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Abstract

This supplement appendix reports additional theoretical results not discussed in the paper to conserve
space, and provides all the technical proofs. Section SA-I introduces additional notation and definitions
used in the proofs. Section SA-II studies the general empirical process (Section 3 in the paper). Section
SA-IIT studies the multiplicative-separable empirical process (not discussed in the paper but of inde-
pendent interest). Section SA-IV studies the residual-based empirical process (Section 4 in the paper).
Section SA-V studies the three empirical processes in the context of quasi-uniform Haar basis (Section 5

in the paper).
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SA-I Additional Notation

We introduce additional notation and definitions complementing those given in Section 2 of the paper. See
Ambrosio et al. (2000), van der Vaart and Wellner (2013), Giné and Nickl (2016), and references therein, for
background definitions and more details.

Let U,V C R?%. Wedefineld —V = {u—v:uelU,veV} Wedefine UAV = U\ V)U V\U).
Let det(A) be the determinant of the matrix A. Let ®(z) be the distribution function of Normal(0, 1), and
Bern(p) denote the Bernoulli distribution with parameter p € (0,1). For a real-valued random variable X,
the L,-norm is defined as ||X||, = E[X|[P]'/? for 1 < p < co. The o-algebra generated by X is denoted
by o(X). For a > 0, the ¢p-norm of X is given by || X[y, = min{A > 0 : E[exp ((%l)a)] < 2}. For
x € R? and r > 0, let B(x,r) denote the Euclidean ball with radius r centered at x. For a matrix A € R9%9
[|A|l denotes its operator norm. Using standard empirical process notation, IE,[f(x;)] denotes the empirical
average n~ ' > | [f(x;) —E[f(x;)]] based on random sample (x; : 1 < i < n). For sequences of real numbers,
we write a, = Q(by,) if there exists some constant C and N > 0 such that n > N implies |a,| > Clb,|.

Let § € R? and @ be a measure on (8,5(8)). The semi-metric 9o on Lo(Q) is defined by dg(f,9) =
(IIf = 9glld— ([ fdQ — fng)Q)l/Q, for f,g € La(Q). For a class F C Ly(Q), let C(F,0¢g) denote the
class of all continuous functionals on the space (F,0¢q). For a > 0, the C*-norm of a real-valued measurable
function f on (8, B(8)) is given by || f[lce = max|y|<|a] SuPxes [DF f(X)|+max |y —a SUDy2yes ID/()-D f(y)l

a—la]
The space C*(8) denotes the collection of all real-valued measurable functions on (8, B(8)) with C*-norm

lIx—=vll

bounded by 1. For real-valued functions f,g on (R, B(R%)), the convolution of f and g is the function
f * g such that f x g(z) = ffooo fly)g(lz —y)dy,z € R. If F and G are two sets of functions from measure
space (U, B(U)) to R and (V,B(V)) to R, respectively, then F - § denotes the class of measurable functions
{f-g:f€F,ge§}fromUxV,BU)RB(V)) toR. For a semi-metric space (F, ) of real-valued measurable
functions on (8, B(8)), Npj(e,F,0) denotes the bracketing number.

For a probability measure P on (8,B(8)), a P-Brownian bridge is a centered Gaussian random function
(Wp(f) : f € La(P)) with covariance given by E[Wp(f)Wp(g)] = P(fg) — P(f)P(g) for f,g € L2(P). A
class F C Lo(P) is said to be P-pregaussian if there exists a version of the P-Brownian bridge Wp such that
Wp € C(F;0p) almost surely.

Finally, we use a, < b, to denote that a, = O(b,) with only a universal constant, not a function

of the data generating process or related parameters. For K € N, we repeatedly employ the index sets
Tk ={(j,k) ENxN:1<j<K,0<k<2879}and Jx = {(j,k) ENxN:0<j < K,0< k< 2K}

SA-1I.1 Additional Main Definitions

Let F be a class of measurable functions from a probability space (R?, B(R?),P) to R. We introduce several

additional definitions that capture properties of F, complementing those in Section 2.1.

Definition SA.1. For a non-empty C C R, the smoothed uniform total variation of F over C is

TV e =sup inf limsupTVyiy,yc,
’ fE?(fK)ZeN {—00

where the infimum is taken over all sequences of functions (f¢)een such that fo — f € F a.s.-m on (C,B(C)),
and f; is differentiable and bounded by 2Mg ¢ on C for all £ > 1.



Definition SA.2. For a non-empty C C RY, the smoothed uniform local total variation of F over C is a

positive number K . such that for any cube D C R? with edges of length { parallel to the coordinate axises,
TV pre < K o071

Suppose 8 is also a class of measurable functions from the probability space (R?, B(R?),IP) to R. We

generalize the definition of the uniform covering number to F x 8.

Definition SA.3. For a non-empty C C RY, the uniform covering number of I x § with envelope Mg ¢ Ms ¢

over C is

Ngxs,c(0, Mg cMs c) =sup N(F x 8, A, 0| Mg cMsclluz2) d € (0,00),
m

where the supremum is taken over all finite discrete measures on (C,B(C)), and A\, is the semi-metric on
F x 8 defined by

Au((f1,91): (f2r 92))7 = /C(fl(x)gl(x) — fa(x)g2(x))? dp(x).

We assume that Mg c(u) and Mg c(u) are finite for every u € C.

Definition SA.4. For a non-empty C C RY, the uniform entropy integral of I x 8 with envelope Mg cMs ¢

over C 1is

5
Je(6,F x 8 Mg cMs.c) =/ \/1 + logNgyxs c(e, Mg cMs ) de,
0

where it is assumed that My c(u)Ms c(u) is finite for every u € C.

SA-I1 General Empirical Process

Recall that x; € X C R4, i = 1,...,n, are i.i.d. random vectors supported on a background probability

space (€, F,IP), and the general empirical process is

Xo(h) = —= 3 (h(x)) ~ Elh(xs))),  heX,
i=1

n -

R

where 3 is a possibly n-varying class of functions. As briefly explained after Theorem 1 is presented in the

paper, its proof relies on the following decomposition:

”Xn - r)z(HJf
<1 Xn = Xn o mags loc + 1Xn — Zi) llaes + 112, 0 maes — Z) |3

<X = X 0 3, 3¢ + [1Xn = ToXallae, + (Mo Xn — Mo Z 3¢, + M0 Z7 — Zi [lac, + 127 © mac, — Z3Y llac,

where 35 denotes a discretization (or meshing) of H (i.e., §-net of ), and the terms || X,, — X, oms¢, ||9¢ and
| ZX omae, — Z:X||5¢ capture the fluctuations (or oscillations) of X,, and ZX relative to the meshing for each of

the stochastic processes. These terms are handled using standard arguments for empirical processes. Then,



following Rio (1994), the term || X,, — ZX || 5, is further decomposed into three terms: ||y X,, —MyZ.X ||3¢, and
Mo Z:X — ZX||5¢, represent a mean square projection onto a Haar function space, where Iy X,,(h) = X,, ollgh
with Iy the L, projection onto piecewise constant functions on a carefully chosen partition of X, while
the final term ||oX,, — Htof l3¢, captures the coupling between the projected empirical process and the
projected Gaussian process (on a J-net of H, after the Lo projection).

The proof of Theorem 1 first constructs the Gaussian process (ZX (k) : h € 3) on a possibly enlarged
probability space supporting the empirical process (X, (h) : h € H), and then bounds each of the five error
terms described above. The proof is given in Section SA-II.3, and it exploits the existence of a surrogate
measure and normalizing transformation (Section SA-II.2), along with a collection preliminary technical
results (Section SA-II.1) that may be of independent interest. More specifically, our preliminary technical

results are organized as follows:

e Section SA-II.1.1 introduces a class of recursive quasi-dyadic cells expansion of X, which we employ to

generalize prior dyadic cell results in the literature.

e Section SA-II.1.2 introduces the Ly projection onto piecewise constant functions, which can be written as
a linear combination of the Haar basis based on the cells. As a consequence, the empirical process indexed

by Lo-projected functions can be written as linear combinations of counts of i.i.d. data.

e Section SA-II.1.3 constructs the Gaussian process (ZX (k) : h € H). Since the constant approximation
within each recursive partitioning cell generates counts based on i.i.d. data, the construction boils down to

coupling binomial random variables with Gaussian random variables. The celebrated Tusnady’s inequality
27
the Gaussian random variable is given by a quantile transformation of the binomial random variable.

couples Bin(n, %) with Normal( ), and gives an almost sure bound on the coupling error. In particular,
Building on the quantile transformation idea, our Lemma SA.4 studies the coupling between Bin(n, p) and
Normal(np, np(1 — p)), with the error bound given on a high probability set. Due to the dyadic correlation
structure, a conditional quantile transformation is used to generated the Binomial-Gaussian pairs down
the dyadic cells. Since the constructed Gaussian random variables have a joint distribution that coincides
with the Brownian bridge integrated on cells, the Skorohod embedding lemma (Dudley, 2014, Lemma
3.35) is then used to construct the Brownian bridge (ZX(h) : h € ) on a possibly enriched probability

space supporting the data distribution.

e Section SA-II.1.4 handles the meshing errors || X,, — X,, 0w, ||3¢ and || ZX o wgc, — Z:X||5¢ using standard
empirical process results, which give the contribution F(d) emerging from Talagrand’s inequality (Giné and
Nickl, 2016, Theorem 3.3.9) combined with a standard maximal inequality (Chernozhukov et al., 2014,
Theorem 5.2). This allows us to focus on the error on the d-net to study || X, — Z:X||s¢;-

e Section SA-II.1.5 handles the strong approximation error ||y X,, — My Z;X||5¢,. Building on the Tusnady’s
Lemma, Rio (1994, Theorem 2.1) established a remarkable coupling result for bounded functions Lo-
projected on a dyadic cells expansion of X'. Our Lemma SA.7 builds on his powerful ideas, and establishes
an analogous result for the case of Lipschitz functions Ls-projected on dyadic cells expansions of X,
thereby obtaining a tighter coupling error. A limitation of these results is that they only apply to a dyadic
cell expansion due to the specifics of Tusnddy’s Lemma. Leveraging the coupling between Bin(n,p) and
Normal(np, np(1 — p)), our Lemma SA.8 established a coupling result for bounded functions La-projected
on a quasi-dyadic cells, although the result is restricted to a high probability event.



e Section SA-II.1.6 handles the Lo-projection errors ||.X,, — o X, |5, and ||[llgZX — Z:X||3¢, using Bernstein
inequality, and taking into account explicitly the potential Lipschitz structure of the functions as well as

the generic cell structure.

Section SA-II.2 introduces a reduction argument via the surrogate measure and the normalizing trans-
formation in order to apply the preliminary technical results from Section SA-II.1 to prove Theorem 1.
Specifically, the surrogate measure and normalizing transformation reduce the problem to the case where
x; ~ Uniform([0,1]¢). Section SA-IL.3 gives the proof of Theorem 1. Section SA-II.4 presents additional
results of independent interest, which are used in Section SA-IL.5 to prove the results discussed in Section

3.2 of the paper. Finally, Section SA-II.6 provides technical details underlying Example 1 in the paper.

SA-I1.1 Preliminary Technical Results

This section presents preliminary technical results that are used to prove Theorem 1. Whenever possible,
these results are presented at a higher level of generality, and therefore may be of independent theoretical

interest. Throughout this section, we employ the following assumption.

Assumption SA.1. Suppose (x; : 1 <i < n) are i.i.d. random vectors taking values in (R%, B(R?)) with

common law P x supported on X C R?, and the following conditions hold.
(i)  is a real-valued pointwise measurable class of functions on (R, B(R?),Px).
(11) Mg, x < 00 and Jx(l,}f,Mg{,X) < 00.

Compared to the assumptions in Theorem 1, this assumption does not require the existence of a surro-
gate measure and normalizing transformation. It will be applied in the analysis of each term in the error
decomposition, where we work with the P x distribution. Section SA-II.2 illustrates how the normalizing
transformation enables the use of the surrogate measure Qy, providing greater flexibility in the data gen-
erating process. This reduction through the normalizing transformation is a crucial step in the proof of
Theorem 1 (Section SA-I1.3).

SA-II.1.1 Cells Expansions

We introduce two definitions of quasi-dyadic cells expansions. Recall that Zx = {(j, k) e NxN:1<j <
K,0<k <287} and Jx = {(j,k) ENxN:0<j < K,0<k <2877},

Definition SA.5 (Quasi-Dyadic Expansion). A collection of Borel measurable sets in R?, Cx(IP,p) =
{Cjr : (4, k) € Tk}, is called a quasi-dyadic expansion of depth K with respect to probability measure P if
the following three conditions hold:

(i) P(Cko) = 1.
(11) Cj’k = ijl,Qk (] Cj,1’2k+1, for all (], k) € Jk.
(111) maxXo<p<2kK P(Co,k)/min0§k<21< IP(CO,k) < p < 0.

When p =1, Cx (PP, 1) is called a dyadic expansion of depth K with respect to IP.



This definition implies %%ﬂ < P(Cj—1,2t)/P(Cjk) < %Ii—pp for all (j,k) € Zk, since each C;_1; is a

disjoint union of 27~ cells of the form Cg j., which implies the third condition in Definition SA.5. Furthermore,
P(Cj_1,2%) = P(Cj_1,2641) = 3P(Cj 1) in the special case p = 1, that is, the child level cells are obtained by
splitting the parent level cells dyadically in probability.

The next definition specializes the dyadic expansion scheme to axis-aligned splits.

Definition SA.6 (Axis-Aligned Quasi-Dyadic Expansion). A collection of Borel measurable sets in RY,
Ax(P,p) = {Cjr : (4,k) € Tk}, is an azis-aligned quasi-dyadic expansion of depth K with respect to

probability measure P if it can be constructed via the following procedure:
(i) Initialization (¢ = 0): Take Cx_q0 = Supp(P).

(ii) Tteration (¢ = 1,...,K): Given Cx_ix for 0 <1< q—1,0 <k < 2!, take s = (¢ mod d) + 1, and
construct Cx—gok = Crx—qr16 N{x € R 1 e)x < cx_gr11} and Crx—gok+1 = Cx—qr1,6 N {x € R :
elx > cx_qi16} where cx_qi1k is a number chosen so that P(Cx—g2k)/P(Cr—qi1k) € [ﬁlp, ]
for all 0 < k < 2971 Continue until the collection (Cox : 0 < k < 2K) has been constructed.

If p=1 and P is continuous, then Ak (P, p) is unique.

SA-II.1.2 Projection onto Piecewise Constant Functions

For a quasi-dyadic expansion Cg (IP, p), the span of the Haar basis based on the terminal cells is
Ex = Span{lc,, : 0< k< 2K}.

For h € Ls(IP), the mean square projection of h onto €k is

]lco,k

B (Co ) /co,k h(u)dP(u).

Because IIj(Cx (P, p))[h] is a linear combination of Haar functions, we obtain the following orthogonal de-

Mo (Cx (P, p))[h] = Z

0<k<2K

composition.

Lemma SA.1. For a quasi-dyadic expansion Cx (PP, p) and any h € Lo(IP), the mean square projection
M€ (P, p))[] satisfies

Do (Cx (P, p)[h] = Bro(hexo+ D D Biwlh)Er,

1<j<K 0<k<2K-J

where
1 ~
B;k(h) = / B dP(w),  Fix(h) = B 1ox(h) — B 1ok1(h),
P(Cjk) Je,,
~ ]P(C'—I,Qk 1) ]P(C'—l,Qk)
ke GRS TR T (G,

forall (j,k) € Tx = {(j,k) e NxN:1<j < K,0<k < 2K-7},



Proof of Lemma SA.1. First, we show that {ex o} U{€; : (j,k) € Ix} is an orthogonal basis. For each
(ja k) € IK»

~ P(C;— P(C
(eK.,0,€j,k) =/ Meﬁmk / J 1% ej—1,2k+1(u)dP(u)
Rt P(Cjr) R
_ P(C10kr1)P(Cjr2k)  P(Cj1,26)P( 3—1,2k+1) _0
P(Cjx) P(Cj ) ’
where (-,-) denotes the inner product on Ly(PP) given by (f,g) = [pa [( dP(u), f,g € La(P). Let

(J1, k1), (J2, k2) € Ik such that (j1, k1) # (j2, k2). We show <ehyk1,ej2?k2> = 0 by considering two cases.
e Case 1: j1 = jo and ki # ko, then €;, 1, and €, , have different support, hence (€j, &, ,€j,.%,) = 0.

e Case 2: ji1 # jo and, without loss of generality, we assume j; < jo. By (1) in Definition SA.5, either
Cj1,k1 n Cj27k2 =0 or Cj1,k1 c Cj2,k2'

In the first case, we also have (€, k,,€j, k) = 0. In the second case, using (1) in Definition SA.5 again,
either Cj, k, € Cj,—1,2k, OF Cj, 1y € Cjy—1,2k,41. Assume, without loss of generality, that Cj, 1, C Cj,—1,2k,-
Then, for any (j1, k1), (j2, k2) € Tk,

<gj1,k17gj27k‘2>
s P(Cjp—1,2k)
= (€)1 k1 » m%rl,zka)
P(Cjp—1,2k,) / P(Cj, 1,2k, +1) / P(Cjy—1,2k1)
= ——= 2 — T e dlP — — " 2l dlP
]P(Cjzakz) R4 H)(thkl) o 1’2k1(U) (U) R4 IP(thlﬁ) “ir 172k1+1(u> (U)
=0.

Thus, {exo} U{€jr : (j, k) € Zx} is an orthogonal basis for €, and the Ly projection for all h € Ly(IP) is

To(Ca® ) = e 3y g,

(er,0:er0) G2k oeiTais €k k)

For all (j,k) € Tk, the coefficients are given by

(h,€jk) fRd u)e; ;(u)dP(u)

(@ i) Ja € (W)E5k (0)dP (1)
_ P(Cj1,2k11)P(Ci—1,26)P(Cip) "' Bj—1,26(h) = P(Ci1,2%)P(Cj—1,2k+1)P(Cj) "' Bj—1,241 ()
B P(Cj-1,2k+1)?P(Cj-1,26)P(Cj ) 72 + P(Cj—1,2)*P(Cj—1,26+1)P(Cj ) 2
_ P(Cim12k41)P(Cim1,20)P(Cik) ' Bj—1,26(h) = P(Ci—1,26)P(Cj—1,26+1)P(Cik) ' Bj—1,2641(h)
B P(Cj—1,26+1)P(Cj-1,26)P(Cj)

= Bj—1.26(h) = Bi—1.26+1(h) = Bjx(h).

Moreover,

_(hexo) . Pl —
(er0,€K0) P(Cr0) /CK,o h(u)dP(u) = Bk,o(h).

