)P(Cik) ' Bj—1,2641(h)
B P(Cj-1,2k+1)P(Cj—1,26)P(Cji ) 71 + P(Cjm1,21)P(Cj—1,264+1) P (Cj ) 7"
=Bi—1,2K(h) = Bj—1,2k41(h) = Ej,k(h), V1 <j < Kd,0<Fk< 2K

Moreover,

_(hiexap)  _ —1 B
<€Kd,0, €Kd,o> N IP(CKd’O) /de . h(u)dIP(u) - 5Kd,0(h)-

The proves the claim. O

SA-I1.9 Proof of Lemma SA.4

First, we will show that IoH U Ex4 is a VC-type of class. Notice that all h € IpH N Exy can be written
in the form ZOSk<2Kd creo k With ¢ € [~Mgc,Mgc]. Denote D = 2K4. For any ¢ > 0, ||Zogk<2kd Creo,k —
Y o<icard A€o klloo < Mgc if [ — di| < eMgc/D for all 0 < k < D. Hence

D
D
SupN(Hoj{UEKd,EQ,&‘Mg{) < <) R Vo<e<l1,
Q 9

where sup is taken over all discrete measures on X. Moreover, we have assumed J(1,H, My) < co. By
Kolmogorov’s extension theorem, there exists a mean-zero Gaussian Zr)f indexed by HUIZH U € iy with the
same covariance structure as X,,. Since My < 0o, HUTzH U E k4 is totally bounded for ep . By separability
of 3 and Corollary 2.2.9 in van der Vaart and Wellner (2013), there exists a version of ZX with uniformly
ep , -continuous sample path. Hence H U Ty U €4 is pre-Gaussian. O

SA-I1.10 Proof of Lemma SA.5

Take w; ‘&? N(0,1), 1 <i<nand I := k277, (k+ 1)279), 0 < k < 2K9=3, 0 < j < Kd. Take B to be a
Brownian bridge on [0, 1], that is, there exists a standard Wiener process W such that B(t) = W (t) —tW (1)
for all ¢ € [0,1]. Define

1
’Uj’k = \/ﬁ/ Il(t c ijk)dB(t), ”Jj’k = 'Uj,LQk — vj,1)2k+1.
0
Take F,, to be the cumulative distribution function of (S,, — $m)/y/m/4, where Sy, is a Bin(m,1/2)

random variable, and G, (t) = sup{z : F,,,(z) < t}. Define u;;’s and u; ;’s, again via the iterative quantile

transformation technique by:

1. Initialization: Take ugq0o = n.
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2. Iteration: Suppose we have define u; ;, for 0 < k < 2K4=1 j < | < Kd, then solve for uj k'S such that

- 1 ~

Uik = 5V UikGus . © 2(&jk),

~ 1 1 1

Ujk = FUj—1,2k — ZUj—1,2k+1 = Uj—12k — FUj K
75 9 =L 9 =L + J—1, 9 I

Kd—j
Uj_1,2k + Uj—12k4+1 = Ujp, 0 < k<2097,

Continue till we have defined g for 0 < k < 2Kd,

Then u;;’s have the same joint distribution as Y"1 ; 1(w; € I;x)’s. Hence by Skorohod Embedding lemma
(Dudley, 2014, Lemma 3.35), on a rich enough probability space, we can take (B(t) : 0 < ¢t < 1) such that
wjk = >y L(w; € I;x) almost surely, for all 0 < k < 2547, 0 < j < Kd.

Moreover, distribution of the process {(X,(h), Z;\(h)): h € Exq} is the same as distribution of the

process

| Kd B | Kd B
7n Z Z Bk (h)d; &, 7n Z Z Bik(R)Ujk |, h€Eka,

Jj=10<k<2Kd=j J=10<k<2Kd=j

since { (@, vj5) : 0 < k < 2589791 < j < Kd} and {(Uj,k,f@k) 0<k<2Kdi1<j< Kd} have the same

joint distribution and

Kd Kd
(Xn(h), ZX (h)) = %Z > @k(h)ﬁj,k,%z S BwmVik |, Vhe xa

Jj=10<k<2Kd—i J=10<k<2Kd—i

Following Section 3 in Rio (1994), we choose either p; = % (ﬁ + ﬁ) or p; = ﬁ and Theorem 2.1 in

Rio (1994), we have for any h € €4, for any ¢t > 0, with probability at least 1 — 2 exp(—t),

Kd Kd n
Yoo Bumun=32 > Bia(ua| <24, > Y B+t
j=10<k<2Kd—j j=10<k<2Kd—j j=10<k<2Kd—j

Hence for any h € kg4, for any ¢ > 0,

P | va|Xa(h) =z ()| =24 | > 3" B2 ()t + \/Cyt | < 2exp(—t).

J=10<k<2Kd—j
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SA-I1.11 Proof of Lemma SA.6

Take X; s Bern(p),1 < j < n where 0 < p < p < p < 1. Take {; = (X; —p)/+/np(l —p) and
Sh :ijl &;. Then for any h € R,

L(h) =Y B (| exp(|hg;])]
j=1

3
X;—p . X;—p
_ZE < 1—p)> ep<h np(l—p)>

3 3
=n 71_10 X 71_1) —n(l— N xp | — N .
- p( np(l—p)> ‘ p<h np(l—p)> “ p)< np(l—p)> ‘ p( " np(l—p)>

Take cg > 0 such that

3 3
1-— 1— —
60cop ( pp> exp <2\/700> +60co(1 — p) < 1fp> =1.

Then for any n € N and A = ¢p/n,

60AL(2)) < 1

Then by Lemma 2 in Sakhanenko (1996), whenever coy/n > 1 and the event A = {|S,| < cgy/n} occurs,

52

1
Sp—Z| < ——
‘ | - Co\/ﬁ GOCof

Moreover, by its proof, Z can be taken such that Z = ®~! o F(S,,). We then proceed as in the proof for
Lemma 2 in Brown et al. (2010), where they show for each the coupling exits with ¢y to ¢z not depending
on n. They did not give explicit dependency of ¢g to c3, however. Take ¢; such that ¢;/(60cy) < 1/2. In
particular, we can take ¢; = 15¢g. Then on the event B = {|S,,| < ¢1y/n},

Clﬁ < 1 1|S‘

—7l<
[ Z|*c 60c\f*c\f

Hence by triangle inequality, |S,| < # +2|Z|, and

1 1 2 2 2 2
S, —Z| < 27 ) < <24+ 2 7%
| ‘ - Co\/ﬁ + 6000\/77 (CQ\/’E + | |> - CO\/??/ + 1500\/ﬁ| |

Recall X = 7" | X; ~ Bin(n, p), whenever the event C' = {|X —np| < ¢1n,/p(1 —p)}} occurs and coy/n > 1,

2 Z?
‘X—np—\/np(l—p)Z‘SC— p(1— \/ (I-p \Z|2<—+
0

15¢q

Moreover, |S,| < + 2|Z] implies

2
co/n

1
| X —np| < - +2y/np(1 —p)|Z].
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SA-I1.12 Proof of Lemma SA.7

For notational simplicity, denote J = {(j, k) €Zx Z:1<j < Kd,0<k <2K9=7} and J =Z U {(0,k) : 0 <
k < 2Kd},

Part 1: Construction of Strong Approximation

The construction will be essentially the same as in Section SA-I1.3. By Lemma SA .4, there exists a mean-zero
Gaussian process (Z:X(h) : h € HUTyH U € x4) with almost sure continuous path and the same covariance
structure as (X, (h) : h € HUIH U Ekq). For each (j, k) € J, we will take V; i = /nZ;(ej) and
17j7k = /nZX(e;r). By checking the covariance structures, we can show that if we define Sj,k such that

Vik = \/nP(Cj’l'ﬁ()f(f)jgl’%“)gj,k, then ngC i N(0,1),(j,k) € J. Take F(ji)m to be the cumulative
T

distribution function of (S;, — mp;r)/\/mp;e(l —pjr), where p;r = P(Cj—1,2t)/P(Cj ) and Sj is a
Bin(m, pj ) random variable. Define G ; iy m(t) = sup{z : F(j ) m(x) < t}.

We define Uj x, (4, k) € J via the following iterative scheme:
1. Initialization: Take Ugkqo = n.
2. Iteration: Suppose we have define U;j, for j <1 < Kd,0<k < 2Kd=l " then solve for Uj r’s such that
Uik = Giin.u, . © 2(En),
Uk = P(Cim1.2641) /P (Ci)Uj—1.25 — P(Cjo1.2) /P (Ci)Uj—1.2641 = Uj—r.26 — P(Cjo1.2641) /P (Cjo) Uik,
Uj—12k +Uj—1 k41 = Ujp, 0< k<2893,
Continue till we have defined Uy, for 0 < k < oKd,

{ﬁk : (4, k) € J} have the same joint distribution as {>_""_, e; x(x;) : (j, k) € J}. By Skorohod Embedding
lemma (Dudley, 2014, Lemma 3.35), ZX can be constructed on a possibly enlarged probability space such
that the previously constructed Uy satisfies U, = 1" | €5 x(x;) for all (j, k) € J. Take p=p and p=p~*.

Take cg to be the positive solution of

3 3
11— 1-— D
60cop ( pp> exp <2 » pCo) + 60co(1 _B) ( 1fp> =1,

and take ¢; = 15¢,/p(1 —P), c2 = 1/(15¢o) and c3 = 1/cg. Define A = {|(~]]k| < a1Uj for all (5, k) € J}.

Notice that we can always take ¢; < 1, since |(7j,k\ < Uj as.. Using Lemma SA.6, whenever A occurs,

~ CP(Cj1,26)P(Cion,2k41) &
Vo \/Um P(Cjk)? Sk

2
< C2£j’k +cs,

(SA-4)

- P(C; 1.05)P(C; - |
k| < 1/c0+2 Cima)PCrraie) o) (k) e
P(Cjx)
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Now, we bound IP(A¢). By Chernoff’s inequality for Binomial distribution, for all (j,k) € Z,
1 E[U;
P (Uj,k < 2I[«:[Uj,k]> < exp (_[83,k]> .

Moreover, p~1n2/—Kd < E[U, ] < pn2/~ K4 Hence

P (Ujx < p 'n2/ K9 <exp (—p 'n2/ K9, V(j, k) € L.

P(Cj—1.2k)

Using Hoeffding’s inequality and the fact that U, = U;_y o5 — B, Uik =Uj—12k —E[U;—1.25|Uj ],

—1,2k+1) D

c?nQ‘Kd"’j)

1 _ —Kd+j
Ui = 5p 02 ”) < 2exp (— 3

m‘ >cUjx

na(ﬁ

Putting together and using union bound,

P4 = Y P(|Uik| > alis)
(4,k)eT

< Z ( ik < p n2_Kd+j> +P (‘ﬁjk’ > alUjk

Uik > ;P_lnTKdH)
(4, k)GI

c2n2_Kd+j>

< Z Z eXp(_p—1n2j—Kd) + 2exp (_13p

J=10<k<2Kd—j

2
<4 . oKd exp (— min {031 N 1} panKd> .

Part 2: Bounding Strong Approximation Error

Next we will show that the proof of Theorem 2.1 in Rio (1994) still goes through for approzimate dyadic
scheme. In other words, we will show that the approzimate dyadic scheme gives essentially the same Gaussian
coupling rates as the ezact dyadic scheme. Using the same notation as in Rio (1994) and define p;; =
P(Cj_1,25)/P(C; k) for notational simplicity, for g € Lo(X x R), define

Kd
:Z Z 6], (9 ) Jiks

j=10<k<2Kd-j

Kd
=> > ﬁj,k(g)\/Uj,kf’j,k(l — B3)E5.0s

J=10<k<2Kd—j

Kd
9):2 Z 6]k()]k7

7j=1 0§k<2Kd g

A(f) = X(9) = Z(9), A1(g9) = (X =Y)(9), Ba(g) = (Y = Z)(9).
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Claim 1: Elexp(tA;(h))1(A)] < H]K:dl [o<r<oris E[cosh(tgj’k(h)@ + f?k/él))] It then follows from the
proof of Lemma 2.2 in Rio (1994) that for all |¢| < 1,

Kd
log Efexp(11 (W) 1(4)] <~ ¢2 (Z > B?,km)) log(1 — 12).

J=10<k<2Kd—j

Proof of Claim 1: Denote F; = ¢ ({Elk J<I<Kd0<k< 2Kd_l}), for all 1 < j < Kd. In particular,
o ({Ul,k J<I<KdO0O<Ek< 2Kd*l}) C Fj. Then by Equation SA-4, for all ¢ € R,

5

0<k<2Kd—j

E | exp (t > Birle) (ﬁj,k - \/Uj,kﬁj’k(l _73j,k)gj,k>) 1(4)

<E H cosh (t@,k(g)(@gf—,k + 03)) 1(A)|F;

0<k<2Kd—j

Then we will use the same induction argument in the proof of Lemma 2.2 in Rio (1994): Call

Sj(t) == exp (t Yo Bir9) (ﬁm - \/Uj,kﬁj,k(l - ﬁmk)@k)) ;

0<k<2Kd—j
T;(t) == H cosh (t§j7k(g)(czf~]2»)k + 03)) .

0<k<2Kd—j

So Elexp(tA1)1(4)] = B [T} 85 (01(A)], T Tycpennas Eleosh(tBin(2 + E,/4)] = E [[[1< 751)).
By Equation SA-4, for all 1 < j < Kd,

Jj—1 J
E |0 [[n0ra)| 5| <E|[[noua)|z
=1 =1
It follows that
[ Kd Kd Kd
Elexp(tA1)1(A)] =E | [[ S;0)1L(A) | =E |E[Si(6)1(A)|FA] ] Si0)| <E|E[n@LA)A] ]S (t)]
J=1 Jj=2 j=2
: Kd Kd
=E |E[T()S:()1(A)|F] [[ S| <E BT 1(A)F] [ S| <
j=3 j=3
:Kd Kd Kd N N
<E|[[nwua)| <E|]] Tj(t)] = II  Eleosh(tB; x(h) (2 + cs))]
|i=1 j=1 j=10<k<2Kd—j

Kd
STT TI Elcosh(te,B; ()@ /4 +2)]

J=10<k<2Kd=

where in the last line, we have used independence of Ej,k 11 <j < Kdo<k< 2K Wlo.g, we will
assume that ¢,||g]|cc < 1. Since we know Ej,k, 1<j<Kdo0<k< 2K are i.i.d standard Gaussian, the
same upper bound worked out in Rio (1994) for the right hand side of the inequality also holds here, namely,
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for all t < 1,
33 Kd N
log Elexp(4tA1)1(A)] < — G E E ﬂfk(h) log(1 — t?) =: ha, (t) (SA-5)

j=10<k<2Kd—j

Claim 2: E[exp(tA3)1(A)] < Elexp(tc,As)] for all t > 0, where

Kd Kd
=5 3 B 1+Z ST 2R | 1(C, 2 Ci) | b€ La(X < R),
j=10<k<2Kd—j =5 0<q<2Kd—1

and ¢, is a constant that only depends on p.
Proof of Claim 2: Denote p; x = P(C; ). Then for any g € La(R%), we have

Kd
D= B </Tk B M)\/H%Pawkﬂg

j=10<k<2Kd—j

We will use the same strategy as in Rio (1994) adapted to the quasi-dyadic case: Fix 0 < j < Kd,0 <1 <
2Kd=3  we will denote by I) the unique integer in [0,25~!) such that C; 4, 2 C; . Then

Kd—1
/ Pjk Pjk
\/ﬁjrk - E[Uj7k] = Z \/Ul,kl o \/Ul+1;kl+1]
=5 D,k Pi41,kp 4y
Kd—1

Pj.k Pi41,k
= Z \/ 5 (\/ = Ul,kz —\ Ul+17kl+1) .
Pi+1,kp 4y Pk,

1=j

By Equation SA-4, when the event A holds,

DPi+1,ki 41
‘ Ul,kl - Ul+1,/€z+1
DLk,

‘Ul Ky

<
- Pit1,k
Voo Uikt /Ut

Pi+1,2k; Pi41,2k;+1 e
2\/7’ /Ui, |&1

. —1 77
-+ min {Co ,Ul,kl}

< Pi,k; P,k
\/%U Lk /U1 ks
\/m‘f min {0}
Dik, ki p’: :Hl U, Lk + Ul+1,kl+1
For the first summand,
Kd—1 Kd—1

Sep Y27 a/z‘ml’.

