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This paper presents new uniform Gaussian strong approximations for
empirical processes indexed by classes of functions based on d-variate ran-
dom vectors (d ≥ 1). First, a uniform Gaussian strong approximation is es-
tablished for general empirical processes indexed by possibly Lipschitz func-
tions, improving on previous results in the literature. In the setting consid-
ered by [29], and if the function class is Lipschitzian, our result improves the
approximation rate n−1/(2d) to n−1/max{d,2}, up to a polylog(n) term,
where n denotes the sample size. Remarkably, we establish a valid uniform
Gaussian strong approximation at the rate n−1/2 logn for d= 2, which was
previously known to be valid only for univariate (d= 1) empirical processes
via the celebrated Hungarian construction [23]. Second, a uniform Gaus-
sian strong approximation is established for multiplicative separable empiri-
cal processes indexed by possibly Lipschitz functions, which addresses some
outstanding problems in the literature [13, Section 3]. Finally, two other uni-
form Gaussian strong approximation results are presented when the function
class is a sequence of Haar basis based on quasi-uniform partitions. Applica-
tions to nonparametric density and regression estimation are discussed.

1. Introduction. Let xi ∈ X ⊆ Rd, i = 1, . . . , n, be independent and identical dis-
tributed (i.i.d.) random vectors supported on a background probability space (Ω,F ,P). The
classical empirical process is

(1) Xn(h) =
1√
n

n∑
i=1

(
h(xi)−E[h(xi)]

)
, h ∈H,

where H is a possibly n-varying class of functions. Following the empirical process litera-
ture, and assuming H is “nice”, the stochastic process (Xn(h) : h ∈H) is said to be Donsker
if it converges in law as n → ∞ to a Gaussian process in ℓ∞(H), the space of uniformly
bounded real functions on H. This weak convergence result is typically denoted by

(2) Xn⇝ Z, in ℓ∞(H),

where (Z(h) : h ∈H) is a mean-zero Gaussian process with covariance E[Z(h1)Z(h2)] =
E[h1(xi)h2(xi)] − E[h1(xi)]E[h2(xi)] for all h1, h2 ∈H when H is not n-varying, or its
limit as n→∞ otherwise. See [33] and [20] for textbook overviews.

A more challenging endeavour is to construct a uniform Gaussian strong approxima-
tion for the empirical process Xn. That is, if the background probability space is “rich”
enough, or is otherwise properly enlarged, the goal is to construct a sequence of mean-
zero Gaussian processes (Zn(h) : h ∈ H) with the same covariance structure as Xn (i.e.,
E[Xn(h1)Xn(h2)] =E[Zn(h1)Zn(h2)] for all h1, h2 ∈H) such that

(3) ∥Xn −Zn∥H = sup
h∈H

∣∣Xn(h)−Zn(h)
∣∣=O(ϱn), almost surely (a.s.),
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for a non-random sequence ϱn → 0 as n→∞. Such a refined approximation result is useful
in a variety of contexts. For example, it gives a distributional approximation for non-Donsker
empirical processes, for which (2) does not hold, and it also offers a precise quantification
of the quality of the distributional approximation when (2) holds. In addition, (3) is typically
established using non-asymptotic probability concentration inequalities, which can be used
to construct statistical inference procedures requiring uniformity over H and/or the class of
underlying data generating processes. Furthermore, because the Gaussian process Zn is “pre-
asymptotic”, it can offer a better finite sample approximation to the sampling distribution of
Xn than the large sample approximation based on the limiting Gaussian process Z in (2).

There is a large literature on strong approximations for empirical processes, offering dif-
ferent levels of tightness for the bound ϱn in (3). In particular, the univariate case (d= 1) is
mostly settled. A major breakthrough was accomplished by [23, KMT hereafter], who intro-
duced the celebrated Hungarian construction to prove the optimal result ϱn = n−1/2 logn for
the special case of the uniform empirical distribution process: xi ∼ Uniform(X ), X = [0,1],
and H = {1(· ≤ x) : x ∈ [0,1]}, where 1(·) denotes the indicator function. See [5] and [25]
for more technical discussions on the Hungarian construction, and [14], [24] and [28] for
textbook overviews. The KMT result was later extended by [18] and [19] to univariate em-
pirical processes indexed by functions with uniformly bounded total variation: for xi ∼PX

supported on X =R and continuously distributed, the authors obtained

(4) ϱn = n−1/2 logn,

in (3), with H satisfying a bounded variation condition. More recently, [8, Lemma SA26]
gave a self-contained proof of a slightly generalized KMT result allowing for a larger class
of distributions PX . See Remark 1 for details. As a statistical application, the authors con-
sidered univariate kernel density estimation [34], with bandwidth b → 0 as n → ∞, and
demonstrated that the optimal univariate KMT strong approximation rate (nb)−1/2 logn is
achievable, where nb is the effective sample size.

Establishing strong approximations for general empirical processes with d ≥ 2 is more
difficult, since the KMT approach does not easily generalize to multivariate data. Founda-
tional results include [27], [22], and [29]. In particular, assuming the function class H is
uniformly bounded, has bounded total variation, and satisfies a VC-type condition, among
other regularity conditions discussed precisely in the upcoming sections, [29] obtained

(5) ϱn = n−1/(2d)
√

logn, d≥ 2,

in (3). This result is tight under the conditions imposed [2], and demonstrates an unfortunate
dimension penalty in the convergence rate of the d-variate uniform Gaussian strong approx-
imation. As a statistical application, the author also considered the kernel density estimator
with bandwidth b→ 0 as n→∞, and established (3) with

ϱn = (nbd)−1/(2d)
√
logn, d≥ 2,

where nbd is the effective sample size.
While [29]’s KMT strong approximation result is unimprovable under the conditions he

imposed, it has two limitations:

1. The class of functions H may be too large, and further restrictions can open the door for
improvements. For example, in his application to kernel density estimation, [29, Section
4] assumed that the class H is Lipschitzian to verify the sufficient conditions of his strong
approximation theorem, but his theorem did not exploit the Lipschitz property in itself.
(The Lipschitzian assumption is essentially without loss of generality in the kernel density
estimation application.) It is an open question whether the optimal univariate KMT strong
approximation rate (4) is achievable when d≥ 2, under additional restrictions on H.
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2. As discussed by [13, Section 3], applying [29]’s strong approximation result directly to
nonparametric local smoothing regression, a “local empirical process” in their terminol-
ogy, leads to an even more suboptimal strong approximation rate in (3). For example, in
the case of kernel regression estimation with d-dimensional covariates, [29]’s strong ap-
proximation would treat all d+ 1 variables (covariates and outcome) symmetrically, and
thus it will give a strong approximation rate in (3) of the form

ϱn = (nbd+1)−1/(2d+2)
√

logn, d≥ 1,(6)

where b → 0 as n → ∞, and under standard regular conditions. The main takeaway is
that the resulting effective sample size is now nbd+1 when in reality it should be nbd,
since only the d-dimensional covariates are smoothed out for estimation of the conditional
expectation. It is this unfortunate fact that prompted [13] to develop strong approximation
methods that target the scalar suprema of the stochastic process, suph∈H |Xn(h)|, instead
of the stochastic process itself, (Xn(h) : h ∈H), as a way to circumvent the suboptimal
strong approximation rates that would emerge from deploying directly [29]’s result.

This paper presents new uniform Gaussian strong approximation results for empirical pro-
cesses that address the two aforementioned limitations. Section 3 studies the general empiri-
cal process (1), and establishes a uniform Gaussian strong approximation explicitly allowing
for the possibility that H is Lipschitzian (Theorem 1). This result not only encompasses, but
also generalizes previous results in the literature by allowing for d ≥ 1 under more generic
entropy conditions and weaker conditions on the underlying data generating process. For
comparison, if we impose the regularity conditions in [29] and also assume H is Lipschitzian,
then our result (Corollary 2) verifies (3) with

ϱn = n−1/d
√
logn+ n−1/2 logn, d≥ 1,

thereby improving (5), in addition to matching (4) when d = 1; see Remark 1 for details.
Remarkably, we demonstrate that the optimal univariate KMT strong approximation rate
n−1/2 logn is achievable when d= 2, in addition to achieving the better approximation rate
n−1/d

√
logn when d≥ 3. Applying our result to the kernel density estimation example, we

obtain the improved strong approximation rate (nbd)−1/d
√
logn + (nbd)−1/2 logn, d ≥ 1,

under the same conditions imposed in prior literature. We thus show that the optimal uni-
variate KMT uniform Gaussian strong approximation holds in (3) for bivariate kernel density
estimation. Theorem 1 also allows for other entropy notions for H beyond the classical VC-
type condition, and delivers improvements over [22]. See Remark 2 for details. Section 3
discusses how our improvements are achieved, and outstanding technical roadblocks.

Section 4 is motivated by the second aforementioned limitation in prior uniform Gaussian
strong approximation results, and thus studies the residual-based empirical process:

(7) Rn(g, r) =
1√
n

n∑
i=1

(
g(xi)r(yi)−E[g(xi)r(yi)|xi]

)
, (g, r) ∈ G×R,

for zi = (xi, yi), i = 1, . . . , n, a random sample now also including an outcome variable
yi ∈ R. Our terminology reflects the fact that g(xi)r(yi) − E[g(xi)r(yi)|xi] = g(xi)ϵi(r)
with ϵi(r) = r(yi)−E[r(yi)|xi], which can be interpreted as a residual in nonparametric local
smoothing regression settings. In statistical applications, g(·) is typically an n-varying local
smoother based on kernel, series, or nearest-neighbor methods, while r(·) is some transfor-
mation such as r(y) = y for conditional mean or r(y) = 1(y ≤ ·) for conditional distribution
estimation. [13, Section 3.1] call these special cases of Rn a local empirical process.

The residual-based empirical process (Rn(g, r) : (g, r) ∈ G×R) may be viewed as a gen-
eral empirical process (1) based on the sample (zi : 1 ≤ i ≤ n), and thus available strong
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approximation results can be applied directly, including [22], [29], and our new Theorem 1.
However, those off-the-shelf results require stringent assumptions and can deliver subopti-
mal approximation rates. First, available results require zi to admit a bounded and positive
Lebesgue density on [0,1]d+1, possibly after some specific transformation, thereby impos-
ing strong restrictions on the marginal distribution of yi. Second, available results can lead
to the incorrect effective sample size for the strong approximation rate. For example, for a
local empirical process where g(·) denotes n-varying local smoothing weights based on a
kernel function with bandwidth b→ 0 as n→∞, and r(y) = y, [29] gives the approxima-
tion rate (6), and our refined Theorem 1 for general empirical processes indexed by Lipschitz
functions gives a uniform Gaussian strong approximation rate

ϱn = (nbd+1)−1/(d+1)
√
logn+ (nbd)−1/2 logn,(8)

where the effective sample size is still nbd+1. This is suboptimal because nbd is the (point-
wise) effective sample size for the kernel regression estimator.