This concludes the proof. (|



To save notation, we will write I for o (Cx (P, p)) whenever the underlying cells expansion is clear from
the context. For a class of functions 3 on (R¢, B(R?), P) such that H C Ly(P), denote IyH = {lgh : h € H}.

SA-I1.1.3 Strong Approximation Constructions

This section employs the notations and conventions introduced in Sections SA-II.1.1 and SA-II.1.2. Unless
explicitly stated otherwise, we assume a quasi-dyadic expansion Cx (Px, p) is given. Let (Ejk (4, k) € Ik)
be i.i.d. standard Gaussian random variables. Let F; 1 », be the cumulative distribution function of (S; 5 —
mpjr)//mpj (L = pjx), where S;x is a Bin(m,p; ) random variable with p;, = Px(Cj—1,21)/Px(Cjx),
and G y,m (t) = inf{xz : Fj ) m(z) >t} N

We define the collection of random variables (U; : (j, k) € Jx) and (Ujx : (4, k) € Zk) via the following

iterative scheme:
1. Initialization (j = K): Uk =n.

2. Iteration (j = K,K —1,...,1): For each 1 <j < K, and given (U1, : j <1< K,0 < k < 2K=1) solve
for (U;k : 0 < k < 2K-7) such that

Ui = \/Uj,kpm(l — k)G ik.u, . © D(En),
ﬁj,k =1 -pj)Uj—126 — jUj—1,2041 = Uj—1,26 — 0j,Uj i,
Uj—12k +Uj_12k41 = Ujig, (SA-1)

where 0 < k < 2K-7_ Continue till (Uo :0<k< 2K) are defined.

Then, (Ujk : (j,k) € Jk) has the same joint distribution as (3", e; x(x;) : (j,k) € Jx) from Lemma
SA.1. By the Vorob’ev—Berkes—Philipp theorem (Dudley, 2014, Theorem 1.31), (g]k : (j,k) € Ik) can
be constructed on a possibly enlarged probability space such that the previously constructed Uj, satisfies
Uix = i, €jx(x;) almost surely for all (j,k) € Jkx. We will show that the gj’k’s can be given as a
Brownian bridge indexed by €;1’s from Lemma SA.1. Recall the definitions given in Section SA-II1.1.2.

Lemma SA.2. Suppose Assumption SA.1 holds, and a quasi-dyadic expansion Cx (P x,p) is given. Then,
HUyH C Ly(Px) and is Px-pregaussian.

Proof of Lemma SA.2. To simplify notation, the parameters of H (Definitions 4 to 12) are taken with
C = X, and the index C is omitted. Since Mg < oo, H U H C Ly(Px). Definition of Iy from Section SA-
11.1.2 implies that Mg¢ is an envelope for yJ.

Claim: For all 0 < ¢ < 1, J(MoH, My, 0) < J(H, Mg, ).

Proof of Claim: Let @ be a finite discrete measure on X. Let f,g € H. Then, by the definition of Iy and

Jensen’s inequality,

IMf ~Toglde < Y Q(Cor)2¥ / (f — g)%dPy.

0<k<2K Co,x

Define a measure @ such that for any A € B(RY), Q(A) = D 0<k<2K Q(Co.x)25XPx(ANCoy), then

Mo f — Togllgy2 < 1f = gll -



Take £ to be a 0Myc-net of H over X with respect to ||-|| 5, with cardinality no greater than Nyc(d, Mgc). Let
o f be in an arbitrary function in MyJ, there exists g € £ such that ||y f — l'[og||2272 <|f- g||2@2 < §%M2,.
The claim then follows.

It follows from the claim and (ii) from Assumption SA.1 that J(1,H UTyH,Ms¢) < oco. By Dominated
Convergence Theorem, limg)o J (3, H UTH) < co. Since Mg < oo, H UK is totally bounded with respect
to ||-|lpy.2. By separability of H and van der Vaart and Wellner (2013, Corollary 2.2.9), H U H is Px-
pregaussian. O

Under the conditions of Lemma SA.2, take (ZX(h) : h € H UTyH) to be a Px-Brownian bridge such
that ZX(-) € C(H UTyH,dp, ) almost surely. Since (Z (€;x) : (j,k) € Ix) are independent random
variables with distribution Normal(0, P x (Cj_1,2t)Px (Cj—1,2k+1)Px (Cjx) 1) for (j, k) € Tk, by Skorohod
Embedding lemma (Dudley, 2014, Lemma 3.35), on a possibly enlarged probability space, the Brownian
bridge (ZX(h) : h € H UTpH) can be constructed such that it satisfies

_ Px(Ci0) o
. = 5 Z/ ' ’ SA—2
fj,k \/PX(CJI,ZIC)]PX(CJ'LQICJFI) n (e]ak) ( )

for all (j,k) € Zx. Moreover, for all g € MK,

K

K
VnXn(g) = Z Z Ej,k(g)ﬁj,k and \/EZT)L((Q) = Z Z gj,k(g)‘w/j,b
j=10

j=10<k<2K-Jj <k<2K-i

where YN/M = /nZX (&) for all (j,k) € Tx. The difference between X,,(g) and Z:X (g), for all g € oK, will
rely on the coefficient (Bj,k(g) : (4, k) € Ik, g € pH) and the coupling between ﬁj,k and ‘N/M, which is the
essence of Theorem 2.1 in Rio (1994). Although Rio (1994, Theorem 2.1) is stated for i.i.d. Uniform([0, 1])
random variables, the underlying process only depends through the counts of the random variables taking
values in each interval of the form [k277, (k+1)277) for (j,k) € Jk, which have the same distribution as the
counts (31—, 1(x; € Cjx) : (. k) € Tk ). Therefore, we have the following corollary of Rio (1994, Theorem
2.1) under Assumption SA.1. Recall the definitions given in Section SA-II.1.2.

Lemma SA.3. Suppose Assumption SA.1 holds, a dyadic expansion Cx(Px,1) is given, and (ZX(h) : h €
HUTGH) is the Gaussian process constructed as in (SA-2) on a possibly enlarged probability space. Then,
for any g € TyH and any t > 0,

P (Vi |Xalg) = Z(9)] = 24\ /g3, t +4/Cgp it ) < 2exp(~1),

where
K ~
lglze =Y > 1Bix(9)?
j=10<k<2K—i

using the definitions in Lemma SA.1, and

S GG -1+ 12 > E?m(f)} +M%f},cK,o’KM?f},cK,o},

Cy Kk = sup min{ sup [
(k) E€TK 1<i<y 0Sm<2Kfl:CL,mng~k

fesF

for any F C H UK.



Proof of Lemma SA.3. Let (w; : 1 <4 < n) be i.id. Uniform([0,1]), and I;; = [k277, (k + 1)277) for
(j, k) € Jk. Take B to be a Brownian bridge on [0, 1], that is, there exists a standard Wiener process W
such that B(t) = W (t) — tW(1) for all ¢t € [0, 1]. Take

1

va=vi [ 1€ LodBR)., (k)€ Tx.
0

Vjk = Vj—1,2k — Vj—1,2k+1, (4, k) € Ik.

Take F), to be the cumulative distribution function of (S,, — 2m)/y/m/4, where S,, is a Bin(m, 1/2) random

variable, and G,,(t) = inf{z : F,(z) > t}. Define u;’s and u; ’s via the iterative quantile transformation:
1. Initialization: ug,o = n.

2. Iteration: For each 0 < j < K — 1, and given (y; : 0 < k < 2K-l 5 < | < K), then solve for
(ujp 0 <k < 2K-7) such that

_ 1 =

Uik = 5V kG 0 (€ k),

~ 1 1 1

Ujk = FUj—1,2k — FUj—1,2k+1 = Uj—12k — FUjk
Js 9 =L 9 =L + j—1, 9 Ik

Uj—1,2k + Uj—1,2k+1 = Uj k,

for 0 < k < 2K-3. Continue till (uop :0<k < 2K are defined.

Then u;’s have the same joint distribution as >, 1(w; € I;x)’s. Hence, by Skorohod Embedding lemma
(Dudley, 2014, Lemma 3.35), on a rich enough probability space, we can take (B(t) : 0 < ¢ < 1) such that
wig = >y L w; € Iy) for all (j,k) € Tk, almost surely.

Observe {(u;x,Vj k) : (4,k) € g} and {(ijk,fijk) : (4, k) € I} have the same joint distribution, and
1 & T S~
CAOR AT " DD SRR ROLASS S DR NO LAY
J=10<k<2K~i J=10<k<2K~i
for all g € IyH. Thus the distribution of the process {(X,(g), ZX : g € IyH} is the same as distribution
g g9); 45 \9 g
of
1 & ~ 1 & ~
(alohanl)ioemd) = (=3 ¥ Ba@iegz> ¥ Bl o cm).
j=10<k<2K-J j=10<k<2K-Jj

We can then apply Rio (1994, Theorem 2.1) on ((x,(g),2n(g9)) : g € IyH) and use its equi-distribution as
(Xn(9), ZX(g)) : g € THK) to get for any p = (p1,- -+ , px) With positive components such that Zfil pi <1,
if we take ¢; = (2'p;)~! and

M(pvg) =4 sSup |: Z q5—1 Z El%m(g)]a g€ HOj-Cv

GREIK Ligic 0<m<2K=1:C; ,,,CCj 1
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then for any ¢ > 0 and g € X,

IP(x/ﬁ|Xn(g)— 9)| = (VM(p.g) + Mgy cxe t+((2qz/2) . 3)g|eK\/i) < 2exp(—t).

Following Rio (1994, Section 3), we choose either p; = %(i + ) to get

1(1,+1)
K "
M(p,g) < 8KMg} e and Z 51 < 8,

or p; = z(7.+1) to get

M(p,g) < sup | Y (G-D@G—-1+1)2" > B2y }andz%@l

(J,k)ETK |:1§l<j 0<m<2K~1:¢; .. CCjp

The conclusion then follows. O

Lemma SA.3 relies on a coupling of Bin(m,1/2) random variables with Gaussian random variables. A
weaker coupling also holds for Bin(m,p) with the error term only depending on how far away p is bounded

away from 0 and 1, as the following lemma establishes.

Lemma SA.4. Suppose X ~ Bin(m,p) where 0 < p < p <p < 1. Then, there exists a a random variable
Z ~ Normal(0, 1), and constants co,c1,c2,c3 > 0 only depending on p and p, such that whenever the event
A ={|X —mp| < cam} occurs and cor/m > 1, we have

1
‘X—mp—\/mp(l—p)Z‘ < Z? 4¢3 and | X — mp| SC—+2\/mp(1—p)|Z|.
0

In particular, we can take cy > 0 to be the solution of

3 3
1-— 1-— D D
60cop (1 / pp) exp (21 / ’ pco> +60co(1 —p) ( . fp) exp (2 1 fpco) =1,

and ¢; = 15¢co,/p(1 = p), ca = 1/(15¢0), c3 = 1/co, and then set

Z =01 oF((X —mp)/\/m).

That is, Z can be taken via the quantile transformation based on F(z) = P(X — mp < /mp(1 — p)x).

Proof of Lemma SA.4. Let (X; : 1 < j < m) be iid. Bern(p) with 0 < p < p <p < 1. Take
& = (X —p)//mp(l —p) and Sy, =377, &. Then, for any a € R,

L<a>=§jl 165 explat,)] iEH N exp(\ =t )]
_ 3
) o) s ) i)

11



Take ¢y > 0 such that

3 3
[1— 1-— D D
60cop ( pp) exp (2 » pco> + 60co(1 _B) ( 1pp> exp (2 1 ppco) =1.

Then, for any m € N and A = ¢g/m, we have 60AL(2\) < 1. Sakhanenko (1996, Lemma 2) implies that,
whenever cgy/m > 1 and the event {|S,,| < coy/m} occurs,

L8
Co\/ﬁ{ 6060\/ﬁ€.

Moreover, Z can be taken such that Z = ®~! o F(S,,).
We then proceed as in the proof for Lemma 2 in Brown et al. (2010), where they show for each 0 < p < 1,

‘5hn‘_éz|§

the coupling exits with ¢y to c3 not depending on m, though they did not give explicit dependency of ¢g
to ¢z on p. Take ¢; such that ¢1/(60cy) < 1/2. In particular, we can take ¢; = 15¢g. Then, on the event

{‘S%J < clvqﬁ}a

1 1
crym < + =|Sml.

1
S — 7| < —— 4|9,
| = + IGOCO\/E_CO m 2

Cox/ﬁi

Hence, by triangle inequality, |S,,| < Coaﬁ +2|Z], and

1 1 2 2 2 2
Sm— Z| < 217 < Z
| < co/m * 60cg/m (CO\/m +2| |) — copvy/m + 1500\/m|

.

Since X = Y77 | X; ~ Bin(m, p), whenever the event {|X —mp| < crmy /p(1 fﬁ)} occurs and coy/m > 1,

2 2 1 7
‘Xfmpf Vmp(1 *p)Z( < o p(l—p)+ M\/p(l -p)ZP < —+ —

Co 1560'

Moreover, |Sp,| < co\Q/ﬁ + 2|Z| implies | X — mp| < % +2y/mp(1 —p)|Z|. O

This generalization of Tusnddy’s Lemma enables the following strong approximation for the case of a

quasi-dyadic cells expansion.

Lemma SA.5. Suppose Assumption SA.1 holds, a quasi-dyadic expansion Cx(Px,p) is given with p > 1,
and (ZX(h) : h € HUIGK) is the Gaussian process constructed as in (SA-2) on a possibly enlarged probability
space. Then, for any g € NyH and for any t > 0,

P (\/ﬁ | Xn(9) — fo(g)’ > con/llgllz  t+cp C{g}th) < 2exp(—t) + 25 exp (— ¢,n27 ),

where ¢, is a constant that only depends on p, and ||g||z = and C{gy r are defined in Lemma SA.3.

Proof of Lemma SA.5. We adopt the coupling method from Section 2 of Rio (1994), extending it to
accommodate quasi-dyadic cells. Instead of applying the well-known Tusnddy inequality as in Rio (1994),
which states that for X ~ Bin(m, 3), there exists Z ~ Normal(0, 1) such that almost surely:

Z2
’X_Tg_<\/2%>Z’§1+8, and |X—%|§1+@|Z|’

12



we rely on Lemma SA.4, which allows for coupling in the case of Bin(m, p) with p # %, though restricted to
a high-probability set. The proof proceeds in two parts: Part 1 establishes an upper bound for the small-
probability event where the coupling inequalities from Lemma SA .4 fail to hold; Part 2 decomposes the error
X, (9) — Z:X(g) into the coupling errors corresponding to each pair of cells (Cj—1,2k,Cj—1,2641), following the
strategy in Rio (1994), while accounting for the restriction to the high-probability set.

Part 1: Strong Approzimation Set-up. By the construction at Equation (2), condition on Uj g, ﬁj,k
has the same distribution as 2Bin(U; x,p;j ) — Ujk, and the conditional quantile transformation relation
ﬁj7k = \/Uj’kpﬁk(l —2ik)G (kU © <I)(§~j7k) holds. This allows for application of Lemma SA.4. Let p = p,

p= p~1, ¢ to be the positive solution of

3 3
1-— 1-— D D
60cop (1 / pp) exp (2 » pCo) +60co(1 —p) (\/ 1?}3) exp (2 I fpco) =1,

c1 = 15¢4/p(1 = p), ca = 1/(15¢p), and ¢z = 1/cy. Consider the small probability set A where the coupling

inequalities from Lemma SA.4 are not guaranteed to hold,
A= {Iﬁy,k| < aUjp = (4, ) GIK},

and notice that we can always take ¢; < 1 because |ﬁjk| < Uj 1, almost surely. Using Lemma SA.4 conditional

on U, ;,, whenever A occurs,

Ujr — \/Uj,kpj,k(l —pik)&ik| < &) + s,

‘@k‘ < 1/co +24/pjk(l — D)€kl
for all (j,k) € Ik.

To bound IP(A°), first notice that by Chernoff’s inequality for Binomial distribution, P(U; ;, < E[U;]/2) <
exp(—E[U; x]/8) for all (j, k) € Tk, and P(U; ) < 271p71n29=K) < exp(—8~1p~1n2/=K) for all (j,k) € T
because p~1n2/—K < EU;i) < pn2’~K_ Furthermore, using Hoeffding’s inequality and the fact that
ﬁj,k =Uj_12t —PjkUjk = Uj—1,26 — E[Uj—1,2k|Uj ],

(SA-3)

. 1 ‘ 29— K+j

IP(|Uj.,k\ > U n|Ujp > §p*1n2*K”) < 2exp <Cln3>

p
Putting these together, and using the union bound,
PA) < Y P(Ujkl > e1Uji)
(j’k)GIK
1 . ~ 1 )
< Z IP(ijk < 5,0_177,2_K+j) +IP(|Uj’k| > ClUj,k‘Uj,k > gp_ln2_K+]>
(4,k)€Lk

K
(S Y {onere ool )

Jj=10<k<2K-J

< 3-2K exp(—min{c?/3,1/8}p~ n27K). (SA-4)
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Part 2: Bounding Strong Approximation Error. We show that the proof of Theorem 2.1 in Rio (1994)
still goes through for an approximate dyadic scheme. In other words, we show that the approximate dyadic
scheme gives essentially the same Gaussian coupling rates as the dyadic scheme (Section SA-II.1.1). We

employ the same notation as in Rio (1994), and for g € MyJ, define

K K
Ag)=X=-2)g), X@=>_ Y. Bin@Unx  Zg=) Biw(9)Vik,

j=10<k<2K—-iJ j=10<k<2K—-J

K
M) =(X-Y)9). Y@= 3 B Uidsd -5
j=10

<k<2K-Jj

Aa(g) = (Y = Z)(9)

It suffices to verify the following two claims.
Claim 1: Elexp(tA1(g))1(A)] < HjK:1 [To<g<or—s Elcosh(tBx(9)(2 + &5 1./4))] for all g € MJ. Then, it
follows from the proof of Lemma 2.2 in Rio (1994) that
83 5 [ ~
log Elexp(4tA1(9)) L(A)] < =3¢ Yo D Bkl | logl %),

J=10<k<2K-J

for all |¢| < 1.
Claim 2: E[exp(tAz)1(A)] < Elexp(tc,As)] for all t > 0, where

K K
Asz(g) = Z Bik(9)&x [ 1+ Z Z 271218 11(Clg 2 Cin) |
j =i l=j 0<g<2K -t

for all g € My}, and ¢, a constant that only depends on p.