=y

Z\/ Dj.k 2\/pz+12kl+1 ‘fk
=5 Pi+1,kp4q D !
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For the second summand, we separate it into two terms as in Rio (1994),

=
Kd 1 Pk min c0 ,—Ul,kl} "
\/ P Pitikyyy l(Ul’kl <0)
l"rl k?H»l U kl —|— Ul+1,kl+1

Pi,kg

Kd 1 mln cy U, }
0 > L,k ~
,/p Pik LUk, <0) S cps
Lk U s — U, g AUt kg

since supg<,<, min{cy ', 2}/ (Vu+vu+z) $1

Kd 1 Pik min CO L0, kl}
PirL kl+l Ul Ky > O)
V Pi41,k1 41 Uik, + +/Uis1, ks
Kdl Dy [Pi4+1,k Di+1,k Di+1,k
k + + +1, -
= (1/Ul+1 P ) — Uik, < Upr gy, < ——Uik, + ¢ H

pl+1 kiy1 DL N DL N pl,kl

Kd 1
_ Dbjk
\/ DPi+1,k141
It follows that when the event A holds,

It then follows from induction argument similar to Claim 1 that for all ¢ > 0,,

Kd—1

I|<c, |1+ Z 9~ (=3)/ Z ‘a,q‘l(cl,q) 2Cjk

0<q<2Kd—l

E [exp(125)1(A)] < E expltc,A)] (3A-6)
Take ha,(t) = log (E [exp(tc,As)]) ,t > 0. Combining Equation SA-5 and SA-6, for any t > 0,
P(A; >t,A) < &r;%]P(exp(Alu) > exp(tu), A) < llg% exp(—tu)E [exp(Aju)1(A)]
< exp (— sg%( hAl(u/él))) = exp (— sup (tu + E;—cp||h||510g (1- u2/16)))

P(Ay >t A) < ir;fo exp(—tu)E [exp(Aqu)1(A)] < exp (— ili% (tu — ha, (u))) .

Since A3 only depends on Ej,k, 1 <j<Kdo<k<2K4d=7 it follows from Lemma 2.3 and Lemma 2.4 in
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Rio (1994) that for any h € X, for any ¢t > 0,
P (VAXAH) = 200 = eI+ 1+ VERD )
<P (\/E|Xn(h) — ZX(0)] = e [IInlEE + ep(1 + M)nhuoot,A) + P(A°%)
<P <|A1(h) + A (h)] > CﬂM* cp(1+ \/8@)||h||oot7A> +P(A°)

2
< 2exp(—t) + P(A°) < 2exp(—t) + 4 - 289 exp (— min {031 A 1} p_1n2_Kd> ,

Kd n
where [|[|3 = Zj:l ZOSk;<2Kd—.7' 1855 (h)|?- O

SA-I1.13 Proof of Lemma SA.8

Take £ := {h —mgc;(h) : h € H}. Then o := sup;c,||/l||px 2 < 0Mgc. Moreover, for all 0 < & < 4,

sup N (L, eq,eMyc) < N(e)N(8) < N(e)?,
Q

where the supremum is taken over all finite discrete measures. Hence fou \/ 1+ supg log N (L, [|-[|@.2, eMac)de <
2J (u, H,Mg¢) for all 0 < u < 6. By Theorem 5.2 in Chernozhukov et al. (2014), we have

My J2 (6, 3, Mgc)
RN

By Talagrand’s inequality (Giné and Nickl, 2016, Theorem 3.3.9), for all ¢ > 0,

E[[| X0 = Xn 0 ma¢, [[3c] S J (8, 3, Mac)Mge +

Mg JJ2(8, T, M M
P <||Xn — X, omygllac > C {J(é,fH,M;c)Mgc + W + Mg/t + \/‘%t}) < exp(—1),

where C' is an absolute constant. By Corollary 2.2.9 in van der Vaart and Wellner (2013),
E|Zn — Zn o mac,||9c]) < J (6, F, Mge )My
By pointwise separability and a concentration inequality for Gaussian suprema, for all £ > 0,
P (1|20 = Zn o ol = €' {7(0,3€,Ma0Mac + OMocv/E ) < exp(~1),

where C’ is another absolute constant. O

SA-I1.14 Proof of Lemma SA.9

Let h € H. Then almost surely, |h(x;) — Ooh(x;)| < min{2Mg¢, Lo, ||V|loo} =: Bg¢;. Then

E[lh(xi) — Toh(xi)[] = ) /C Ih(X)*QKd/c h(y)fx (y)dy|fx (x)dx

0<k<2Kd

< 3 [ e~ ) oy

0<k<2Kd
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Using a change of variable s = y — x and the fact that fx is bounded above, we have

E [[h(x;) — Toh(x;)]]

< Y 2Kd/

0<k<2Kd Co,x—Co,k

<Supfx > 2Kd// |h(x) — h(x + s)| dxds.
xeX

Let ¢ be a real-valued non-negative Lebesgue measurable function on R¢ such that fRd ¢(u)du = 1. Define
¢. = e %¢(-/¢) and h. = h * ¢.. Then

/c h(x +s)|fx(x+s) fx(x)1¢,, (x + s)dxds

lIsl]
/\h x+s)|dxfhm/ |he (x hg(x+s)|dx§liﬁ)1// (IVhe(x +ts/|s|])||dtdx
€ X JO
lIsll
< [ tim [ VRt sl < 5|7y,
o 0Jx

It follows that

2
E[lh(x) ~ Toh(x)l] < (sup fx(x) ) 2€m(0) VTV,

XEX

where in (1) we used Dominated Convergence Theorem, in (2) we used Lemma 1 in De Giorgi (1955) and

the fact that each Cy ; is a d-dimensional cube with side-length at most Agg4. It follows that

2
W[h(xz) — Hoh(Xi)] S min{2Mgg, Lj—cé ||VHOO} (sug fX(X)) 2Kdm(V)||V||OOTVg{5 =: Vg{J,Vh S j{é-
xE

Then by Bernstein inequality, for any ¢ > 0,

P (| X, (h) — X (Toh)| > t) < 2exp (_ st )

nVs¢, + $Bac,ty/n
1 L2y L1e2p
<%2exp|—-mind 2— —2 .
Gt )
1t2

Set u = %min{%, %} > 0, then either t = 2,/Vy¢,/uort = é}u Hence t < 2\/7\f—i-485{‘S

It follows that for any u > 0, P(|X,(h) — X, (Ioh)| > 2/Vag,v/u + 4BH§ u) < 2exp(—u). The result for
|1 Xn — X, o Tgllsc, then follows from a union bound. The result for ||Z, — Z,, o Ip]|5¢, follows from the
fact that Z,(h) — Z,(Iph) is a mean-zero Gaussian with variance V[X,(h) — X,,(Ip)] and a union bound

argument. ]

SA-I1.15 Proof of Lemma SA.10

We employ the same strategy as in the proof of Theorem 1.1 from Rio (1994), except noting that incorporating
Lipschitz condition can lead to tighter bound for strong approximation error.
For each 1 < j < Kd, there exists unique integers ji,...,jq such that 0 < 7; .<7a<j1+1and

<
Zle Jji = j. In particular, there exists a unique [ := [(j) € [d] such that either I < d — 1 and j; < ji41 or
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[ =d and jd < j1 + 1. Recall gj’k(h‘) = E[h(xl)|xz (S CJ‘,LQ}Q] — ]E[h(Xl)|XZ S Cj,1’2k+1].

B(h) = 2543 /

Cj—1,2k

— oKd—j /C | (h(x) - (2“‘]’ /C | h(y)fx(y)dY>> Fx(x)dx

_ 92(Kd—j) /C | /C | (h(x) = h(y)) fx (x) fx (y)dydx

h(x) fx (x)dx — 2503 / h(y) fx(y)dy

Cj_1,2k+1

_ p2(Kd—) / / (h(x) — h(x+ 8)) fx (%) fx (X + 8) L, pos (x + 8)dsdx.
Cj—1,28 VCj_1,28+1—Cj_1,2k

Since we have assumed f is bounded from above on X,

2
’gj,k(h)‘ < 22(Kd=j) (sup fX(X)> / / |h(x) — h(x + s)|dxds.
Cj_1,2k41—Cj—1,26 YCj_1,2k

xeX
Recall we define Uj = U0§k<2Kd—j (Cj—1,2k+1 — Cj—1,2k)~ Then

> \'B},k(h)] < (Sup fX(x)>222<Kd—j> /u/u |h(x) — h(x + s)|dxds.

0<k<2Kd—j xeX o<k<2Kd—jCj—12k

Then by similar smoothing argument as in the proof of Lemma SA.9,

Ih(x) = h(x +s)ldx < |5 TV (s

Uo<k<okd—jCi—1,2k

It follows that

2
5[] < (sup £09) 204D g ey Ty,

0<k<2Kd—j xeX

Alternatively, it also holds that

> [Bw] <2x | B0 fx (x)dx < 2K0IE,,.

0<k<2Kd—j I—IOSk<2Kd—(j—1)Cj—1,k

Moreover, |Ej,k(h)| < min{M¢py, |[Uj]lcLiny }, hence

Kd Kd
oY BiamP <> min{My,, [[Ujlloclac D> 1Bik(B)] < Rica (3€5),
j=10<k<2Kd—j j=1 0<k<2Kd—j

where Rxq (Hs) is defined to be

Kd 2
> min{Mse,, |UjllocLac; 12577 min { (SUI;( (X)) 22Dy | oom(Uy) TV, [|Uj oo Liges » Ese, } -
j=1 x€E
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Applying Lemma SA.5, for any h € Hs,for any ¢ > 0, with probability at least 1 — 2 exp(—t),

| Xy 0Ty (h) — zXx olp(h)| < 48\/Wt + \/Cﬂf«st
n n

The result then follows from the fact that Card(Hs) < N(4) and a union bound argument. O

SA-I1.16 Proof of Lemma SA.11

This follows from Lemma SA.7 and the same bound for ||g||s as in Lemma SA.10. O

SA-I1.17 Proof of Lemma SA.12

The first three equalities are self-evident. In what follows, we will use fz7(-|-) as a shorthand for the
conditional density fx,x,(|-) and use the notations fy = sup,cy [x(X), fy = infxex fx(x). Then

¢x is given by ¢ ¢ (u1, - ua) = (97 (W), g0, (u), -+ gut sy (Ua)), where g(x1) = Fi(z1) and

Gy, uir (i) = Fxj1x, ,Xi_l(l'i|gil(ul)7 cee ,g;ll’.._ ;o (ui—1)). Hence
1/ f1(x1) 0 0o - 0
V(;S;(l(u) _ * 1/f2|1(332|$1) o - 0 ue [0,1]d7
* * * o 1/ fapa—1(malme, - 2ao)
where (1, - ,xq) = qb)_(l(ul, -+ ,uq). But for any m € [n] and (x1,...,2,,) € I™, we have the relation

f[m](mb s amm) = f]d—m fX(xlv s Tmy u)du € [i)p?X]' Hence ||HV¢;(1||0PHOO < ?Xi;(l'

The second to last inequality follows from the fact that for any k € I, ||hod " |lLip < [|2/|Lip|l[[ VO % lop lloo-
To show the third inequality, take [ : R* — R to be a non-negative function such that [, [(x)dx = 1. For
any ¢ > 0, define I.(-) = I(-/¢)/e?. Define h. := h xI.. Then for any h € K,

= lim oot = lim 2! T =
Wiosyy =l [ V000 @lldn =t [ (V05 () The(o5 ()
—tim [ (Vo' (6x ()T Thi(0)] det (Vo (x)) dx
€ xEX

| ) 7
< hm/ [Vhe(x)[ldx - [det(Vox) oo - [[IVEx loplloo < TVyfx T
el0 xeX iX

Moreover, let C € R? be a cube with edges of length a parallel to the coordinate axises. Then (;5;(1 (C) is
contained in another cube C’ with edges of length at most 2v/d||||Véy'[|op||cca. Hence for any h € K,

s / ) div() )/ lzll o0 =iy /C IV (he 0 65)(w)]du

peD4(C

<lim /C 119k 0 63 )(@x (x)) | det(Vox (x)dx

< lim /CIIIVhs(X)IIdX [ldet(Vox)lloo - VX llopllos

<@VA)Hdet(Vox)lloo - IIVox lop | 2a®™ Ky,
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where we have used the definition of K¢,y in the last line. Hence

rd d
Ki < (2Vd)1fx <§X> K.
L X

SA-I1.18 Proof of Theorem 1

The proof proceeds by bounding each of the terms discussed in
160 — Z3¥ll3¢ < 11 Xn — X 0 7o, 3¢ + 1 X0 — Z s, + 123 0 mae, — Z3¥ [lc
and

1Xn = Z3 ll3cs < 1Xn = MoXanllag, + Mo Xn — Do Zy llac; + Mo Zy — Z5 llac,

and then balancing their contributions.
We first make a reduction via Rosenblatt transformation. Take u; = ¢x(x;) where ¢x is defined as in
Lemma SA.12. And define h = ho ¢ for each h € H and consider H= {E :h € H}. Then

Xo(h) = 5= SO hx) ~Bfhx)] = 7= S hw) ~ Bf(w)] = K, (B), ¥he .

Consider Ex that is an axis-aligned iterative splitting of depth K based on the law of u; as given in
Definition SA.2. By Lemma SA.4 and Lemma SA.12, Hu Hoﬁ U €&k is pre-Gaussian, hence by the argument
in Section SA-I1.3, on a possibly enlarged probability space there exists a mean-zero Gaussian process Z:X
indexed by HU HOJTC U €k such that with almost sure continuous sample path such that

E [2(9), 2 ()] = E | Xul9). Xu(f)], Vg, f € HUNH U Ex,

and Uj, = > € ,(x;) for all (4,k)’s. Let Hs be a oMz, = OMgc-net of H with cardinality no greater than

N (9).
s
Since u; o Unif ([0, 1]¢) and the cells Ax (P, 1) are obtained via axis aligned dyadic expansion of depth

K K

K w.r.p. to Py which is the law of u;, we have U; C [—-2~ i+l 9 Jj“]d. Then by Lemma SA.10, for

all ¢t > 0,
- R (H C~ -
P |[[Xn oMo — Z¥ ol 5, > 484/ Ric (s) , \ —22t| < 2N(8)e™,
n n
where
Hlin{TijC(SMjf(&,TVJTC(i LJTC(;}’ ifd=1,
Ric (Hs) < § min{25 V5 My, KTV Ly, ), if d =2,

min {25 =DV My 2KE@ITV Ly} ifd > 3.
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Moreover, from the bound on Ej,k from Lemma SA.10, we know for each (j, k),

Z ’53k <22(K D // h(x + s)|dxds
U JCj i

m:CL,m QCJ k

d—1 (.
%Ky < 277 U0k,

SQQ(K‘”/ Isl|K 5[ Cy k145 ds < 225D Vol ) [ o | C
20

It follows from the definition of C; that C;; < min{, /KM:Q?C, \/d3M5K5. }. For projection error, by Lemma SA.9,
for all ¢ > 0, with probability at least 1 — 2N (8)e ™

4min{2Mz Ly 27 K}

3/ b

X, — X oTo|ls¢, < \/4dm1n{2M 9-K}2-KTV, t+

J'f’f}f

ZX —ZX ol < ,/4d min{2M~ 2-K}2-K1vg t.
}C

‘}C’?{

We balance the previous two errors by choosing K = |d~!log, n| and get for all ¢ > 0, with probability at
least 1 — 2exp(—t),

_ — min{ K, d3K%} _
1 X0 — ZX |la¢, < min {M, 4\/M5, Ln,ay/L5; } \/(t + log Ny (6))dTVs, + |/ TM%@ +log N, (5)Ms..