A key observation underlying the potential suboptimality of strong approximation results
for local regression empirical processes is that all components of zi = (xi, yi) are treated
symmetrically. Thus, Section 4 presents a novel uniform Gaussian strong approximation for
the residual-based empirical process (Theorem 2), which explicitly exploits the multiplica-
tive separability of H = G× R and the possibly Lipschitz continuity of the function class,
while also removing stringent assumptions imposed on the underlying data generating pro-
cess. When applied to the local kernel regression empirical processes, our best result gives a
uniform Gaussian strong approximation rate

ϱn = (nbd)−1/(d+2)
√

logn+ (nbd)−1/2 logn,(9)

thereby improving over both [29] leading to (5), and Theorem 1 leading to (8). The correct
effective sample size nbd is achieved, under weaker regularity conditions. As a statistical
application, Section 4.1 leverages Theorem 2 to establish the best known uniform Gaussian
strong approximation result for local polynomial regression estimators [17].

Following [29], the proof of Theorem 1 in Section 3 first approximates in mean square the
class of functions H using a Haar basis over carefully constructed disjoint dyadic cells, and
then applies the celebrated Tusnády’s Lemma [28, Chapter 10, for a textbook introduction]
to construct a strong approximation. It thus requires balancing two approximation errors: a
projection error (“bias”) emerging from the mean square projection based on a Haar basis,
and a coupling error (“variance”) emerging from the coupling construction for the projected
process. A key observation in our paper is that both errors can be improved by explicitly
exploiting a Lipschitz assumption on H. However, it appears that to achieve the univari-
ate KMT uniform Gaussian strong approximation for the general empirical process (1) with
d≥ 3, a mean square projection based on a higher-order function class would be needed to
improve the projection error, but no coupling methods available in the literature for the re-
sulting projected process. The proof of Theorem 2 in Section 4 employs a similar projection
and coupling decomposition approach, but treats G and R separately in order to leverage the
multiplicative separability of the residual process (Rn(g, r) : (g, r) ∈ G× R). In particular,
the proof designs cells for projection and coupling approximation that are asymmetric in the
direction of xi and yi components to obtain the uniform Gaussian strong approximation. This
distinct proof strategy relaxes some underlying assumptions (most notably, on the distribu-
tion of yi), and delivers a better strong approximation rate for some local empirical processes
than what would be obtained by directly applying Theorem 1.

In general, however, neither Theorem 1 nor Theorem 2 dominates each other, nor their
underlying assumptions imply each other, and therefore both are of interest, depending on
the statistical problem under consideration. Their proofs employ different strategies (most
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notably, in terms of the dyadic cells expansion used) to leverage the specific structure of Xn

and Rn. It is an open question whether the uniform Gaussian strong approximation rates
obtained from Theorems 1 and 2 are optimal under the assumptions imposed.

As a way to circumvent the technical limitations underlying the proof strategies of Theo-
rem 1 and Theorem 2, Section 5 presents two other uniform Gaussian strong approximation
results when H is spanned by a possibly increasing sequence of finite Haar functions on
quasi-uniform partitions, for the general empirical process (Theorem 3) and for the residual-
based empirical process (Theorem 4). These theorems shut down the projection error, and
also rely on a generalized Tusnády’s Lemma established in this paper, to establish valid cou-
plings over more general partitioning schemes and under weaker regularity conditions. In this
specialized setting, we demonstrate that a uniform Gaussian strong approximation at the op-
timal univariate KMT rate based on the corresponding effective sample size is possible for all
d≥ 1, up to a polylog(n) term, where polylog(n) = loga(n) for some a > 0, and possibly an
additional “bias” term induced exclusively by the cardinality of R. As statistical applications,
we establish uniform Gaussian strong approximations for the classical histogram density es-
timator, and for Haar partitioning-based regression estimators such as those arising in the
context of certain regression tree and related nonparametric methods [4, 21, 7].

The supplemental appendix [11] contains all technical proofs, additional theoretical results
of independent interest, and other omitted details.

1.1. Related Literature. This paper contributes to the literature on strong approxima-
tions for empirical processes, and their applications to uniform inference for nonparametric
smoothing methods. For introductions and overviews, see [14], [24], [16], [3], [26], [20],
[28], [37], and references therein. See also [13, Section 3] for discussion and further refer-
ences concerning local empirical processes and their role in nonparametric curve estimation.

The celebrated KMT construction [23], Yurinskii’s coupling [35], and Zaitsev’s coupling
[36] are three well-known approaches that can be used to establish a uniform Gaussian strong
approximation for empirical processes. Among them, the KMT approach often offers the
tightest approximation rates when applicable, and is the focus of our paper: closely related
literature includes [27], [22], [29], [18], and [19], among others. As summarized in the intro-
duction, our first main result (Theorem 1) encompasses and improves on prior results in that
literature. Furthermore, Theorems 2, 3, and 4 offer new results for more specific settings of
interest in statistics, in particular addressing some outstanding problems in the literature [13,
Section 3]. We provide detailed comparisons to the prior literature in the upcoming sections.

We do not discuss the other coupling approaches because they deliver slower strong ap-
proximation rates under the assumptions imposed in this paper: for example, see [10] for
results based on Yurinskii’s coupling, and [32] for results based on Zaitsev’s coupling. Fi-
nally, employing a different approach, [15] obtain a uniform Gaussian strong approximation
for the multivariate empirical process indexed by half plane indicators with a dimension-
independent approximation rate, up to polylog(n) terms.

2. Notation. We employ standard notations from the empirical process literature, suit-
ably modified and specialized to improve exposition. See, for example, [1], [33] and [20] for
background definitions and more details.

The q-dimensional Gaussian distribution with mean µ ∈ Rq and symmetric positive
semidefinite covariance matrix Σ ∈ Rq×q is denoted by Normal(µ,Σ). The binomial distri-
bution with parameter n ∈N and p ∈ [0,1] is denoted by Bin(n,p). |A| denotes the cardinal-
ity of the set A. For a vector a ∈Rq , ∥a∥ denotes the Euclidean norm and ∥a∥∞ denotes the
maximum norm of a. For a matrix A ∈Rq×q , σ1(A)≥ σ2(A)≥ · · · ≥ σd(A)≥ 0 denote the
singular values of A. For 1≤ i1 ≤ j2 ≤ n and 1≤ j1 ≤ j2 ≤ n, Ai1:i2,j1:j2 denotes the sub-
matrix (Aij)i1≤i≤i2,j1≤j≤j2 of A, and Ai1,j1:j2 , Ai1:i2,j1 are likewise defined. For sequences
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of real numbers, we write an = o(bn) if limsupn→∞ |anbn |= 0, and write an =O(bn) if there
exists some constant C and N > 0 such that n > N implies |an| ≤ C|bn|. For sequences of
random variables, we write an = oP(bn) if limsupn→∞P[|anbn | ≥ ε] = 0 for all ε > 0, and
write an =OP(bn) if limsupM→∞ limsupn→∞P[|anbn | ≥M ] = 0.

Let U ,V ⊆ Rq . We define U + V = {u + v : u ∈ U ,v ∈ V} and ∥U∥∞ = sup{∥u1 −
u2∥∞ : u1,u2 ∈ U}, and B(U) denotes the Borel σ-algebra generated by U and B(U)⊗B(V)
denotes the product σ-algebra. Let µ be a measure on (U ,B(U)), and ϕ : (V,B(V)) 7→
(U ,B(U)) be a measurable function. µ ◦ ϕ denotes the measure on (V,B(V)) such that
µ ◦ ϕ(V ) = µ(ϕ(V )) for any V ∈ B(V). For R ∈ B(U), let µ|R be the restriction of µ on R,
that is, µ|R(U) = µ(U ∩R) for all U ∈ B(U). Two measures µ and ν on the measure space
(U ,B(U)) agree on R ∈ B(U) if µ|R = ν|R. The support of µ is Supp(µ) = closure(∪{U ∈
B(U) : µ(U) ̸= 0}). The Lebesgue measure is denoted by m. Let f be a real-valued func-
tion on the measure space (U ,B(U), µ). Define the Lp norms ∥f∥µ,p = (

∫
|f |pdµ)1/p for

1≤ p <∞ and ∥f∥∞ = supx∈U |f(x)|, and let Supp(f) = {u ∈ U : f(u)> 0} be the sup-
port of f . Lp(µ) is the class of all real-valued measurable functions f on (U ,B(U)) such
that ∥f∥µ,p < ∞, for 1 ≤ p < ∞. The semi-metric dµ on L2(µ) is defined by dµ(f, g) =
(∥f − g∥2µ,2 − (

∫
f dµ−

∫
g dµ)2)1/2, for f, g ∈ L2(µ). Whenever it exits, ∇f(x) denotes

the Jacobian matrix of f at x. If F and G are two sets of functions from measure space
(U ,B(U)) and (V,B(V)) to R, respectively, then F × G denotes the class of measurable
functions {(f, g) : f ∈ F, g ∈ G} from (U × V,B(U) ⊗ B(V)) to R. For a measure µ on
(U × V,B(U)⊗ B(V)), the semi-metric dµ on G× R is defined by dµ((g1, r1), (g2, r2)) =
(∥g1r1 − g2r2∥2µ,2 − (

∫
g1r1dµ −

∫
g2r2dµ)

2)1/2. For a semi-metric space (S, d), the cov-
ering number N(S, d, ε) is the minimal number of balls Bv(ε) = {u : d(u, v) < ε}, v ≥ 1,
needed to cover S .

2.1. Main Definitions. Let F be a class of measurable functions from a probability space
(Rq,B(Rq),P) to R. We introduce several definitions that capture properties of F.

DEFINITION 1. F is pointwise measurable if it contains a countable subset G such that
for any f ∈ F, there exists a sequence (gm :m ≥ 1) ⊆ G such that limm→∞ gm(u) = f(u)
for all u ∈Rq .

DEFINITION 2. Let Supp(F) = ∪f∈F Supp(f). A probability measure QF on (Rq,B(Rq))
is a surrogate measure for P with respect to F if

(i) QF agrees with P on Supp(P)∩ Supp(F).
(ii) QF(Supp(F) \ Supp(P)) = 0.

Let QF = Supp(QF).

DEFINITION 3. For q = 1 and an interval I ⊆R, the pointwise total variation of F over
I is

pTVF,I = sup
f∈F

sup
P≥1

sup
PP∈I

P−1∑
i=1

|f(ai+1)− f(ai)|,

where PP = {(a1, . . . , aP ) : a1 ≤ · · · ≤ aP} denotes the collection of all partitions of I .

DEFINITION 4. For a non-empty C ⊆Rq , the total variation of F over C is

TVF,C = inf
U∈O(C)

sup
f∈F

sup
ϕ∈Dq(U)

∫
Rq

f(u)div(ϕ)(u)du/∥∥ϕ∥2∥∞,
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where O(C) denotes the collection of all open sets that contains C, and Dq(U) denotes the
space of infinitely differentiable functions from Rq to Rq with compact support contained in
U .

DEFINITION 5. For a non-empty C ⊆ Rq , the local total variation constant of F over C,
is a positive number KF,C such that for any cube D ⊆ Rq with edges of length ℓ parallel to
the coordinate axises,

TVF,D∩C ≤ KF,Cℓ
d−1.