Proof of Claim 1: Let F; = o{&r 1 j <1< KO0O<k<25)foralll <j < K. In particular,
o({U:j <1< K,0<k<2K-1}) C F;. Then, by Equation SA-3, for all t € R,

Elexp |t > Bixl9) (ﬁch - \/U',kﬁj,k(l —ﬁj,k)gj,k) L(A)|F;

0<k<2K-i

<E| I cosh(tBinl)(2ls +c3)) 1A F;

0<k<2K-i

Then, we will use the same induction argument as in the proof of Lemma 2.2 in Rio (1994): let

Sity=exp [t D> Bixlg) (ﬁch - \/U‘,kﬁj,k(l —@‘,k)gj,k) ,

0<k<2K—i

14



so that Elexp(tA;)1(A)] = E[[T, S;(t)1(A)], and

T;(t) = H cosh (tgj,k<g)(02£;2‘,k + Cg)) ;

0<k<2K—j

so that [T/, TTo<peor—s Eleosh(tB;x(2 +€2,/4))] = E[[Tj—; Tj(t)]. By Equation SA-3, for all 1 < j < K,

Jj—1 J
O [[101A)|F | <E|[[T01(A) fj] :
=1 =1
It follows that
K K K
Elexp(tA1)1(A)] =E | [[ S;()1(A) | =E |E[Si(t)1(A)|F] H E [Ty (t)1(A)|F1] [T S5
=1 j=2 j=2
I K K
=E [T (t)S2(t)1(A )|]:2]HSJ() <E |E[Ti(t)T: |]:2H
Jj=3 Jj=3
r K K N
<E|[[nwiw| <E |7 ] H [T Eleosh(tB;u(h) (o2 +cs))]
Jj=1 j=1 <k<2K-i

K
<TT T Eleoshite,Bu ()& /2 +2)

j=10<k<2K~—

where in the last line, we have used independence of (g]k 1<j<KO0<Ek< QK_j). Without loss of
generality, we assume that ¢, supyce, , [9(x)] < 1. Since we know (gj,;ﬁl <j<K0<k<2K79) are
ii.d. standard Gaussian, the same upper bound established in Rio (1994) for the right hand side of the last
display holds: for all g € My, |¢| < 1,

log Elexp(4tA; (9))1(A)] < ——cp Z > Bli(h) | log(1 — ) = ha, (1), (SA-5)
j=10<k<2K~-J
which concludes the verification of the first claim.

Proof of Claim 2: Denote g;, = Px(Cjx) for (j, k) € Jx. By Equation (2), for any g € yJ, we have

:i Z EJ, <\/T Uk )\/q] 12kq] 12k+1f],

J=10<k<2K—i q] k

We will use the same strategy as in Rio (1994) adapted to the quasi-dyadic case. Fix 0 < [ < 2K~J and
0 < j < K, and let k; be the unique integer in [0,2%~%) such that C; 5, 2 Cj 4. Then,

K—-1
/U _ U, 5.k _ dj,k
] k j k l kl l+1 kl+1
qi,k; Qi+1,ki 41
—1

SN (o, )
1=V OLkin qi,k, e
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By Equation SA-3, when the event A holds,
Uik

qi+1,k ,
‘\/ = UlJﬂ - Ul+17kz+1 <
Ut “ar, Utk /Uit

Qi+1,k; 4
9 Qi+1,2k; 9U41,2k 41 U = . 1 ﬁ
qi,k, QK Uk ‘gl,kz‘ + mm{co ) l,kl}

IN

dit1,kp gy
e Uik, + Uitk 4

/LIz+1 Patliz |y min{cy ", Uk, |}
l qi+1,k '
a, le Uik, + Ul+1vkl+1

For the first summand,

K—-1
¢ i f””’”“m,AZ I por.2vpimléin <cp > 270D218,,].

Q1+1,k1 41 =5 \ j<s<l l=j

For the second summand, we separate it into two terms as in Rio (1994). For ]l(ﬁl,kl < 0), we have

K-1 . 1 a
3 [ Gk min{cy ", Uik} 1Ty, < 0)
qi+1,k L —
I=j Bt ks q, kl+1 Uk, + Ul+1,’fl+1
K-1 . -1 =~
; min{c, -, U, ~
-3 [l { 0 Lk} (T, <0) <o,
I=y Bt ki \/ Ul+1,7€z+1 - Ul,kl + Ul+1,kl+1
since supg<, <, min{c;!, 2}/ (Vu+ vu+ ) S 1. For 1(Upg, > 0), we have
K-1 . —1 77
[ Gk min{c, ", Uy, } ~
Z . AUtT,ky gy : : ]]'(Ulykl > 0)
= VA tke J=E Uy 4 /Ui b,
K-1
qj,k qi+1.k (Jl+1 k qi+1,k 1
< Z —b (\/Ul-i-l Y R ——L > — Uiy, < Ug1ey < ——Upi, + ¢4 )
Qi+1,k 41 q1,k; q1,k; ql,k,

=Jj

K-—1
[ @Gk \/> \/Tl
< P,k A/ Co < Cp-
IZ:; qi+1,k; 4 — H 3 0 P

=j j<s<l

It follows that when the event A holds,

K-1
‘\/Uj,k - \/]E[Uj’k]’ < cp<1 +) 272N g, 1(Cg 2 cj,k))
I=j -

0<g<2K -t

Using an induction argument, for all g € yJ, ¢ > 0,

Elexp(tA2(g))1(A)] < Elexp(tc,As(g)))- (SA-6)

For any random variable W, define vy (t) = log(IE[exp(tc,W)]) for all t > 0, and hw (u) = sup,sq(tu —
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~yw (u)). Combining Equation (SA-5), for any g € yH, ¢ > 0,
P(Ai(g) >t and A) < }Lr;fO]P(exp(Al(g)u) > exp(tu) and A) < g;fo exp(—tu)E[exp(A1(g)u)1(A)]
< oxp (~hay (1) =0 (= sup (0t 2ol o1 — 2160 ) ).
hence for any t > 0,
P(|A1(9)] > Cepllglle VE+ Ct and A) =P(Aq(g) > byl () (1) and A) < 2exp(—t). (SA-7)
By Equation (SA-6), for any ¢ > 0,

P(Aa(g) 2 t and A) < inf exp(—tu)Elexp(Az(9)u)1(A)] < exp (~hay ) (1) (3A-8)

Since As(g) only depends on (&1, B;.(9)) : (j, k) € Zk), the rest of the proof follows from Lemma 2.4 in
Rio (1994). In particular, define

K
Aslg) =3 Bir@&r Dslg) = Aalg) = Aalg),

then identifying that A4(g) is Gaussian and applying Rio (1994, Lemma 2.4) with two choices of p;-sequence,

P = %(% + ﬁ) and p; = ﬁ separately on As(g), we get for any ¢ > 0, and g € K,

P (182(9)] = eliglle Vi + o /Crop et and A) <P (183(9)] = eolgllec VE+cpy/Crp ict) < 2exp(—1).

Combining Equation (SA-4), (SA-7) and (SA-8), we get the stated result. O

SA-II.1.4 Meshing Error

For 0 < 6 < 1, consider the (6Mg¢ x)-net of (X, ||-||lpy,2) over X, Hs, with cardinality no larger than
Ngc x(0,Mgc x). Define mg¢, : H +— H such that ||mgoc, (h) — hllpy,2 < 0Mgc x for all b € H. To simplify
notation, in this section the parameters of H (Definitions 4 to 12) are taken with C = X, and the index C is

omitted whenever there is no confusion.

Lemma SA.6. Suppose Assumption SA.1 holds, a quasi-dyadic expansion Cx(Px,p) is given, (ZX(h) :
h € HUIGK) is the Gaussian process constructed as in (SA-2) on a possibly enlarged probability space, and
Hs is chosen in Section SA-I1.1.4. Then, for allt >0 and 0 < § < 1,

IP[HXn — X, omag|lac 2 Fn(t,5)] < exp(—t),
P (|| Z: o mae, — ZX ||3c = MaeJ (8,3, Mac) + oMacV/t] < exp(—t).

Proof of Lemma SA.6. Take £ = {h — w3, (h) : h € H} on (X,B(X),Px). Then, sup;c,||l|py,2 < 0Ma¢
and, for all 0 < e < 4,

Nz (e, Mgc) < Ne(e,Mao)Ng (0, Mae) < Ne(e,Mgc)?,
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Hence J(u, £,M5¢) < 2J(u, H,Mg¢) for all 0 < u < 6. By Chernozhukov et al. (2014, Theorem 5.2), we have

MS}CJ2(57 g{a Mﬂ{)
PV

By Talagrand’s inequality (Giné and Nickl, 2016, Theorem 3.3.9), for all ¢ > 0,

E[||[ Xn — Xy 0 m¢s]|ac] S (0, I, Mae)Mac +

My J2 (6, 3, Mac)

P <||XnXnO’/T_f}{é||g{zJ(5,j‘f,Mg{)Mg{+ 52\/ﬁ

+ MgVt + M\/}%t) < exp(—t).
By van der Vaart and Wellner (2013, Corollary 2.2.9),
E[||Zn — Zp o mags|l3c] S T (0, H, Mag )Mo, -
By pointwise separability and a concentration inequality for Gaussian suprema, for all £ > 0,
P (||Zn — Zy o, ||3c = J(8, T, Mag Mg + 5Mm/{e) < exp(—t),

which concludes the proof. ([l

SA-I1.1.5 Strong Approximation Errors

To simplify notation, in this section the parameters of H (Definitions 4 to 12) are taken with C = X, and
the index C is omitted whenever there is no confusion. The next lemma controls the strong approximation

error for projected processes.

Lemma SA.7. Suppose Assumption SA.1 holds, a dyadic expansion Cx(Px,1) is given, (ZX(h) : h €
HUExm,) is the Gaussian process constructed as in (SA-2) on a possibly enlarged probability space, and
Hs is chosen as in Section SA-II.1.4. For each 1 < j < K, define the j-th level difference set

Uj = Up<rearx—i(Cj—1,2k+1 — Cj—1,2k)-

Then, for all t > 0,

R (H C
P |[|X, 0To — ZX o Tg||5, > 48\/K( 0), +4\/}C‘5’Kt] < My, (6,Mye,)e ",
n n

where

K
Ric(Hs) =Y min{Mg,, [U;]locLac, }25 7 min {\/;i sup f5 ()22 || oom(Uy )TV, U] oL, , Ene, }»

j=1 xeX

and Cyg, k15 defined in Lemma SA.5. In the above display, fx denotes the Lebesgue density of Px: if it
does not exist, the term v/dsupye f%(x)?Q(K_j)||Z/{j|\oom(uj)TV’5{6 is taken to be infinity.

Proof of Lemma SA.7. We employ the same strategy as in the proof of Theorem 1.1 from Rio (1994),

noting that incorporating the Lipschitz condition can lead to a tighter bound for strong approximation error.
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A very first bound that we can obtain for is

DR GO D DENE Tl N ICSIE e

0<k<2K-J 0<k<2K—j

< K= |h(X)‘ dIPX(x) < 2K7jE{h}.
UocheaK—(G-1Ci-1,k
If we further assume P x admits a Lebesgue density fx, then an analysis based on total variation of h
can be done as follows. For each 1 < j < K, there exists unique integers ji,...,jq such that 0 < j; < ... <
ja < j1+ 1 and Zle Ji = j. In particular, there exists a unique I = I(j) € {1,2,...,d} such that either
I<d-—1landj; < jiy1orl=dand jg <j + 1.

Bjx(h) =257 /

Cj—1,2k

h(x) fx (x)dx — 2K / hy)fx (v)dy

Cj—1,2k+1

= QK_j/C‘ (h(x) = <2K‘j/c_ h(y)fx(y)dY>> Ix (x)dx

— 92(K—j) /C /C (h(x) = h(y)) fx (%) fx (y)dydx

_ 2(K—j) / / (h(x) — h(x +8)) fx (%) fx (x +8)Tc,_, p0,r (X + 8)dsdx.
Cj—1,2k JCj_1,24+1—{x}

Since we have assumed f is bounded from above on X’ and hence on Cx o, and C;j_1 241 — {x} € Cj—1 %41 —

Cj—1,2k,

Bj,k(h)‘ < 22(K—j)/

Cj—1,2k+1—Cj—1,2k

/cv |h(x) — h(x + 8)|fx (x)fx (x + s)dxds.

and therefore

> fpam] sz [ B(x) — hx -+ 5)| fx () fx (x + 8)dcs,
0<k<2K—i Uj JUgcpocok—5Ci—1,2k
where U; = Up<peorx—i(Cj—12641 — Cj—12k). Let (he)een be any sequence of real-valued functions on

(X, B(X)) such that hy — h m-almost surely, and are bounded by 2Ms¢ on X. Since we assumed Mg < 00,
and h, and h are bounded by 2Mg; with fRd 2Mg¢ fx (x)dx < 2Mg¢ < oo, Dominated Convergence Theorem

implies for any x € U,

/ |h(x) — h(x +s)|fx(x)dx = lim |he(x) — he(x + 8)| fx (x)dx
Uo<keok—3Ci—1.2k t—=oo Uo<rcok—3Ci1.2k
IIsl]
_ lim / IV he(x + ts/ 8] fx (x)dtdx
£—o0 Uo<r<ok—iCi—1,2k /O

= sup fx(x)|s|| imsup TV},
XEX £—00

Since the above inequality holds for all sequences (h¢)¢en such that hy — h m-almost surely, and are bounded
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by 2Mg¢ on X, Definition SA.1 implies
/ [h(x) = h(x + )| fx (x)dx < sup fx (x)[|s[| TV,
Uo<paok—iCi—1,2k xeX
< sup fx (X)Vd|Uy |l oo TV
xEX
It follows that

2
S [Bat] = v sup rx0) 20D g T

0<k<2K—i

Moreover, |B]k(h)| < min{Mpy, |Uj[lccLiny }, hence

K K
sup (A2, = sup > D> |Gk < sup Y min{Mac, [UyllecLoc} D [Bi(R)] < Ric(3),
heIts PETEs j=1 o<h<aK i €7 j=1 0<k<2K i
where Rk (Hs) is defined to be
K , 2 .
> minitc,, 104 Lo 2 i {x/c’z (1sup ) ) 2209t @6 56, 104 Ly B } .
i=1 <

Applying Lemma SA.3, for any h € Hs, for any t > 0, with probability at least 1 — 2 exp(—t),

|Xn olg(h) — ZX Oﬂo(h)| < 48\/321((3{5)15"‘ \/CH(S’Kt'
n n

The result then follows from the fact that |Fs| < Ng¢(d,Ms¢) and a union bound argument. O

Lemma SA.8. Suppose Assumption SA.1 holds, a quasi-dyadic expansion Cx (Px,p) is given with p > 1,
(ZX(h) : h € HUIGKH) is the Gaussian process constructed at Equation (SA-2) on a possibly enlarged
probability space, and Hs is chosen in Section SA-I1.1.4. Then, for allt > 0,

Ric (F c
P|||X, oMy — ZX oy, > cp\/Kfl‘s)t + Op\/ “;;’Kt} < Mg (6, Mgc)e ™t 4 2K exp (—~C,n2 ),

where C,, is a constant only depending on p, R (Hs) is defined in Lemma SA.7, and Cycs x is defined in
Lemma SA.3.

Proof of Lemma SA.8. This follows from Lemma SA.5 and the fact that
sup [|A|z,. < Ri(Hs), h € Hs,
heHs

from the proof of Lemma SA.7. |
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SA-I1.1.6 Projection Error

To simplify notation, in this section the parameters of H (Definitions 4 to 12) are taken with C = X, and the
index C is omitted whenever there is no confusion. The following lemma controls the mean square projection

onto piecewise constant functions.

Lemma SA.9. Suppose Assumption SA.1 holds, a dyadic expansion Cx(Px,1) is given, (ZX(h) : h €
HUH) is the Gaussian process constructed as in (SA-2) on a possibly enlarged probability space, and Hs
is chosen in Section SA-II.1.4. In addition, assume IPx admits a Lebesque density fx supported on X C R?.
Define quasi-dyadic variation set V = Uy<p<ox (Cox — Cox). Then, for all t > 0,

4By,

3vn
IP[||Z,§ —ZX o5, > «/4v%5t] < 2y, (8, Mg, e,

]P[HXn — X, 0Mlac, > /AVac,t + t] < My, (6, Mae, e,

where
2
Vae, = min {2, Log, Vo) (s0p () ) 2 m0) V)T,
xeX
Bg{é = min{2M9‘fa7L'}f5 ”V”OO}

In particular, if Px = Uniform([0,1]%) and Cx(Px,1) = Ax(Px,1), then for all t > 0,

4 min{2Mg-(5 R L}(SQ_K}
NG

]P[HZi( - fo OHOHJ—({; > \/4dmin{2M}f5,L%52_K}2—KTV§{67§] < 2N}(5((5,M{}(6)€_t.

P {HXn - X, 0 HOH{}[(S > \/4dmin{2Mg{5,L%52*K}2*KTV§{6t + t} < 2Nj—[5(5, Mg-cé)e_t,

Proof of Lemma SA.9. Let h € 3. Then, |h(x;) — Ooh(x;)| < min{2Ms(,, Lo, || V]| oo } = Bass

E [h(x;) - -3 /C

0<k<2K

< QK/CM/CM ()1 (3) fx (x)dydx.

0<k<2K

x) — 28 /C H() e (v)dy | Fx (x)x

Using a change of variables s =y — x and the fact that fx is bounded above, we have

E[|h(x;) — Hoh(x;)]]

’ )‘f ( )f ( ) Co,k( S)dXdS
0<k<2K /Co —Co,k /Co & X S)Jx 1 X +
: C X dXdS.
< / /Ko S)“fX( +S)fX( )

Let (h¢)een be any sequence of real-valued functions on (X, B(X)) such that hy — h m-almost surely, and

are bounded by 2Mgs¢ on X. Since we assumed My < oo, and hy and h are bounded by 2Mg¢, by Dominated
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Convergence Theorem we have that

/C [h(x) = h(x +8)| fx (x)dx = lim he(x) = he(x + 8)| fx (x)dx

{— 00 Cx.0

lIsl]
< sup fx(x)- lim / / IVhe(x + ts/||s]|) || dtdx
x€X t=eco Jx Jo

lIsl]
< sup fX(x)-/ elim / IV he(x + ts/||s]|) || dxdt
0 o Jx

XEX

< sup fx(x) - |[s|| limsup TVyp,y.
xeX £—00

Since this holds for any sequence (hy)eeny he — h m-almost surely, and are bounded by 2Mg¢ on X, hence
S [h(x) = h(x + )| dx < |[s[|TV],,. It follows that

Elln0x) ~ Toh()l] < (sup fx(x) ) 2wV VTV,

and
2
V[h(x;) — Moh(x;)] < min{2Ms¢;, Lo, [|V[|oo } <Sug fx(X)) 25 m(V) | V|oo TV, = Vg,
xXe

for all h € Hs. Then, by Bernstein inequality, for any ¢ > 0,

P(| X, (h) — X, (loh)| > t) <2 ( 3t*n > <9 < 1. { i2n Ln })
" It =) S 2exXp{— <2exp|—-minq =—, —=—— )
0 P ’I’LVS—C(; + %Bg—(st\/ﬁ p 2 TLVg{é %Bj—cét\/ﬁ

1,2 1,2
Set u = %min{ EAM %} > 0, then either ¢ = 2,/Va¢,/uor t = 32 u. Hence t < 2,/V}c5\/a+§%u.

nVgcs %Bj%t\/ﬁ n
For any u > 0, P(|X,,(h) — X,,(TIph)| > 2\/Vag,/u + %B‘%u) < 2exp(—u). The result for || X,, — X,, o Ig||s¢,
then follows from a union bound. The result for || Z,, — Z,, ollg||5¢, follows from the fact that Z, (h) — Z, (Tlph)

is a mean-zero Gaussian with variance V[X,,(h) — X,,(Tlph)] and a union bound argument. O

SA-II.2 Surrogate Measure and Normalizing Transformation

This section studies the properties of the surrogate measure Qq¢ and normalizing transformation ¢q¢ in-
troduced in condition (ii) of Theorem 1. The following lemma characterizes the connections between the
original and the transformed parameters of 3 (Definitions 4 to 12) when deploying Qg¢ and ¢g¢.