Moreover by Lemma SA.8 we bound fluctuation off-the-net by, for all ¢ > 0,

IP[HXH - Xﬂ © 71-{]7(5”5( > C?n(ta(s)] S eXp(_t)v

P[ZX omg, — Z |z > CMzJ (8, H, Mz) + oMz vV1)] < exp(—t),
where

= ~ log(n)Mg; J%(8, 5, Mz,

Fr(t,8) i= J(6, 3, Mz )My 52f I 4 My Vi \F

The result then follows from the relation between H quantities and H quantities in Lemma SA.12 and the

decomposition that

X0 = ZXNlsc = 1 X0 = Z:llge < 11X = X 0 7z, llge + 1125 = Z2 0 mg,llse

+HIXn = Xn o Tollgz, + 1127 = ZY o Tollg,

+[| Xn 0T — ZX o Thol|5,.
where we have abused the notation to mean the same thing by ZX (k) and ZX (k). O

SA-I1.19 Proof of Theorem 2

Suppose 25K < L < 2K+1, For each | € [d], we can divide at most 2% cells into two intervals of equal measure

under P x such that we get a new partition of X' = Lij<;<ox+1A] and satisfies

maxp<j<ak+1 1PX(A;)

< 2p.
ming<;<or+1 Px(A]) ~ ’
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By construction, there exists an axis-aligned quasi-dyadic expansion Ag1(Px,2p) = {Cjr : 0 < j <
K 41,0 < k < 2K+1-7} such that

{Cop:0<k<28t} ={A]:0< 1< 2K}

and H C Span{la, : 0 < j < L} C Span{Co : 0 < k < 2571}, Now we consider the term Cy¢ from
Lemma SA.7. Let h € H. By definition of S and the step of splitting each cell into at most two, there exists
li, -+ ,lag € {0,--+ ,25+1 — 1} such that h = Ziil cqL(A],) where [cq| < Mny. Fix (j, k). Let (I, m) be an
index such that C;,, C Cjk. Since each A;q belongs to at most one C;—1 x, 5l7m(]l(A;q)) =0if A;q is not
contained in Cj ,,, and glm(]l(qu)) =271 if Aj, € Cip. Hence

28 25
S Bn®F <25y Y (chn(1(A,)’ <28Y o < ash 2,
m:Cr,m CCj ke q=1m:C; 1, CCj a=1

It follows that

Coyc=supmin{ sup | Y (i —0G—I1+1277 Y BE(h)| M (K +1) 3 SM3 min{K, S%}.
hex (j’k) 1<j m:Cl,mgcj,k

Then apply Lemma SA.7, we get there exists a mean-zero Gaussian process Z;X with the same covariance
structure as X, such that with probability at least 1 — 2exp(—t) — 2K+ exp(—C,n2-K-1),

IK+2M. E in{ K. S2
||Xn - Z'I)L(”g{ < 6?%%111) {Cp\/nﬁg{(t + log Nﬂ{(5)) + Cp\/mm{n’S}MH(t + log NS}C(‘S))

R0,
where K < log,(L). O

SA-I1.20 Proof of Corollary SA.1

Take § = n~/2. Under the VC-type class condition, logNgc(n~!) < log(cac) + dac log(n) < dgc log(cacn),
where the last inequality holds since cg¢ > e and dg¢ > 0. This gives

M
A, (t, n_1/2) < mn,d\/dcl(t + dg¢ log(cgen))Myc TV + min {\/log(n)Mgc, \/d3C3K}(}1 s (t + dgc log(can)).
n

Moreover, J(6,H,Mg¢) < f05 V/1+ dgc log(caee1)de < 3654/dgc log(cac/d). It follows that

M M
Fo(t,n™1/?) < %dw log(cacn) + i;wn t).

7

The result then follows from Theorem 1. O

SA-11.21 Proof of Corollary SA.2

—1/2

The result follows by taking § = n and apply Theorem 1, with calculations similar to Corollary SA.1. [
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SA-I1.22 Proof of Corollary SA.3

Under the polynomial entropy condition, log Ng¢(8) < agcd %, J(,H,Mgc) < \/agc(2 — bgc) Lo —bre/2+1

An(t7 (5) < min{mn,d\/ Mg, In,d\/ CQL}(}\/TV}((t + ag{§*bﬂ) + 1/ Mi min{\/ log ny/Mgc, / d3C3Kj-( =+ Mg—(}(t =+ ag}(é_b“),
n

Fo(t, ) < age(2 — ba) 2 (Mgcéb“”“ + M—\%d*"ﬂ + Mg\t + M"Zt)

7

Notice that the two terms %5“’9{ and Mﬁt in F,(t,0) are dominated by terms in A, (t,6). And when
8 < n~1/2 the third term Mg/t is also dominated by terms in A, (t,9). To choose § that balance A,, and

F.., we consider the following three cases:

Case 1: Choose ¢ such that my gv/MgTVg 6705 =< Mgc6~P3¢/2+1  Notice that this choice also makes

Macv/t < 1/}%min{\/logn\/Mg{,\/d3C3Kg{ + Mg }(t + agcd~P). Plug in 0, = my, 41/TVg¢/Mgc into A, we
get A, (t,6x) + Fr(t,0,) < Sbdd(3).

Case 2: Choose 0 such that |, g4/LycTVgd—P% < Mg P2¢/2+1  Again, this choice of § makes dMgcy/t <

,/M%min{\/logn\/Mg(,\/d3C3K;C+M;C}(t + agcdP%). Plug in §, = |n7dw/L%TV(}(/M§{ into A,, we get

Case 3: Choose § such that Myen=1/2672% =< Mgcd2%/2+1 Plug in 0, = n~ /52 we get A, (t,8,) +
Fu(t, 5.) < SC7(2).

O
SA-I1.23 Proof of Corollary 1
The result follows from Corollary SA.1, taking t = logn. O
SA-I1.24 Proof of Corollary 2
The result follows from Corollary SA.2, taking ¢ = logn. O
SA-I1.25 Proof of Corollary 3
The result follows from Corollary SA.3, taking ¢ = logn.

O
SA-11.26 Proof of Corollary 4
The result follows from Theorem 2, taking § = n~=% and t = log n.

O

SA-I1.27 Proof of Example 1

Define H = {hy : x € X} where hy(-) :== b2 K (b~ (x —-)). Since K is compactly supported and Lipschitz,
| K]loe < 00. Hence Mg = b~ % || K [|os < b~%2 and Ly < b*%*L{K} < b~ %1, Since sup, v Vol(supp(hy)) <

~
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b? and each hy is differentiable, TVs¢ < supyey Vol(supp(hx))Lac < b2~!. To upper bound Kg¢, consider the
following two cases: (i) If a < b, then

sup sup / () div(6) (W /| ]zl]oo < Linsy S VOlC)Lae S b8 "a? < b/2a1,
XEX peD4(C)

(i) If @ > b, then

sup  sup / (1) div(6) (w)dx/||[[¢]|2]| o S sup Vol(Supp(hse))Lac < b5~ < o271 b 2ad
XEX $€D 4(C) xEX

This shows Kg¢ < b5, Next, by a change of variable,

Egc = Sup/ b2 K (b (x — u))|fx (u)du = Sup/ b2 |K(z)|fx (x — hz)bldz < b2
xeX JRA Rd

Now define gx(:) = b*%Mg_{lK() for all x € X. Then M/ H = {g«(%~) : x € X'}. Then there exists a
constant ¢y only depending on || Ko, L{x} that

sup ng”oo S Ck,
xeX

|9x (1) — gx (V)]

sup sup s Ck,
xeX u,veX ||u_v||00
sup sup |gx (1) — gy (u)] <k,
X, yEX uex % — ¥lloo

we can apply Lemma 7 from Cattaneo et al. (2024), which is modified upon Lemma 4.1 from Rio (1994), to
show that for all 0 < e < 1,

N(e,My!5H) < exe 1+ 1.

Then, by Theorem 1, on a possibly enlarged probability space, (£,(x) : x € X) admits a Gaussian strong

approximation with rate function

Sp(t) =s, (d+1)1ogn+\/l id (t+ (d+1)logn).

To leverage the Lipschitz conditions, observe that

(KOG (x—u) - K@ H(x—v))|

13{:b_% sup sup ,Sb_%_l.
XEX u,veX ”u_v”OO
The result then follows from Corollary 2. O

SA-11.28 Proof of Example 2

Define a kernel function k(-,-) : X x X = R by

\FZ (ueA)l(xeA),u,xeX.

o<i<J
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Define X = {k(-,x) : x € X}. Then Card(X) < J and

Mg{ﬁ\/j,

Ex < max ]PX (Al) - Mgc < pJ_l\/j < pJ_l/Q.
0<i<J

Moreover, each function in X can be written ¢1(A;) for some | < J, which implies we can take S = 1. The

result then follows from Theorem 2. O

Lemma SA.13 (Product of VC-classes is a VC-class). Suppose F and S are classes of functions from a
measurable space (X, B) to R with envelope functions Mg and Ms, respectively. Then

supN(ff X S,M(,"Mg,é) < N§(5/2)N3(5/2), Vo< <1,
Q
J(F x 8, My Ms, ) < V2J(F, My, 5/V/2) + V2J(S, Ms,6/V?2),

where supp and supg, are taken over all finite discrete measures on X.

Proof. Let f, f1 € F and s,s1 € S. Let Q be a finite discrete measure on (X, B(X)).

/ i1 — fass[2dQ < / i — FaPM2dQ + / 51 — 822M2dQ
= /|f1—f2|2dQs/M§dQ+/|s1 —sz\deF/MﬁdQ,

where dQgs = M32dQ/ [ M3dQ and dQp = M3dQ/ [ M2dQ. Take F.
|| M| g,2-net of F and e||Mg|| o 2-net of S with minimal cardinality. Then for any f € F, s € S, there exists
fo € Feypya, . and so € Scsjo,. » Such that [|f — follpeo S €%IMpll%, 5 and [|s — sol|%,. 0 < €2|Ms]|g, o
Hence || fs — fosoHa2 < 25||MFMS||2Q’2. It follows that

IMrllog.. a0d Sejns)o,.. tO be

§

J(F x 8, MpMs,b) S/ \/1+logsgpN(fﬂ I-lle2, el Mp| Q,2/\/§)+10gsgpN(MSa||'||Q,2>5||S||Q,2/‘/§)d5
0

<V2J(F, Mp,6/V2) +V2J(S, Ms,5/V2).

O

Lemma SA.14 (Covering Number using Covariance Semi-metric). Assume F is a class of functions from a
measurable space (X, B) to R with envelope function Ms. Let P be any probability measure on (X,B). Then
forany 0 <e <1,

N, |- p2,ellMs p2) < Ng(e).

Proof. Let X1, Xs, ... be asequence of i.i.d random variables with distribution P. Define Qn = % Z;V:l Ox;-
Define H = {(f —¢)*: f,g € F}U{Mp}. Then for all 0 < e < 1,

SlépN(Hv Il ellMEl o) < StépN(H, Il ellMElloz2) < SZPN(?, Il ellMrllo.)?

By Theorem 2.4.3 in van der Vaart and Wellner (2013), #H is Glivenko-Cantelli. Let 0 < ¢ < 1 and § > 0.
Then there exists N € N and a realization z1,...,zx of X1, ..., X such that if we denote Py = % Zf\il O, s
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then for all f1, fo € F,

[If1 = f2llpo = 11 = follB, 2| < 8% | MFp|3.,,

[|MF| p2 — [|MF| < S| MF| pe-

P2

Since P, € A(X), there exists || M| p,-net, §, of F with minimal cardinality such that for all f € F, there
exists fo € F such that ||f — follp,2 < el|MFllp, 2 < e(|Mrl|lp2+ 0| Mr|lp2) < (1+0)e||Mp| p2. It follows
that for all f € F, there exists g € G such that

If = gllp2 <|If —gllp.2 +IIf = gllp2 = If = gllp, 2| < (1 +20)e|[Mp]p2,
Hence
N(T, -l p2.elMrllp2) < Sup N(T, |-l ez elMrllo2/(1 + 26)).
Take 6 — 0 and we get the desired results. O

SA-III Multiplicative-Separable and Residual-Based Empirical Pro-

cess: Proofs

Assumption SA.1. Suppose Assumption B holds with X = [0,1]%. Denote by P the joint distribution of
(xi,9:), Px the marginal distribution of x;, Py the marginal distribution of y;. Suppose the following two

conditions hold.
(i) G is a real-valued pointwise measurable class of functions on (X,B(X),Px) such that J(G,Mg,1) < 0.

(ii) R be a real-valued pointwise measurable class of functions on (R, B(R),Py) such that J(R, Mx,1) < co.

Furthermore, one of the following holds:
(a) Mg <1 and pTVq S 1, and set « =0, or
(b) Mx(y) < 1+[y|*, PTVg (_jyp,yy S LH|Y|* for ally € R and for some a > 0, and supyc x Elexp(y;)[x; =

x] < 2.

Assumption SA.2. Suppose ((x;,v;) : 1 <i <n) are i.i.d. random vectors taking values in (X x R, B(X x
R)), X C R?. Denote by P the joint distribution of (X;,v:), Px the marginal distribution of x;, Py the

marginal distribution of y;. Suppose the following conditions hold.

i) G is a class of functions on (X,B(X),[Px) such that Mg < 0o and § C Span{la, : 0 <1 < L}, where
S 1
{A;:0 <1< L} forms a quasi-uniform partition of X in the sense that

maxo<i<r, Px(A;)

X CU A and ,
C Uo<i<rnB mingeio1 Px (&)

< p < oo.

In addition, J(G,Mg,1) < co.

(ii) R is a real-valued pointwise measurable class of functions on (R, B(R),Py ), such that J(R, Mz, 1) < oo.

Furthermore, one of the following holds:

35



(a) Mz <1 and pTVq S 1, and set a« =0, or

(b) Mx(y) < 1+[yl* PTVg (_jyp,ppn S LH|Y|® for ally € R and for some a > 0, and supy¢ x Elexp(y:)[x;

x] < 2.

SA-III.1 Cell Expansions

Definition SA.3 (Cylindered Quasi-Dyadic Expansion of R?). Denote by P the joint distribution of (X,Y).
Let p > 1. A collection of Borel measurable sets in Rt CunP,p) ={Cjr:0<k< 2M+N=j 0 < j <
M + N} s called a cylindered quasi-dyadic expansion of R4+ with depth M for the main subspace R and
depth N for the multiplier subspace R, with respect to IP, the joint distribution of a random vector (X,Y)

taking values in R? x R, if the following two conditions hold:

1. Forall N <j<M+N,0<k<2M+*N=i_ there exists a set Xi_ngk C RY such that Cik=Xj_nrxR.
Moreover, the class of projected cells onto the main subspace RY, px[Cprn(P,p)] := { X : 0 <1 <
M,0 <k < 2M=1Y forms a quasi-dyadic expansion of R% of depth M with respect to P x, the marginal
distribution of X.

2. For all0 < j < N, 0 < k < 2M+N=J take I,m to be the unique non-negative integers such that
k = 2N7I] 4+ m, then there exists Vijm € R such that Cj = Xog X Vi jm. Moreover, for each
0<1<2M, DVijm :0<j<N,0<m< 2N_j} forms a dyadic expansion of R with respect to the
measure P(Y € -|X € Xy,).

When p =1, Car,n(P, 1) is called a cylindered dyadic expansion.

Definition SA.4 (Axis-Aligned Quasi-Dyadic Expansion of R%). A collection of Borel measurable sets in
R Ay n(Pyp) = {Cjk: 0 < k < 2M¥N=3 0 < j < M+ N}, p > 1, is called an axis-aligned cylindered
quasi-dyadic expansion of R4, with depth M for the main subspace R? and depth N for the multiplier
subspace R, with respect to IP, the joint distribution of (X,Y) taking values in R? x R, if the following two

conditions hold:

1. Ay n(P,p) is a cylindered quasi-dyadic expansion of R4*Y, with depth M for the main subspace R?
and depth N for the multiplier subspace R, with respect to P.