DEFINITION 6. For a non-empty C ⊆Rq , the envelopes of F over C are

MF,C = sup
u∈C

MF,C(u), MF,C(u) = sup
f∈F

|f(u)|, u ∈ C.

DEFINITION 7. For a non-empty C ⊆Rq , the Lipschitz constant of F over C is

LF,C = sup
f∈F

sup
u1,u2∈C

|f(u1)− f(u2)|
∥u1 − u2∥∞

.

DEFINITION 8. For a non-empty C ⊆Rq , the L1 bound of F over C is

EF,C = sup
f∈F

∫
C
|f |dP.

DEFINITION 9. For a non-empty C ⊆Rq , the uniform covering number of F with enve-
lope MF,C over C is

NF,C(δ,MF,C) = sup
µ

N(F,∥·∥µ,2, δ∥MF,C∥µ,2), δ ∈ (0,∞),

where the supremum is taken over all finite discrete measures on (C,B(C)). We assume that
MF,C(u) is finite for every u ∈ C.

DEFINITION 10. For a non-empty C ⊆Rq , the uniform entropy integral of F with enve-
lope MF,C over C is

JC(δ,F,MF,C) =

∫ δ

0

√
1 + logNF,C(ε,MF,C)dε,

where it is assumed that MF,C(u) is finite for every u ∈ C.

DEFINITION 11. For a non-empty C ⊆ Rq , F is a VC-type class with envelope MF,C
over C if (i) MF,C is measurable and MF,C(u) is finite for every u ∈ C, and (ii) there exist
cF,C > 0 and dF,C > 0 such that

NF,C(ε,MF,C)≤ cF,Cε
−dF,C , ε ∈ (0,1).

DEFINITION 12. For a non-empty C ⊆ Rq , F is a polynomial-entropy class with enve-
lope MF,C over C if (i) MF,C is measurable and MF,C(u) is finite for every u ∈ C, and (ii)
there exist aF,C > 0 and bF,C > 0 such that

logNF,C(ε,MF,C)≤ aF,Cε
−bF,C , ε ∈ (0,1).

If a surrogate measure QF for P with respect to F has been assumed, and it is clear from
the context, we drop the dependence on C =QF for all quantities in Definitions 4–12. That
is, to save notation, we set TVF = TVF,QF

, KF = KF,QF
, MF = MF,QF

, MF(u) =MF,QF
(u),

LF = LF,QF
, and so on, whenever there is no confusion.
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3. General Empirical Process. Let

mn,d =

{
n−1/2

√
logn if d= 1

n−1/(2d) if d≥ 2
and ln,d =


1 if d= 1

n−1/2
√
logn if d= 2

n−1/d if d≥ 3

,

and recall Section 2.1 and the notation conventions introduced there.

THEOREM 1. Suppose (xi : 1 ≤ i ≤ n) are i.i.d. random vectors taking values in
(Rd,B(Rd)) with common lawPX supported on X ⊆Rd, and the following conditions hold.

(i) H is a real-valued pointwise measurable class of functions on (Rd,B(Rd),PX).
(ii) There exists a surrogate measure QH for PX with respect to H such that QH =m◦ϕH,

where the normalizing transformation ϕH :QH 7→ [0,1]d is a diffeomorphism.
(iii) MH <∞ and J(1,H,MH)<∞.

Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaus-
sian processes (ZX

n (h) : h ∈H) with almost sure continuous trajectories on (H,dPX
) such

that:

• E[Xn(h1)Xn(h2)] =E[Z
X
n (h1)Z

X
n (h2)] for all h1, h2 ∈H, and

• P
[
∥Xn −ZX

n ∥H >C1Sn(t)
]
≤C2e

−t for all t > 0,

where C1 and C2 are universal constants, and

Sn(t) = min
δ∈(0,1)

{An(t, δ) + Fn(t, δ)},

where

An(t, δ) =min
{
mn,d

√
MH, ln,d

√
c2LH

}√
c1TVH

√
t+ logNH(δ,MH)

+

√
MH

n
min

{√
logn

√
MH,

√
c3KH + MH

}
(t+ logNH(δ,MH))

c1 = d sup
x∈QH

d−1∏
j=1

σj(∇ϕH(x)), c2 = sup
x∈QH

1

σd(∇ϕH(x))
, c3 = 2d−1dd/2−1c1c

d−1
2 ,

and

Fn(t, δ) = J(δ,H,MH)MH +
MHJ2(δ,H,MH)

δ2
√
n

+ δMH
√
t+

MH√
n
t.

This uniform Gaussian strong approximation theorem is given in full generality to accom-
modate different applications. Section 3.1 discusses the role of the surrogate measure and
normalizing transformation, and Section 3.2 discusses leading special cases and compares
our results to prior literature. The proof of Theorem 1 is in [11, Section SA-II], but we briefly
outline the general proof strategy here to highlight our improvements on prior literature and
some open questions. The proof begins with the standard discretization (or meshing) decom-
position:

∥Xn −ZX
n ∥H ≤ ∥Xn −Xn ◦ πHδ

∥H + ∥Xn −ZX
n ∥Hδ

+ ∥ZX
n ◦ πHδ

−ZX
n ∥H,

where ∥Xn −ZX
n ∥Hδ

captures the coupling between the empirical process and the Gaussian
process on a δ-net of H, which is denoted by Hδ , while the terms ∥Xn −Xn ◦ πHδ

∥H and
∥ZX

n ◦ πHδ
− ZX

n ∥H capture the fluctuations (or oscillations) relative to the meshing for
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each of the stochastic processes. The latter two errors are handled using standard empirical
process results, which give the contribution Fn(t, δ) emerging from Talagrand’s inequality
[20, Theorem 3.3.9] combined with a standard maximal inequality [13, Theorem 5.2].

Following [29], the coupling term ∥Xn − ZX
n ∥Hδ

is further decomposed using a mean
square projection onto a Haar function space:

∥Xn −ZX
n ∥Hδ

≤ ∥Xn − Π0Xn∥Hδ
+ ∥Π0Xn − Π0Z

X
n ∥Hδ

+ ∥Π0ZX
n −ZX

n ∥Hδ
,(10)

where Π0Xn(h) = Xn ◦ Π0h with Π0 denoting the L2-projection onto piecewise constant
functions on a carefully chosen partition of X . We introduce a class of recursive quasi-dyadic
cells expansion of X , which we employ to generalize prior results in the literature, including
properties of the L2-projection onto a Haar basis based on quasi-dyadic cells.

The term ∥Π0Xn − Π0Z
X
n ∥Hδ

in (10) represents the strong approximation error for the
projected process over a recursive dyadic collection of cells partitioning X . Handling this
error boils down to the coupling of Bin(n, 12) with Normal(n2 ,

n
4 ), due to the fact that the

constant approximation within each recursive partitioning cell generates counts based on
i.i.d. data. Building on the celebrated Tusnády’s Lemma, [29, Theorem 2.1] established a
remarkable coupling result for bounded functions L2-projected on a dyadic cells expansion of
X . We build on his powerful ideas, and establish an analogous result for the case of Lipschitz
functions L2-projected on dyadic cells expansion of X , thereby obtaining a tighter coupling
error. A limitation of these results is that they only apply to a dyadic cells expansion due to
the specifics of Tusnády’s Lemma.

The terms ∥Xn−Π0Xn∥Hδ
and ∥Π0ZX

n −ZX
n ∥Hδ

in (10) represent the errors of the mean
square projection onto a Haar basis based on quasi-dyadic cells expansion of X . We handle
this error using Bernstein inequality, while also taking into account explicitly the potential
Lipschitz structure of the functions, and the more generic cell structure.

Balancing the coupling error and the two projection errors in (10) gives term An(t, δ) in
Theorem 1. Section SA-II of [11] provides all technical details, and additional results that
may be of independent interest.

3.1. Surrogate Measure and Normalizing Transformation. Theorem 1 assumes the ex-
istence of a surrogate measure QH, and a normalizing transformation ϕH, which together
restrict PX to be absolutely continuous with respect to m on X ∩ Supp(H), while incorpo-
rating features of the support of H. We provide examples of QH and ϕH, discuss primitive
sufficient conditions, and bound the constants c1, c2, and c3 explicitly.

As a first simple example, suppose that xi ∼ Uniform(X ) with X = ×d
l=1[al,bl], where

−∞ < al < bl < ∞, l = 1,2, . . . , d. Setting QH = PX and ϕH(x1, · · · , xd) = ((b1 −
a1)

−1(x1 − a1), · · · , (bd − ad)
−1(xd − ad)) verifies assumption (ii) in Theorem 1. In

this case, c1 = dmax1≤l≤d |bl − al|
∏d

l=1 |bl − al|−1, c2 = max1≤l≤d |bl − al| and c3 =

2d−1dd/2max1≤l≤d |bl − al|d
∏d

l=1 |bl − al|−1.
WhenPX is not the uniform distribution, or X is not isomorphic to the d-dimensional unit

cube, a careful choice of QH and ϕH is needed. In many interesting cases, the Rosenblatt
transformation can be used to exhibit a valid normalizing transformation, together with an
appropriate choice of QH taking into account X and Supp(H). For a random vector V =
(V1, · · · , Vd) ∈Rd with distribution PV , the Rosenblatt transformation is

TPV
(v1, · · · , vd) =


PV (V1 ≤ v1)

PV (V2 ≤ v2|V1 = v1)
...

PV (Vd ≤ vd|V1 = v1, · · · , Vd−1 = vd−1)

 .
To discuss the role of the Rosenblatt transformation in constructing a valid normalizing

transformation, we consider the following two cases.
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Case 1: Rectangular QH. Suppose that QH admits a Lebesgue density fQ supported on
QH =×d

l=1[al,bl], −∞≤ al < bl ≤∞. Then, the Rosenblatt transformation ϕH = TQH

is a normalizing transformation, and we obtain

c1 = d sup
u∈QH

fQ(u)

min{fQ,1(u1), fQ,2|1(u2|u1), · · · , fQ,d|−d(ud|u1, · · · , ud−1)}
,

c2 = sup
u∈QH

1

min{fQ,1(u1), fQ,2|1(u2|u1), · · · , fQ,d|−d(ud|u1, · · · , ud−1)}
,

and c3 = 2d−1dd/2−1c1c
d−1
2 , where fQ,j|−j(·|u1, · · · , uj−1) denotes the conditional den-

sity of Qj |Q1 = u1, · · · ,Qj−1 = uj−1 for Q= (Q1, · · · ,Qd)∼QH.
This case covers several examples of interest, which give primitive conditions for as-

sumption (ii) in Theorem 1:
(a) Suppose QH = ×d

l=1[al,bl] is bounded. Then, for fQ bounded and bounded away
from zero on QH,

c1 ≤ d
f
2
Q

f
Q

QH and c2 ≤
fQ

f
Q

QH,

where f
Q
= infx∈QH

fX(x), fQ = supx∈QH
fQ(x), and QH = max1≤l≤d |bl − al|.