Lemma SA.10. Suppose following conditions hold.
(i) H is a real-valued pointwise measurable class of functions on (RY, B(R?), Px).

(i) There exists a surrogate measure Qg¢ for Px with respect to H such that Qg = mogpqc, where the

normalizing transformation ¢gc : Qg¢ — [0,1]? is a diffeomorphism.
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Let H = {ho¢5l : h e H}. Then,

Mitjoe =Moo Egg o0 = o000
Nj,'(7[071]d(€7Mj—'(7[071]d) — N}C,QG{ (E,Mﬂ{’gi}(); € € (0, 1)7
1
L~ < calgc, 0y, €2 = SUP e )
3¢,[0,1]4 e x€Qy( oa(Vac(x))
d—1
TV e < d'eiTVsc 0, 1 =d sup []o;(Vosc(x)),
)Yy x€ Q¢ j=1
K%{y[(),l]d < d_1/2C3K}c,Qw cy = 2d—1dd/2—1clcgfl.

Proof of Lemma SA.10. The first three identities are self-evident. Consider next the relation between

Lg~{7[071]d, and Ly g, : for any h € I, using a change of variables and the differentiability of ¢4,

|ho ¢zl (u) — hogr (0)

Lihops11, 0,12 =  SUD

u,u’€[0,1]4 Hu - H/H
[h(x) = h(x')| [[x — x|
< sup
xxeQy X=X [[dsc(x) — drc (X))
|65 (0) — ¢35 ()]

< Ly, sup
{3, Que u,u’€[0,1]4 ||u - U./H

<Linyox sup 01(Voy(2))
zc[0,1]¢

:L{h}-,QJc sup Jd(v¢9{(x))_1ﬂ
xXEQg¢

and the result follows.
Now consider the relation between TV [0,1]¢ and TVg¢ o, . First suppose all functions in J are differen-
tiable, an integration by parts based on the definition of uniform total variation (Definition 5) and a change

of variables calculation gives

Wiy = s [ oot o) )i/l
LPE’Dd([Ovl]d) [Ovl]d

/ IV(h o 63 (u)]|du
uelo,1]@

:/ IVe5 (W) T V(45 (u))||du
uelo,1]4

=/ IVé5¢ (99¢(x)) T VA)|| - | det(Vac(x))|dx

Q¢

S/ [VR(x)[ldx sup |det(Vsc(x))| - [[Va (¢sc(x))]]
Qsc

X€EQac

< c1TV{n}, Q¢

where in the last line we have used | det(V¢g(x))| = H;l:l 0;(Vosc(x)), and since ¢g¢ is a diffeomorphism,
Vs (3 (x| = 01(Vos (d3c(x))) = 0a(Vesc(x))™'. Now consider H which contains possibly non-
differentiable functions. Take 3 : R¢ — R to be any smooth function with compact support such that
Jga ¥(z)dz = 1, and take ¢ (-) = %) (-/e). For each £ € N, define hy = hx.,, where (£¢)¢en is a sequence
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of non-increasing real positive numbers converging to zero with £; small enough. Then

TV:

5.[0.14 < sup limsupTV{hgo(b;(l}’[O,l]d = sup limsup c1TV(s,},04 < 1TV 0y,

heH {(—oo heH (—oo

where the first inequality is due to (he)een being a particular sequence satisfying Definition SA.1, the second

inequality from Lemma SA.10, the third inequality due to TV{j.yy,0, < TVin} 04 for any smooth 1.
Moreover, let C C R? be a cube with edges of length a parallel to the coordinate axises. Then, ¢ (C)

is contained in another cube C’ with edges of length at most 2v/d supxe[o)l]dHV(b;Cl (x)||la. Again, we first

assume that each h € H is differentiable. Using a change of variables for the total variation calculation and

the definition of Kyxy,0,, (Definition 5), for any h € I,

TWinopstye = /C||V(h0¢§c1)(u)lldu
< - [V (ho ¢35 ) (dac(x))]| det(Vese (x))dx

S/ClIIVh(X)IIdX sup | det(Vepae (x))[[| Vo5 (dac(x)) |

x€EQy

d—1
< Koo (VA sup (Va2 ()la)" " sup [ det(Vaioe ()] [V (6nc() |
x€[0,1]4 x€Q1¢

— d_l(Zﬂ)d_lclcg_lK{h}’Q}( ad—l

= d71/203K{h})QHad71,

which implies
—-1/2
Kgyoae = - c3K{n}, Qs

By similar smoothing arguments as for the TV terms, we can also show that K}C <d QCSK%,[O’l]d even

;0,174
when H contains possibly non-differentiable functions. O

Lemma SA.11. We recap the statements in Section 3.1 and present their proofs.

e Case 1: Uniform on Rectangle. Suppose that x; ~ Uniform(X) with X = x{_[a;,b;], where

—0 < a; < by < o0, 1 = 1,2,...,d. Setting Qs = Px, a valid normalizing transformation is
dac(z1,- yxq) = (b1 —a1) Yz —a1), -+, (bg — aqg) ~H(xaq — aq)), which verifies assumption (i) in
Theorem 1. In this case, c; = dmaxi<j<q|b; — al|]_[ld:1 by — a;|7t, co = maxj<i<q|b; — a| and

Cc3 = Qdildd/Q maxj<i<d |bl — al|dH7=1 |bl — al|*1.

e Case 2: Rectangular Q. Suppose that Qq¢ admits a Lebesgue density fo supported on Qg =
xle[al,bl], —o00 < a; < by < oo0. Then, the Rosenblatt transformation ¢3¢ = Ty, is a normalizing

transformation, and we obtain

—d fQ(u)
C1 = sup n B
ueQy Min{ fq 1(u1), fo o1 (ualur), -, fo,a—a(ualuy, -+ ,uq—1)}
1
Co = Sup " s
ueQy min{ fg1(u1), fo o1 (ualur), -, fo,a—a(ualuy, -+ ,uqg—1)}
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and c3 = 2d_1dd/2_1c1cgfl.
This case covers several examples of interest, which give primitive conditions for assumption (ii) in

Theorem 1:

(a) Suppose Qs¢ = xL_[a;, by] is bounded. Then,

72 p—
cp < d;QQac and  co < —=Qy.
Lq Lg

(b) Suppose Qg = X [a;,by] is unbounded. To fix ideas, let x; ~ Normal(u,X). Then, setting

Qg¢ =Px and ¢pgc = Tp, also gives a valid normalizing transformation, with

c1 <d SUQP max{fx,1(1), fx a1 (@2lr1), -, fxg—al@alr—a)}"
xe D¢

<dmn{S .-, 27 0 »1-(d=1)/2
- 1§k§d{ k.l o Lik—120 o1 10k 1 2 1sk—1,k

bounded, but co (and hence c3) unbounded.

e Case 3: Non-Rectangular Qsc. Suppose that Qg admits a Lebesgue density fo supported on Qg,
and there exists a diffeomorphism x : Qg¢ + [0,1]%. Setting ¢ = Tg,cox-1 0X gives a valid normalizing

transformation, with
i2 p—
c1 < df—QSX and coy < f—QSX,
Lo o

sup, e ldet(TxT G
where SX = infx:[:’ll]d [det(Vx 1(x))]| ||||VX ”2”00

Proof of Lemma SA.11. We consider the three cases separately.

Case 1: Uniform on Rectangle. For every x € Qg¢, the singular values of Vg (x) are (by—ay) ™%, -+, (bg—

aq)~!. The values of c; and cy (and hence c3) then follow.

Case 2: Rectangular Qg¢. We start with a proof for a general result for ¢y, cs, c3, and then prove upper
bounds for (a) and (b).

1. The General Case. Since Q has a Lebesgue density fq,

fQ,l(l'l) 0 0
* I p) 1(zalxy) - 0
VIg(x) = o . . X € Q.
* * : 0
* * fQ,du,---,d—l(ﬂ?d\H?l,'" ,Zd—1)
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Because the singular values of Vg (x) = VIp(x) are the values on the diagonal,

—d fQ(X)
ci=d sup — ,
xeQq Min{ fo.1(x1), fo 2 (w2|71),- -+, fo.d1—-a(®alz—a)}
Co = SUQP maX{fQ,l(xl)_lafQ,2\1(x2‘x1)_17‘" 7fQ,d|—d(xd|x7d)_1}'
xeQgc

2. Case (a): Qgc = XL [as, b] is bounded. Since we assumed the existence of an Qg¢ that is compact

and infxe g, fo(x) > 0, integrating on the rectangle gives

:ﬁi - fQ o k_l(xk‘xl mkil) _ fH;i:kJrl[al,bl] fQ($1,~.. ,Sﬂk,Z)dZ _ ?ﬁl
fQ L~ e fnf:k[al,bl] fQ(th'" ’xk*l’u)du a iQL

where L = maxi<;<q(b; — a;) and L = minj<;<q(b; — ;). Plugging in the generic bounds for ¢; and

C2,

fo 1 ot fo
c; <d| == max and co < == max |by — agl.
fQ 1<k<d b, — ay, iQ 1<k<d

3. Case (b): x; ~ Normal(u,X). The bound on c; follows from properties of the conditional distribution

of multivariate Gaussian distribution. Since infycre fr|1,... k—1(Tr|T1, - ,2p-1) =0 for 1 <k < d, co

(and hence c3) are unbounded.

Case 3: Non-rectangular Qg. Since both Tg,, and x are diffeomorphisms, we can use chain rule to get,

d-1
c1 = sup HUj(V¢}((X))

xXEQg( ]:1

sup det(Vac(x))[|[ Vs (dac(x))]

xX€EQx

S swp det (VT (x(x))) det(Vx(x) [V x ™ (x(x)) 12/ VT, (d3¢(x))|2.

Take w; = x(x;), and denote by fy the density of w;. Then

le(:L‘l) 0 O
* Jwoywy (@2]21) - - 0
VTQD{(xlv"'vxd): . ’ . . s
* * o fwaw e way (dlT1, - Ta—1)

where * denotes values that won’t affect determinant or operator norm of the matrix V71y, . Hence,

det(VTg,, (x(x))) = fw (x(x)) = fx (x)|det(Vx(x))| ™!
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and

IVTg, ($3¢(x))ll2 = 0a(VTg, (x(x)) " <

SUPxc Q0,4 [x(x)  SUPxe(0,1)¢ | det(Vx ™ (x))]
- infxegﬁ{ fX (X) infxe[071]d |det(fo1(x))| '

Putting together, we have

[x
C1 S -3 9
Iy ™
1= . sup, [det(Vx ™ (x))] _
with fy = SUPxe Q4 fx(x), iX = infxe g, fx(x), Sy = inf__ <l d|det(vx—1(x))\ ||||VX 1|| ||<x> Also,

c2= sup Vo5 (¢ac(x))ll2 < sup [|[Vx7'(u)]2 S[udeIVT@(U)Hz

x€Qux uelo,1]¢

det !
< sup [Ty ) o RxER SX ) MPacppe | MV D] Jeg
uelo,1]¢ infxeg,. fx(x) Infy 0,174 a | det(Vx~—1(x))| f

This completes the proof. O

SA-I1.3 General Result: Proof of Theorem 1

First, we make a reduction through the surrogate measure and normalizing transformation. We want to
show that under assumption (ii) in Theorem 1, the empirical process (X,(h) : h € H) can be written
as an empirical process based on i.i.d Uniform([0,1]¢) random variables. Let Z3 = X N Supp(H). Since
Qg¢ = mogge by Assumption (ii) in Theorem 1, and Qg¢|z,, = Px|z,,,

Px|z, =modac|z,,.

To define the Uniform([0, 1]%) random variables on the probability space that x;’s live in, we define a joint
probability measure O on (RY x R%, B(R?4)) such that for all A € B(R??):

@(A N (Zg-( X ch)) = Px(led(A n {(X, X) X E Zg{})),
QAN (Zg¢ x 25.)) = O(AN (25 x Z5¢)) =0,

c c _ IPX(AUQZ;C) °
O(AN (25 x 25,)) = /Z Ty im0 (),

where T11.4(A) = {x € R?: (x,u) € A for some u € R}, T, 1.04(A) = {u € R?: (x,u) € A for some x €
R%}, and A" = {x € R?: (x,u) € A}. See Figure 1 for a graphical illustration.

Then we can check that (i) the marginals of O are Px and m o ¢g¢, respectively; (ii) O|z,, xraurd x 2z,
is supported on {(x,x) : x € Z9¢}. By Skorohod embedding (Dudley, 2014, Lemma 3.35), on a possibly
enlarged probability space, there exists a u;,1 < i < n ii.d. Uniform([0, 1]?) such that (xi,(bg_{l (u;)) has
joint law Q. In particular, if x; € Zg¢, then x; = gi);fl(ui); if x; € 2§, then QS;Cl(ui) € Z§, and since
Qs¢ € X U (Nheac Supp(h)©), da (0:) € Niesc Supp(h)°.
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Figure 1: Illustration of @. O concentrates on {(x,X) : x € Zg¢} in Z5¢ X Zy¢, agrees with the zero measure
on Zg X Z§, and Z§, X Zg¢, and agrees with the product measure of IPx ® (mo ¢g¢) on Z5. X Z§,.

Thus, we take h=ho gi);Cl, and consider the new class of functions H = {E :h € H}. For any h € H,

where the second equality follows because x; = ¢ (u;) on the event {x; € Z5¢}, and h(x;) = h(dy (w;)) =0

(a.s.) on the event {x; € Z§.}. Hence, we work with an equivalent empirical process

X (h) = % > [ifw) —Ef(w))],  hed

In particular, u; has the uniform distribution IP;; which has a Lebesgue density fy that is bounded from

above and below on its support [0, 1]¢,
(Xp(h):heH) = (X,(h):he fJN-C) almost surely,

and Assumption SA.1 is satisfied with the random sample (u; : 1 < ¢ < n) with u; ~ Py and the class
of functions H. We thus consider A k (Py, 1), an axis aligned dyadic expansion of depth K with respect to
probability measure Pr; = Uniform([0, 1]%). Suppose Ex (Myc,0,, = Mﬁ7[071]d) and Iy = Oy[Ax (P, 1)] are
defined based on Ak (PPy,1) as in Section SA-II.1.2. By Lemma SA.2 and Lemma SA.10, H Uy is Py-
pregaussian, hence by the same construction given in Section SA-II.1.3, on a possibly enlarged probability

space, there exists a mean-zero Gaussian process Z)f indexed by Hu Hoﬂff such that with almost sure
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continuous sample path such that

E[ZX(9)ZX ()] = E[Xu(9)Xu(f)], Vg, f € HUMK,

n

and Uj, = >0, ejx(u;) for all (j, k) € Jk. Let Hs be a 5Mg~{’[0,1]d = 0Mg(, 0, -net of H with cardinality no
greater than Nﬁ’[o,”d(d, M}Nc,[o,l]d)'

The proof proceeds by bounding each of the terms in the decomposition

1Xn = ZX 3¢ < 1 Xn = Xn o mge, lge + 125 0 7, = Zikllge + 1 X0 = Zi¥ Ml 5,

meshing error error on net

1Xn = Z3fllgz, < IMoXn — o Z llgz, + 1Xn — ToXnllz, + M0 23 = Z¥ |5,

approximation error projection error

and then balancing their contributions.
Given the cells Ag (Py, 1), we have U; C [72’1(4_]*1, 2 Kd_J“}d. Then, by Lemma SA.7, for all ¢ > 0,

- - R (K C~
P ||| X5 0o — ZX oTo|| 57, > 484/ Kfl Vi1 gy J{;L’Kt] < Mgt o 470 (6 Mg o700

where
min{TV}cé,[0,1]dM?~65,[0,1]d’ TV}C&,[O,l]dLiCSv[Ovl]d}’ ifd=1,
g . K * * 3 —
Ric(Hs) <  min{25TVE 0 Mz 00, KTV 0 uLt, 0.y b if d =2,
i (9K (d—1) i _ K (d—2)py+ _ :
min{2 Tvic(;,[o,1]dMﬂfs,[0,l]d’ 2 vac(;,[o,l]dL?Ccs,[O,l]d} if d > 3.