2. px[AmM NP, p)] ={X:0<I<MO0<Ek< 2M_l} forms an axis-aligned quasi-dyadic expansion of
R? of depth M with respect to Px, the marginal distribution of X .

When p =1, Ay n(P,1) is called an axis-aligned cylindered dyadic expansion.

SA-III.2 Projection onto Piecewise Constant Functions

Due to the multiplicative-separable structure of g(x;)r(y;), we tailor a mapping other than Lo projection
from the space Ly(R%*1) to the space of piecewise constant functions on {Cop 1. : 0 < k < 2M*+N} calling it
the product-factorized projection. This is a technical point that makes the analysis in Lemma SA.19 easier.

First, we define the ”projections”. For a cylindered quasi-dyadic expansion Cps,n (PP, p) where IP is the
joint distribution of (X,Y), the product-factorized projection from La(R4TY) to Epn := Span{Cor =
Xoy X Viom :0<1<2M0<m <2V k=2N]+m} is given by

0 (Cor v (P, p))1g: 7] i= yareno(gs emino + Y > Ailg e (SA-T)
1<j<M+N 0<k<2M+N -3
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where €ik = ]l(Cch) and gj,k = ]l(Cj,LQk) - H(Cj,1’2k+1) and

E[g(X)r(Y)|X € &;_nil, if N<j<M+N,

’7',]@(9,7") = j
’ Elg(X)|X € Xo4] Elr(Y)|X € Xo1,Y € Vioml, ifj<N,k=2V"]+m,

and ¥, (9, 7) = vj—1,26(9,7) — Vj—1,26+1(g, 7). We will use II; as a shorthand for I; (Cas,n (P, p)). The Haar
basis representation on the right hand side of Equation SA-7 recovers the left hand side by adding up layers
of more and more local fluctuation. However, at the bottom layers (1 < j < N), the local fluctuation is
characterized by a product-factorized projection E[g(X)|X € Xy,;] - E[r(Y)|X € X;,Y € Vi,0.m), instead of
E[g(X)r(Y)|X € Xo,1xVi,0,m]. This makes I (Cas,n (P, p))[g, 7] in general different from Oy (Cas n (P, p))[g-7].

For the residual empirical process, we define a new projection that adds up the product-factorized pro-
jection for g - r and the Lo-projection for g - 6(-,7): For all (g,7) € La(R?) x La(R),

0o (Cov,n (P, p)lg, 7] := W (Cor v (P, ) g, 7] = To(px [Car, v (P, 2)]) 96, 7)), (SA-8)

recalling that §(x,7) = E[r(Y)|X = x],x € R% This projection can also be represented in Haar basis as

o (Car,v (P, )9, 7] = masno(gsm)enrsno + Y S @)
1<j<M+N 0<k<2M+N-—j

where for all g € Ly(RY), 7 € La(R),

: 0, if N<j<M+N,
nd:k)g.) = o | (SA-9)
Yik(g,r), ifj<Nk=2N"I1+m.

We will use Iy as a shorthand for Hy(Cas, v (P, p)).

Now we define the empirical processes indexed by projected functions. By slightly abuse of notations,
denote by (X, (f) : f € F) the general empirical process based on random sample ((x;,4;) : 1 < i < n),
F C Ly(R¥1Y). That is, X, (f) :== n V230 (f(xi, ) — Blf(%i,v:)]), f € F. Then for any g € La(R%),
r € La(R), we define

Han(g,r) =X, 0 Hl(gﬂ“),

Mo M, (g,7) := Xpn o To[Car, N (P, p)](g7), (SA-10)
MR, (g,7) = X, 0Tla(g,7),

Mo Ry (g,7) == Xn o To[Car,N (P, p)](97) — X 0 o (px [Car,n (P, p)])[96(-, 7)),

where Iy (Car,n (P, p)) and My (px [Car, v (IP, p)]) are the La-projections based on cells Cps v (P, p) and px [Car N (PP, p)],
respectively (Equation SA-3).
SA-III.3 Strong Approximation Construction

Lemma SA.15. Suppose Assumption SA.1 or Assumption SA.2 hold. Suppose Cprn(P,p),p > 1 is a
cylindered quasi-dyadic expansion of RTY of depth M in the dimension of R? and depth N in the dimension
of R with respect to P. Then, (§x R)U (G x V) U1 (G X R)UT2(G X R)U Eprqn s P-pregaussian.

The construction essentially follows from the arguments in Section SA-I1.3. We start with a Gaussian
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process indexed by (G x R)U (G x V) U1 (G x R)UM(G x R) U € pr4 v with almost sure continuous sample
path, and take conditional quantile transformations of Gaussian process indexed by l¢, , to construct counts
of (x;,y;)’s on the cells C; x’s. By a Skorohod embedding argument, this Gaussian process can be taken on

a possibly enriched probability space. More precisely, we have the following

Lemma SA.16. Suppose Assumption SA.1 holds. Suppose p = 1. Then on a possibly enlarged probability
space, there exists a Brownian bridge B, indexed by F = (G X R) X (§ X V) U1 (G X R) U (G X R)UEpran

such that that is mean-zero with almost sure continuous sample paths such that

E[B.(f), Bn(g)] = Cov

-~ 1 &
\/ﬁ;f(xivyi)v\/ﬁ;g(xiayi)]y f,gEF,

and for any finite class of functions F C Epryn and any x > 0,

P | sup
fesx

where || flle ;. x and Cgsy are defined in Lemma SA.5.

Z fi,yi) = VnZu(f)

=1

> 24,/ ||f||%M+Nx +4, /C{f}x> < 2 Card(F) exp(—z),

Lemma SA.17. Suppose Assumption SA.2 holds. Suppose p > 1. Then on a possibly enlarged probability
space, there exists a Brownian bridge B,, indexed by F = (G X R) x (§x Vr) UM (G X R)UM(G X R)UEprqn

such that B,, is mean-zero with almost sure continuous sample paths such that

E[Bn(f)aBn(g)] = Cov [;ﬁ ;f(xmyz)a % ;g(xmyz)] ) fag € -Fv

and for any finite class of functions F C Epryn and any x > 0,

P (fvlég > Cor/IIfIIZ,,, @+ Coy C{f}$>

< 2Card(¥F) exp(—z) + 2M* 2 exp (—C,n2~M) ,

n

Z f(xiayi) - \/ﬁZn(f)

i=1

where C, is a constant that only depends on p.

The above two lemmas allow for constructions of Gaussian processes and projected Gaussian processes
as counterparts of the empirical processes in Section SA-IIL.2. In particular, we take ZM mZM ZE n,7E

to be the empirical processes indexed by G x R such that for any g € G, r € R,
Zg/[(gﬂ') = Bn(gr)v ley(gﬂ”) = Bn(nl[g7r])7 Zf‘(g,r) = Bn(g(r_e('7r)))7 H2Z§(g77ﬂ) = Bn(n2[97r])'

SA-I11.4 Meshing Error

For 0 < ¢ < 1, consider the (0Mgxx)-net of (§ x R,ep), with cardinality no larger than Ngxx(4): Define
T5xR)s - IX R = GxRsuch that ||mgxx),(h)—h|lp2 < Mgxx for all b € G xR, where [P is the distribution
of (x1,y1) satisfying Assumption B.
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Lemma SA.18. Suppose Assumption SA.1 or Assumption SA.2 hold. For allt >0 and 0 < § < 1,

]P[”Mn - M, o77(9><92)5||9xﬂ1 + ”Zfzw OTM(GxR)s — 711\/[H9><32 > ClCaFn(t»(s)] < exp(—t),
P[[|Ry — Ry o T(gxm)sllgxk + |20 0 T(gxm); — Znllgxx > C1CaFn(t, )] < exp(—t),

where Cp, = 14 (2a)% and

(logn)*/*MgJ%(5)

_ Mg oM a
F,.(t,6) = J(6)Mg + /n + \/ﬁtJr(logn) \/ﬁt :

SA-II1.5 Strong Approximation Errors

Lemma SA.19. Suppose Assumption SA.1 holds. Let Cpr,n(IP, p) be a cylindered dyadic expansion with
p = 1. Suppose (G x R)s is a d-net of (§ X R,ep) with cardinality no greater than Ngyx(8). Then for all

t>0,
N2a+12ME M C -
IP[Hnan — I Zn | () > Clca\/—”u C1C, {(2’ )}t < Mgyn (e,
N2a+12ME M C -
IP[Ilﬂz — 2y || (gxm); > C1C. \/—95’t+01 Car/ {(g’ )} < Mgyn(d)e™,

where C1 > 0 is a universal constant and Co = 1 + (2a)*/2,

Lemma SA.20. Suppose Assumption SA.2 holds. Let Cprn (P, p) be a cylindered quasi-dyadic expansion
with p > 1. Suppose (G x R)s is a d-net of (G x R,ep) with cardinality no greater than Ngxx(8). Then for

allt >0,
| N2a+19ME M Cigr
IP|:||H1M7L 7H1ZTJLW||(9><:R)6 > (1C, —Sgt+010a {(97 )}t

< Wgyx(d)e " +2Mexp (-C,n2~ M

N2a+12ME M
[||n2R —Z|(5xm)s > C1Cat/ A i PR o N/ \/

< Wgyx(8)e " +2Mexp (—C,n2~M)

where C1 > 0 is a universal constant and Co, = 1 + (2a)*/2,

SA-III.6 Projection Error

The projection error can be decomposed into two parts: One captures the distance from the original function
to the Ly projection, which we call the Lo-projection error, the other captures the distance between IIy, Iy

and Iy, which we call the misspecification error.
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SA-III.6.1 Mis-specification Error for M,-Process

Lemma SA.21. Suppose Assumption SA.1 or Assumption SA.2 hold. Let Cprn(IP,p) with p > 1 be a
cylindered quasi-dyadic expansion. Let 7 > 0. Define v, := 7’]1([77%,75]). Then for any g € §,r € R,

E (HlMﬂ(ga TT) - HOMn(g7 TT))2:| < 2(1 =+ p)T2N2V97
2
Vg := min{QMg,L9||VHOO} (sup fx(X)> 2Mm(V)||VHOOTV9

SA-II1.6.2 Ls-projection Error for M,-Process
Lemma SA.22. Suppose Assumption SA.1 or Assumption SA.2 hold. Let Cprn(IP,p) with p > 1 be a
cylindered quasi-dyadic expansion. Let T > 0. Define v, := 7‘]1([—7'%,7'%]). Then for any g € §,7 € R,

E [(HOMn(g,rT) — Mn(g,rr))ﬂ <2 (2_N72Mé +(1+ p)72V9) .

SA-II1.6.3 Projection Error for M, -Process

Combining Lemma SA.21 and SA.22, we can bound the projection error through a truncation argument.

Lemma SA.23. Suppose Assumption SA.1 or Assumption SA.2 hold. Let Cprn(P,p) with p > 1 be a
cylindered quasi-dyadic expansion. Then for allt > N,

1 M
1P[||Mn — L My, gxmys > \/cza\/a +p)N2Vg +2-NuZtots 4 ca\/iﬁtaﬂ] < 4Ngyn(8)ne,

1 M _
IP[HZiW ~ W Zy" (gxm)s > \/Cza\/(l + P)N2Vg + Co2 - NMt2 +Ca%t} < ANgxx(d)ne™,

vn

where Cp = 1+ (2a)% and Oy = 1+ (4a)®.

SA-IT1.6.4 Projection Error for R,-Process

The projection error for R,-process can be built up upon the error for M, -process and the observation that

Han(g,T) - Rn(gvr) = (Han(g,’l") - Mn(gvr)) - (HO[PX(GM,N)]Xn(Qe('»7“)) - Xn(ge('vr)))v

MoZ1(g,7) = Zi(g,7) = (M2 (9.7) = Z2(9,7)) = (Molox () Z¥ (98-, 7)) = Z¥ (98(-,7))),

where in both lines, the first bracket is a projection error for an M,-process that has been studied in
Section SA-III.6.3, and the second bracket is a projection error for an X,,-process that has been studied in
Section SA-IL.5.

Lemma SA.24. Suppose Assumption SA.1 or Assumption SA.2 hold. Let Cprn(P,p) with p > 1 be a
cylindered quasi-dyadic expansion. Then for all t > N, with probability at least 1 — 4Ngxx (§)ne™t,

1 1 M
IR, — H2Rn||(9><9%)5 S/ Vgxvgt? + v/ Cza\/(l + p)N2Vg + Q_NM%,ta+2 + Cajgﬁta+l,

M
12 — W2 (g xm)s S VVgxvat® + \/Cza\/(l + p)N2Vg + 2~ VM2 t2 + Ca\/—%t,
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where
2
Vv = (v Lva Vo) (500 7)) 2m(V) VTV v
pS

Lemma SA.25 (Covering Number of Conditional Mean). Suppose (X,Y) is a random variable taking values
in R* x R and S is a class of measurable functions from R to R. Consider Vs = {vs : s € S}. Then for all
0<e<l,

sup NVs, [-l@a2:ellvsllez2) < Sup N(S, [l ellsli@.2),

where sup is taken with respect to all finite discrete measures.

Proof. Let Q in be a finite discrete measure on R%. Let 7,5 € S. Define a new probability measure PonR
by

P(A) = /E[l((zi,yi) € R% x A)|z; = 2]dQ(z), VA C R%.

Then [|S|dP < Jpa. BS(ys)|z: = 2]dQ(2) < oo since sup,, ¢ . ||[mlse < 0o. Hence P e AR). Let r,s € S.
Then

/|m7 — My dQ</ Ellr(yi) — s(yi)|?*|z: = 2]dQ(z) /|7‘—s| dP.

Here P is not necessarily a finite discrete measure, but by similar argument as in Lemma SA.14, there exists
S. C S with cardinality no greater than supg N (S, ||[|g,2,/|S]l@,2) such that for any s € S, there exists
r € S such that [|r — s[|5, < €[|S||5,- Hence |[m; —msllg2 < €||S|5, = ellms| g,2. This implies that for
any 0 <e <1, /

Sup N(Ms, [-llQ.2:€llmslle.2) < Sup N(S, [Ill€llSlle.2)-

SA-II1.7 Proof of Lemma SA.15

By the entropy integral conditions on § and R and Lemma SA.13,
J(G X RMgMp, 8) < V2J(G, Mg, 6/V2) + V2J(R, Mg, 6/\/2).
Claim 1: There exists Cy > 0 such that for all 0 < § < 1,
J(M(G x R),CaMgN*, §) < J(G x R,Mg MR, 9).

Proof of Claim 1: Under condition (a), supycx E[exp(Y)|X = x] < 2 and |Mg(¢)| < 1+ |t|* for some
constant a > 0. By Step 2 in Definition SA.3, maxo<;<om+~ E[exp(y; /(N log2))[x; € Co,] < 2. Hence

max sup E[|r(y;)||(xi,v:) € Cou] <14+ max  E[ly|%x; € Coy] S 1+ (2NVa)%, (SA-11)

0<I<2M+N L cqp - 0<I<2M+N
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Hence
o (g7)lsollgx® < CaMgN®,  Co =1+ (2v/@)*. (SA-12)

Under condition (b), Mg < 1. Hence Equation SA-12 holds with @ = 0. Hence Let @ be a finite discrete
measure. Let f,g € § x R. Then by definition of IIj,

IMof —Togld. < Y. QCox) @YY [ f—gdP)’< Y Q(Cox)2™tN / (f — 9)%dP.

0<k<2M+N Co,k 0<k<2M+N Co,k
Define a measure Q such that for any A € B(R? x R), Q(A) = > o<ncomin Q(Cor)2MTNP(ANCo ), then
Mo f — Mogllgy o < IIf — 9“2@’2

By Lemma SA.14, there exists an §C,MgN®-net £ of § x R with cardinality no greater than supg N(§ x
R,eq,d||Mg x Mg||), sup taken over all finite discrete measures on (R B(R*1)), such that for all f €
IIo(G x R), there exists g € £ such that

1 = gl13 , < 2IMaMr]3 , < 62(CakigN)2.