If X = ×d
l=1[al,bl] is bounded and PX admits a bounded Lebesgue density fX on

X , then we can set QH =PX and ϕH = TPX
. This case corresponds to [29, Theorem

1.1], and the bounds for c1 and c3 coincide with those in [29, Section 3, Transformation
of the r.v.’s]. Alternatively, if X is unbounded but Supp(H) is bounded, we may still
be able to find QH supported on a bounded rectangle. We illustrate this case with
Example 1 in Section 3.2.

(b) Suppose QH = ×d
l=1[al,bl] is unbounded. This is often the case when X and

Supp(H) are unbounded (but note that setting X ∩ Supp(H) could be bounded in
some cases). To fix ideas, let xi ∼ Normal(µ,Σ). Then, we can set QH = PX and
ϕH = TPX

, and obtain

c1 ≤ d sup
x∈QH

max{fX,1(x1), fX,2|1(x2|x1), · · · , fX,d|−d(xd|x−d)}d−1(11)

≤ d min
1≤k≤d

{Σk,k −Σk,1:k−1Σ
−1
1:k−1,1:k−1Σ1:k−1,k}−(d−1)/2

bounded, but c2 (and hence c3) unbounded. This result shows that even when the
support of PX is unbounded, a valid uniform Gaussian strong approximation can be
established in certain cases (albeit the Lipschitz property is not used).

Case 2: Non-Rectangular QH. Due to the irregularity of X and Supp(H), in some set-
tings only a surrogate measure QH with non-rectangular QH may exist. Then, we can
compose the Rosenblatt transformation with another mapping capturing the shape of QH

to exhibit a valid normalizing transformation. Suppose that QH admits a Lebesgue den-
sity fQ supported on QH, and there exists a diffeomorphism χ : QH 7→ [0,1]d. Setting
ϕH = TQH◦χ−1 ◦ χ gives a valid normalizing transformation, with

c1 ≤ d
f
2
Q

f
Q

Sχ and c2 ≤
fQ

f
Q

Sχ,

where Sχ =
sup

x∈[0,1]d
|det(∇χ−1(x))|

inf
x∈[0,1]d

|det(∇χ−1(x))| ∥∥∇χ−1∥2∥∞. See also Example 1 in Section 3.2.
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To recap, Theorem 1 requires the existence of a surrogate measure and a normalizing
transformation, which restrict the probability law of the data and take advantage of specific
features of the function class. In particular, assumption (ii) in Theorem 1 does not require X
to be compact if either (11) is bounded (as it occurs when PX is the Gaussian distribution)
or Supp(H) is bounded (as we illustrate in Example 1 in Section 3.2). See Section SA-II.2
of [11] for details.

3.2. Special Cases and Related Literature. We introduce our first statistical example.

EXAMPLE 1 (Kernel Density Estimation). Suppose that PX admits a continuous
Lebesgue density fX on its support X . The classical kernel density estimator is

f̂X(w) =
1

n

n∑
i=1

1

bd
K
(xi −w

b

)
,

where K : K → R is a continuous function with K ⊆ Rd compact, and
∫
KK(w)dw = 1.

In statistical applications, the bandwidth b→ 0 as n→∞ to enable nonparametric estima-
tion [34]. Consider establishing a strong approximation for the localized empirical process
(ξn(w) :w ∈W), W ⊆X , where

ξn(w) =
√
nbd
(
f̂X(w)−E[f̂X(w)]

)
=Xn(hw), hw ∈H,

with H= {hw(·) = b−d/2K((· −w)/b) :w ∈W}. It follows that MH,Rd =O(b−d/2). ▲

Variants of Example 1 have been discussed extensively in prior literature on strong approx-
imations because the process ξn is non-Donsker whenever b→ 0, and hence standard weak
convergence results for empirical processes can not be used. For example, [18] and [19] es-
tablished strong approximations for the univariate case (d= 1) under i.i.d. sampling with X
unbounded, [9] established strong approximations for the univariate case (d= 1) under i.i.d.
sampling with X compact, [29] established strong approximations for the multivariate case
(d > 1) under i.i.d. sampling with X compact, [31] established strong approximations for the
multivariate case (d > 1) under i.i.d. sampling with X unbounded, and [8] established strong
approximations for the univariate case (d= 1) under non-i.i.d. dyadic data with X compact.
[13, Remark 3.1] provides further discussion and references. See also [12] for an application
of [29] to uniform inference for conditional density estimation.

We can use Example 1 to further illustrate the role of QH and ϕH.

EXAMPLE 1 (continued). Recall that X is the support of PX , W ⊆ X is the index set
for the class H, and K is the compact support of K . It follows that Supp(H) =W + b · K.
We illustrate two sets of primitive conditions implying assumption (ii) in Theorem 1.

• Suppose that X = ×d
l=1[al,bl], −∞ ≤ al < bl ≤ ∞, and W is arbitrary. Then, we can

set QH = PX and ϕH = TPX
, and the discussion in parts (a) and (b) of Case 1 in Sec-

tion 3.1 applies, which implies assumption (ii) in Theorem 1 under the assumptions im-
posed therein. Furthermore, when X is bounded, c1 = O(1) and c2 = O(1), and hence
c3 = O(1), because fX is continuous and positive on X . This is part (a) in Case 1 of
Section 3.1, and also the example in [29, Section 4]. No information on Supp(H) is used.

• Suppose that X is arbitrary, and W is bounded. Then, it may be possible to find QH

supported on a bounded set, even if X is unbounded. For example, suppose that X =Rd
+,
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W =×d
l=1[al,bl], 0≤ al < bl <∞, and K= [−1,1]d. Then, for instance, we can take QH

with Lebesgue density

fQ(x) =


fX(x) if x ∈×d

l=1[al,bl],

(1−PX(×d
l=1[al,bl]))/m(Υ) if x ∈Υ,

0 otherwise,

where al = max{al − b,0}, bl = bl + b, Υ = ×d
l=1[al,bl + 1] \ ×d

l=1[al,bl], and ϕH =
TQH◦χ−1 ◦ χ with χ(x1, · · · , xd) = ((b1 − a1)

−1(x1 − a1), · · · , (bd − ad)
−1(xd − ad)). It

follows that assumption (ii) in Theorem 1 holds. A more general example is discussed in
[11, Section SA-II.6].

Finally, the surrogate measure and normalizing transformation could be used to incorporate
truncation arguments. We do not dive into this idea for brevity. ▲

We now specialize Theorem 1 to several cases of practical interest. We employ the defini-
tions and notation conventions given in Section 2.1. To streamline the presentation, we also
assume that c1 < ∞ and c2 < ∞ (hence c3 < ∞) in the remaining of Section 3. See [11,
Section SA-II] for details.

3.2.1. VC-type Bounded Functions. Our first corollary considers a VC-type class H of
uniformly bounded functions (MH <∞), but without assuming they are Lipschitz (LH =∞).

COROLLARY 1 (VC-type Bounded Functions). Suppose the conditions of Theorem 1
hold. In addition, assume that H is a VC-type class with respect to envelope function MH
over QH with constants cH ≥ e and dH ≥ 1. Then, (3) holds with

ϱn =mn,d

√
logn

√
c1MHTVH +

logn√
n

min{
√

logn
√
MH,

√
c3KH + MH}

√
MH.

This corollary recovers the main result in [29, Theorem 1.1] when d ≥ 2, where mn,d =
n−1/(2d). It also covers d = 1, where mn,1 = n−1/2

√
logn, thereby allowing for a precise

comparison with prior KMT strong approximation results in the univariate case [18, 19, 8].
Thus, Corollary 1 contributes to the literature by covering all d ≥ 1 cases simultaneously,
allowing for possibly weaker regularity conditions on PX through the surrogate measure
and normalizing transformation, and making explicit the dependence on d, X , and all other
features of the underlying data generating process. This additional contribution can be useful
for non-asymptotic probability concentration arguments, or for truncation arguments (see
[31] for an example). Nonetheless, for d≥ 2, the main intellectual content of Corollary 1 is
due to [29]; we present it here for completeness and as a prelude for our upcoming results.

For d = 1, Corollary 1 delivers the optimal univariate KMT approximation rate when
KH =O(1), which employs a weaker notion of total variation relative to prior literature, but
at the expense of requiring additional conditions, as the following remark explains.

REMARK 1 (Univariate Strong Approximation). In Section 2 of [18] and the proof of
[19], the authors considered univariate (d = 1) i.i.d. continuously distributed random vari-
ables, and established the strong approximation:

P

(
∥Xn −ZX

n ∥H > pTVH,R
t+C1 logn√

n

)
≤C2 exp(−C3t), t > 0,
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where C1,C2,C3 are universal constants. [8, Lemma SA20] slightly generalized the result
(e.g., PX is not required to be absolutely continuous with respect to the Lebesgue measure),
and provided a self-contained proof.

For any interval I in R, TVH,I ≤ pTVH,I provided that MH,I < ∞ [1, Theorem 3.27].
Therefore, Theorem 1 employs a weaker notation of total variation, but imposes complexity
requirements on H and the existence of a normalizing transformation. In contrast, [18], [19]
and [8] do not imposed those extra conditions, but their results only apply when d= 1. □

We illustrate the usefulness of Corollary 1 with Example 1.

EXAMPLE 1 (continued). Let the conditions of Theorem 1 hold, and nbd/ logn→∞.
Prior literature further assumed K is Lipschitz to verify the conditions of Corollary 1
with TVH = O(bd/2−1) and KH = O(b−d/2). Then, for Xn = ξn, (3) holds with ϱn =
(nbd)−1/(2d)

√
logn+ (nbd)−1/2 logn. ▲

The resulting uniform Gaussian approximation convergence rate in Example 1 matches
prior literature for d= 1 [18, 19, 8] and d≥ 2 [29]. This result concerns the uniform Gaussian
strong approximation of the entire stochastic process, which can then be specialized to deduce
a strong approximation for the scalar suprema of the empirical process ∥ξn∥H. As noted
by [13, Remark 3.1(ii)], the (almost sure) strong approximation rate in Example 1 is better
than their strong approximation rate (in probability) for ∥ξn∥H when d ∈ {1,2,3}, but their
approach specifically tailored to the scalar suprema delivers better strong approximation rates
when d≥ 4.

Following prior literature, Example 1 imposed the additional condition that K is Lips-
chitz to verify that H= {b−d/2K((· −w)/b) :w ∈W} forms a VC-type class, and the other
conditions in Corollary 1. The Lipschitz assumption holds for most kernel functions used in
practice. One notable exception is the uniform kernel, which is nonetheless covered by Corol-
lary 1, and prior results in the literature, with a slightly suboptimal strong approximation rate
(an extra

√
logn term appears when d≥ 2).

3.2.2. VC-type Lipschitz Functions. It is known that the uniform Gaussian strong ap-
proximation rate in Corollary 1 is optimal under the assumptions imposed [2]. However, the
class of functions H often has additional structure in statistical applications that can be ex-
ploited to improve on Corollary 1. In Example 1, for instance, prior literature further assumed
K is Lipschitz to verify the sufficient conditions. Therefore, our next corollary considers a
VC-type class H now allowing for the possibility of Lipschitz functions (LH <∞).