Now we calculate the Cye, i term. Let h € H and take (ﬁg)geN be any sequence of real-valued functions on
([0,1]%, B(]0, 1]%)) such that hy — h m-almost surely, and are bounded by 2Mg¢ on X. Moreover, by Dominated

*

52.(0.1)4 and similar arguments as in the proof of Lemma SA.7, for

Convergence Theorem, the definition of K
each (j, k) € Ik,

2.

m:Cpm CCj ke

Bra()| < 2200 /u /C (o) — (x + s) dxds

= lim 22(K_l)/ / |he(x) — he(x + s)|dxds
Uy JCj i

£— 00

Since the above inequality holds for all sequences (hg)gen such that 715 — h m-almost surely, and are bounded
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by 2Ms¢ on [0,1]%, Definitions SA.1 and SA.2 implies
> [Bam| <20t [ sy, s
miClm CCyk U o
<200 [ ol g s s
< VA2 D m(@h) || 1Cjonll 5 K

LDy
< Va2 T K% oo

F¢,[0,1)¢

It follows from the definition of C4 , in Lemma SA.3 that

. 2 - * 2
< mm{m, \/\/gMg_f,[Olng{ f0.1]4 . Y5 ,[0,1)4 e

For projection error, by Lemma SA.9, for all t > 0, with probability at least 1 — 2N

S Mz a)e”

7, 0,174 (O Mz [0 1ja)€ ™"

1Xn — X 0Tl 5, < \/4dm1n{2M9{ oo Liey a2 FI2TKTUE e

N 41{1111[1{2Mjc [0, 1]d7L [0, 1]d2_K}
3/ "
||ZX ZX o]‘[0||~ < \/4dm1n{2Mg{ ,[0,1)4> 1}65 [0,1]4 }2 KTVZC& [0,1)4 b

We balance the previous two errors by choosing K = |d~!log, n| and get for all t > 0, with probability at
least 1 — 2exp(—t),

HXn - Zr)L(Hffé < An(ta(s)’

where

An(t,8) = min {mn,d\/Mf{JOJ]d’ ln’d\/Lic,[o,l]d} \/dTV}c,[o,ud (0 Tom N 1645 )
M~
3¢,[0,1]¢ . * N
+ \/ n mln{\/ logn, /Mﬁ,[o,l]d’ \/\/gKﬂff,[O,l]d + M}NC,[O,l]d}(t + log N:?c,[o,ud(év Mﬂff,[o,l]d))'

By Lemma SA.6 we bound the meshing error by, for all £ > 0,

P[| X, — X, 0 7 |l > CFault,6)] < exp(—t),
PI|ZY o mse, = Zo llge > O o1ya (6,3, My g 11a) + Mz o aVE)] < exp(—t),

where

o0 2(8, FC,M
52/n

}C[Ol])

Fo(t,8) = J(6, 50 Mz 1o 110M 01y 4 2

[0,1]4
Mt 0,)4 + OMzt (0,11 \[Jrit

n

Take the Gaussian process (Z,(h) : h € H) such that, almost surely, Z,(h) = Zn(h) for all h € H. The

30



result then follows from the decomposition that

1Xn = Z Nlae = 1 Xn = Z3 3 < N X = Xnomg g + 120 = Z3f o

5 +1Xn = Z Iz,

76, 5
and Lemma SA.10 to establish the relationships between the parameters of H over Qq¢ and those of H over

[0, 1]9. O

SA-I1.4 Additional Results

In what follows, we drop the dependence on C = Qg for all quantities in Definitions 4-12. That is, to save
notation, we set TVgq = TVg o, Ky =Ky 0,, My x =My 0,, M5 x(u) = M5 o,(u), Ly =Ly o,, and so on,

whenever there is no confusion.

Corollary SA.1 (VC-Type Bounded Functions). Suppose the conditions of Corollary 1 hold. Then,

M
Sn(t) = my avciMscTVac\/t + dgc log(caen) + 4/ 7}( min{+/log nv/Mg¢, v/c3Kge + Mgc } (¢ + dg¢ log(cgen))
in Theorem 1.

Proof of Corollary SA.1. Take § = n~/2. Under the VC-type class condition, log No¢(n =", M) < log(csc) +
dgc log(n) < dgclog(cgen), where the last inequality holds since cg¢ > e and dg¢ > 0. This gives

At n_1/2) < mn’d\/cl(t + dg¢ log(caen) Mg TV

+ min {v/log(n)Ms¢, v/csKae + Mac J/ M%{(t + dgc log(cgen)).

Moreover, J (8,3, Mg¢) < f(f V/1+ dgclog(cgee=1)de < 36+/dgclog(cac/0). Tt follows that

3M M
Fo(t,n %) < 22450 log(coen) + —= (VE+1).
Vn n

NG

The result then follows from Theorem 1. O

Corollary SA.2 (VC-Type Lipschitz Functions). Suppose the conditions of Corollary 2 hold. Then,

S, (t) = min {mn,d\/ Mg¢, |n,d\/ CQL:}(}\/ TVgc/t + dgg IOg(Cg-(’I’L)
M
+4/ % min{y/log nv/Ms¢, v/c3Kgc + Mg }(t + dgc log(cacn))
in Theorem 1.

Proof of Corollary SA.2. The result follows by taking § = n~*/? and apply Theorem 1, with calculations
similar to Corollary SA.1. O

Corollary SA.3 (Polynomial-Entropy Functions). Suppose the conditions of Corollary 2 hold. Then,

Sn(t) = asc(2 = bye) 7 min{S;*(¢), SEP (t), S (¢)}
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in Theorem 1, where

S (6) = mn.av/erMy TV (VE + (m%,dM;clTVﬂ{)_bTH)

+ \/%min{\/@mv m}(t + (mi,dMg_{lTV}C)*b%)v
SUP(t) = In,qv/c1caloc TV (VE + (li,dM;sz}CTV%>_bT}()

+ ﬁmin{@ma V/esKge + Mac}(t + (li,dMJ{QL}cTVgC)beD{)v
ST (t) = min{m,, 4vMsc, |nydm}m(ﬁ+n%)

M _bac
+4/ = min{+/log nv/Mgc, v csKae + Mg H(t + nb}f}i“') +nT MV,
n

Proof of Corollary SA.3. Under the polynomial entropy condition, logNsc(§) < agcd 2%, J(J,H,Myc) <
V/asc(2 = bye) 1o/,

An(t, 5) < min{mnyd\/ Mg¢, |n,d\/ CQLJ{}\/TVf}{ (t —+ ag{§*b~*f)
M
+4/ %{ min{\/log nvMgc, v/c3Kge + My H(t + aged°7),

M M
F < 2 — bar) "2 Mqpgboc/2+1 T s—byc M i )
n(t,6) < ag( 9 ( 300 + \/55 + MgVt + ~t

NG

Notice that the two terms M\/—%é’bﬂf and M\/—%t in F,(t,d) are dominated by terms in A, (¢,0). And when
§ < n~ Y2 the third term Mg/t is also dominated by terms in A, (t,8). To choose § that balance A, and
F.., we consider the following three cases:

Case 1: Choosing § such that m,, 4v/MgTVgcd o5 = Mgcd¢/2+1 gives §, = m,, 41/TVqc/Mgc. Notice
that this choice also makes oMyt < M%min{\/log nv/Mac, v/c3Kae + Mac (¢ + agcd%). Thus, we get
A, (t,0.) + Fo(t, 6,) < Sbdd(¢).

Case 2: Choosing  such that |, qv/LacTVscd 2% = Mgcd290/2H1 gives §, = I, g1/LocTVac /M2, Again,
this choice of § makes Mg/t < \/%min{\/loﬂ\/@, VeaKge + Mg} (t+ag¢d7%). Thus, we get A, (L, d.)+
Fn(t,6.) < SLP(t).

Case 3: Choosing § such that Mgcn=1/267P% = Mg 5~2%/2+1 gives 6, = n~/®x+2) Thus, we get
An(t,04) + Fr(t, 0.) < SET(¢). O

SA-II.5 Proofs of Corollaries 1, 2, and 3

Proof of Corollary 1. Take t = C'logn with C' > 1 in Corollary SA.1. O
Proof of Corollary 2. Take t = C'logn with C > 1 in Corollary SA.2. O
Proof of Corollary 8. Take t = C'logn with C' > 1 in Corollary SA.3. O

SA-11.6 Example 1: Kernel Density Estimation

To simplify notation, in this section the parameters of H (Definitions 4 to 12) are taken with C = Qg¢, and

the index C is omitted whenever there is no confusion.
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SA-I1.6.1 Surrogate Measure and Normalizing Transformation

We show that the two sets of primitive conditions discussed in the paper imply condition (ii) in Theorem 1.

First, consider the case X = szl[al, b)), —oo < a; < by < oo and W is arbitrary. Observe that Qg = P x
is always a valid surrogate measure for P x with respect to H, according to Definition 2. The conclusion
then follows from Case 1 from Section 3.1 with fg = fx.

Second, consider the case when X may be unbounded. We present a general construction, and then
specialize it to the example discussed in the paper. Suppose we can find Qg diffeomorphic to [0, 1]¢ such
that X N Supp(H) C Qs¢ € X U Supp(H)¢, with Px (X N Supp(H)) < 1 and m(Qq¢ \ (X N Supp(H))) > 0.
Setting Qg¢ to be the probability measure with Lebesgue density fg such that

fx(x), if x € X N Supp(H),
fo(x) = (1 = Px (X N Supp(H)))/ m(Qsc \ (X NSupp(K))), if x € Qg¢ \ (X N Supp(H)),
0, otherwise.

then Qg¢ is a surrogate measure of IPx with respect to 3. Suppose x is a diffeomorphism from Qg¢ to
[0,1]¢. Since we assumed X N Supp(H) C Qsc € X U Supp(H)¢, with Px (X N Supp(H)) < 1 and m(Qs¢ \
(X N Supp(H))) > 0, we can check that (1) fo is supported and positive on Qsg¢, (2) fo agrees with fx on
XNSupp (). Then Case 2 in Section 3.1 implies ¢3¢ = Ty, 0n 10X is a valid normalizing transformation, and

condition (ii) in Theorem 1 holds. Suppose 0 < infyexnsupp(r) fx (X) < SUPxexnsupp(ro) fx (X) < oo and

sup,, | det(Vx ™" (x))| _

infxee[s)ll]&det(vx—l(x))\ VX~ tl2]lee < o0, then we have c; = O(1) and cz = O(1) (and hence c3 = O(1)).
For a concrete example, consider the case X = R‘L W = xL [a;,b], 0 <a; < b, <oo,and K = [-1,1]<.

Observe that Supp(H)N X = xle[(al —b)y,b + 0] = Xf:1[5l,gl]- Since X = Ri, IPX(xld:l[él,Bl}) < 1.

Moreover, we can check that X NSupp(H) C Qs € X USupp(H)° and Q¢ agrees with Px on X NSupp(H).

The rest then follows from the general construction above.

SA-I1.6.2 Class H and Its Corresponding Constants

Let H = {hy : w € W} with hy(-) = b=42K (b~ (w — -)). Since K is compactly supported and Lipschitz,
Migy < oo. Hence, My¢ = b‘d/QM{K} < Orb™%2 and Ly < b_%_lL{K} < C’Kb_d/z_l, where Cg is a
constant that only depends on the kernel function K. Since supy,cyy m(Supp(hw)) < Crb? and each hy, is
differentiable,

TVg = sup /||Vhw(u)|\du < sup m(Supp(hy))Lgc < Cxb¥27L,
wew wew
To upper bound Kg¢, let D C Qg¢ be a cube with edges of length a parallel to the coordinate axises. Consider
the following two cases: (i) if a < b, then TVgp < Cxb~¥/?71al < Crb~¥2a%=1; (ii) if a > b, then
Vg p < Ok SUPy ey M(SUpp(hy ))Lae < Crb®b= 271 < Creb=¥2p?=1 < Opeb=%/229= 1, This shows
Ky < CKbid/2.

Next, by a change of variables,

Eg¢ = sup b*%|K(b*1(w —u))|fx(u)du = sup /b*%|K(z)|fX(w — hz)b¥dz < Crb¥2.
wew wew
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Finally, we check that H is a VC-type class. We will apply Lemma 7 from Cattaneo et al. (2024)
on the class My 3. To check the conditions in this lemma, define gw(-) = b*%Mj_{lK() for all w € W.
Note that gy is the same function for all w € W in this setting (but, more generally, our results allow
for functions varying with the evaluation point such as in the case of boundary adaptive kernels). Then

M;CIU-C = {gw(“’T—) :'w € W}, and there exists a constant ¢k, only depending on M{ky and Lky, such that

sup [gwlloo < cxer  sup sup LW =9I qp  sup 9w —gw ]
wew wewuveds U= Vo wwewueas W =Wl

We can apply Lemma 7 from Cattaneo et al. (2024), which is modified upon Lemma 4.1 from Rio (1994),
to show that for all 0 < & < 1, Ny-14.(e,1) < cge~?"1 + 1, and hence
H

Ng{(&Mg{) S CK€_2d_2 + ].7

The conclusions on uniform Gaussian strong approximation rates then follow from Corollaries 1-3.

SA-III Multiplicative-Separable Empirical Process

Let z; = (x4,%) € X xY CR? xR, i =1,...,n, be ii.d. random vectors supported on a background
probability space (2, F,IP). The multiplicative-separable empirical process is

Gulo.1) = = 3 (aber(u) = Elo(e)r(w)). g€ Sore®,

where G and R are possibly n-varying classes of functions. Notably, if we take H = G-R = {g-r: g € §,r € R},

then the above process can also be written as a generic empirical process based on (z; : 1 <4 < n) because

1 n
Xn(h) = Xn(g-r) = 7 Y (g-r)(z)—Ellg-r)(z)), h=g-reH=5-R
i=1
Hence, the same decomposition for the X, process also applies for the GG,, process:

|G — ZGlgxm < Gn — ZE (gxm)s + |Gn — G 0 T(gxm)sllgxx + 125 0 m(gxm)s — Z5 |lgxx
<NMZS — Z5 | (gxmys + IGn = MGhll(gxm)s + IMGn — L ZS || (5xR)s

+|Gn — G o m(gxm)sllsxr + 125 0 mgxm)s — Z5 lgxx,

where (G x R)s denotes a discretization (or meshing) of G x R (i.e., §-net of § x R), and the terms ||G,, — G, o
TgxR)slgx® and [|Z§ o mgxm); — Z$ ||gx capture the fluctuations (or oscillations) of G, and Z$ relative
to the meshing for each of the stochastic processes. |[11Gy, —I1 ZS || (gxx), and |11 Z5 — ZS || (gxx), represent
projections onto a Haar function space, where II;G,,(h) = G,, o I;h. The operator I is a projection onto
piecewise constant functions that respects the multiplicative structure of the G,, process. The final term
I G, — HlZgH(ngR)S captures the coupling between the empirical process and the Gaussian process (on a
d-net of § x R, after the projection Iy).

A general result under uniform entropy integral conditions is presented in Section SA-III.2, and a corol-

lary under a VC-type condition is presented in Section SA-III.3. The proofs exploit the existence of a
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surrogate measure and normalizing transformation of § with respect to Px, the law of x;, as developed in
Section SA-I1.2. The preliminary technical results differ from those in Section SA-II by explicitly leveraging

the multiplicative structure of the empirical process, and are organized as follows.

e Section SA-III.1.1 introduces the class of cylindered quasi-dyadic cell expansions based on Pz, which can
be viewed as a special case of the quasi-dyadic cell expansions from Definition SA.5 that leverages the
multiplicative structure. This cell expansion is tailored to the multiplicative structure, with the upper
layers corresponding to splits in the x;-direction and the lower layers handling divisions along the ;-

direction.

e Section SA-III.1.2 introduces an alternative to the Lo projection onto piecewise constant functions on the
chosen cells: the product-factorized projection, I;. This projection exploits the multiplicative structure of
G, allowing the empirical process to treat x; and y; as independent in layers where cells divide along ),
thereby isolating contributions from § and R. To analyze the projection errors ||G,, — 1 Gy |l(gxx)s and
128 — M ZE||(gxw)s, We also define the Ly projection onto piecewise constant functions on the chosen

cells, Ip.

e Section SA-III.1.3 constructs the Gaussian process (Z%(g,7) : (g,7) € G x R). These constructions are
essentially the same as those in Section SA-II.1.3, relying on coupling binomial random variables with

Gaussian random variables.

e Section SA-III.1.4 handles the meshing errors |G, — G om(gx ), lgxx and | Z5 om(gxn), — Z5 | gxx using
standard empirical process results, which give the contribution F(d) emerging from Talagrand’s inequality
(Giné and Nickl, 2016, Theorem 3.3.9) combined with a standard maximal inequality (Chernozhukov et al.,

2014, Theorem 5.2). This allows us to focus on the error on the §-net to simply study ||G,, — Z§||(9m)6.

e Section SA-III.1.5 addresses the strong approximation error ||I}G,, — 1 ZS[|(gxx),;- The multiplicative
structure of G,, and the pre-factorization of coefficients in II;G,, and l'IlZTCf enable a new bound on the
strong approximation error for the empirical process indexed by piecewise constant functions. Specifically,
we establish a bound on E[||I;G,, — H1Z§||?9X32)6] that is polynomial in the number of splits along the
y;-direction and exponential in the number of splits along the x;-direction. This is a key step in achieving

a Gaussian strong approximation rate that treats splits along the y;-dimension as residual contributions.

e Section SA-IIL.1.6 addresses the projection errors |G, —II1 Gy || (g x®); and | 25— ZF || (gxw);- We begin by
comparing the two projections, bounding the differences ||} G, — oGy | (gxw); and [ ZS =M ZS || (gxw),-
Next, we control the Ly projection errors ||Gy, — IyGy||(gxx), and || Z8 — o ZS || (gxx), using Bernstein

inequality and similar arguments as in Section SA-II.1.6.

SA-III.1 Preliminary Technical Results

This section presents preliminary technical results that are used to prove Theorem SA.1. Whenever possible,
these results are presented at a higher level of generality, and therefore may be of independent theoretical

interest. Throughout this section, we employ the following assumption.

Assumption SA.2. Suppose (z; = (x3,4;) : 1 < i < n) are i.i.d. random wvectors taking values in
(R B(RILY), where (x1,y1) has joint distribution P 5. Suppose x1 has distribution Px supported on
X CR?, 4, has distribution Py supported on' Y C R, and the following conditions hold.
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(i) G is a real-valued pointwise measurable class of functions on (X,B(X),Px).

)
(ii) Mg,x < o0 and Jx(1,9,Mg x) < c0.
(iii) R is a real-valued pointwise measurable class of functions on (¥,B(Y),Py).
(iv) Mgy (y)+PTVq iy, 1y < V(A +[y|*) forally € Y, for some v > 0, and for some a > 0. Furthermore,
if @ >0, then supyey Elexp(|yi])|x: = x] < 2.

(V) Jy(fR, szyy, ].) < o0.

Compared to the assumptions in Theorem 2, this assumption does not require the existence of a surrogate
measure or a normalizing transformation. It will be applied in the analysis of terms in the error decomposi-
tion, where we work with the distribution IPz, and an extra condition on the existence of Lebesgue density
of Py is assumed whenever necessary (Section SA-II1.1.6). The surrogate measure and the normalizing
transformation will be used in the proof of Theorem SA.1 with the help of Section SA-II.2, providing greater

flexibility in the data generating process.

SA-II1.1.1 Cells Expansions

Definition SA.7 (Cylindered Quasi-Dyadic Expansion of RY). Let P denote the joint distribution of (X,Y),
a random vector taking values in (R% x R, B(R?) ® B(R)), and let Px be the marginal distribution of X. For
a given p > 1, a collection of Borel measurable sets in Rd+1, CunP,p) = {Cj,k (0 < k< 2MtN-7 0 <j<
M + N3}, is called a cylindered quasi-dyadic expansion of R4t of depth M for the main subspace R% and
depth N for the multiplier subspace R with respect to IP if the following conditions hold:

1. For all N < 3 < M+ N, 0 < k < 2M+N=J  there exists a set Xi_ngr C RY such that Cir =
Xi—ngk X VN0, with Vi no a subset of R and P(Caryn,0) = 1. The collection Cpr(Px,p) = { X
0<1<M,0<k<2M=1Y forms a quasi-dyadic expansion of depth M with respect to P x.