The claim then follows.
Claim 2: There exists C, > 0 such that for all 0 < § < 1,

JII1 (G x R), CoMgN“,8) < J(G x R,MgMx,6/3) and J(II2(G x R), CoMgN*,6) < J(G x R,MgMp,d/4).
Proof of Claim 2: Suppose P is a mapping from B(R4™) to [0,1] such that

P(E) = mf{ > ) E(X €A)X €] -E[LY €B)X € X1, Y € Viom :

0<i<2M 0<m<2N

ECAxB/AcBRY),Bec B(R)}.

It is easy to verify that P defines a probability measure on (R x R, B(R% x R)). Recall €y is a collection
of cells {Cj:0<j< M+ N,0<k<2M+N} where Cj, = Xj_nx x Rif j > N. Take Cpr0 = {Cj: N <
JEM+N,0<k<2MtN=31 Tet g€ G,r € R.

My [Car, N (P, p)](g,7) = 1 [Car0 (P, p)I(g:7) + T [Car, N (P, p)](g,7) — H1[Chr0 (PP, p))(g,7)
= TIo[Car,0(P, p))(g7) + Io[Car,n (P, p)](97) — To[Caro (P, p)](gr),
H2[GM7N(IP? p)](gv T) =1 [GM,N(IPv p)](g7 T) - HO[GM70(IPa p)](.ge('v T))

Since |[Io[Carn (P, p)]llgxx < CaMgN®, the previous claim applies not only to J(Ilo[Chsn (P, p)](§ X
R), CaMg N, §) but also to J(Io[Car.n (P, p))(G x R), CaMgN®,§). Then Claim 2 follows from Claim 1.
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Claim 3: There exists C, > 0 such that for all 0 < § < 1,
J(G x Vg, CiMgy/Caq, 8) < V2J(G,Mg,8/V2) + V2J(R, MR, 5/V?2),
(' is some absolute constant.

Proof of Claim 3: Let Q be a discrete measure on R?. Take @ be the measure on R? x R such that
QNQ(E) = /d E[1((x1,y1) € E)|x; = x]dQ(x), E € B(RY).
R L

Take @y to be the marginal of @ on the last dimension. Then for any r1,re € R such that ||r; — TQH@Y 5 <

ev/Caq, we have
0(-r1) — 0('#‘2)”2@,2 = /Rd IE[r (yi)|xi = x] — E[ra(y:)|[xi = X]|2dQ(X)
< [ Blraw) - r2l0) P =x1dQ00 = [ [ (r10) = 72(0)*d00x.0)
Rd R4 JR
—lra = rally, < IMal, , = [ B{Ma()?xs = XdQ() £ Can.
s Y R4
It follows that J(Vx, C1v/Caa,0) < J(R, My, d), where C; some absolute constant. Hence
J(G x Vg, CiMg/Caq, 0) < V2J(G, Mg, 8/V2) + V2J(R, MR, 5/V/2).

Moreover, {e;\ : (j,k) € J)} has cardinality 2N, Tt follows from pointwise separability of § and R and
Corollary 2.2.9 in van der Vaart and Wellner (2013) that (G x R) UTI;(G x R) UTIz(G x R) U Eprgnv s

pre-Gaussian. O

SA-II1.8 Proof of Lemma SA.16

The result follows from Lemma SA.5 with (x;,y;) replacing x;. O

SA-IT1.9 Proof of Lemma SA.17

Define
A={|U;x| <c1Ujp, forall N <j < M+ N,0 <k < 2M+N=i},

Since in Definition SA.3, {V; jm : 0 <j < N,0<m < 2N=7} is a dyadic expansion, we can apply Tusnady’s
Lemma (Bretagnolle and Massart, 1989, Lemma 4) and Lemma SA.6 to get whenever A holds,

~ - P(Cj120)P(Ci12k41) & P
Uj i \/Uj,k e S| < 285y +cs,

- P(Cj—1,00)P(C; _ |
’Uj’k‘ S 1/CO+2\/ ( J 1,;;()6 ( )32 1’2k+1)Uj’k|§j,k|, Vl SJS M+N,O§ k < 2M+N—].
Jik
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And similarly as in the proof for Lemma SA.7,
2
P(A°) < 42M exp (— min {31 A 1} p_1n2_M> .
The rest of the proof follows from Lemma SA.7 by replacing x; with (x;,y;). O

SA-II1.10 Proof of Lemma SA.18

By Lemma SA.13, for any 0 < < 1, supg N(G x R, [|-][@.2,0[[MgM=z||q,2) < N(d) and J(4,G x R, Mg M)
J(0). By definition [|7(gxr);h — hllp2 < 6[|MgMn|[p,2, where P is the joint law for (x;,y;). Take £ =
{h = 7mgxr);h : h € § xR} Take G,(f) = ﬁZ?:l [f(xs,9:) — E[f(xi,;:)]]. Then, by Theorem 5.2 in
Chernozhukov et al. (2014),

IN

Mg|lmaxi<i<n Mx(yi)|p,2J%(0)

62y/n
(1+ (2log(n)a)?).

E[l[Gnlle] S J(0)Ms || M (yi)llp.2 +

M9J2(5)
NG

Moreover, ||maxi<i<nsuPyeg rer [9(%i)7Wi)llly, -, < Mg([lmaxi<i< yilly, )™ < Mg(logn)®. Hence, by Theo-
rem 4 in Adamczak (2008), for any ¢ > 0, with probability at least 1 — 4exp(—t),

S (Mg (1+ (20)F) +

Mg J*(9)
NG

(1+ (2log(n)a)?) + %t + (log n)a%to‘.

In particular, ||G,|lc = |[Mn — My, o Tgxnysllgxx. The bound for [|ZM — ZM o mgyx),|| follows from a

IGnlle < J()Mg(1+ (20)%) +

standard concentration inequality for Gaussian suprema. The bound for R, process follows from the fact
that if we define G x R = {g(r — 0(-,7)) : g € G,r € R}, then

Sup N(§ xR, |llqz20lMgMz|lq2) < 281612pN(9 X R, [ @2, 6l1Ms M [ @,2)- (SA-13)

Now we show the above inequality holds: Let Q in be a finite discrete measure on R%. Let r,s € S. Define

a new probability measure PonR by
= /E[l((xi,yi) e R? x A)|x; = x]dQ(x), VA C R%.

Then [|S|dP < Jra E[S(yi)|xi = x]dQ(z) < oo since sup,, ¢y, [mflec < 0o. Hence P c A(R). Let r,s € S.
Then

/|m,.—m5| dQ</ E[jr(y:) — s(yi)|?|x; = x]dQ(x /|r—s| dp.
Here P is not necessarily a finite discrete measure, but by similar argument as in Lemma SA.14, there exists

S C § with cardinality no greater than supg N (S, [|-[|g,2,/|S]l@,2) such that for any s € S, there exists
r € S such that [|r — s[|5 , < €[|S||5,- Hence ||m; —msllg2 < €|S|5, = ellms| g,2. This implies that for
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any 0 <e <1,

Sup N(Ms, |-ll@.2 ellmsllq.2) < Sup N(S, -l ellSl@.2)-

SA-II1.11 Proof of Lemma SA.19

For notational simplicity, we will use E[-|Xp ;] in short for E[-|x; € Xy,], E[-|X; x Vi m] in short for
E[|(x4,yi) € X0 X Vi,j,m]. First, we consider the M,,-process.

Layers N +1<j <M + N: For this layers, C; = Xj_n 1 x R. By definition of 7; s,

) S Flenl< Y S Ellgba)r()lxi € Xpowal

N<j<M+N 0<k<2M+N—i N<j<M+N 0<k<2M+N—j

< ) Yo Elgex)E[r(ya)lxilllxi € &)

N<j<M+N 0<k<2M+N—j
SCa > > 2E[lg)l(xi € X n )| P (xi € Xy ng)
N<j<M+N 0<k<2M+N—j

S, Cy Z E92M+N7j S CQZMEg,
N<j<M+N

where in (1) we have used E[|r(y;)||xi = x] < Co = 1+ (22)*/2 for all x € X. Moreover, |7; x(g,7)| < CalMg
for all j € (N, M + N], hence

Z Z Fiklg,m)? S CA2MEgMg.

N<GSMAN 0<k<2M+N—j

Layers 1 < j < N: By definition, C;, = Xo; X Vi j,m, where k = 2N=I] + m, for some unique [ € [0,2)

and m € [0,2V 7). Denote k = (I,m). Fix j and [, sum across m,

oN=i_1 oN=i_1
S Fiam@n) = Y Elgx)lXoa B r(y:)Xos x Vij-1.2m] — B [r(y:)|Xos X Vij-12m1])] -
m=0 m=0

Under condition (a), Notice that |max () j—1,0)] < log(E [exp(r(y;))|Xoq x Vi j—1,0]) < log(2-2V) < 2N,
and similarly | min(Y; ;_q o~v-;)| < 2N,

2N=7_3

D> B X0 X Vij12m] = BlrlXor x Voj-1.2mill S TV(r|—anan)) S N,

m=1

I [ (yi) | X0, X Vij—11] = E[r(yi)|Xoq x Vij-1,0]] < (H}ffx—m%n) E [r(y:)| X0 X Vij—1,m] S CaN,

|]E [r(yi”XO,l X yl,jfl,ZN*jfl] -E [T(meO,l X yl,j71,2N*j72]| S CaN.
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Under condition (b), since TViy S 1 and Mg,y S 1, the above three inequality still hold. It follows that for

all g € §,r € R, fix j,l and sum across m,

oN-i_1

Z 1%, ,m) (9»7“)’ S Ca N E [g(x4)[Xo,]] -

m=0

Fix j and sum the above across [,

oM _1oN-i_q oM _q
> am(en)] = S Fram (@) £ CaN Y Ellgx) 1 (Xo ) [P (x; € Xoy) ™
0<k<2M+N-—j =0 m=0 1=0

< O N2MEg.

We can now sum across j to get

N
Yo D> klgr) S CaN*2YES.
J=10<k

j <QMFN—j

By Equation SA-11, sup,cg ,ex [75.6(9,7)| S CaN*Mg, and hence

> S [Fiklg ) S CINH2MEgN,

1<j<N 0<k<2M+N-j
Strong Approximation for Projected Processes Putting together the previous two parts,
M4N2M+N=J
> > Algr) S CANH2MEGM.

j=1 k=0

By Lemma SA.16, we know for any (g,7) € § x R, for any x > 0, with probability at least 1 — 2 exp(—x),

N2a+192ME.M Cilor
(M 0T (9.7) = Zy 0T (g.7)] < @J”wcﬂ/wm,
n n

where C,, is a constant that only depends on «a. It then follows from the relation between ;5 and ;3 which

is given in Equation SA-9 that for any (g,7) € G x R, for any x > 0, with probability at least 1 — 2 exp(—2x),

N2a+19MEM Cyigor
Rnon2(g77”)—ZnoH2(g,r)|,SCQ\/99$+Ca “lem)}
n n

SA-II1.12 Proof of Lemma SA.20

Since €y n is a cylindered quasi-dyadic expansion, p=12=M=N+i < P(C; ;) < p2=M=N+i forall 0 < j <
M+N,0 <k < 2M+tN=Ji Hence following the argument in the proof for Lemma SA.19, for any g € G,r € R,

M+N 2M+N—j M+N 2M+N-j

Z Z (g, r) < Z Z 532,1@(9’7“)502NM+12ME9M9-
=1 k=0 =1 k=0
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The result then follows from Lemma SA.16. O

SA-II1.13 Proof of Lemma SA.21

Scrutinizing the definition of §; and -;; from Sections SA-I1.2 and SA-IIL.2, essentially we are going
to show the difference between 13 M, (g,7,) and MoM,(g,7,) is driven by the difference between g and
Oo(px [Car,n (P, p)])g(x;), the Lo-projection of g onto px [Car,n (P, p)]. Expanding Iy My, (g,7-) —MoMy(g,7+)
by Haar basis representation,

Han(gvr‘r)*HOM g,TT -

Mor)= XY

1<j<N 0<k<2M+N-j

%\

R

ﬁm@mJ—@ﬂamDamem

/N

where we have used ¥; (g,7,) = Bj7k(g,r7) for j > N. Moreover,

E[lAg.rll < (1 +p) Y Y lwlgr) = Biwlg )P ((xi, 1) € Cin)

0<j<N 0<k<2M+N—j

Recall in Definition SA.3, Cjx = Xj_n1 X Vi jm, where k = 2N=3] +m, 0 <1 < 2M and 0 < m < 2V~J,

Since Mpr has polynomial growth and r, has been truncated,

1Vik(9,77) = Bik(g,72)| = [E[g(xi)|Xo] - B [rr(yi)|Xop X Vijom] — Eg(xi)r-(yi)|Xop X Vi jml]
=|E[(g9(xi) — E[g(x:)[X0.]) 7+ (i) | X0 X Vi jm]l < 7[E[lg(x:) — E [g(x:)|Xo0.1]lICj ]

Summing across j and k, then by similar argument as in the proof of Lemma SA.9,

EflAi(g,r-)]] < (1+ p)TNE[|g(xi) — To(px [Car,n (P, p)])g(x:)]]

2
< WD (s x()) 2V VTV

For each fixed j, € x(x,y) can be non-zero for only one k. Hence, almost surely,

N
Ai(g,rr)| = | Z Z (Vik(g,rr) — Ej,k(g,rr))gj,k(xiayi”

j=10<k<2M+N—j

<2 Z max |’yj k(g,T‘T) ﬁj,k(garfﬂ

'Y] k(g7r7') /8.7 k(g7’r7— O<k)<2M+N J

< g max
0<k<2M+N J

<or Z omax - [Eg6x) - Elg(xi) [ olICiall < 2N min{2Mg, L [Vl

This shows the results. O

Lemma SA.26. Suppose g and F are functions from R to R, where F is bounded and non-decreasing.

Suppose T is an interval in R such that inf,er g(t) < 0 < supyer g(t). Suppose we also have PV 1 ==

47



SUPy>18UPg, <...<z, €T Z;L:l l9(ziv1) — g(w)| < 0o. Then
| ota)ar@) < prvgy o [ 107 ).