COROLLARY 2 (VC-type Lipschitz Functions). Suppose the conditions of Theorem 1
hold. In addition, assume that H is a VC-type class with envelope function MH over QH

with constants cH ≥ e and dH ≥ 1. Then, (3) holds with

ϱn =min{mn,d

√
MH, ln,d

√
c2LH}

√
logn

√
c1TVH

+
logn√

n
min{

√
logn

√
MH,

√
c3KH + MH}

√
MH.

Putting aside MH and TVH, this corollary shows that if LH <∞, then the rate of strong ap-
proximation can be improved. In particular, for d= 2, mn,2 = n−1/4 but ln,2 = n−1/2

√
logn,

implying that ϱn = n−1/2 logn whenever KH =O(b−d/2). Therefore, Corollary 2 establishes
a uniform Gaussian strong approximation for general empirical processes based on bivariate
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data that can achieve the optimal univariate KMT approximation rate. (An additional
√
logn

penalty would appear if KH =∞.)
For d ≥ 3, Corollary 2 also provides improvements relative to prior literature, but falls

short of achieving the optimal univariate KMT approximation rate. Specifically, mn,d =
n−1/(2d) but ln,d = n−1/d for d ≥ 3, implying that ϱn = n−1/d

√
logn. It remains an open

question whether further improvements are possible at this level of generality: the main road-
block underlying the proof strategy is related to the coupling approach based on the Tus-
nády’s inequality for binomial counts, which in turn are generated by the aforementioned
mean square approximation of the functions h ∈H by local constant functions on carefully
chosen partitions of QH. Our key observation underlying Corollary 2, and hence the limita-
tion, is that for Lipschitz functions (LH <∞) both the projection error arising from the mean
square approximation and the KMT coupling error by [29, Theorem 2.1] can be improved.
However, further improvements for smoother functions appear to necessitate an approxima-
tion approach that would not generate dyadic binomial counts, thereby rendering current
coupling approaches inapplicable.

We revisit the kernel density estimation example to illustrate the power of Corollary 2.

EXAMPLE 1 (continued). Under the conditions imposed, LH =O(b−d/2−1), and Corol-
lary 2 implies that, for Xn = ξn, (3) holds with ϱn = (nbd)−1/d

√
logn + (nbd)−1/2 logn.

▲

Returning to the discussion of [13, Remark 3.1(ii)], Example 1 shows that our almost sure
strong approximation rate for the entire empirical process is now better than their strong
approximation (in probability) rate for the scalar suprema ∥ξn∥H = supw∈W |ξn(w)| when
d≤ 6. On the other hand, their approach delivers a better strong approximation rate in prob-
ability for ∥ξn∥H when d ≥ 7. Our improvement is obtained without imposing additional
assumptions because [29, Section 4] already assumed K is Lipschitizian for the verification
of the conditions imposed by his strong approximation result (cf. Corollary 1).

3.2.3. Polynomial-entropy Functions. [22] also considered uniform Gaussian strong ap-
proximations for the general empirical process under other notions of entropy for H, thereby
allowing for more complex classes of functions when compared to [29]. Furthermore, [22]
employed a Haar approximation condition, which plays a similar role as the total variation
and the Lipschitz conditions exploited in our paper. To enable a precise comparison to [22],
the next corollary considers a class H satisfying a polynomial-entropy condition.

COROLLARY 3 (Polynomial-entropy Functions). Suppose the conditions of Theorem 1
hold, and that H is a polynomial-entropy class with envelope function MH over QH with
constants aH > 0 and 0< bH < 2. Then, (3) holds as follows:

(i) If LH ≤∞, then

ϱn =mn,d

√
c1MHTVH(

√
logn+ (c1m

2
n,dM

−1
H TVH)−

bH
4 )

+

√
MH

n
min{

√
logn

√
MH,

√
c3KH + MH}(logn+ (c1m

2
n,dM

−1
H TVH)−

bH
2 ),

(ii) If LH <∞, then

ϱn = ln,d
√
c1c2LHTVH(

√
logn+ (c1c2l

2
n,dM

−2
H LHTVH)−

bH
4 )

+

√
MH

n
min{

√
logn

√
MH,

√
c3KH + MH}(logn+ (c1c2l

2
n,dM

−2
H LHTVH)−

bH
2 ).
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This corollary reports a simplified version of our result, which corresponds to the best
possible bound for the discussion in this section. See [11, Section SA-II] for the general case.
It is possible to apply Corollary 3 to Example 1, although the result is suboptimal relative to
the previous results leveraging a VC-type condition.

EXAMPLE 1 (continued). Under the conditions imposed, for any 0 < bH < 2, we
can take aH = log(d + 1) + db−1

H so that H is a polynomial-entropy class with con-
stants (aH,bH). Then, Corollary 3(ii) implies that, for Xn = ξn, (3) holds with ϱn =

a2H(nbd)−
1
d
(1− bH

2
)b−dbH + a2H(nbd)−

1
2
+

bH
d b−

dbH
2 . ▲

Our running example shows that a uniform Gaussian strong approximation based on
polynomial-entropy conditions can lead to suboptimal KMT approximation rates. However,
for other (larger) function classes, those results may be useful. The following remark dis-
cusses an example studied in [22], and illustrates our contributions in that context.

REMARK 2 (Polynomial-entropy Condition). Suppose PX is Uniform(X ) with X =
[0,1]d, and H a subclass of Cq(X ) with Cq-norm uniformly bounded by 1 and 2 ≤ d < q.
[22, page 111] discusses this example after his Theorem 11.3, and reports the uniform Gaus-
sian strong approximation rate n− q−d

2qd polylog(n). See [22], or [11, Section SA-I], for the
additional notation and definitions used in this example.

Corollary 3 is applicable to this case, upon setting (QH, ϕH) = (PX , Id) with Id denot-
ing the identity map from [0,1]d to [0,1]d. It follows that MH = 1, TVH = 1, LH = 1. [33,
Theorem 2.7.1] shows that H is a polynomial-entropy class with constants aH = Cq,d and
bH = d/q, where Cq,d is a constant depending on q and d only. Then, Corollary 3(ii) implies
that, for Xn = ξn, (3) holds with

ϱn =

{
n− 1

2
+ 1

q polylog(n) if d= 2

n− 2q−d
2dq polylog(n) if d > 2

,

which gives a faster convergence rate than the one obtained by [22].
The improvement is explained by two differences between [22] and our approach. First, we

explicitly incorporate the Lipschitz condition, and hence we can take β = 2
d instead of β = 1

d
in Equation (3.1) of [22]. Second, using the uniform entropy condition approach, we get
logN(H,∥·∥PX ,2, ε) = O(ε−d/q), while [22] started with the bracketing number condition
logN[ ](H,∥·∥PX ,1, ε) = O(ε−d/q) and, with the help of his Lemma 8.4, applied Theorem
3.1 with α= d

d+q in his Equation (3.2). The proof of his Theorem 3.1 leverages the fact that
his Equation (3.2) implies that logN(H,∥·∥PX ,2, ε) =O(ε−2d/q), and his approximation rate
is looser by a power of two when compared to the uniform entropy condition underlying our
Corollary 3. Setting LH = ∞, bH = 2d/q, and keeping the other constants, Corollary 3(i)
would give ϱn = n− q−d

2qd polylog(n), which is the same rate as in [22]. Finally, Theorem 3.2
in [22] allows for logN(H,∥·∥PX ,2, ε) = O(ε−2ρ) where ρ is not implied by his Equation

(3.2), and his result would give the strong approximation rate n− 2q−d
4qd polylog(n). □

4. Residual-Based Empirical Process. Consider the simple local empirical process dis-
cussed in [13, Section 3.1]:

Sn(w) =
1

nbd

n∑
i=1

K
(xi −w

b

)
yi, w ∈W,(12)
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where xi ∼ PX , yi ∼ PY , and b → 0 as n → ∞. Using our notation,
(√

nbd(Sn(w) −
E[Sn(w)|x1, · · · ,xn]) :w ∈W

)
= (Rn(g, r) : g ∈ G, r ∈R) with G= {b−d/2K( ·−w

b ) :w ∈
W} and R= {Id}, where Id denotes the identity map from R to R. This setting corresponds
to kernel regression estimation with K interpreted as the equivalent kernel; see Section 4.1
for details. As noted in [13, Remark 3.1(iii)], a direct application of [29], or of our Theorem 1,
views zi = (xi, yi)∼PZ as the underlying (d+1)-dimensional random vectors entering the
general empirical process Xn defined in (1). Specifically, under some regularity conditions
on K and non-trivial restrictions on the joint distributionPZ , [29]’s strong approximation re-
sult verifies (3) with rate (6), which is also verified via Corollary 1. Furthermore, imposing a
Lipschitz property on H= G×R, Corollary 2 would give the improved strong approximation
result (8), under regularity conditions.

The strong approximation results for Sn illustrate two fundamental limitations because
all the elements in zi = (xi, yi) are treated symmetrically. First, the effective sample size
emerging in the strong approximation rate is nbd+1, which is suboptimal because only the
d-dimensional covariate xi are being smoothed out. Since the pointwise variance of the pro-
cess is of order n−1b−d, the correct effective sample size should be nbd, up to polylog(n)
terms. Therefore, applying [29], or our improved Theorem 1, leads to a suboptimal uniform
Gaussian strong approximation for Sn. Second, applying [29], or our improved Theorem 1,
requiresPZ to be continuously distributed and supported on [0,1]d+1, possibly after applying
a normalizing transformation. This requirement imposes non-trivial restrictions on PZ and,
in particular, on PY , limiting the applicability of the strong approximation results. See [13,
Remark 3.1(iii)] for more discussion.

Motivated by the aforementioned limitations, the following theorem explicitly studies the
residual-based empirical process defined in (7), leveraging its intrinsic multiplicative separa-
ble structure. We present our result under a VC-type condition on G × R to streamline the
discussion, but a result at the same level of generality as Theorem 1 is given in [11, Section
SA-IV]. Recall Section 2.1 and the notation conventions introduced therein.

THEOREM 2. Suppose (zi = (xi, yi) : 1≤ i≤ n) are i.i.d. random vectors taking values
in (Rd+1,B(Rd+1)) with common law PZ , where xi has distribution PX supported on X ⊆
Rd, yi has distribution PY supported on Y ⊆R, and the following conditions hold.

(i) G is a real-valued pointwise measurable class of functions on (Rd,B(Rd),PX).
(ii) There exists a surrogate measure QG for PX with respect to G such that QG = m◦ϕG,

where the normalizing transformation ϕG :QG 7→ [0,1]d is a diffeomorphism.
(iii) G is a VC-type class with function MG over QG with cG ≥ e and dG ≥ 1.
(iv) R is a real-valued pointwise measurable class of functions on (R,B(R),PY ).
(v) R is a VC-type class with envelope MR,Y over Y with cR,Y ≥ e and dR,Y ≥ 1, where

MR,Y(y)+pTVR,(−|y|,|y|) ≤ v(1+ |y|α) for all y ∈ Y , for some v> 0, and for some α≥ 0.
Furthermore, if α> 0, then supx∈X E[exp(|yi|)|xi = x]≤ 2.