2. For all0 < j < N and 0 < k < 2M+N=J let | and m be the unique non-negative integers such that
kE=2N-3] 4+ m. Then there exists a set Vi.jm C R such that C; . = Xog X Vi jm- Moreover, for each
0 <1< 2M the collection {Vjm :0<j < N,0<m < 2V=3} forms a dyadic expansion of depth N
with respect to the conditional distribution P(Y € - | X € Xp,), and Vi no = Ve No-

When p = 1, Cpy n(P,1) is called a cylindered dyadic expansion. For notational simplicity, we write
px[Cun(P,p)] ={X,:0<1I< M0<k<2Mly,

Definition SA.8 (Axis-Aligned Quasi-Dyadic Expansion of RY). Let P denote the joint distribution of
(X,Y), a random vector taking values in (R? x R, B(RY) ® B(R)), and let Px be the marginal distribution
of X. For a given p > 1, a collection of Borel measurable sets in R, Ay n(P,p) = {Cjp : 0 < k <
2MAN=3 (< j < M+ N}, is called an azvis-aligned cylindered quasi-dyadic expansion of R4 of depth M in
the main subspace R* and depth N in the multiplier subspace R with respect to P if the following conditions
hold:

1. Ay N (P, p) is a cylindered quasi-dyadic expansion of RI*L of depth M for the main subspace R? and
depth N for the multiplier subspace R, with respect to IP.

2. px[Am NP, p)] = { Xk :0 <1< M0 <k<2M=1} forms an avis-aligned quasi-dyadic expansion of
depth M with respect to Px .

When p =1, Ay,n(P,1) is called an axis-aligned cylindered dyadic expansion.
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SA-III.1.2 Projection onto Piecewise Constant Functions

Consider a cylindered quasi-dyadic expansion Cys (P, p) where P is the joint distribution of a random
vector (X,Y) taking values in (R? x R, B(R?) ® B(R)). Define the span of the Haar basis over the terminal
cells as described in Section SA-II.1.2, specifically

Engn = Span{le,, : 0 < k < 2MFN

For h € Ls(IP), recall that the mean square projection of h onto &4y is given by

]lCo,k

P /C () (o).

Io(Car,n (P, p))[R] = Z

0<k<2M+N
and the S-coefficients are defined by

1

5j,k(h) = ij)

/C WWAP(w), (k) = Byron(h) — By—10s ().
Ik
Then we still have

Do(Carn (P, )] = Bro(Wexo+ Y. > Bin(h)en,

1<j<K 0<k<2K-3

where

~ P(C;- P(C;—
ok = Aea G = (nsj(clf?)mej‘l*% B I(P(jC ‘15]6)%‘1’2’““’
J J

for all (j,k) € Znon = {(j,k) ENxN:1<j <M+ N,0<k < 2MTN=7} We refer to Io(Car v (P, p)) as
Iy for simplicity.

To address the separable structure of g(X)r(Y'), we define the product-factorized projection from Lo (IP)
to Enren = Span{Cor = Xo4 X Viom : 0 <1 <2M 0 <m < 2V k =2N] + m}, defined as

MCon (P p)lg,r] = asnolgeasnot Do > FulgEu,  (SA9)
1<j<M+N 0<k<2M+N—j

and

(0.7) E[lg(X)r(Y)IX € Xj-n,kl, if N <j<M+N,
Yik\g,T) = )
! Elg(X)[X € Xo,] - E[r(Y)|X € X0, Y € Viom], ifj<N,k=2N"9]+m,

and ¥, x(9,7) = Vj—1,26(9,7) — Vj—1,264+1(g, ). We refer to I (Crs,n (P, p)) as 1y for simplicity.

The Haar basis representation in Equation (SA-9) decomposes the function into layers of increasingly
localized fluctuations. However, at lower layers (1 < j < N), the local fluctuation is characterized by the
product-factorized projection E[g(X)|X € Xy,| - E[r(Y)|X € X.,Y € Vi0.m], rather than E[g(X)r(Y)|X €
Xo1 X Vi0,m]. This distinction makes 11 (Car,n (P, p))[g, 7] generally different from Iy (Car,n (P, p))[g - 7]-

Now, we define the empirical processes indexed by projected functions. For any real valued functions g
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on R? and r on R such that [5, [ 9(x)*P(dydx) < oo and [p. [o 7(y)*P(dydx) < oo, we define

HlGn(gaT) =Xpo Hl[CM N(IP,P)](Q,T),

(SA-10)
H()G ( ) X OHO[C (IRp)](gr),

recalling (X,,(f) : f € F) is the empirical process based on a random sample (z; = (x;,y;) : 1 <i < n) with
_n—l/QZ Xzayz [f(waz)])

SA-II1.1.3 Strong Approximation Construction

In this section, we construct the Gaussian process Z& (along with some auxiliary Gaussian processes) on a

possibly enlarged probability space to couple with the empirical process G,,.

Lemma SA.12. Suppose Assumption SA.2 holds, and a cylindered quasi-dyadic expansion Cx(Pz,p) is
gien. Then, (§-R)UIp(G x R) UM (G x R) is Py-pregaussian.

Proof of Lemma SA.12. By the entropy integral conditions on § and R and Definitions 10 and SA.4,

Jxxy(§-R,Mg xMr.y,0) = Jxxy(G x R,Mg x Mz y,0)
< V2J2.9(G.Mg,x,6/V2) + V2Jxxy(R, My y,5/v2)
S \/EJX<9,MS,X3 5/\/5) + \/i‘]y(fRa MR,% 5/\/5)

where G = {(x,y) €EX x V> g(x): g€ G} and R = {(x,9) € X x Y > r(y) : v € R}.
Claim 1: Forall0 < d < 1,

Jxxy{o(G X R), cy.aMg x N, 0) < Jxxy(G x R, Mg xMx y, ),
where ¢, o, = vmax{l + (2a)%,1 + (4a)°}.

Proof of Claim 1: We consider the two cases of whether o > 0 in Assumption SA.2 (iv) separately.
If o > 0, by Step 2 in Definition SA.7, maxo<;<om+~ Elexp(y; /(N log2))|(xi,yi) € Co,] < 2. Hence

E 7 15 Y1 < 1 ia iy Y1 C
0B SUD [Ir(w)ll(xio i) € Coa) <v(1+ | max  Bllyil*|(xi, yi) € Coul)
v(1+ (2NVa)%). (SA-11)

Definition of Iy then implies

sup sup sup [To(g7)(x,9)| < ¢y,aMg 2 N. (SA-12)
geG reR (x,y)€CM+N,0

Moreover, if o = 0, Assumption SA.2 (iv) implies Mg y < 1, Equations (SA-11), (SA-12) hold with o = 0.
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Let @ be a finite discrete measure on X x ). Definition of Iy and Jensen’s inequality implies

IMof —Togllpe < D, QCox)@MHY f—gdPz)?

0§k<2AI+N CO,k
< Y QN [ (f-gtirs, iges
0§k<21\4+N CO,k

Define a measure Q such that for any A € B(R? xR), Q(A) = D 0<k<aM+N Q(Cox)2M+NP £ (ANCo ), then

Mof —Togllg e < If —9llg,.  Vf9€$G R

Lemma SA.15 implies that there exists an dcy (Mg xN*-net £ of § x R with cardinality no greater than
Ngx®,xxy (0, [Mg 2 Mn.y|g ) such that for all f € Io(G x R), there exists g € £ such that

If = gllF 5 < 0 Mg x Mz ylG , < 6%(co.aMg N
The claim then follows.
Claim 2: Forall 0 < § < 1,
Jaxy([1(G X R), cvaMg N, 6) S Jaxy (G x R, Mg x Mz y,0/3).

Proof of Claim 2: Definition SA.5 and the definition of product factorized projection imply that for the
upper layers with N <j < M + N,

Yik(9,7) = Blg(xi)r(yi)|xi € Xj—ni) = Elg(x:)7(yi)|(%i,¥i) € Cj—n k)

that is, the coefficients coincide with those from the mean square projection. Take Cpro = {C;p: N < j <
M + N,0 < k < 2M+N=j} to be the collection of all upper layer cells down to the N-th layer, then

I [Caro(Pz,p)](g9,7) =M [Crro(P 2, p)](97), g€ §,reR.

For the lower layers 0 < j < N, suppose Py isa mapping from B(R4*1) to [0, 1] such that

£
]Aliz(E) = inf { Z Z Z E[]].(Xl c Ag)|Xi c XO,Z] ]E[]l(yl c Bg)‘xi S X07l,y¢ c yl,(%m] :

£=10<i<2M 0<m<2N

E CUf Ay x By with Ay x By, 1 <1< £ €N, disjoint rectangles in B(RY) B(R)},
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with E € B(R1). It follows that Py defines a probability measure on (R4, B(Rt1)), and

Vik(9,7) = Elg(xi)lxi € Xou] - E[r(yi)|xi € X1, yi € V1 jm]
= > 27 Elg(xi)|xi € Xou] - Blr(yi)|xi € Xo4,9i € Vi0,m/]

m" YV jmt SV 5m

= > 27 Eg, [9(xi)r(ys)|xi € Xoi yi € Vijm]

MYy ot SV, 5m
= ]EIF’Z[Q(Xi)T(yZ)bQ € Xo,hyi = yl,j,m]
= ]Efﬁz[g(xl)r(ylﬂ(xlvyz) S Cj,k]; 0< .7 < N,O < k< 2]\/[_’_]\/'_-]»7

where ]Ef’z means the expectation is taken with (x;,y;) following the law of P 7 instead of P . This implies

m[Can(Pz,p)(g,7) — W [Caro(Pz,p)l(g,7) = Mo[Cor,n (P 2z, p)l(gr) — Mo[Coro(Pz,p)l(gr), g€ G,reER

We can then express the II; projection of (g, r) as three Ly projections as follows:

I [Car,n (P2, p)(g,7) = Wi [Car0(Pz, p)|(g,7) + Wi [Car,n (P2, p)(g,7) — Wi [Crro(Pz, p)](g,7)
= 1o[Car.0(Pz, p))(gr) + Mo[Cor,n (P z, p)l(gr) — Mo[Car,0(P 2z, p)|(97). g € .7 € R.

Since ||H0[(3M7N(II~DZ, Plllgxr < ¢y,oMg xN*, Claim 1 applies to all of the three terms:

Jaxy(Mo[Carn (P2, p)(G X R), cv.aMg 2N, 8) + Jxsy([Mo[Crr v (P2, p)|(G X R), ¢y alMg 2 N®, 6)
+ Jxxy(Mo[Caro(P 2, )I(S X R), ev.aMg x N, 8) < Jaxy (G x R Mg x My, d).

Then Claim 2 follows from Claim 1.

Putting together,

JXXy((Q X fR) UH0(9 X fR) U H1(9 X 32)7M9,XM31’3) + CV’aM&;(NO‘, 1)
5 JX(97M97X7 1) + Jy(:RaMiR,JN 1) < 00,

and the conclusion follows from separability of § and R, and van der Vaart and Wellner (2013, Corollary
2.2.9). |

The construction of the Gaussian process essentially follows from the arguments in Section SA-I1.1.3 with
z;’s replacing x;’s. (Recall that z; = (x;,y;) in this section.) We start with a Gaussian process indexed by
(G- R)UMp(G x R) UM (G x R) with almost sure continuous sample paths, and take conditional quantile
transformations of Gaussian process indexed by 1¢, , to construct counts of (x;,y;)’s on the cells C;x’s. By a
Skorohod embedding argument, this Gaussian process can be taken on a possibly enriched probability space.

More precisely, we have the following result.

Lemma SA.13. Suppose Assumption SA.2 holds and a cylindered dyadic expansion Cprn(Pz,1) is given.
Then on a possibly enlarged probability space, there exists a IP z-Brownian bridge By, indexed by F = (§-R)U
Mo(G x R) UT1 (G x R) with almost sure continuous trajectories on (F,0p,) such that for any f € F and any
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z >0,

n

> fxivyi) - \/ﬁBn(f)‘ > 24/ f11%,,, v T4y C{f},M+N$> < 2exp(—x),

i=1

d

where for both ||fH%M+N and Cpy p4n are defined in Lemma SA.3.

Proof of Lemma SA.13. The result follows from Lemma SA.12 and Lemma SA.3 with (x;,y;) replacing
X O

Lemma SA.14. Suppose Assumption SA.2 holds and a cylindered quasi-dyadic expansion Cpr n (P z, p) with
p > 1 is given. Then on a possibly enlarged probability space, there exists a P z-Brownian bridge B, indexed
by F = (G- R)UM(SG x R)UM; (G x R) with almost sure continuous trajectories on (F,0p,) such that for any
feF and x>0,

4

where C,, is a constant that only depends on p.

n

S i) — ﬁBn(f)‘ > O JIfIE,, o+ cmﬁc{f},mw) < 2exp(—a) + 2V exp(~Cypn2 M),

i=1

Proof of Lemma SA.14. Replacing x; by z; = (x;,¥;) in Section SA-II.1.3 (and with the help of the
pregaussian lemma SA.12), suppose we constructed as therein on a possibly enlarged probability space the
ii.d standard Gaussian random variables (Ejk : (j,k) € Zy4n) and the Binomial counts (U @ (j,k) €
Tuin) = O ejr(zi) : (J,k) € Tugn). Again, we take ﬁjyk =Uj_12k — Uj—1,264+1 for (j, k) € Targn.
By Definition SA.7, the upper layer cells (N < j < M + N) may not be dyadic with respect to Pz, but
the lower layer cells (0 < j < N) are. Tusnddy’s Lemma (Bretagnolle and Massart, 1989, Lemma 4) and
Lemma SA.4 then imply whenever the event A holds, with

A={|U;r] <e1,Usp, forall N <j<M+N,0<k<2MN=iy

we know the following relations hold almost surely in P,

~ P2(Ci—1.98)P2(Ci—1.0k41) ~ ~
Uj,k—\/Ujk Cim120P 5 (Cimr2 +1)€j,k < 2,087k + €3,

Pz (Cjx)?

~ Pz(Cj—1,26)Pz(Cj—1,26+41) =
U, ’ <1 P Ed® L2k ) e
’ Bkl = /Coyp + \/ IPZ(Cj,k)2 J7k|§]7k|

for all (j,k) € Zpnr4n, and where cg p, ¢1,p, C2,p, €3, are constants that only depends on p. By similar argument
as in the proof for Lemma SA.5, P(A°) < 3 - 2M exp(—min{c} ,/3,1/8}p~'n27M). The rest of the proof
follows from Lemma SA.5 by replacing x; with (x;,y;). |

The above two lemmas allow for constructions of Gaussian processes and projected Gaussian processes

as counterparts of the empirical processes in Section SA-I1.1.3. In particular, we take Z% 1,25, M, Z& to be

the empirical processes indexed by G x R such that

Z3(g,r) =Bulg-r),  (9,7) €9 xR (SA-13)
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We also define the following ancillary processes for analysis:
Hto(g,r) :Bn(HO[gT})v ler?(gar) :Bn(nl[gvr])v (g,?‘) € 9 x R. (SA—14)

In particular, (Z%(g,7) : g € G,r € R) has almost sure continuous trajectories in (G x R,0p,,)
The following ancillary lemma for uniform covering number and uniform entropy integrals is used in the

proof of Lemma SA.12.

Lemma SA.15 (Covering Number using Covariance Semi-metric). Assume F is a class of functions from a
measurable space (X,B(X)) to R with envelope function Mg x. Let P be a probability measure on (X, B(X)).
Then, for any 0 < e <1,

N, |I-lp2, el Mg x| p2) < Ny x(e, M5 x).

Proof of Lemma SA.15. The proof essentially follows from the arguments for (van der Vaart and Wellner,
2013, Theorem 2.5.2), but we present here for completeness. Define H = {(f — ¢)?: f,g € F} U{Ms x}.
Then, for all 0 < e < 1,

SgpN(% .1, el M3 xllq.) < sgpN(%, i1 ellMF xllg2) < SgPN(?, I ll.1s el Mz xll@.1)?,
where the supremums are all taken over finite discrete measures on X. By Theorem 2.4.3 in van der Vaart
and Wellner (2013), ¥ is Glivenko-Cantelli. Let X7, Xs,... be a sequence of i.i.d. random variables with
distribution P. Define Qn = % E;\Ll 0x,- Let 0 < e < 1and d > 0. Then there exists N € N and a
realization x1,...,zy of X1,..., Xy such that if we denote Py = % Zivzl 0g,, then for all fi, fo € F,

11 = follBo = 11 = fallBy o] < 0%* | M x5,

|Mz x|lp2 — Mg x| Py 2| <0|Mg x|lpa2-

Since Py is a finite discrete measure on X, there exists an €| Mg x| py-net, G, of F with minimal cardinality
such that for all f € F, there exists fo € G such that ||f — follpy.2e < ellMs xllpye < e(|My xllp2 +

S| Mg x|lp2) < (14 0)e|| Mg x| p2- It follows that for all f € F, there exists g € G such that
If = gllp2 < If = gllpy2 +If = gllp2 = [If = gllpy.2l < (1+20)el| My x|p2,
Hence, N(&, ||||p2, el Mz x|lp2) <Ny x(e/(1 +2§),Mg x). Take 6 — 0 to obtain the desired result. O

SA-II1.1.4 Meshing Error

To simplify notation, the parameters of § (Definitions 4 to 12) are taken with C = X, and the index X is
omitted where there is no ambiguity; the parameters of R (Definitions 4 to 12) are taken with C = ), and
the index ) is omitted where there is no ambiguity; and the parameters of G x R (Definitions 4 to 12, SA.3,
SA.4) are taken with C = X x ), and the index X x ) is omitted where there is no ambiguity. We also
define, for § € (0, 1],

N(S) = Ng(5/v2,Mg)Nx (6/v/2, M)

42



and
J(8) = V2J(S,Mg,8/V/2) + V2J(R, M, 5/V?2).

For 0 < § < 1, consider a éMg||M=z||py 2-net of (§ x R, || - |lp,,2), denoted by (G x R)s, with cardinality at
most Ngxx(0,Mg||Mx|p, 2). Define the projection onto the §-net as a mapping m(gxry; : G X R = G x R
such that ||m(gx®),(9,7) — g7llp,,2 < Mg||Mx||p, 2 for all g € G and r € R.

Lemma SA.16. Suppose Assumption SA.2 holds, a cylindered quasi-dyadic expansion Cpr n (P z, p) is given,
(Z&(g,r) : g € G,7 € R) is the Gaussian process constructed as in Equation (SA-13) on a possibly enlarged
probability space, and (G x R);s is chosen in Section SA-III.1.4. For allt >0 and 0 < § < 1,

P[[|Gn = Gnom(gxm), lsxm + 125 0 mgxmys — Z5 lgxr > CrevaFg (t,6)] < 8exp(—t),

where ¢y = v(1+ (20)%) and

t*.