SA-II1.14 Proof of Lemma SA.26

The result follows from the observation that for any z € T', |g(z)| < pTVyy 7. O

SA-II1.15 Proof of Lemma SA.22

Denote by B the o-algebra generated by {1(Cox) = 1(Xoy X Vijm) : 0 <k < 2MFTN | =2N] + m}. Then
Elg(xi)r-(yi)|B] — g(xi)r7(yi) = Elg(xi)r-(y:)|B] — Elg(x:)|[B]r-(y:) + Elg(x:)[B]r-(y:) — g(xi)r7(:)-

The first two terms are driven by projection of 7. on grids ) ;m’s, and can be upper bounded through
probability measure assigned to each grid (27%) and total variation of .. We consider the random variable
E[g(xi)1(g(xi) > 0)|Xo1 X Vi jmlrr(yi). Take m7y = Elg(xi)r-(yi)1(g(xi) > 0)[Xoy X Vijm]- Apply
Lemma SA.26 with g(y) = E[g(x;)1(g(x:) > 0)|Xo; X Vi jmlr-(y) — m;fk, F(y) = P(y; < y|x; = x) and
interval T' = Y j m, to get for each 0 <1 < 2M 0 <m < 2V and x € Xo.1,

E ||(Elg(xi)1(g(x:) > 0)[Xoi X Vi jmlrr(yi) — m ) L(yi € Vi jm)|

<SP (yi € Vigomlxi = X) Mgy TV 3, 3

Xi:X]

Similarly, take m; := Elg(xi)r(yi)1(g(x;) < 0)|Xo1 X Vi.jm], and we have for x € Xy,

E [[(E[g(x:)L(g(x:) < 0)|Xo1 X Vi jmlre(yi) —m; )L (yi € Vi jom)|

<P (yi € Vrjmlxi = %) M{g}TV{Trlyz,j,m}'

XiZXi|

Combining the two parts and integrate over the event x; € &p;

E [[(Elg(x:)|Xox X Vi jmlr(yi) — mox) L(yi € Vijm)l|xi € Xo,1]

<P (yz S yl,j7m|Xi S XO,l) M{g}TV{rT } < 2_NM{Q}TV{TT

|yz,0,m ‘yz,o,m}'

Summing over m, we get for each 0 <[ < 2M |

E [|E[g(x:)|Blr(y:) — Elg(xi)r(y:)[Blllx; € Xog] <27V Migy TV, 5.
Hence using the polynomial growth of total variation,

E [|E[g(x:)|B]r(y;) — E[g(x:)r(y:)|B]|] < 27 VM3 TV, < 27 VMg
Since [E[g(xi)r+(y:)|B] — Elg(x:)|Blr-(yi)| < Mg almost surely,

E [(Blg(x:)|Br(yi) — Elg(xi)r(yi)|B])?] <2773,
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The last two terms are essentially driven by the Lo-projection error of g. Denote by A the o-algebra generated
by {1(Xp;) : 0 <1< 2M}. Then A C B. By Jensen’s inequality and a similar argument as in the proof of
Lemma SA.9,

E [(E[g(x:)|Br-(y:) — g(x:)r-(1:))?] <7°E [(9(xi) — Elg(x:)|A]?] < (1 + p)7°Vg.
It then follows that

E [(HoMn(ng) - Mn(g,rT))2] <2(27NME + (14 p)7T2Vg) .

SA-II1.16 Proof of Lemma SA.23

We will use a truncation argument for the projection error. First, suppose condition (a) holds. Let 7 > 0.

Projection error for truncated processes: By Lemma SA.21, SA.22 and using Bernstein inequality,
for all t > 0, foreach g € G, r € R

4 M
P || Mn(g,7rr) — 1 My (g,77)| > 47‘\/(1 + p)N2Vg + 2—NM%\/£ + gr—gt < 2e7t (SA-14)
n

NG

Truncation Error: We choose a cutoff 7 that satisfies 7a > log(2V11). Recall Equation SA-11 im-
plies maxg<g<om+n E[|r(y;)||(xi,y:) € Cox] S CaN®, where Co = 1+ (20)2. The same argument for
Equation SA-11 implies maxo<j<om+nx E[(r(y:))?|(xs, i) € Cox] S 1+ (Nlog(2)v2a)?* < Coq N2, where
Cha := 14 (2-20)% . Hence the following holds almost surely,

[T Ma(g,7) = ThMa(g, 72| < max B [g(x0)| o) - E [Jr(ui) 13| = 7)o, x o] | S Cakig N7,

Since & > log(2¥+1) > 0.5N, Y0,k = Bo,k for all k corresponding to Xy; X Vi 0,m for 0 <m < 2N _ 1, that

is, the mismatch only happens at edge cells of y;, we have
E ||, M, — 1L, M, 2 <P (I M, — 1L, M, 0) CogMEZ N2 < O 2~ NH1ME N2
| 1 n(gvr) 1 n(gvrr)| ~ ( 1 n(gar) 1 n(gvr'r)7é ) 2atlg = V2« g .

Apply Bernstein’s inequality for II; M, (g,r) — II1 M, (g,7,), for all ¢ > 0, with probability at least 1 —
2exp(—t),

MSNQ Mg’l‘

NG %t.

Moreover, V[M;(g,7) — My (g, 7+)] < MGV [r(y;) =7 (y:)] < MGE[(r(yi) — 7+ (:))?] < MEE[r(y:)*L(|yi| = 7)] <
2_NM% maxg<p<om+n E[r(y:)?(xi,y:) € Cox) S CQQM%N%‘Q_N. By Bernstein inequality and a truncation

L M, (g, 7) 11 My (g,77)| S V/C2a2 VMg NOVE+C, t < /Caa2 N PMg NOVE+C,

(SA-15)

argument, for all ¢ > 0,

]P(\/H|Mn(g,’f') - Mn(gaTT)‘ > t)

2
<min2exp | — t
y>0 2nV[M,(g,7) — My,

— my) 22 (e o) () — 7200 > ).

1<i<n
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Taking y = Mgt®, we get for all ¢t > 0, with probability at least 1 — 4 exp(—t),

M
| M, (g,7) — My (g,7:)| S v/Caa2 VMg NV + ca\/—?itaﬂ. (SA-16)
n
Putting Together: Taking 7 =1¢“ > 0.5°N®, we get from Equation SA-14, SA-15 and SA-16 that for all
g€ G, reg, forall t > N, with probability at least 1 — 4n exp(—t),

M
ULy My (g, 7) = Man(9,7)| S V/Coay/(1+ p)N2Vg +2-NZgot3 4 ca\/—%taﬂ. (SA-17)

The bound for |II; ZM (g,7) — ZM (g, )| follows from the fact that it is a mean-zero Gaussian random variable
with variance equal to V[IIy M,,(g,7) — M, (g,r)]. The result follows then follows from a union bound over
(9.7) € (§ X R)s-

Now consider the case where condition (b) holds. Condition (b) implies Mx < 2. Hence choosing 7 = 2,
then M, (g,7) = M, (g,7,) almost surely for all g € G, r € R, that is, there is no truncation error. Hence
Equation SA-14 implies Equation SA-17 holds with a = 0 and similarly for the Z counterpart. O

SA-II1.17 Proof of Lemma SA.24

By definition of II; and Iy, by Equation SA-10,

R (9,7) = Bulg,7) = (Mg, 7) = Ma(g,7)) = (Tolpx (Carw)] X (90 7)) — Xa(g6(-.7)) )
.2 (g,7) = Z8(g,r) = (M2 (g,7) = Z2(g.7)) = (Molpx (CarI Z¥ (96(, 7)) = ZiX (98(-,7)) ).

The first two terms on RHS of both lines are bounded from Lemma SA.23. Recall § x Vg = {gf(-,7) : g €
G,r € R}. We know from Lemma SA.9 for all ¢ > 0,

P (1olpx (@ )X (990 1) = Xalgblor ] 2 20wt + 3 - “2220) < 2exp(-o)

P ([o[pxx (Car,n)1Z3 (90(,7)) = Zi (90(,7))| = 20/Vgswyt) < 2exp(—t).

Moreover, under condition (a), sup,cy Elexp(y;)|x; = x] < 2, hence sup,.c supycy E[|r(y)||xi = x] <
1+ supyer Ellyi|*xi = x] £ 1+ (Va)? < C, by moment properties of sub-Gaussian random variables.
Hence Mgxv, < CoMg. Under condition (b), sup,cx||7]|oc < 2, hence we also have Mgxv, < CqMg. The

result then follows from a union bound over (G x R);. O

SA-II1.18 Proof of Theorem SA.1

We make a reduction via the same Rosenblatt transformation in the proof for Theorem 1. Take u; = ¢x (x;)
where ¢y is defined as in Lemma SA.12. And define g = go qs;(l for each g € G and consider G= {g:9€ 5}
Then for all g € §,r € R,

Ma(g.r) = = 3 gfoe)r(vs) ~ Elae)r(u] = —= 30 aw)r(on) ~ Bw)r()] == MaGor)
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Take .AM,N(]IA5,1) to be a azis-aligned cylindered quasi-dyadic expansion of R4, with depth M for the
main subspace R? and depth N for the multiplier subspace R, with respect to P the joint distribution of
(u;,y;). Take Zflw to be the mean-zero Gaussian-process in Lemma SA.19 indexed by § x R with the
same covariance structure as M,. Let (§ x R)s be a 6|[Mg M= ||p-net of G x R with cardinality no greater
than supgy N(G x R, eq, 0||MgMg| 5) where sup is taken over all finite discrete measures on [0, 1] x R. By
Lemma SA.13, supgy N (G x R, eq, 0||Mg Mp[|p) < N(d). By Lemma SA.19, the SA error for projected process
on §-net is bounded by: For all ¢ > 0,

N2a+19MEgM Cn(s
P (|0 M, — 13 ZM|| (g m), > Cat| —————9¢ 4 C,, Mt] < 2N(§)et
n
where
Coiwmy = S mindsup | > (G—=7)G—3'+D2 7 Y )] 1% M +N)
FEM (GXR) Gk | i< k":Cyr w1 CCi

Let fel (§ x R). Then there exists g € G and r € R such that f = My[g,r]. Since f is already piecewise-
constant, by definition of f;;’s and 7, ;’s, we know Bl,m(f) = Ym(g,7). Fix (j,k). We consider two

cases.

Case 1: j > N. Then by the design of cell expansions (Section SA-II1.1), C; = X;_n i, xR. First consider
I such that N < j' < j. By definition of Ay (P, 1), u; C [-27 METL42 - 42 X —Nklloo <

9-*7=1+1 By definition of Yj’,m, we have

S Fiklgr)| < 22N / / |G(x)0(x,7) — g(x + 8)0(x + s, 7)|dxds
XNk

m:Cjs ,, CCj

3’ m

< PO, e [ Il s
J

< 22N ) Vol U)o | 15 K oy

d—1/. ./
=D~
<27 KSv 0,174

Then consider j’ such that 0 < 5 < N. Then

Z Wj/,k'@ 7|

k':Cjr 1 CCj

= > > BGe)Ixi € Xo ]l - Blr(yi)|xi € Xo o, i € Virj—1.2m]

31X 51 CXj Nk 0<m< 25’
— Elr(yi)lxi € Xo,j7,yi € Vjr,j—1,2m+1]|

<Coa Y B0 € Xoy]IN® < Ca2 Mg N
jlzXo,j’gX7—N,k

o1



It follows that

SNG-G-i+02 T Fw(@ )l

§'<j k/Cr o S
N i N i
< Z (J - JI)(j - ]l + 1)2 d K§VR7[0’1]d + Z (] - j/)(j - ]l + 1)2] NM§Na < ngfk’[ovl]d + MgNa-
N<j'<j <N

Case 2: j < N. Then Cji = Xy, x Vi j,m- Hence for any 0 < j' < j, we have

Z [y (g, 7)| =E[g(x:)|x; € o] Z IE[r(yi)|x: € Xo,yi € Vij—1,2m]

k’:Cj/7k/ng,k m’:ylﬁj/’m/g)}l,j,m
— Elr(yi)|xi € Xou,vi € Vij—1,2m+1]]
<Co|E[g(x;)[xi € Xo ][N < CaMgN“.

It follows that

U= —=7+0277 Y (@) < CaMgN,
7'<J k’:Cj/,,c/ng,k

Moreover, for all (j, k), we have Fﬁvj’k(ﬁ, r) < CaMgNa. Now, we bound Kg . in terms of properties of

and V. Let C be a cube in [0,1]? with side length a.

Vx,[0,1]

sup /9 o ¢! (W)o(x, ) div(p) (x)dx/|[[l¢ll2 oo
»€D4(C)

<lim / IV(ge 0 65 - 6(-,1) (w) [odu

&LO C
<lim /c||v<ge 0 5 ) (W60 7)llso + 19zl VO, 7)1 (1 € Supp(g))||zu
§K§Mv5{ad71 + MgLVRad < (Kngﬂ{ + Mgij{)adil.

Together with Lemma SA.12 for the relation between Kg (resp. Mg) and Kg (resp. Mg), K <

GV, [0,1)¢
c3KgMy,, + MgLy, . Hence

Cr, (Gxmy < mMin{C3 (Mg N*)(c3KgMy, +MgLy, +MgN®), (CaMgN®)*(M + N)}.
Since u; ‘& Unif ([0, 1]%) and the cells Ay n (PP, 1) are obtained via azis aligned dyadic expansion and u; is

uniformly distributed on [0,1]¢, we have ||Xp /oo < 27M/4) for all 0 < k < 2M. Then by Lemma SA.23
with p=1, for all £ > N,

M~
_ 2y~ —Np22+3 o 9 ja+l —t
P My — T Myl gy, > (/2N + 27 M2 4 N | < av@me,
M~
M My _ - —Nwm2 1 S —t
P12~ MZY || Gm), > /2N?Vg +2- V2t + —\/Jﬁt} < AN(S)ne,

where

Vg = Vdmin{2Mg, Lg2~ M/ o= M/l Ty
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We find the optimal parameters M™* and N* by balancing the two terms, choosing either

S -4 d+1 dil 2v2d+2 d-}—2
. nTVz \ 7" [ nLsTvg \ **° . nMz n Mz
2M" — min ( E 9) , 7E9M g , 2V = max g v N =g 9d 5
3 Mg E§TV§ TV-§L§E§

It follows that for all ¢ > N,, with probability at least 1 — 4nN(d) exp(—t),

1 1
EFTVgMd-i-l 2(d+1) E%M%TVQLQ 2(d+2) C _
My _ * s 5°°¢g SS §°§ +3 I (SXR) ja+1
My~ Z| gy, < VAN min (71 N 1073 [ R e,

Moreover by Lemma SA.18 we bound fluctuation off-the-net by, for all ¢ > 0,

P[[|Mn = My o5, 2),ll5xn > CaFn(t,0)] < exp(-t),

P[IZ) o T gymy, — 20" lgn > C(Mg, 57 (8,5 x R, Mg ) + O, VE)] < exp(—t),

where

log(n)MzJ2(5, G x R, Mz M. Me Me
B(n Mg T ») + —2t + (logn)* —=t°.

N Vi Vi

Fo(t,6) := J (6,5 x R, Mg Mz )Mz +

The result then follows from the relation between § quantities and § quantities in Lemma SA.12 and the

decomposition that

1Mo = Z! lgx = | Mn — Z3" |15, %

r AT M M
S||Mn_Mno7T(§x}C)5“§x9{+||Zn _Zn O//T(§><R)5”§><R

My =My Gy, + 120" =2 | goemy, + MMy =T 20| 5w,

where we have abused the notation to mean the same thing by Z(g,r) and ZM (g, r). O

SA-II1.19 Proof of Theorem SA.2

Suppose 2M < J < 2M+L For each | € [d], we can divide at most 2™ cells into two intervals of equal

measure under IPx such that we get a new partition of X = Ug<j.om+1 A} and satisfies

max0§l<2m+1 IPx(Az) < 2p
) < .

min0§l<2M+1 IPX (A;

By construction, for each N € N, there exists an axis-aligned quasi-dyadic expansion Apry1 n(P,2p) =
{Cik:0<j<M+1+N,0<k<2MFIFN=I} guch that

{Xop:0< k<2 ={A] 0 <1 <2V}
and § C Span{la, : 0 < j < J} C Span{Ap, : 0 <k < 2M+11 " Hence

Mo(g,r) =Mi(g,7) = Z Z L(Xou X Vjrm)glae  Elr(yi)xi € Xou,yi € Vitml- (SA-18)

0<1<2K+1 0<m< 2N
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Again, consider (§ x R)s which is a 0[|Mg Mz || of § x R of cardinality no greater than N(d). The SA error
for projected process on the d-net is given by Lemma SA.20: For all £ > 0,

N2a+19M+1g Mg Cr, (5x®
P |||, M, _nlzfyn(gm)é > Ca\/ - S JH_CaWt}

< Wgyx(d)e ! +2Mexp (—Can_M) .

Now we find an upper bound for Cgxx. Consider the following two cases.