(vi) There exists a constant k such that | log2 EG|+ | log2 TV|+ | log2 MG| ≤ k log2 n, where
TV=max{TVG,TVG×VR,QG

} with VR = {θ(·, r) : r ∈R}, and θ(x, r) =E[r(yi)|xi = x].

Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaus-
sian processes (ZR

n (g, r) : (g, r) ∈ G × R) with almost sure continuous trajectories on
(G×R,dPZ

) such that:

• E[Rn(g1, r1)Rn(g2, r2)] =E[Z
R
n (g1, r1)Z

R
n (g2, r2)] for all (g1, r1), (g2, r2) ∈ G×R, and

• P
[
∥Rn −ZR

n ∥G×R >C1Cv,αTn(t)
]
≤C2e

−t for all t > 0,
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where C1 and C2 are universal constants, Cv,α = vmax{1 + (2α)
α
2 ,1 + (4α)α}, and

Tn(t) = An(t+ k log2 n+ d log(cn))α+
3
2

√
d+

MG√
n
(t+ k log2 n+ d log(cn))α+1,

An =min

{(
cd1M

d+1
G TVdEG

n

) 1
2d+2

,

(
c

d
2
1 c

d
2
2 MGEGTV

d
2 L

d
2

n

) 1
d+2
}
,

c1 = d sup
x∈QG

d−1∏
j=1

σj(∇ϕG(x)), c2 = sup
x∈QG

1

σd(∇ϕG(x))
,

with c= cGcR,Y , d= dG + dR,Y , and L=max{LG, LG×VR,QG
}.

This theorem establishes a uniform Gaussian strong approximation under regularity con-
ditions specifically tailored to leverage the multiplicative separable structure of Rn defined in
(7). Conditions (i)–(iii) in Theorem 2 are analogous to the conditions imposed in Corollaries
1 and 2 for the general empirical process. Conditions (iv)–(v) in Theorem 2 are new, mild
restrictions on the portion of the stochastic process corresponding to the outcome yi. Con-
dition (v) either assumes R is uniformly bounded, or restricts the tail decay of the function
class R, without imposing restrictive assumptions on the distribution PY . Finally, condition
(vi) is imposed only to simplify the exposition; see [11] for the general result. We require a
pTV condition on R in (v), but TV conditions on G and G× VR in (vi), because PX admits a
Lebesgue density, but PY may not.

The proof strategy of Theorem 2 is similar to the proof for the general empirical process
(Theorem 1), and is given in [11, Section SA-IV]. First, we discretize to a δ-net to obtain

∥Rn −ZR
n ∥G×R ≤ ∥Rn −Rn ◦ π(G×R)δ∥G×R + ∥Rn −ZR

n ∥(G×R)δ

+ ∥ZR
n ◦ π(G×R)δ −ZR

n ∥G×R,

where the terms capturing fluctuation off-the-net, ∥Rn − Rn ◦ π(G×R)δ∥G×R and ∥ZR
n ◦

π(G×R)δ − ZR
n ∥G×R, are handled via standard empirical process methods. Second, the re-

maining term ∥Rn − ZR
n ∥(G×R)δ , which captures the finite-class Gaussian approximation

error, is once again decomposed via a suitable mean square projection onto the class of piece-
wise constant Haar functions on a carefully chosen collection of cells partitioning the support
of PZ . This is our point of departure from prior literature.

We design the partitioning cells based on two key observations: (i) regularity conditions
are often imposed on the conditional distribution of yi|xi, as opposed to on their joint dis-
tribution; and (ii) G and R often require different regularity conditions. For example, in the
classical regression case discussed previously, R is just the singleton identity function butPY

may have unbounded support or atoms, while G is a VC-type class of n-varying functions
with a possibly more regular PX having compact support. Furthermore, the dimension of yi
is a nuisance for the strong approximation, making results like Theorem 1 suboptimal in gen-
eral. These observations suggest choosing dyadic cells by an asymmetric iterative splitting
construction, where first the support of each dimension of xi is partitioned, and only after the
support of yi is partitioned based on the conditional distribution of yi|xi. See [11] for details
on our proposed asymmetric dyadic cells expansion.

Given our dyadic expansion exploiting the structure of Rn, we decompose the term
∥Rn − ZR

n ∥(G×R)δ similarly to (10), leading to a projected piecewise constant process and
the corresponding two projection errors. However, instead of employing the L2-projection
Π0 as in (10), we now use another mapping Π2 from L2(PZ) to piecewise constant func-
tions that explicitly factorizes the product g(xi)r(yi). In fact, as we discuss in [11], each
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base level cell C produced by our asymmetric dyadic splitting scheme can be written as a
product of the form Xl × Ym, where Xl denotes the l-th cell for xi and Ym denotes the
m-th cell for yi. Thus, Π2 is carefully chosen so that once we know x ∈ Xl for some l,
Π2[g, r](x, y) =

∑2N−1
m=0 1(y ∈ Ym)E[r(yi)|yi ∈ Ym,xi ∈ Xl]E[g(xi)|xi ∈ Xl], which only

depends on y, and has envelope and total variation no greater than those for r.
Finally, our generalized Tusnády’s lemma for more general binomial counts [11] allows

for the Gaussian coupling of any piecewise-constant functions over our asymmetrically con-
structed dyadic cells. A generalization of [29, Theorem 2.1] enables upper bounding the
Gaussian approximation error for processes indexed by piecewise constant functions by sum-
ming up a quadratic variation from all layers in the cell expansion. By the above choice
of cells and projections, the contribution from the last layers corresponding to splitting yi
amounts to a sum of one-dimensional KMT coupling error from all possible Xl cells. In fact,
the one-dimensional KMT coupling is optimal and, as a consequence, requiring a vanishing
contribution of yi layers to the approximation error does not add extra requirements besides
conditions on envelope functions and an L1 bound for G. This explains why we can obtain
strong approximation rates reflecting the correct effective sample size underlying the empir-
ical process for the kernel regression and other local empirical process examples.

The following corollary summarizes the main result from Theorem 2.

COROLLARY 4 (VC-Type Lipschitz Functions). Suppose the conditions of Theorem 2
hold with constants c and d. Then, ∥Rn −ZR

n ∥G×R =O(ϱn) a.s. with

ϱn =min
{(cd1Md+1

G TVdEG)
1

2d+2

n1/(2d+2)
,
(c

d
2
1 c

d
2
2 MGTV

d
2 EGL

d
2 )

1
d+2

n1/(d+2)

}
(logn)α+3/2 +

(logn)α+1

√
n

MG.

This corollary shows that our best attainable uniform Gaussian strong approximation rate
for Rn is n−1/(d+2) polylog(n), putting aside c1, c2, MG, TV, EG, and L. It is not possible
to give a strict ranking between Corollary 2 and Corollary 4. On the one hand, Corollary 2
treats all components in zi symmetrically, and thus imposes stronger regularity conditions on
PZ , but leads to the better approximation rate n−min{1/(d+1),1/2} polylog(n), putting aside
the various constants and underlying assumptions. On the other hand, Corollary 4 can deliver
a tighter strong approximation under weaker regularity conditions whenever H= G×R and
G varies with n, as in the case of the local empirical processes arising from nonparametric
regression. The next section offers an application illustrating this point.

See [11, Section SA-IV] for proofs and other omitted details. In addition, Section SA-III
in [11] present uniform Gaussian strong approximation results for a general multiplicative-
separable empirical process, which may be of interest but is not discussed in the paper to
conserve space.

4.1. Example: Local Polynomial Regression. Suppose that (x1, y1), . . . , (xn, yn) are i.i.d
random vectors taking values in (Rd+1,B(Rd+1)), with xi ∼ PX admitting a continuous
Lebesgue density on its support X = [0,1]d. Consider the class of estimands

θ(w; r) =E[r(yi)|xi =w], w ∈W ⊆X , r ∈R,(13)

where we focus on two leading cases to streamline the discussion: R1 = {Id} corresponds to
the conditional expectation µ(w) =E[yi|xi =w], and R2 = {1(· ≤ y) : y ∈R} corresponds
to the conditional distribution function F (y|w) =E[1(yi ≤ y)|xi =w]. In the first case, R
is a singleton but the identity function calls for the possibility of PY not being dominated by
the Lebesgue measure or perhaps being continuously distributed with unbounded support. In
the second case, R is a VC-type class of indicator functions, and hence r(yi) is uniformly
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bounded, but establishing uniformity over R is of statistical interest (e.g., to construct speci-
fication hypothesis tests based on conditional distribution functions).

Suppose the kernel function K :Rd →R is non-negative, Lipschitz, and has compact sup-
port K. Using standard multi-index notation, p(u) denotes the (d+p)!

d!p! -dimensional vector col-
lecting the ordered elements uν/ν! for 0≤ |ν| ≤ p, where uν = uν1

1 · · ·uνd
d , ν! = ν1! · · ·νd!

and |ν| = ν1 + · · ·+ νd, for u = (u1, · · · , ud)
⊤ and ν = (ν1, · · · , νd)⊤. A local polynomial

regression estimator of θ(w; r) is

θ̂(w; r) = e⊤1 β̂(w, r), β̂(w, r) = argmin
β

n∑
i=1

(
r(yi)− p(xi −w)⊤β

)2
K
(xi −w

b

)
,

with w ∈W ⊆X , r ∈R1 or r ∈R2, and e1 denoting the first standard basis vector. See [17]
for a textbook review. The estimation error can be decomposed into three terms:

θ̂(w, r)−θ(w, r) = e⊤1 H
−1
w Sw,r︸ ︷︷ ︸

linearization

+e⊤1 (Ĥ
−1
w −H−1

w )Sw,r︸ ︷︷ ︸
non-linearity error

+E[θ̂(w, r)|x1, · · · ,xn]− θ(w, r)︸ ︷︷ ︸
smoothing bias

,

with Ĥw = 1
n

∑n
i=1p(

xi−w
b )p(xi−w

b )⊤ 1
bd
K(xi−w

b ), Hw =E[p(xi−w
b )p(xi−w

b )⊤ 1
bd
K(xi−w

b )],
and Sw,r =

1
n

∑n
i=1p(

xi−w
b ) 1

bd
K(xi−w

b )(r(yi)−E[r(yi)|xi]).
It follows that the linear term is

√
nbde⊤1 H

−1
w Sw,r =

1√
nbd

n∑
i=1

Kw

(xi −w

b

)
(r(yi)−E[r(yi)|xi]) =Rn(g, r),

for (g, r) ∈ G × Rl, l = 1,2, and where G = {b−d/2Kw(
·−w
b ) : w ∈ W} with Kw(u) =

e⊤1 H
−1
w p(u)K(u) the equivalent boundary-adaptive kernel function. Furthermore, under the

regularity conditions given in [11, Section SA-IV.6], which relate to uniform smoothness and
moment restrictions for the conditional distribution of yi|xi,

sup
w∈W,r∈R1

∣∣e⊤1 (Ĥ−1
w −H−1

w )Sw,r

∣∣=O((nbd)−1 logn+ (nbd)−3/2(logn)5/2) a.s.,

sup
w∈W,r∈R2

∣∣e⊤1 (Ĥ−1
w −H−1

w )Sw,r

∣∣=O((nbd)−1 logn) a.s.,

sup
w∈W,r∈Rl

∣∣E[θ̂(w, r)|x1, · · · ,xn]− θ(w, r)
∣∣=O(b1+p) a.s., l= 1,2,

provided that log(n)/(nbd) → 0. Therefore, the goal reduces to establishing a Gaussian
strong approximation for the residual-based empirical process (Rn(g, r) : (g, r) ∈ G× Rl),
l = 1,2. We discuss different attempts to establish such approximation result, culminating
with the application of our Theorem 2.