1 /2Mq J2(§ M M
(Ogn) g ( )—i——it—i—(logn)“—g

52/n vn vn

Proof of Lemma SA.16. By standard empirical process arguments, we can show for any 0 < § < 1,
Ngxx(0,MgMz) < N(6) and J(0,G x R,MgMz) < J(J). By definition of m(gur)s, |T(gxr)sh — hllp,2 <
S|MgMz|lp, 2 = Mg||Mz|lpy 2. Take L = {h — m(gxx);h : h € § x R}. Then, by Theorem 5.2 in Cher-
nozhukov et al. (2014),

FC(t,8) = J(6)Mg +

Mg ||maxi <i<n Mg (ys)||l2J2(8)
§2\/n
as2Mg T2 (0)
52yn
Moreover, |lmaxi<i<n sup,cg rex [9(x:)rWi)llly, . S Mg (|[maxi<i<n yilly,)* < vMg(logn)®. Hence, by
Theorem 4 in Adamczak (2008), for any ¢ > 0, with probability at least 1 — 4 exp(—t),

E[[[Xnllc] S J(0)Mg| M (y:)2 +

< ¢v,ad(0)Mg + ¢y o (logn)

Mg J?(9) Mg Mg
Xn < vaJ(SM v,Q vait V.o 1 R e
” ||LNCa ()9—’_0, (52\/ﬁ —l—c’\/ﬁ—i—c’(ogn) \/ﬁ
In particular, || X,|lc = ||Gn — Gn o T(gxn);llgxx. The bound for ||Z5 — Z§ o m(gxx),|l follows from a
standard concentration inequality for Gaussian suprema. O

SA-III.1.5 Strong Approximation Errors

To simplify notation, the parameters of § (Definitions 4 to 12) are taken with C = X, and the index X is
omitted where there is no ambiguity; the parameters of R (Definitions 4 to 12) are taken with C = Y, and
the index ) is omitted where there is no ambiguity; and the parameters of G x R (Definitions 4 to 12, SA.3,
SA.4) are taken with C = X x Y, and the index X' x ) is omitted where there is no ambiguity. Recall we
also define, for ¢ € (0,1],

N(8) = Ng(8/V2,Mg)Nx (6/V2, M)
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and

J(8) = V2J(S,Mg,8/V/2) + V2J(R, M, 5/V?2).

Lemma SA.17. Suppose Assumption SA.2 holds, a cylindered dyadic expansion Cpyrn(Pz,1) is given,

(1, Z5(g,r) : g € G, € R) is the Gaussian process constructed as in Equation (SA-14) on a possibly
enlarged probability space, and (G x R)s is chosen in Section SA-III.1.4. Then for all t > 0,

N2o¢+121ME M C
P [”HlGn _ le§||(9><y)6 > C1¢y.a e i + Citya Mt} < 2N(5)67t,
n

n

where C7 > 0 is a universal constant.

Proof of Lemma SA.17. To simplify notation, we will use E[-|Xp,] in short for E[-|x; € Ap,], and
E[~|XO71 X yl7j7m] in short for IEH(X“ yi) S Xo,l X yld’m].

Layers N +1 < j < M + N: For these layers, C; i = Xj_n,k X Vs, n,0.- By definition of 7, 1,

Z Z Vi k(g,m)] < Z Z E[|g(xi)r(ys)l|xi € Xj—nx]

N<j<M+N 0<k<2M+N—j N<j<M+N 0<k<2M+N—j

< Y > Ellg&)Er(yi)xill|xi € Xj-nk]

N<j<MA+N 0<k<2M+N—j
<Ca Y Y Ellgt)l(x; € Xjona)[P(xi € Xjonp) ™!
N<j<M+N 0<k<2M+N-—j
<cCra Y. Eg2MANTI
N<j<M+N

S Cv,aQMES 5

where in the third line we have used E[|r(y;)||x; = X] < ¢y.o = v(1 + (2a)%/2) for all x € X. Moreover,
¥.k(9,7)| < 2¢y,oMg for all j € (N, M + NJ, hence

D > Fikle)? < 2¢; ,2MEgHg.

N<G<SMA+N 0<k<2M+N—j

Layers 1 < j < N: By definition, C; , = Xo,; X V) j,m, where k = 2N=3] 4+ m, for some unique [ € [0,2M)
and m € [0,2V 7). Denote k = (I,m). Fix j and [, sum across m,

2N-Ji_1 2N=i_1
S PFiamen)| = D EBlge)|Xoa] (B [r(y:)Xos x Vij—1.2m] — B (i) Xos x Vij—12me1])].
m=0 m=0

Case 1: o > 0 in (iv) from Assumption SA.2. Then sup,cy Elexp(|y;|)|x; = x] < 2, and Markov’s
inequality implies min{|y| : y € Vi0,0)} < log(E[exp(|y:|)|Xo,: X Vi.0,0])

<
min{ly| : y € YV 0ov_1} < 2N. Hence the middle cells satisfy Y j ., C
1<m<2N=7 -2 and

log(2 - 2V) < 2N, and similarly
[-2N,2N] for all 0 < j < N,

oN—=i_9o

Z [E[r(y:)|Xou x Vij—1.2m) — Blr(yi)|Xos x Vij—1,2m+1]| < PV, onony < CraN®,

;=
m=1
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and for the left-most cells,

|E [r(y:)|Xoq x Vij-11] = B [r(y:)| Xop x V1.0l |
. . — ] . . o
S poanax E[r(y:)| X0, x V1j—1,m] o iR Efr(yi)|Xou X Vij—1,m] < 2¢0,aN®,

and similarly for the right-most cells,
|E[7“(yi)|XQ7l X yl7j_1)2N—j_1] — E[T(yi)‘xo)l X yl7j_172N—J_2H S 2Cv)aNa.

Case 2: a =0 in (iv) from Assumption SA.2, since pIVy,y < 2v and Mg,y < 2v for all 7 € R, the above
three inequality still hold. It follows that for all g € §,r € R, fix j,] and sum across m,

oN=I
Z 195, m) (95 7)| < 200, NY|E[g(x;)|Xo,1]]-
m=0
Fix j and sum the above across [,

Z |7j,(l m) ga Z Z |’Yj,(l,m)(gvr)|
=0 =0

0<k<2M+N—j
2M 1
< 2¢y,a N Z [lg(xi)1(xi € Xo)|[P(x; € Xo) ™"

< QCV,QN(QMEQ.

We can now sum across j to get
N
Z S Fik9.7)] < 260 NOTI2MEg,
j=10<k<2M+N-—j

By Equation (SA-11), sup,cg e MaX(j k)eZarn [75.k(95 )] < 2¢y, o N*Mg, and hence

> S Fiale ) <4cd NPHMEMg,  geGreR.

1<j<N 0<k<2M+N—j
Putting Together: Putting together the previous two parts,
M+4N 2M+N=j

> Z Yir(g,r) <65 JN*T2MEgMg,  ge§reR.
j=1 k=0

By Lemma SA.13, we know for any (g,7) € § x R, for any x > 0, with probability at least 1 — 2exp(—x),

N2a+19ME.M C
Ga o Mg, ) =M ZT(g,1)| § vl ——— 2w + ey LA,

and the proof is complete. O

Lemma SA.18. Suppose Assumption SA.2 holds, a cylindered dyadic expansion Cp n(Pz, p) is given with
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p>1, (1, Z5(g,7) : g € G,r € R) is the Gaussian process constructed as in Equation (SA-14) on a possibly
enlarged probability space, and (G x R)s is chosen in Section SA-II1.1.4. Then for all t > 0,

| N2o+19ME M /C
P |:||H1Gn - HIZEH(QXR)& > C’lc(pcv,a ngt + Clcpcma wt}

< 2(8)e t +2M exp (—C’an_M) ,

where Cy > 0 is a universal constant, ¢y o = v(1+ (2)*/?) and C, is a constant that only depends on p.

Proof of Lemma SA.18. Since €y y is a cylindered quasi-dyadic expansion, p~12=M=N+J <P 4(C; ;) <
p2~M=N+j forall 0<j < M+ N, 0<k<2M+*N=i The same argument for Lemma SA.17 implies

M+N 2M+N=J
~2 2 2, loM
Z ,Yj,k:(gﬂq) < cpcv,aN ot EgMg, g e 9,7" € va
j=1 k=0

where ¢, is a constant that only depends on p. The result then follows from Lemma SA.14. ]

SA-II1.1.6 Projection Error

To simplify notation, the parameters of § (Definitions 4 to 12, SA.1, SA.2) are taken with C = X, and the
index X is omitted where there is no ambiguity; the parameters of R (Definitions 4 to 12) are taken with
C =Y, and the index ) is omitted where there is no ambiguity; and the parameters of § x R (Definitions 4
to 12, SA.3, SA.4) are taken with C = X x ), and the index X’ x ) is omitted where there is no ambiguity.
Recall we also define, for § € (0, 1],

N(3) = Ng(6/v/2,Mg)Nx (5/V2, M)
and
J(8) = V2J(G,Mg,8/V2) + V2J(R, Mx,5/V?2).
To analyze the projection error, we employ the decomposition

HlGn(gaT) - Gn(g,’f‘) = (HOGn(gaT) - Gn(g,T)) + (HlGn(gvT) - HOG”(g7T))a

where oG, (g,7) — G, (g,7) represents the Ly projection error, and I;G,(g,r) — IyG,(g,r) denotes the
mis-specification error. Specifically, the Lo projection error captures the minimum loss incurred by project-
ing onto the class of piecewise constant functions over the cells €y, n. In contrast, the mis-specification
error reflects the additional loss introduced when shifting from the Lo projection to the product-factorized
projection.

First we bound the mis-specification error.

Lemma SA.19. Suppose Assumption SA.2 holds, a cylindered dyadic expansion Cpyn(Pz,1) is given,
(oZ5 (g,7) : g € G,7 € R) and (1, ZF(g,7) : g € G,7 € R) are the Gaussian processes constructed as in
Equation (SA-14) on a possibly enlarged probability space, and (G x R)s is chosen in Section SA-III.1.4.
Suppose Px admits a Lebesque density fx supported on X C R%. Let T > 0. Define r, = r]l([—Té,Té]).
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Then, for any g € §,r € R,
2
E |WGn(g.77) ~MGnlg,m))’] = B [(ZE (9.7,) = MZE (9.7,))°| < 4v?(1+7)2N2Vg,
where

2
Vg = min{2Mg, L [Varllc} ( sup fx(x)) 2 m(Va0) [Var T3,
S

and, as in Section SA-I1.1.6, Vi = Up<j<om (Xo — Xo,1) is the upper level quasi-dyadic variation set.

Proof of Lemma SA.19. To simplify notation, we will use E[-|Xy;] in short for E[-|x; € Ap,;], and
E[-|Xo; X Vi,j.m] in short for E[-|(x;,y;) € Xo,; X Vi j.m] in this proof.
Expanding I} G, (g,7+) — IoGr (g, r+) by Haar basis representation,

1 n
HlGn(gar‘r) - HOGn(g7r'r) = % ZAi(g7rT)7
i=1

Mg = Y > (Fanlgre) = Buklgre)) Gl ),

1<j<N 0<k<2M+N-j

where we have used ¥; 1(g,7,) = B}-’k(g,n) for j > N. Moreover,

E[Ai(g, )1 <2 Y S ikl r) = Biwlg.m) P((xi,5:) € Cin).

0<j<N 0<k<2M+N—j

Recall in Definition SA.7, C; = Xj_n1 X Vi jm, Where k = 2N=Il4+m, 0<1<2M and 0 < m < 2N—J.
Definitions of v;, and §; from Section SA-IIL.1.2 imply

1Vi,k(9s77) = Bk (g, 77)| = E [g(xi)|Xo,4] - E [rr-(yi)|Xou X Vi jom] — E[g(xi)r-(yi)|Xou X Vi jml|
= |E[(9(x:) — E[g(xi)[Xo0,1]) 7+ (yi)| X0, X Vi j.m]l
<v(L+7)E[lg(x:) — E[g(x:)|Xo,][IC; k]

where the first line is simply the definitions of v, and 3;; the second line is because o(1(x; € X)) C
| <

o (L((xi,yi) € Xou X Vij,m)); and the third line is because Assumption SA.2 (iv) implies sup g |7 (y)
v(1+ 7) for all r € R. Summing across j and k, then by similar argument as in the proof of Lemma SA.9,
E[|Ai(g, r-)[] < 2v(1 + 7)NE[[g(x;) — To(px[Crr.n (P, p)])g(x:)]]

2
< 2v(1+ T)N( sup fX(x)> 2Mm(Var) [Varll TV, -
xe
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For each fixed j, €;1(x,y) can be non-zero for only one k. Hence, almost surely,

Ailgr)l =130 > Guwlgrs) = Biwlg,m))esn (i, yi)|

J=10<k<2M+N—j

k(9 7r) — Bjr(9,7r)

N

< E max
. 10<k.<21w+N—j
=1 -

N-1
< 2 ZO 0<k$%}il\7*j |7j,k(ga7"r) - /Bj,k(g7r7')|
j=0 U=

N-1
<2v(l+7) ) max |Eflg(xi) — Elg(x:)|Xo]lIC;xll

¢ OSk<2MEN-

< 2Nv(1 4 7) min{2Mg, Lg ||[Vas || oo }-
This shows the results. |

Next we bound the Ly projection error.

Lemma SA.20. Suppose Assumption SA.2 holds, a cylindered dyadic expansion Cyrn(Pz,1) is given,
(Z&(g,r) : g € G,;r € R) and (GZS(g,7) : g € G, € R) are the Gaussian processes constructed as
in Equations (SA-13) and (SA-14) on a possibly enlarged probability space, and (G x R)s is chosen in
Section SA-III.1.4. Suppose Px admits a Lebesque density fx supported on X C R Let T > 0. Define
Ty = ’I"]].([*Té,’ré}). Then for any g € G,r € R,

E[(1025 (9,7) — 25 (9.77))°| = E [(MoGin(g,77) = Gnlg,7:))°] < 4v3(1+7)2 (275 + ),

where Vg is defined in Lemma SA.19.

Proof of Lemma SA.20. To simplify notation, we will use E[-|Xp,] in short for E[|x; € Ap,], and
E[-|Xo; X Vi j.m] in short for E[-|(x;,y;) € Xo; X Vi j.m] in this proof.
Let B = o({1((x:,9i) € Cox) : 0 < k < 2M+N}) be the o-algebra generated by {1((x;,v;) € Cox) : 0 <

k < 2M+NY Then the difference between the Ly projection and the original can be expressed as

Mo(g - 77 ) (X, ¥i) — 9(xi)r-(yi) = Elg(xi)r- (i) 1B] — g(xi)r-(v:)
= E[g(xi)r, (y:)1B] — Elg(x:)|Blr-(y:) + Elg(x:)Blr-(yi) — g(xi)r+(ys)-

By Definition SA.7, each cell Cy j, is of the form of a product, that is,
Co = Xog X Vio,m with k =2N1+m,

where 0 < k < 2M+N 0 <[ <2M and 0 <m < 2V.
The first two terms E[g(x;)r,(y;)|B] — E[g(x;)|B]r-(y;) in the decomposition are driven by projection of
ry on grids V; o.m’s, and can be upper bounded through probability measure assigned to each grid (Q_N )

and total variation of r,. We consider the positive and negative parts separately: Consider the function

qlJ,rm(y) =E[g(x;)1(g(x:) > 0)| X0, X Vi0,m]r+(y) — Elg(x:)r- (y:)1(g(xi) > 0)| X1 X Viom], ¥ E Viom.
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Either qu is constantly zero on )Y g, or qfrm takes both positive and negative values on YV o,,. Under

either case, we have |g;" (y)| < PTV i+ 13,,,. forally € Viom. Hence

I,m

Ellt, (5)|1(g: € Voo m)lxs = x] = /y g ()| dP (g < ylx: = x)
1,0,m

S P(yz S yl,O,m|Xi = X)pTV{qu}yyl,o,m

< P(yi € Yiomlxi = XMy PTV( 3 3,000 x € Xy
Similarly,
@ (y) = Elg(x:) L(g(x:) < 0)[ X0, X Vi0,m]r-(y) — Elg(xi)r-(vi) L(g(xi) < 0)[Xou X Vio,mls v € Viom,
and we have
Ellg,,(¥)1(yi € Viom)lxi = %] < P(y; € Vio,mlxi = XMy TV, 3y, 0.0 X E Ao

Combining the two parts, and integrate over the event x; € Xy,

E“E[Q(xi)‘XO,l X Vio,m)r-(yi) — Elg(xi)r+ (yi)|Xou X Viom)|1(yi € Viom)

S 2]P(yi € yl,07m|Xi € Xovl)M{g}pTV{TT}7yl,0,m S 2 2_NM{9}pTV{TT}>yz,0,m'

X; € Xo,l}

Summing over m, we get for each 0 <[ < 2M |

E[[Elg (<) |Blr-(y:) — Elg(xi)r-(y:)|B]l|x; € Xoa] <227 MypTV, 3y -
Hence, using the polynomial growth of total variation,
E[[Elg(x:)|Blr-(yi) — Elg(xi)r-(y:) Bl <27 MgypTVy, 4y, o < 2- 27 "Mgv(1 + 7).
Since [Elg(x:)r (4)|B] — Elg(x,) | Blr+ (4:)] < Mgv(1 + 7) almost surely,
E[(Elg(x)|B]r(yi) — Blg(xi)r(y:)|B])?] < 4-27Nv?(1+7)M8.

Now we look at the last two terms E[g(x;)|B]r-(v:) — g(x:)r+(y;), which are essentially driven by the Lo-
projection error of g. Denote by A = o({1(x; € Xp,;) : 0 < < 2M}) the o-algebra generated by {1(x; €
Xoy) : 0 <1 < 2M}. Then A C B. By Jensen’s inequality and a similar argument as in the proof of
Lemma SA.9,

E[(Elg(x)|Blrr(y:) — g(xi)r-(y:))?] < 4v*(1 + 7)*E[(9(x:) — Elg(x:)|A])?] < 4v*(1+7)*Vg.
It then follows that E[(oGy (g, r+) — Gn(g,7+))?] < 4v2(1 + 7)2 (27VME +Vg). O

Using a truncation argument and the previous two lemmas, we get the bound on II;-projection error with

tail control.

Lemma SA.21. Suppose Assumption SA.2 holds, a cylindered dyadic expansion Cprn(Pz,1) is given,
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(Z8(g,7) : g € G,r € R) and (1, Z(g,7) : g € G,r € R) are the Gaussian processes constructed as
in Equations (SA-13) and (SA-14) on a possibly enlarged probability space, and (G x R)s is chosen in
Section SA-III.1.4. Suppose Px admits a Lebesque density fx supported on X C R%. Then for allt > N,

M
P [”Gn - HlGnH(SXCR)(g > Clg/CV72aQ / N2V9 + 2_NM%ta+% + Clcv,a%ta—i_l} < 4N((5)ne_t,
n
M
P [Hzfj — 29| (5xm); > C1y/Ermay/ N2Vg +2-Nu2t? + clcv,a\/—fit} < 4N(S)ne~t,
n

where cy.o = V(1 4+ (20)2), ¢y20 = V2(1 + (4)%), and Cy is a universal constant.