Case 1: j > N Let g € G,r € R. Fix (j, k). Let (j,m') be an index such that Cj v C Cjp. If
N < j' < M + N, then by definition of S and the step of splitting each cell into at most two, there exists
li, - ,lag € {0,--- ,2M+1 — 1} with possible duplication such that g = Zzi cqL(A],) where [eg| < Mgy
Since each A;q belongs to at most one Xj/_n, ﬁj/’mr(]l(qu), r)=0if A;q is not contained in X} ;v and

¥jrme (L(A,),7)] < Cnp27 11 if A, € Xjr—nm where Co =1+ (2y/@)?. For j" such that N < j" < j,

25 25
Yo Fraw@n)F <253 Y (e ((A), 1)) <2028 227 < 40287322
m’:Cj/ym/QCj,k q=1 'm/:cj/,m’ CCjk qg=1
For 0 < j' < j,
> Fiwgr)
k':Cr 0 CCo
= Z Z IE[g(x:)[xi € Xou]| - [E[r(yi)|x: € X0, i € Vij—1,2m]

1:X0,1 CXj— N,k 0<m <27’
—E[r(y:)|x: € Xo1,¥i € Vij—1,2m+1]]

<Co > [Elgx)xi € X ]IN® < Co2/ NugN®.
1:X0,1 CXj— Nk

Since [Y1,m(g,7)| S CaMgN* for all (I,m), Ek’:cj/,kxgcj,k 32w (g,r) < C229-NMg N2, Putting together

NG-NG -3+ Y Fulgr) S CLSMG + CZMEN,
§'<j K:Cjr 11 CCjon

Case 2: | < N Hence for any 0 < j' < j, we have

S @) =IBEx)xi € Xo] > IE[r(y:)|%; € Xou, i € Vij1.2m]

k/:Cj/_’k/QCj,k. m’:ylyj/,ngylijm

—Elr(yi)|xi € Xo,0,Yi € Vi,j—1,2m+1]]
<ColE[g(x;)[x; € Xo ][N < CoaMgN®.

It follows that

DU -F D2 YT [ (@) < CaligN©.
J'<j k':Cj1 11 CCj ke
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It follows that

Cey, (5xx) = SUP min § sup Z(] DG -1+ 1)21_j Z %Q’m(h) 7M§1(SXR)(M + N)
heX k) | 1<y m:Cim CCiok

< CZMEN**min{M + N, S* +1}.

By the characterization of projections in Equation SA-18, we know the mis-specification error is zero,
that is, 3 M, (g,7) = MoM,(g,7) and I, ZM (g,7) = MyM,(g,7). Since g is already piecewise-constant on
Xo,’s, the Lo-projection error is solely contributed from r. Consider B = ¢ ({]]'C(J,k 0<k< 2M+N+1}).

Denote r, = 7‘|[,T1/Q7T1/a]. Then

& [g(xi)r+(yi)|B] — g(xi)r- (i) | < Mg [r7(yi) — Elr-(y:)|B]] -

Then by the same argument as in the proof for Lemma SA.22 and the argument for truncation error in the
proof for Lemma SA.23, for all ¢t > N,

(|M — I M, (gxm)s + 12 = ZM |(gxmys = Ny/2™ NMQta+2+\/ﬁt”‘“) < 4N(S)net. (SA-19)

Then apply Lemma SA.20, we get there exists a mean-zero Gaussian process ZM with the same covariance
structure as M,, such that with probability at least 1 — 2 exp(—t) — 2M 1 exp(—C,n27M~1),

2M+2McE C
21 —“1n”%R<C’ﬁ%b{v7J39@+ngw»M¢+w/“ﬁf”u+kgwwnﬂ4+fmu®}.

O

SA-II1.20 Proof of Theorem SA.3

We will use the same Rosenblatt transformation as in Theorem SA.1. Taking u; = ¢x(x;) and G = {g:9€
G} with g = go ¢', we have

lmm=%ZmMWwMM@m=wa¢%ﬁMMMM:MW)

Denote by P the joint distribution of (u;,y;). Take Aps, N(l?, 1) to be the axis-aligned cylindered quasi-dyadic
expansion of R4, Then by Lemma SA.19 and Lemma SA.24, for all ¢t > N,

N2a+19ME:M
E’[HHan—HngH(SXy) Co\| ———551 4 Coy H2(9XR) < (s
[||R ~R,||(5xm); > Ca ,/2N2v+2 NMZtE 4+ O, ft"“} < AN()ne~t,
n
IP[HZ,fz — o ZE | (gxm)s > Cay/2N2V +2-NM2tE + O, j: } < AN(S)ne,
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where V = v/d min {2Mg, L2~ LM/d] } 2-LM/dlTy and

Coy@xxy= Suwp mingsup [ > (=G -7 +102"7 > B (NI +N)
FEM(SxR) Gk) |57 k':Cyr 1 CClk

Let f €1y (§ x R). Then there exists g € G and 7 € R such that f =Tag,r]. Since f is already piecewise-
constant, by definition of §;’s and 7; x’s, we know Bim (f) = Tim (g, 7). Fix (j, k). We consider two cases.

Case 1: j > N. Then by the design of cell expansions (Section SA-IIL.1), C; = Xj_n,k x R. By definition
of 1, for any N < j/ < j, we have (j —5)(j — 7/ + 1277 S0, LCCn % 4 (9,7) = 0. Now consider
0 < j < N. Then '

> lwwlen)
k':Cjr 11 CCj 1

= Z Z IElg(xi)|xi € Xoull - [E[r(y:)|xi € Xo,1,9i € Vij—1,2m]

1:X0,1 CXj— N,k 0<m <27’
—E[r(y:)|x: € Xo1,¥i € Vij—1,2m+1]]

<Co Y. |E[gxi)lxi € X IN* < Co27 VMg N,
1:X0,1 CXj Nk

It follows that

DG=G=i+02 7 > ipwlen) <D G =)0 =i+ 12 TN CMgN® S CoMg N

§'<j k":Cjs 40 CCy 1 §'<j
Case 2: j < N. Then C; = Xo; X Vi jm. Hence for any 0 < 5/ < j, we have

S i (9| =IElg(xi)|xi € Xo]l > IElr(y:)1xi € Xo1,¥i € Vij—1,2m]

k':Cj,’k/ng,k m':yl,j/vm/gyl,]',m

—E[r(y:)|x; € KXo,y € yl,j71,2m+1]\
SCo|E[g(xi)[x; € Xou]IN S CoMg N,

It follows that

DG=G=7+0277 > ipale ) S CaMgN.
7'<g Ic’:Cj/’k/QCj,k

Moreover, for all (4, k), we have Ej,k(g,r) < CuMgN*. Hence Cry(3x ) < (CuMgN®)2. The rest of the proofs
follow from choosing optimal M, N and Lemma SA.18 in the same way as in the proof for Theorem SA.1. O
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SA-II1.21 Proof of Theorem SA.4

Suppose 2M < J < 2M+1 By the same cell divisions in the proof for Theorem SA.2, there exists a quasi-
dyadic expansion Cps41,n such that

Span ({1(A;): 0 < j < J}) C Span ({1(Xpy) : 0 <1< 2M¥1}).
By definition, the projection error can be decomposed as
Rn(g,7) = TMaRn(g,7) = Mn(g,7) = MMn(g,7) + Xn(g0(-,7)) — Mo X (96(:,7)),
where Iy denotes the Lo-projection from Ly(R?) to Span = {1(&p;) : 0 <1< 2M+1}. Then

E [(Xn(gﬁ(-,r)) My X, (g0 Z Px(Aj)g |A E [( (x4, %) — Mof (x4, %)) |x; € Aj]
0<j<J

2 2 2 12
< Blglxi ] s 15 2 100 )y, < MoBs ma 14,123,
Then X, (g0(-,7)) — Mo X, (g0(-,7)) is bounded through Bernstein inequality and union bound, for all ¢ > 0,

4 Mg
P (16 080, 1)) = X000, ) e, > 3 /AgBS 1 b VE+ 252

Combining with Lemma SA.20 and Equation SA-19, and the same calculation as in the proof for Theo-
rem SA.3 to get Cny(g,2) S (CaMgN®)?, for allt > N, with probability at least 1—2N (§)e~*—2M exp(—C,n2~),

t) < 2exp(—t).

4

Ry — Zr?H(SxR) 3V 9E9 maX HA ||WLVRf+ CaN.

ta+ L + C toz+1
f
The rest follows from the error for fluctuation off the d-net given in Lemma SA.18. Notice that the ”bias”
term /MgEg maxo< ;< s||Aj||ocLvy v/t comes from X, (g0(-,7)) — o X, (gf(-,7)) in the decomposition.
In the special case that we have a singleton R = {r}, we can get rid of the ”bias” term by redefining &; =
sign(r(ys) — Br(vi)|x:])|r(yi) — Blr(ys) |[xi])|/*. Take 7(u) = sign(u)|u|®, v € R. In particular, E[F(e;)|x;] = 0

almost surely. Either r is bounded and we can take o = 0, which makes 7 also bounded; or o« > 0 and

JEQMS
n

supyey Elexp(y;)|x; = x] < 2 and |r(u)| < 1+ |u|*, which implies sup, ¢y Elexp(e;)|x; = x| < 2 and 7 has
polynomial growth. Then for any g € G,

Ru(g.r) = <= 30 0(0)7(e) ~ Ela(x)(e0) = My (0.7).

where M/, denotes the empirical process based on random sample ((x;,¢;) : 1 < i < n). The result then

follows from Theorem SA.2. By similar arguments as in the proof of Theorem SA.4,

Coyg. = sup  mindsup | > (=G -5 +D2 7 > B (] 1RO +N) b,
fem(S.{7}) Gk | < k':Cyr 4 CCi
but Ej’k(f) vanishes for all j > N and we obtain similarly Cp, (g (7) S (CaMgN®)2. O
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SA-II1.22 Proof of Lemma SA.1

Here we concisely flash out the arguments that are standard from empirical process literature.

Convergence rate for each entry of H, —H,: Consider ulT(Hx —Hy)uy, where ug, uy are multi-indices

such that |uy], |uz| < p. Take v = u; + uz. Define

miex) = (575) mr (7)1 anexen

Define F = {g,(-,x) : x € X}. Then sup,cy lu] (Hy —Hy)uy| = sup eq [En[f(x:)] = E[f(x;)]|- By standard
arguments from kernel regression literature, we can show F forms a VC-type class with exponent d and

constant diam(X) /b, My, := sup s Supyex |f(x)] S b4, 02 1= sup;cq V[f(x;)] < b~%2. By Corollary 5.1 in

Chernozhukov et al. (2014), we can show E[sup ;g [Ep[f(x:)] = E[f(x:)]]] < (nb?)~1/2\/log n+ (nb?)~* log n.
Since ¥ is separable, we can use Talagrand’s inequality (Giné and Nickl, 2016, Theorem 3.3.9) to get for all
t>0,

P (sup [ [/ 6x)] = B (x| 2 Culnb!) /2 V/E+Togn + Crnb) (¢ -+ logm)) < exp(—),

where C is a constant not depending on n. This shows sup,c ulT(I/-\Ix — H,)uy = O((nd*)~1/2/Togn +

(nb?)~!logn) a.s..

Convergence rate for supxeXHITI;1 — HZ!l: Since Hy and Hy are finite-dimensional, supxeXHﬁx -
H,| = O((nb®)~1/2/logn + (nb?%)~'logn) a.s.. By Weyl’s Theorem, sup, |Amin(ﬁx) — Amin(Hx)| =
O((nb)~1/2/logn + (nb?) " log n) a.s., which also implies infyex Amin(Hx) > 1 a.s.. Hence

S‘égllﬁil —H| < sup [H [ Hy — Hy|[[[Hy Y| = O((nb?) /2 \/logn),  a.s..

Convergence rate for sup,.y sup,cx|/Sx|[: Consider v'Syx, where |v| < p. Define H; = {(z,y) —
gn(z,%)(r(y) — 0(z,7)) 1 x € X,r € Ry} and Hy = {(2,y) = gn(2,x)(r(y) — 0(z,7)) : x € X,r € Ro}. Tt is
not hard to check both H; and Hy are VC-type classes. By similar arguments as in ﬁx — Hy, for all t > 0,

P sup [BalhGxi,yo)] ~ ElhGe 5l 2 Colnb) /2 i+ Togn + Colnb®) ™ (1 + logn)) < exp(—).

And if we further assume sup, .y Elexp(y;)|x; = x] < 2, then for all ¢ > 0,

P sup [Bulhcs 0] ~ Blhcs 0] > Calab') ™2 V/F 5 Togn + Cafab)~ Qogm)(t -+ log ) < exp(—1)

Together with finite dimensionality of the vector Sy,

= O((nbY)~2\/logn + (nb?)"(logn)?), a.s.,

sup sup ||Sx,r

xEX reRy
sup sup ||Sx.r|| = O((nb?)~1/2\/logn), a.s.
XEX reRy
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Putting together for Non-Linearity Errors:

sup sup e] (Hy' — Hx!)Sx,| = O((nb®) ' logn), a.s.,
xXEX reRs

sup sup |e1r(ITI;1 —HYHSx| = O((nbh)~ogn + (nb?)~3/%(logn)>/?), a.s..
xeEX reRy

Bias: Take Rx, = E, [r, (27) K4(X; — x)tx(X;; )] where v (&) = 0(&; )= 0<|wl<p 9u00ar) (¢ _x)v.

v!

Since all 0(-;7), 7 € Ry are (p+1)-times continuously differentiable with sup,.c, SUPyxe x max|,|<p [0,0(x;7)| <

00, then sup, ¢, supycy [Rx,| = O(BP*1). We have proved that infyex Amin(Hy) > 1 a.s.. Hence

sup sup |E[0(x, 7)|x1,- - ,xn] — 0(x,7)| = sup sup le] HL 'Ry .| = O(6PH), a.s., for £ =1,2.
reRy xeX reR, xeXxX

SA-II1.23 Proof of Lemma SA.2

We use the notation Px(Al) = IP(XZ‘ € Al), and I/F\’X(Al) =n! Z:‘L:l ]].(Xi S Al), 0<I<L.

Non-linearity Errors: For /=1,2, x € X,r € Ry, we have

p(x) (I I HT, = Y UxeA)L 'Px(A)' - L*lle(Al)*l)% Tei(r).
0<i<L i=1

By maximal inequality for sub-Gaussian random variables (van der Vaart and Wellner, 2013, Lemma 2.2.2),
maxo<i<r, ILPx (A)) — LPx (A)| = O(y/ lﬁLL) a.s.. Since {A; : 0 <1 < L} is a quasi-uniform parition on
X, ming<j<r, LIP x (A;) = Q(1). Hence

max IL'Px(A) " = L'Px(A) ' = O(/(n/L)Tlog L), a.s.. (SA-20)
Take Hy, = {(x,y) — L1(x € A)(r(y) — 0(x,7)) : 0 <1 < L,r € Ry}, for £ = 1,2. In particular, if
we take § = {L1(- € A;) : 0 <1 < L}, then G is a VC-type class w.r.p. constant envelope L with
constant cg = L and exponent dg = 1. In the main text, we explained that both R; and Ry are VC-
type class with cg, = 1, dg, = 1 and cg, some absolute constant, dg, = 2. By arguments similar to
the proof of Lemma SA-III.10, both H,’s are VC-type class with cg¢, = L, dg¢, = 1, cg¢, S L, dge, = 2.
Since sup,.ex, maxo<i<r |+ 30 | L1(x; € Ayei(r)| = suppeqe, [Enlh(xi, yi)] — E[h(x;, 3;)]| is the suprema of
empirical process, by Corollary 5.1 in Chernozhukov et al. (2014),

sup max ‘%ZLH(Xi € Al)@‘(?“)‘ = 0( log(nL) lo (n)log(nL)> a.s.,
=1

reRy 0SI<L n/L n/L
(SA-21)
1 & B log(nL)
T.Seuga 0Sior ‘ﬁ ;L]l(xz € Ajalr)| = O( n/L >

Putting together Equations SA-20, SA-21, we have

_ 0<10i(/"LL)) F1(¢= 1)O<log(n) (105(/?))3/2)'

sup sup p(x)—'—(:]\*1 -Jhr

xeX reRy
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Smoothing Bias: Since we have assumed that sup,.cx, supy yex [11(X,7)—pu(y, 7)|/[|x=y|loo < 00, £ =1,2,

~ Doicy L(xi € Ayp(xi, )
sup sup |E[u(x,r)|x1, -, X,] — p(x,r)| = l(xe A = —p(x,r)| = O( max | Ar]|eo)-
sup sup [BIA st ) = r)] = | 37 16 € A) SR M TR — )| = Oy 1))

SA-I11.24 Proof of Example SA.1

Recall § = {b~4/?K(5) : x € X'} with Kx(u) = e] Hy'p(u)K (u).