As discussed in [13, Remark 3.1], a first attempt is to deploy Theorem 1.1 in [29] (or,
equivalently, Corollary 1). Viewing the empirical process as based on the random sample
zi = (xi, yi) ∼ PZ , i = 1,2, · · · , n, Theorem 1.1 in [29] requires PZ to be continuously
distributed with positive Lebesgue density on its support [0,1]d+1. For this reason, [13, Re-
mark 3.1] assumes that (xi, yi) = (xi,φ(xi, ui)) where the joint law PB of bi = (xi, ui) ad-
mits a continuous Lebesgue density supported on B = [0,1]d+1. If M{φ},B <∞, K{φ},B <∞,
supg∈G TV{φ},supp(g)×[0,1] < ∞, and other regularity conditions hold, then it can be shown
[11, Section SA-IV.6] that applying [29] to (Xn(h) : h ∈Hl) based on (bi : 1≤ i≤ n) with
Hl = {g · (r ◦φ)− g · θ(·, r) : g ∈ G, r ∈Rl}, l= 1,2, gives a Gaussian strong approximation
with rate (6). Without the local total variation condition K{φ},B <∞, an additional

√
logn

multiplicative factor appears in the final rate.
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The previous result does not exploit Lipschitz continuity, so a natural second attempt is to
employ Corollary 2 to improve it. Retaining the same assumptions, but now also assuming
that φ is Lipschitz, our Theorem 1 gives a Gaussian strong approximation for (Xn(h) : h ∈
H1) with rate (8). Theorem 1 does not give an improvement for R2 because the Lipschitz
condition is not satisfied. See [11, Section SA-IV.6].

The two attempts so far impose restrictive assumptions on the joint distribution of the
data, and deliver approximation rates based on the incorrect effective sample size (and thus
require nbd+1 →∞). Our Theorem 2 addresses both problems: since Supp(H) =W + bK,
and under standard regularity conditions, we can set QH and ϕH according to the discussion
in Example 1, and thus we verify in [11, Section SA-IV.6] that c1 =O(1), c2 =O(1), MG =
O(b−d/2), EG = O(bd/2), KG = O(b−d/2), TV= O(bd/2−1), and L = O(b−d/2−1). This gives
∥Rn −ZR

n ∥G×R2 =O(ϱn) a.s. with

ϱn = (nbd)−1/(d+2)
√
logn+ (nbd)−1/2 logn.

If, in addition, we assume supw∈W E[exp(|yi|)|xi = w] < ∞, then ∥Rn − ZR
n ∥G×R1 =

O(ϱn) a.s. with

ϱn = (nbd)−1/(d+2)
√
logn+ (nbd)−1/2(logn)2.

As a consequence, our results verify that the following strong approximations hold:

• Let µ̂(w) = θ̂(w; r) for r ∈R1. Recall that R1 consists of the singleton of identity function
Id. If bp+1(nbd)

d+4
2d+4 (logn)−1/2 + (nbd)−

d+1
d+2 (logn)2 =O(1), then

sup
w∈W

∣∣√nbd
(
µ̂(w)− µ(w)

)
−ZR

n (w)
∣∣=O(rn) a.s., rn =

((logn)1+d/2

nbd

) 1
d+2

,

whereCov(ZR
n (w1),Z

R
n (w2)) = nbdCov(e⊤1 H

−1
w1

Sw1,Id,e
⊤
1 H

−1
w2

Sw2,Id) for all w1,w2 ∈
W .

• Let F̂ (y|w) = θ̂(w; ry) for ry = 1(· ≤ y) ∈ R2. If bp+1(nbd)(d+4)/(2d+4)(logn)−1/2 =
O(1) and (nbd)−1 logn= o(1), then

sup
w∈W,y∈R

∣∣√nbd
(
F̂ (y|w)− F (y|w)

)
−ZR

n (w, y)
∣∣=O(rn) a.s.,

whereCov(ZR
n (w1, u1),Z

R
n (w2, u2)) = nbdCov(e⊤1 H

−1
w1

Sw1,ru1
,e⊤1 H

−1
w2

Sw2,ru2
) for all

(w1, u1), (w2, u2) in W ×R and ru1 , ru2 ∈R2.

This example gives a statistical application where Theorem 2 offers a strict improvement
on the accuracy of the Gaussian strong approximation over [29], and the improved Theorem
1 upon incorporating a Lipschitz condition on the function class. See [11, Section SA-IV.6]
for omitted details. It remains an open question whether the result in this section provides
the best Gaussian strong approximation for local polynomial regression or, more generally,
for a local empirical process. The results presented are the best in the literature, but we are
unaware of lower bounds that would confirm the approximation rates are unimprovable.

5. Quasi-Uniform Haar Functions. Assuming the existence of a surrogate measure and
a normalizing transformation, or otherwise restricting the data generating process, Theorem
1 established that the general empirical process (1) indexed by VC-type Lipschitz functions
can admit a strong approximation (3) at the optimal univariate KMT rate ϱn = n−1/2 logn
when d ∈ {1,2}, and at the improved (but possibly suboptimal) rate ϱn = n−1/d

√
logn when

d≥ 3, putting aside c1, c2, c3, MH, LH, TVH, and KH. The possibly suboptimal strong ap-
proximation rate arises from the L2-approximation of the functions h ∈H by a Haar basis
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expansion based on a carefully chosen dyadic partition of a cover of X . Likewise, Theorem 2
established an improved uniform Gaussian strong approximation for the residual-based em-
pirical process (7), but the result is also limited by the mean square projection error incurred
by employing a Haar basis expansion based on a carefully chosen, asymmetric partitioning
of the support of zi = (xi, yi).

Motivated by the limitations introduced by the mean square projection error underlying the
proofs of Theorems 1 and 2, this section presents uniform Gaussian strong approximations
for (Xn(h) : h ∈ H) and (Rn(g, r) : (g, r) ∈ G × R) when H and G belong to the span of
a Haar basis based on a quasi-uniform partition with cardinality L, which can be viewed
as an approximation based on L → ∞ as n → ∞. We do not require the existence of a
normalizing transformation, allow for more general partitioning schemes than dyadic cells
expansions, and impose minimal restrictions on the data generating process, while achieving
the univariate KMT optimal strong approximation rate based on the effective sample size n/L
for all d≥ 1. The strong approximation results presented in this section generalize two ideas
from the regression Splines literature [21]: (i) the cells forming the Haar basis are assumed to
be quasi-uniform with respect to a surrogate measure QH; and (ii) the number of active cells
of the Haar basis affects the strong approximation. We apply the strong approximation results
to histogram density estimation, and partitioning-based regression estimation based on Haar
basis, which includes certain regression trees [4] and other related methods [7]. Proof and
omitted technical details are given in [11, Section SA-V].

5.1. General Empirical Process. The following result is the analogue of Theorem 1.

THEOREM 3. Suppose (xi : 1 ≤ i ≤ n) are i.i.d. random vectors taking values in
(Rd,B(Rd)) with common lawPX supported on X ⊆Rd, and the following condition holds.

(i) H⊆ Span{1∆l
: 0≤ l < L} is a class of Haar functions on (Rd,B(Rd),PX).

(ii) There exists a surrogate measure QH for PX with respect to H such that {∆l : 0≤ l <
L} forms a quasi-uniform partition of QH with respect to QH:

QH ⊆⊔0≤l<L∆l and
max0≤l<LQH(∆l)

min0≤l<LQH(∆l)
≤ ρ <∞.

(iii) MH <∞.

Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaus-
sian processes (ZX

n (h) : h ∈H) with almost sure continuous trajectories on (H,dPX
) such

that:

• E[Xn(h1)Xn(h2)] =E[Z
X
n (h1)Z

X
n (h2)] for all h1, h2 ∈H, and

• P
[
∥Xn −ZX

n ∥H >C1CρPn(t)
]
≤C2e

−t +Le−Cρn/L for all t > 0,

where C1 and C2 are universal constants, Cρ is a constant that only depends on ρ, and

Pn(t) = min
δ∈(0,1)

{
Hn(t, δ) + Fn(t, δ)

}
,

with

Hn(t, δ) =

√
MHEH

n/L

√
t+ logNH(δ,MH)

+

√
min{log2L,S2H}

n
MH(t+ logNH(δ,MH)),

where SH = suph∈H
∑L

l=1 1(Supp(h)∩∆l ̸= ∅).
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This theorem shows that if n−1L log(nL)→ 0, then a valid strong approximation can be
achieved with exponential probability concentration. The proof of Theorem 3 leverages the
fact that the L2-projection error is zero by construction, but recognizes that [29, Theorem 2.1]
does not apply because the partitions are quasi-dyadic, preventing the use of the celebrated
Tusnády’s inequality. Instead, in [11], we present two technical results to circumvent that lim-
itation: (i) we combine [6, Lemma 2] and [30, Lemma 2] to establish a version of Tusnády’s
inequality that allows for more general binomial random variables Bin(n,p) with p≤ p≤ p,
the error bound holding uniformly in p, as required by the quasi-dyadic partitioning structure;
and (ii) we generalize [29, Theorem 2.1] to the case of quasi-dyadic cells.

Assuming a VC-type condition on H, and putting aside MH, EH, and SH, it follows that
(3) holds with ϱn =

√
log(n)/

√
n/L+ log(n)/

√
n. More generally, we have the following.

COROLLARY 5 (VC-type Haar Functions). Suppose the conditions of Theorem 3 hold.
In addition, assume that H is a VC-type class with function MH over QH with constants
cH ≥ e and dH ≥ 1. Then, if n−1L log(nL)→ 0, (3) holds with

ϱn =

√
MHEH

n/L

√
logn+

√
min{log2L,S2H}

n
MH logn.

We offer a simple statistical application of Theorem 3 in the next example.

EXAMPLE 2 (Histogram Density Estimation). The histogram density estimator of fX is

f̌X(w) =
1

n

n∑
i=1

P−1∑
l=0

1(w ∈∆l)1(xi ∈∆l),

where {∆l : 0≤ l < P} are disjoint and satisfy max0≤l<P PX(∆l)≤ ρmin0≤l<P PX(∆l).
For L proportional to PX(∆l)

−1, up to ρ, we establish a strong approximation for the
localized empirical process (ζn(w) :w ∈W), W ⊆X , where

ζn(w) =
√
nL
(
f̌X(w)−E[f̌X(w)]

)
=Xn(hw), hw ∈H,

with H = {hw(·) = L1/2
∑P−1

l=0 1(w ∈ ∆l)1(· ∈ ∆l) : w ∈ W} a collection of Haar basis
functions based on the partition {∆l : 0≤ l < P}. It follows that MH,Rd = L1/2 and SH = 1.