(1) Properties of G

Since supycv||[Hx!|| S 1 and K is continuous with compact support, we know
Mg 5 b_d/z.

By a change of variable, we know

; — - Y1 u-—x
_ E | l5-a2 X; — X < d/Q/ u—x e < pd/2.
Eg 31612 Hb ‘(Kx(ib ) < ‘121,1‘2%); b 5 ) 5 hx(u)du <b

Moreover, Supye x SUPy w [Ty (U5%) —1p(%57)|/[u—1[loc < 67" and supyc x supy o [K(47%) K (%5*)|/[lu—
W||oo S b7 Tt follows that

Ly vt
Notice that the support of functions in § has uniformly bounded volume, i.e. sup,cg Vol (Supp(g)) < b,
Together with the rate for Lg, we know

TVg < Lgsup Vol (Supp(g)) < bz 1.
ges

~

Now we will show that M§19 is a VC-class. We know sup, . cy||Hx — Hy||/||x — X'[|oc < b7'. Since

infyex|Hy|l 2 1, we also have sup, ¢y [HZ' — H_'|/]Ix — X||oe S Tt follows that

_ -
b = sup sup [b390 (55 = 07800 (B ) e 07

Consider hy(-) = VbeeTHg 'r,(-)K (). Then b=2K(5X) = hx (3%). By the rates of Mg, Lg,Eg, there

exists a constant ¢ only depending on || K||s, L{x?, UK,?X,iX that

sup [|hx[[c < ¢,
xeX

|fix () = hx (V)]

sup sup <c,
xEX u,veX ||u_v||00
h —h
oy up el = By (] _
X,yeX ueX ”X - y”OO
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We can again apply Lemma 7 from Cattaneo et al. (2024) to show that, for all 0 < e < 1,

- 1
N(Mglg’ep,{-:) g ngﬁ + 1.

(2) Properties of H,

Let g € G. Take H? = {g-p: g € G} and HY = {g-0(-,1d) : g € §}. Define h*(x,u) = g(x)p(x,u).
Let ¢ be a real-valued non-negative Lebesgue measurable function on R? such that [;,:(u)du = 1. Define
te = %(-/e) and g. = g * .. Let & be a real-valued non-negative Lebesgue measurable function on R4+1
such that [5,,, {(u)du = 1. Define & = e~ %71¢(-/e) and . = ¢ * .. Then define h?(x,u) = g.(x)pe(x,u).
Then for all x € X, u € R and ¢ > 0,

IVAE (x,u)ll2 < [[Vge(x)[l2 + Mg [ Ve (%, u) [[21(x € Supp(ge))-

Hence by definition of TV and Dominated Convergence Theorem,

TV{pay <lim [IVAS(x,u)|2dxdu < lim/ IV ge(x)||2dx + Mg lim/||Vg0€(x, u)||1(x € Supp(ge))dxdu
6l,0 XX[O,I] E,LO X EJ,O
STV(g} + M5 TV e} Supp(g)x[0.1] -
Let C be any cube of side-length a in R%*!. Then
TVipayc §lim/HVh‘;(x, u)||2dxdu < lim/HVgs(x)Hgdeng 1im/HVgas(x, w)||1(x € Supp(ge))dxdu
E$0 C €$0 C E$0 C
STV (g).c Mg TV (4} supp(g) [0, 1]nc < MaKga” +MgLaKpya”.
In summary, we have
Mitg = MsMioy Ty = TVs + Mg SUD TV} Supp(o)xfo.1)s - Kirg = Kg +M5K)-
Similar argument shows

My <MgMypy, TVgs < TVg + Mg sup Vv, supp(g):  Kip = Kg +MgKy,.
ge

It follows from the assumptions supgeg TV{u} supp(g)x[0,1] < SUpyeg m(Supp(g)) and SuPgeg TV, supp(g) <
sup,cg m(Supp(g)) that

My <MgMyy, TVg < TVg+Mgm(Supp(g)), K, <Kg+MgKi,) + MgKy,.

By Lemma SA.13, .’;61 is a VC-type class with constant cgcx299 7% and exponent dg + dx with respect to

envelope function MgMy,.
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(3) Properties of H,
The main challenge is that Ry contains non-differentiable indicator. First, we study properties of § x Rs.

Then by Definition 2,

TVgxR,,[0,1]d+1 = SUPSUp sup / / 9(x)1(u < y) div(e)(x, u)dudx
9€G YER peD 4y ([0,1]4F) J[0,1]¢ J[0,1]

[Mell2]l oo <1
<swpswp swp s [ g0 < )i o) + () dudx
9€S YER geD4([0,1]4) wE€D1([0,1]) J[0,1]¢ J[0,1]

Melzlloo<t  N¥llec<1

— supsup  sup / g(x) div p(x)dx +  sup / g(x)dx((1) - $(0))
9EFYER peD,([0,1]¢) /10,1]7 Y€D1([0,1]) J[0,1]¢
Hll2lleo <1 [[]loo <1

STVE’;,[O’l]d + 2}39.
Similar argument as in (2) gives

Vg v, [0,1]¢ < TVg + Mg su;g) TVv, supp(g) TVg (0,1« + Mg su;g)m(supp(g)).
ge ge

It follows that

TV:;62 ,S TV97[071]d + Eg =+ Mg surg)m(supp(g)).
g€
Consider the change of variable function 7' : [0,1]4"1 — R9*! given by T(x,u) = (x,p(x,u)). Observe
that VT'(x,u) is a lower triangular matrix with diagonal (1, 0,¢(x,u)), we have [|VT'(x,u)|op = |Ou(x, u)],
det(VT(x, u)) = [Bup(x, 0)].

V5, = sup lim [V(he o T)(u)[[du = sup lim (VT (u))" Vhe(T(u))du
heGXxR2 €40 Jueo,1]4+1 heGXxR2 €40 Jue[o,1]4+1
= sup lim (VDT (x))) " Vhe(x)] det (VT (x)) dx

hEGX Rz €40 JxeT([0,1]4+1)

< sup lim IVhe (x)]|dx]|det(VT) ™ oo [ VT lop 0o
heGx Ry €40 Jxe([0,1]4+1)

< TV9><R2,[0,1]‘H1 Hdet(VT)_lHOOHHVTHOPHOO < (TVS,[O,l]d + 2E9)”det(VT)_1”00”HVTHOPHOO

MAX (x ) e[0,1]d+1 |0usp(x, )l
< (TVg fo.1j4 + Eg + Mg supm(supp(g))) —— <L '
S,[0,1] v g€e§ MiN (x )e[o,1]d+1 |8u<P(Xa u)l

By Lemma SA.13, 9762 is a VC-type class with constant cgex2%9 7% and exponent dg + dx with respect to
envelope function Mg.
(4) Effects of Rosenblatt Transformation

-2 .1 =2 .1
By Lemma SA.12, TVq, < Tngcl fZiZ , TV, < TngszZiZ , Mge, = Mﬂffl’ My, = M:’]:/CQ. Moreover, H; and
Hy are VC-type classes with constant cgex225 9% and exponent dg + dg with respect to envelope functions

MgM;,y and Mg respectively.
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(5) Application of Theorem 1.1 in Rio (1994)

We can now apply Theorem 1.1 in Rio (1994) to get {X,,(h) : h € H;} admits a Gaussian strong approxi-

mation with rate function

dfzz \/MgM{w} (TVg + Mg SUPgeg TV{@}’SUPP(Q))

Ca,p 7 . Vit+ (d+1)logn+
Iz 1, 2d+32
—d+1
[MgM . 2\/& d—1
Cd,go % min { log(n)MgM{w}, ()fde(Kg + MgK{LP}))}(t + (d + 1) log 7?,),
L7

where Cy 1 is a quantity that only depends on d and ¢. And {X,,(h) : h € Ha} admits a Gaussian strong

approximation with rate function

—2
df, \/MgTV MgM
Cuoar| B2V ) Tog 7 + Cap 22 (4 4 (d 4+ 1) log ),
P iZ - P \/ﬁ

where TV = (TVg jo,1)¢ + 2Eg)||det(VT) oo [[VT [lopllco, and again Cy, 2 is a quantity that only depends
on d and ¢. ]

SA-II1.25 Proof of Example SA.2

Besides the properties given in the proof of Example SA.1, using product rule we can show Ls, < LgMg, +
MgLg,Li,} + MgLy, < b~%271 and by Lemma SA.12, Ly, < Licl?Z/iZ' The result the follows from

~

application of Theorem SA.1. O

SA-I11.26 Proof of Example SA.3

The conditions of § can be verified from Part (1) Properties of G in Section SA.1. It is easy to check that R,
satisfies (ii)(b) in Theorem 3 with c¢, = 1, dg, = 1 and a = 1. Moreover, Ry satisfies (ii) (a) in Theorem
3, and we can take cg, to be some absolute constant and dx, = 2 by van der Vaart and Wellner (2013,
Theorem 2.6.7). The results then follow from Theorem 3.

SA-I11.27 Proof of Example 3

In this section, we verify the rates claimed in this section. Recall § = {kx() : x € X'} with kx(u) =
L~1/2 > o<icr Lx € Apl(u € Ay)/Px(Ay). Since {A;: 0 <1 < L} is a quasi-uniform partition of X', there
exists constants C; > 0 and C5 > 0 not depending on L such that

CiLL ' <P(A)<CL™',  0<I<L.

This gives Mg < L/2.

1 ]].(X S Al)]l(xi S Al) 1 ]].(Xi S Al) ~1/2
57 U ﬁ();l;L P (M) ’ osier |1V Px(A) ‘
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For any 0 < ¢ < 1, Ng(e) < Card(G) = L < Le~!. Hence we can take cg = L and dg = 1. R; is the
singleton of identity function, hence obviously we can take cg, = 1 and dg, = 1. For Rg, observe that it
is a VC sub-graph class of VC-index 2. Hence by van der Vaart and Wellner (2013, Theorem 2.6.7), Ry is
also a VC-type class with dg, = 2 and cg, some absolute constant. The claimed results then follow from

application of Theorem 4.

SA-II1.28 Proof of Theorem 3

We first make a reduction via Rosenblatt transformation. Take u;, = ¢x(x;) where ¢x is defined as in
Lemma SA.12. And define g =go ¢;{1 for each g € G and consider G= {g:g €5} Then

Ru(g,r) = —= 3 g(x)r(y:) — Elgxr(y)] = —= > 500)r(y:) — Blgui)r(y)] = Fu(G.r),
i - i -

forall g € G,7 € R. Denote by P the law of (u;,;). Consider A M, ~(P, 1), the axis-aligned iterative splitting
of depth M for the main space R? and depth N for the multipler subspace, with respect to P. Denote
Enan = {1(Xos X Viom) : 0 <1< 2M 0 <m < 2V} where Xy, X Vi 0.m’s are the base level cells given in
Definition SA.4. By Lemma SA.12 and Lemma SA.13, it is possible to take a 5M§N°‘ = Mg N“-net of G x R,
(G x R)s, with cardinality no greater than Ngx(8) := supp N(S, ep, Mg /+/2) supg N(R, eq, S| Mz|lg.2/V2)
where supp is taken over all finite discrete measures on [0,1]¢ and supg, is taken over all finite discrete
measures on R. By Lemma SA.19, on a possibly enlarged probability space there exists a mean-zero Gaussian

process ZE indexed by § x RUTI(G x R) U Epr4n with almost sure continuous sample path such that

E [Z5(9)Z5()] = E[Ru(@)Fa(f)] . ¥9.f € G x RUL(G X R) Uarsn,

and for all ¢t > 0,

. N2Q+I2ME~M~ C. =
P <||n2Rn ~ 22| 5y, > Ca %t + Caf 112(2”%) < Mgyn (e, (SA-22)

where

Coy@xxy= Suwp mingdsup [ > (=G -5 +12"7 > B (NI +N)
fem(GxR) k) i< k':Cyr 1 CClk

Let f € H2(§ x R). Then there exists g € G and 7 € R such that f = II [g,7]. Since f is already piecewise-
constant, by definition of 5, ’s and 7;x’s, we know B'l,m(f) = M,m(g,7). Fix (4,k). We consider two cases.
Case 1: j > N. Then by the design of cell expansions (Section SA-IIL.1), C;x = Xj_n x R. By definition
of Mym, for any N < j" < j, we have (j — 7 )(j — ' + 1)234*7 Zk':cj/.k/gcj,k nﬂj,’k,(g,r) = 0. Now consider
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0 < j' < N. Then
S (gl
K':Cjr 4 CCjok

= Y > Blg(xa)lxi € Xoul| - [B[r(y:)x: € Xog,yi € Vij—1.2m]

1:X0, 1 CXj— Nk 0<m <25’
—Elr(yi)|xi € Xou,vi € Vi j—1,2m+1]]

<Co > [Elg(xi)lxi € Xo [N < Co2/NugN©.
X0, 1 CXj— Nk

It follows that

DG=NG=7+0277 > i) <Y G =)0 -+ 127 Mg N SMgN®.
3'<j K:Cjr 4 CCyok 3'<j

Case 2: j < N. Then C; = Xo; x YV j,m- Hence for any 0 < j' < j, we have

S (g ) =IElgGe)lxi € Xl > IElr(y:)x: € Xou, i € Vij—1,2m]
k':Cj/Yk/QCj,k TYL'Zyl,j/Tm/gyl,jy7,L

—Er(y:)|xi € Xo,yi € Vij—1,2m+1]]
<Co|Elg(xi)[xi € Xp]|[N® < CoMg N,

It follows that

S G-NG-F 0T Y [ipa(g,r) < CaligN®.

J'<J k’:Cj/,k/ng,k

Moreover, for all (4, k), we have Ej,k(g,r) < CoMgN“. Hence C
22, we get for all ¢t > 0,

~ R N2a+12ME§M~ , Mg N .
]P(||H2Rn — I Z;) ||(§><R)5 > Cy - +C5 \/» ) < 2Ngyxx(d)e™". (SA-23)

For projection error, by Lemma SA.24, for all ¢ > N, with probability at least 1 — 8Ngxx(6)ne™?,

R IR~ R _ R _ . 2 Nu2 o+l a+1
Ry = o Rl Gy, + 120 HQan(SXfR)é<Oa[ t—h/N Vg + 27 NMZt +\/ﬁt }

(SA-24)

LExR) S (CaMgN)2. Plug in Equation SA-

where C\, is a constant that only depends on « and
V§V:R

Vs

- _M
= min{2Ms Ve }2YmW) V[TV, S min{Mg,, ,2 Lgv J27 TV,

GV’ 9\7r<
. . — _M
= m1n{2M§,L§||VHOO}2Mm(V)||VHOOTV§ < min{Mg, 2 o Lg}2™ 4 TVg.
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Denote TV = max{TVg, Vg, } and L= max{Lg,Lgy, }. We balance the errors in Equations SA-23 and
SA-24 by choosing

. nTVg nTVL ”M?—l nzM%d“
(. N [ ) e

57§ S

g

Plug in Equations SA-23 and SA-24, and use the relation between § and G in Lemma SA.12, we have for
any ¢ > 0, with probability at least 1 — 8 exp(—t),

1 4 a4 1
C?ESTVdM”gl“) 2@ (cf CZEqMgTVSL? ) "
- b

n n

Ry — ZE||(gxm); <Vdmin ( (t+ cqlogn + logN(5))*+3

M
+ —9(75 + cqlogn + logN(8))* .
n

NG

The results the follows by the control on meshing error from Lemma SA.18. O

SA-II1.29 Proof of Theorem 4

By Lemma SA.13, N(d) < cd~4. The result follows by plugging in N(4) to Lemma SA.4.
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