If W = X , then we set L = P , QH = PX , QH = X , and the conditions of Theorem 3
are satisfied with EH = L−1/2. Then, for Xn = ζn, (3) holds with ϱn = log(nL)/

√
n/L,

assuming that n−1L log(nL)→ 0.
If W ⊊ X , assume W ⊆⊔0≤l<P∆l. If PX(⊔0≤l<P∆l)< 1, then {∆l : 0≤ l < P} is no

longer a quasi-uniform partition of X with respect to PX . The surrogate measure can help in
this setting: we may add or refine cells to handle the residual probability PX [(⊔0≤l<P∆l)

c].
For example, suppose that for some P̊ ∈N we have

P̊ ≤ PX((⊔0≤l<P∆l)
c)

min0≤l<P PX(∆l)
< P̊ + 1.

Set L = P + P̊ . For any collection of disjoint cells {∆l : P ≤ l < L} in X ∪ Supp(H)c,
take QH to agree with PX on ⊔0≤l<P∆l and QH(∆l) = P̊−1

PX [(⊔0≤l<P∆l)
c] for l =

P, . . . ,L − 1. Then, the enlarged class of cells {∆l : 0 ≤ l < L + K} and the probability
measure QH satisfy conditions (i) and (ii) in Theorem 3. It follows that EH = L−1/2 and
hence, for Xn = ζn, (3) holds with ϱn = log(nL)/

√
n/L, assuming that n−1L log(nL)→ 0.

In particular, the quasi-uniformity condition of PX is required on a cover of W , instead of
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on a cover of X , at the expense of possibly increasing the number of cells to account for the
residual probability PX [(⊔0≤l<P∆l)

c]. ▲

Theorem 3, and in particular Example 2, showcases the existence of a class of stochas-
tic processes for which a uniform Gaussian strong approximation can be established with
optimal univariate KMT rate in terms of the effective sample size n/L for all d ≥ 1. This
result is achieved because there is no projection error (H is spanned by a Haar basis), and the
coupling error is controlled via our generalized Tusnády’s inequality. See [11] for details.

5.2. Residual-Based Empirical Process. The next result is the analogue of Theorem 2.

THEOREM 4. Suppose (zi = (xi, yi) : 1≤ i≤ n) are i.i.d. random vectors taking values
in (Rd+1,B(Rd+1)) with common law PZ , where xi has distribution PX supported on X ⊆
Rd, yi has distribution PY supported on Y ⊆R, and the following conditions hold.

(i) G⊆ Span{1∆l
: 0≤ l < L} is a class of Haar functions on (Rd,B(Rd),PX).

(ii) There exists a surrogate measure QG forPX with respect to G such that {∆l : 0≤ l < L}
forms a quasi-uniform partition of QG with respect to QG:

QG ⊆⊔0≤l<L∆l and
max0≤l<LQG(∆l)

min0≤l<LQG(∆l)
≤ ρ <∞.

(iii) G is a VC-type class with envelope function MG over QG with cG ≥ e and dG ≥ 1.
(iv) R is a real-valued pointwise measurable class of functions on (R,B(R),PY ).
(v) R is a VC-type class with envelope MR,Y over Y with cR,Y ≥ e and dR,Y ≥ 1, where

MR,Y(y)+pTVR,(−|y|,|y|) ≤ v(1+ |y|α) for all y ∈ Y , for some v> 0, and for some α≥ 0.
Furthermore, if α> 0, then supx∈X E[exp(|yi|)|xi = x]≤ 2.

(vi) There exists a constant k such that | log2 EG|+ | log2 MG|+ | log2L| ≤ k log2 n.

Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaus-
sian processes (ZR

n (g, r) : (g, r) ∈ G × R) with almost sure continuous trajectories on
(G×R,dPZ

) such that:

• E[Rn(g1, r1)Rn(g2, r2)] =E[Z
R
n (g1, r1)Z

R
n (g2, r2)] for all (g1, r1), (g2, r2) ∈ G×R, and

• P[∥Rn −ZR
n ∥G×R >C1Cv,α(CρUn(t) +Vn(t))]≤C2e

−t +Le−Cρn/L for all t > 0,

where C1 and C2 are universal constants, Cv,α = vmax{1 + (2α)
α
2 ,1 + (4α)α}, Cρ is a

constant that only depends on ρ,

Un(t) =

(√
dMGEG
n/L

+
MG√
n
(logn)α

)
(t+ k log2 n+ d log(cn))α+1

with c= cGcR,Y , d= dG + dR,Y , and

Vn(t) = 1(|R|> 1)
√
MGEG

(
max
0≤l<L

∥∆l∥∞
)
LVR

√
t+ k log2 n+ d log(cn),

with VR = {θ(·, r) : r ∈R}, and θ(x, r) =E[r(yi)|xi = x].

The first term, Un(t), can be interpreted as a “variance” contribution based on the effec-
tive sample size n/L, up to polylog(n) terms, while the second term, Vn(t), can be inter-
preted as a “bias” term that arises from the projection error for the conditional mean function
E[r(yi)|xi = x], which may not necessarily lie in the span of Haar basis. In the special
case when R is a singleton, we can construct the cells based on the condition distribution
of r(yi)−E[r(yi)|xi], thereby making the conditional mean function (and hence the “bias”
term) zero, but such a construction is not possible when uniformity over R is desired.

Theorem 4 gives the following uniform Gaussian strong approximation result.
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COROLLARY 6 (VC-type Haar Basis). Suppose the conditions of Theorem 4 hold with
constants c and d. Then, if n−1L log(nL)→ 0, ∥Rn −ZR

n ∥G×R =O(ϱn) a.s. with

ϱn =

√
MGEG

n/L
(logn)α+1 +

MG√
n
(logn)2α+1 + 1(|R|> 1)

√
MGEG( max

0≤l<L
∥∆l∥∞)

√
logn.

Setting aside MG and EG, an approximation rate is (logn)2α+1(n/L)−1/2 + 1(|R| >
1)(max0≤l<L∥∆l∥∞)

√
logn, which can achieve the optimal univariate KMT strong approx-

imation rate based on the effective sample size n/L, up to a polylog(n) term, when R is a
singleton function class. See [11, Section SA-V] for details.

The next section illustrates Theorem 4 with an example studying nonparametric regression
estimation based on a Haar basis approximation.

5.3. Example: Haar Partitioning-based Regression. Suppose (zi = (xi, yi),1 ≤ i ≤ n)
are i.i.d. random vectors taking values in (X × R,B(X × R)) with X ⊆ Rd. As in Section
4.1, consider the regression estimand (13), focusing again on the two examples R1 and R2.
Instead of local polynomial regression, we study the Haar partitioning-based estimator:

θ̌(w, r) = p(w)⊤γ̂(r), γ̂(r) = argmin
γ∈RL

n∑
i=1

(
r(yi)− p(xi)

⊤γ
)2
,

where p(u) = (1(u ∈∆l) : 0≤ l < L), and w ∈W ⊆ X . As in Example 2, either W = X
or W ⊊ X , but for simplicity we discuss only the former case, and hence we assume that
{∆l : 0≤ l < L} is a quasi-uniform partition of QH =X with respect to QH =PX .

The estimation error can again be decomposed into three terms:

θ̌(w, r)− θ(w, r)

= p(w)⊤Q−1Tr︸ ︷︷ ︸
linearization

+p(w)⊤(Q̂−1 −Q−1)Tr︸ ︷︷ ︸
non-linearity error

+E[θ̌(w, r)|x1, · · · ,xn]− θ(w, r)︸ ︷︷ ︸
smoothing bias

,

where Q = E[p(xi)p(xi)
⊤], Q̂ = 1

n

∑n
i=1p(xi)p(xi)

⊤, and Tr =
1
n

∑n
i=1p(xi)(r(yi) −

E[r(yi)|xi]). In this example, the linearization term takes the form√
n/Lp(w)⊤Q−1Tr =

1√
n

n∑
i=1

kw(xi)(r(yi)−E[r(yi)|xi]) =Rn(g, r), g ∈ G, r ∈Rl,

for l = 1,2, where G = {kw(·) : w ∈ W} with kw(u) = L−1/2
∑

0≤l<L 1(w ∈ ∆l)1(u ∈
∆l)/PX(∆l) the equivalent kernel. Under standard regularity conditions including smooth-
ness and moment assumptions [11, Section SA-V.3],

sup
r∈R1

∣∣e⊤1 (Q̂−1 −Q−1)Tr

∣∣=O(log(nL)L/n+ (log(nL)L/n)3/2 logn) a.s.,

sup
r∈R2

∣∣e⊤1 (Q̂−1 −Q−1)Tr

∣∣=O(log(nL)L/n) a.s.,

sup
w∈W,r∈Rl

∣∣E[θ̌(w, r)|x1, · · · ,xn]− θ(w, r)
∣∣=O

(
max
0≤l<L

∥∆l∥∞
)

a.s., l= 1,2,

provided that log(nL)L/n→ 0. Finally, for the residual-based empirical process (Rn(g, r) :
g ∈ G, r ∈ Rl), l = 1,2, we apply Theorem 4. First, MG = L1/2 and EG = L−1/2, and we can
take cG = L and dG = 1 because G has finite cardinality L. For the singleton case R1, we
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can take cR1 = 1 and dR1 = 1, α= 1 if supx∈X E[exp(|yi|)|xi = x]≤ 2, and condition (v)
in Theorem 4 holds, which implies that ∥Rn −ZR

n ∥G×R1 =O(ϱn) a.s. with

ϱn =
log(nL)2√

n/L
,

provided that log(nL)L/n→ 0. For the VC-Type class R2, we can verify condition (v) in
Theorem 4 with α= 0, and we can take cR2 to be some universal constant and dR2 = 2 by
[33, Theorem 2.6.7], which implies that ∥Rn −ZR

n ∥G×R1 =O(ϱn) a.s. with

ϱn =
log(nL)√

n/L
+ max

0≤l<L
∥∆l∥∞,

provided that log(n)L/n → 0. A uniform Gaussian strong approximation for the Haar
partitioning-based regression processes (

√
n/L(θ̌(w, r) − θ(w, r)) : (w, r) ∈ W × Rl),

l= 1,2, follows directly from the results obtained above, as illustrated in Section 4.1.
This example showcases a statistical application of our strong approximation result (The-

orem 4) where the optimal univariate KMT strong approximation rate based on the effective
sample size n/L is achievable, up to polylog(n) terms and the complexity of R. See [11,
Section SA-V.3] for omitted details.
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SUPPLEMENTARY MATERIAL

Proofs and other technical results
The supplementary material [11] collects detailed proofs of our main results, and also pro-
vides other technical results that may be of independent interest.
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