Proof of Lemma SA.21. To simplify notation, we will use E[-|Xp;] in short for E[-|x; € Ap,], and
E[| X, X Vi,j,m] in short for E[-|(x;,v;) € Xoy X Vi j,m] in this proof. We will use a truncation argument
and consider the cases of whether az > 0 in (iv) of Assumption SA.2 separately.

First, suppose a > 0 in (iv) of Assumption SA.2. Let 7 > 0 such that 7a > log(2V+1).

Projection error for truncated processes: By Lemmas SA.19 and SA.20, and using Bernstein inequality,
for all t > 0, for each g € G, r € R,

4 M
P ||Gn(g,rr) — M1Gn(g,77)| > 4v(1 + 7)y/N2Vg + 2*NM29\/Z+ §V(1 +7) <27t

25y

Vn
Truncation Error: Recall Equation (SA-11) implies maxg<y<onm+ny B[|r(y:)|[(xi,¥:) € Cor] < cvaN*.

The same argument implies maxo<y<om+n E[r(y;)?|(x:,y:) € Cox) < v2(1 4+ (N1og(2)v2a)?*) < ¢y 2o N>

Hence the following holds almost surely,

[MGalg,r) =MGulgyrr)| < max  max [Blg(oc)| Ao, B [r(yo) Lyl = 7/%)| % < Vrom]|

< CV,OCMQNO‘.

Since & > log(ZN'H) > 0.5N, yo,5 = Bo, for all k corresponding to Xy ; X V;0,m for 0 <m < 2N _ 1, that
is, the mismatch only happens at edge cells of y;, we have
2 «
E “HlGn(g, T) - HlGn(g7 TT)| ] S IP(HlGn(gv 7”) - HlGn(ga T‘r) 7£ O)CV,QQM%N2

< ey pa2 NHIMENZ,

Using Bernstein’s inequality, for all ¢ > 0, with probability at least 1 — 2 exp(—t),

[e3

Mg N
|H1Gn(ga T’) - HlGn(97 TT)| 5 vV Cv,2a27N/2M9Na\/i + Cv,agﬁt

M
<, /CV,2a2—N/2M9 Na\/i + cv’a%t,
n

Moreover, using P(|y;| > 7) < 2-27N we have

E[(Gn(g,7) = Gulg,7-))*] <MEE[(r(y:) — r-(:))*] < MGE[r(y:)*1(|ysl > 7)]

— N2 N2[ (. o) 2 A7200—N
<2-277Mg ngrggggwﬂi[?"(yz) |(xi,y:) € Coi) < 2¢y2aMgNZ*27,
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By Bernstein inequality and a truncation argument, for all ¢ > 0,

P(\/a|Gn(g.7) — Gn(g,7+)] > 1)
. 12
< min {2exp (W[ RS Bt xy) L op <mx 1906 (r(gs) — 72 ()] = y) }

Taking y = Mgt®, we get for all ¢ > 0, with probability at least 1 — 4 exp(—t),

M
|Gn(gv T) - Gn(g, T'r)| S vV Cv,2a¢2_N/2MS]\fa\/?E + Cv,a 7%ta+1~
Putting Together: Taking 7 = t* > 0.5*N®, we get from the previous bounds on G, (g,7,) —11Gr(g,7+),
MG,L(g,r) —T1Gn(g,7+), and G,(g,7) — Gn(g,7,) that for all g € G, r € G, for all t > N, with probability
at least 1 — 4nexp(—t),

M
I0G(g,7) — Gulg,7)| S \/Eroar/ N2Vg + 2-VMZtoF 3 4 cv,ajitaﬂ. (SA-15)
n
The bound for [; ZS (g,7) — Z& (g,7)| follows from the fact that it is a mean-zero Gaussian random variable
with variance equal to V[I;G,(g,7) — Gpn(g,7)]. The result follows then follows from a union bound over
(9,7) € (§ X R)s.

Next, suppose @ = 0 in (iv) of Assumption SA.2. This implies Mx < 2v. Hence choosing 7 = 2v, then
Gn(g,7) = Gn(g,7,) almost surely for all g € G, r € R, that is, there is no truncation error. Hence the bound
on Gp(g,7,) —1Gp(g,r,) implies Equation (SA-15) holds with a = 0 and similarly for the Z$ counterpart.
([

SA-II1.2 General Result

This section presents the main result for the G,-process. To simplify notation, the parameters of § and
G- Vx (Definitions 4 to 12, SA.1, SA.2) are taken with C = Qg, and the index Qg is omitted where there is
no ambiguity; the parameters of R (Definitions 4 to 12) are taken with C = Y, and the index ) is omitted
where there is no ambiguity; and the parameters of § x R (Definitions 4 to 12, SA.3, SA.4) are taken with
C = Qg x Y, and the index Qg X )V is omitted where there is no ambiguity.

Theorem SA.1. Suppose (z; = (X;,y;) : 1 <i < n) arei.i.d. random vectors taking values in (R4, B(RI+1))
with common law Pz, where x; has distribution Px supported on X C R%, y; has distribution Py supported
on Y CR, and the following conditions hold.

(i) G is a real-valued pointwise measurable class of functions on (R, B(RY),Px).

(ii) There exists a surrogate measure Qg for Px with respect to § such that Qg = mogg, where the

normalizing transformation ¢g : Qg + [0,1]% is a diffeomorphism.
(#ii) Mg < oo and J(G,Mg, 1) < oo.

(iv) R is a real-valued pointwise measurable class of functions on (R, B(R),Py).
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(v) J(R, Mg, 1) < oo, where Mz (y) +PTVq iy 1y < V(L + [y|¥) for ally € Y, for some v > 0, and for
some o > 0. Furthermore, if o > 0, then sup,cy Elexp(Jy;])|x; = x] < 2.

Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaussian processes

(Z%(g,7) : (g,7) € G x R) with almost sure continuous trajectories such that:
o E[Gn(91,71)Gn(g2,72)] = EBIZ5 (91,71) 25 (92,72)] for all (g1,71),(g2,72) € G x R, and
o P[|Gy — Z8lgxm > Crya TS (t)] < Coe™ for all t >0,

where Cy and Cy are universal constants, Cy o = vmax{l + (2a)%,1 + (4a)*}, and

Tg( t) = min {AG(t 5) + FG(t N},

6€(0,1)
with
dE TVde+1 5 dl . d dEZMQTvde 2d1 5
A (,6) = Vamin { (S50 )T (TR0 0R0) S 4 4 og(nn(5) V7))
in{M2 (M* 4+ N*),Mg(c3Kg.v, +M
+\/m111{ 9( )n J(CS G- Vg 9)}(logn)“(t—|—log(nN(5)N*))o‘+1,
logn)®/?Mg J?(5) g Mg
FO(1,8) = J(6)Mg + —=Vt + (logn)* —=t*
7 (8,0) = J(OMg + =g+ Vi (logm)® TRt
where
d—1
1
c1 =d sup 0;(Vo Cog = SUp ————, d=12(2vVd)? ey el ,
v=d sp 1 oiVouto) e = s ey (VDT et
and
Vg ={0(,r): 17 € R},
N(3) = Ng(6/V2,Mg)Nx (6/V2, M), 6 € (0,1],
J(8) = V2J(G,Mg,5/v2) + V2J(R, Mx,5/V2), &€ (0,1],
. . c1nTVg 7 c1conLgTVg E=
M = gy min { (S5 20) ™ (S0E22)
e SN n2M2d+2 1
% g d+1 g d+2
v = g { ()™ (meras) )]

Proof of Theorem SA.1. To simplify notation, we will use E[-|Xy;] in short for E[-|x; € Xp,], and
E[-|Xo,; X Vi,j,m] in short for E[-|(x;,y;) € Xo,, X Vi j.m] in this proof.

First, we make a reduction via the surrogate measure and normalizing transformation. Since Supp(§ -
Vx) C Supp(G), we know Qg is also a surrogate measure for Px with respect to G- Vg, and ¢g remains a
valid normalizing transformation. Let Zg = X NSupp(§). Since Qg = mogpg by assumption (ii) in Theorem
1, and Qglz, = Px|z,,

Px|25 :mo¢9|29.
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To define the Uniform([0, 1]¢) random variables on the probability space that (x;,;)’s live in, we define
a joint probability measure @ on (R% x R x R4, B(R24*+1)) such that for all A € B(R?¥+1):

OAN(Z9 xR x Z9)) =Pz(I1.q11 (AN {(x,y,%) : x € Z9¢,y € R})),
OAN(Z9 xR x Z5))=0(AN (25 xR x Z5¢)) =0,

(9 c IPZ All N ZC % R
O(AN (25 x R x 25)) = / (IP ZE i )
Z5MMaq2:2a+1(A) z( 5¢ X )

d(m o ¢g¢)(u),

where Tl1.411(A) = {z € R¥! : (z,u) € Aforsomeu € R}, Tyi90441(4) = {u € R? : (z,u) €
A for some z € R¥1} and A" = {z € R¥*!: (z,u) € A}.

Then we can check that (i) the marginals of O are IP z and mogg¢, respectively; (ii) O|z, xRxRIURI xRx 24 1S
supported on {(x,y,X) : x € Z5¢,y € R}. By Skorohod embedding (Dudley, 2014, Lemma 3.35), on a possibly
enlarged probability space, there exists au;, 1 <4 < ni.i.d. Uniform([0, 1]%) such that (z; = (x;, ¥i), ¢3¢ (w;))
has joint law Q. In particular, if x; € Z4¢, then x; = qﬁ;cl (w;); if x; € 2§, then QS;Cl (u;) € 25, and since
Q3¢ € X U (Npesc Supp(h)©), ¢ (W;) € Npese Supp(h)©. In particular, SUPyepo,1)¢ Elexp(|yi|)ju; = u] < 2.

By the same argument as in the proof for Theorem 1, assumption (ii) implies that on a possibly enriched
probability space, there exists (u; : 1 <i < n) i.i.d distributed with law Py, = Uniform([0, 1]¢), and

9(xi) = g5 (0y)), Vge §,1<i<n.

Define G,, to be the empirical process based on ((u;,;): 1 <1 < n), and
~ 1 <&
n(fy8) = —F= i)s(yi) — IE )8l
Gulf) = =2 [£(ws)s(y:) = ELF (ui)s(y1)]

and take G = {go ¢35+ g € G}, then

Gulg,r) = —= > lg(xi)r(yi) — Blg(xi)r(vs)] - L > G r () — B[gu)r(y:)]| = Gu(@, 7).
NG NG
i=1 i=1

The relation between constants for § and constants for § can be deduced from Lemma SA.10. Hence, without
loss of generality, we assume (x; : 1 < i < n) are i.i.d under common law IPx = Uniform([0, 1]¢) distributed
and X = [0, 1]¢.

Take A, n(Pz,1) to be an axis-aligned cylindered quasi-dyadic expansion of R4, of depth M for
the main subspace R? and depth N for the multiplier subspace R with respect to P;. Take (Z,? (g,7) :
g € G,r€R)and (I, ZS(g,7) : g € G, € R) to be the mean-zero Gaussian processes constructed as in
Equations (SA-13) and (SA-14). Let (G x R)s be a 0||MgMxz||p,-net of G x R with cardinality no greater
than Ngyx(d,MgMz). By standard empirical process argument, Ngxx (d, Mg Mx) < N(d). By Lemma SA.16,
the meshing error can be bounded by: For all ¢ > 0,

P[|Gn — Gn o m(gxn);sllsxr + 1125 — Z§ 0 m(gxm); lgxr > CrevaFS (t,6)] < 8exp(—t),

where Oy is a universal constant and ¢y, = v(1 + (2a)%). Lemma SA.17 implies that the strong approxi-
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mation error for the projected process on d-net is bounded by: For all ¢t > 0,

| N2a+19ME .M /C
P ||H1Gn - leE”(ngg)& > Clcvya —99t + Clcvya wt} S 2N((5)67t.
n n

where

Cr, (§xR),M4N =  SUD min{ sup (D G-NG-+D2 > B L],

fEM(GXR) (7,k)EZMm+N 1< k’:Cj/,k/QCj,k
w01+
zECM4N,0

Now we upper bound the left hand side of the minimum. Let f € II;(§ x R). Then there exists g € § and
r € R such that f =1I[g, r]. Since f is already piecewise-constant, by definition of 5, ’s and ~; x’s, we know

Brm (f) = Fim(g, 7). Fix (j, k) € Inrn. We consider two cases.

Case 1: j > N. By Definition SA.7, C; = Xj_nk X Vin,0. By definition of Ay n(PPz,1) and the
assumption that x;’s are Uniform([0, 1]¢) distributed, | X;_n koo < i e 2

Consider j' such that N < j* < j. By definition of Ap n(Pz,1) and the assumption that x;’s are
Uniform([0, 1]¢) distributed, the j’-th level difference set U = Uo<kcad+n—i (Cjr—1,26+1 — Cjr—1,21) is con-

tained in [—27 MR A2 g M +2]1d Let g € G, r € R. By definition of 7,/ ,,, and similar arguments to

those in the proof of Lemma SA.7,

S Fplgor)] < 220N / / 19()8(x, 7) — g(x + )8(x + s, r)|dxds
i XNk

m:Cjs ,, CCj

i’ m

< Q2N /M (11X . 14 dS K v,
J

< 92(M+N—j) m(u]’,)”uj{||Oo||Xj7N,k||go_1K§V'R

A1
<274 (=7 )Kg\?g{'
Next, consider ;' such that 0 < 5/ < N, we know
Z |A’yij’,k’(ga T)|
k":Cyr s CC

= > > Blgea)|Xo )] - Bl (yi)| Xo i X Vjrj—1,2m) = Blr(yi)|Xo i X Ve j—1,2m41]]

jl:XO,j’ ng—N,k 0§m<21,

<o Y, IE[g(x:)| X051 N

jI:XO‘j’ ng—N,k

S CV’QZj_NMg N,
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It follows that
DG=G=7+0277 > [Fiwler)
j/<j k/:cj’,k’ ng’k

< D G- T Ky, t e D (=306 -5+ 127 N ugN®
N<j'<j jI<N

S Ky, T CrallgN®.

Case 2: j < N. Then C;; = Xo; X Vi jm With k = 2N=il + m, and Cir g = Xow X Yy jo.m With
k' =2N=3'l' 4+ m/. In particular, Cjs s C C;x implies I' = I and Vs js s C Vi jm- By a similar argument to
the proof in Lemma SA.17 (Layers 1 < j < N), for any 0 < j' < j,

S Riw(gr)l

kl5cj’,k’ gcj,k

= |E[g(x:)[X0.1]] Z IEr(yi)|Xoq % Vi j—1,2m]) — E[r(y:)|Xor X Vij—1,2m+1]]

m" Yy it mt CV5m
< Cv,alElg(x:)]| Ko, [N
< Cv)aMgNa.

Using the elementary inequality that z(z + 1) < 30 - 2%/4 for & > 0, we can get

DG+ DYT YT (9] < 606, Mg N

1<5/<j k/:Cyr w1 CC
Moreover, for all (4, k), we have Bj)k(g, r) < ¢y,oMgN®. This implies that
CH1(9><CR),M+N 5 CaaMgNa min{K’é_V:R + MgNa, MgNa(M + N)}

Since x; L Uniform([0, 1]¢) and the cells Ay n (P2, 1) are obtained via azis aligned dyadic expansion, we
have || X x|leo < 27/ for all 0 < k < 2M. Then by Lemma SA.21, for all ¢ > N,

1 M
P {HGn —MGhll(gxn)s 2 /Cr2ay/ N2 Vg + 2*NM%ta+§ + cv’a\/—git‘”l] < 4AN(6)ne™
n

1 _
P [||Z,? — I Z8 ||(5xR)s 2 \/Crar/ N2Vg + 2-NMZE? + Cy < 4N(8)ne ™,

Mg
—t
Vn }
where ¢y o = v(1 + (2a) %) and ¢y 24 = v3(1 + (4a)%), and

Vg = Vdmin{2Mg, Lg2~ 1M/l yo-M/d Ty,

We find the optimal parameters M* and N* by balancing the term 4/ QMETSMS from the bound on |I;G,, —
I ZS ||(gx®); and the term Vg from the bounds on |Gy, — 11 Gy ||(5xx); and [|Z, — 1 ZE || (gx =), choosing

1 1
—4_ —d_ d+1\ d+1 202d+2 \ a2
* nTV d+1 nLgTV d+2 " nM n-M
9M" _ 1nin g =5 , 2V = max J N woaaer
Eg EgMg EgTV9 TV9L9E9
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It follows that for all ¢ > N,, with probability at least 1 — 4nN(d) exp(—t),

IGn = Z g x )

1 1
dyd+1Y\ 2(d+D) 22 ydt d \ 2(d+2)
< VAN* min (ESTV9M9 ) ’ (ESMQT:9L9> tote 4 1/70“1(%3)’]”“%““.
n n n

The result then follows from the decomposition that

|G = Z§ llgxm = Gn — Z5 |5
< ||Gn — G o m(gx30)sllgx® + |1 25 = Z§ 0 m(gxm)sllgx®

F1Gn — M Galligxm), + 125 = ZT | (gxm)s + IMGn — T ZS || (gx)s5

and Lemma SA.10 for the reduction to the case of Uniform([0,1]%) distributed x;’s. O

SA-II1.3 Additional Results

This section presents the additional result for the G,,-process under VC-type entropy conditions. To simplify
notation, the parameters of G and G- Vg (Definitions 4 to 12, SA.1, SA.2) are taken with C = Qg, and the
index Qg is omitted where there is no ambiguity; the parameters of R (Definitions 4 to 12) are taken with
C =Y, and the index ) is omitted where there is no ambiguity; and the parameters of § x R (Definitions 4
to 12, SA.3, SA.4) are taken with C = Qg x Y, and the index Qg x ) is omitted where there is no ambiguity.

Corollary SA.4 (VC-Type Lipschitz Functions). Suppose the conditions of Theorem SA.1 and the following

additional conditions hold.
1) G is a VC-type class with respect to envelope Mg with constant cg > e and exponent dg > 1 over Qg.
S S 9 S
(1) R is a VC-type class with respect to envelope My with constant cx > e and exponent dx > 1 over ).

(iii) There exists a constant k such that |logy Eg| + |logy TV| + |logy Mg| < klogyn, where we take TV =
max{TVg, TVg.v,, }.

Then, on a possibly enlarged probability space, there exists a mean-zero Gaussian process (ZS(g,7) : (g,7) €

G x R) with almost sure continuous trajectories such that:
o E[Gn(91,71)Gn(g2,72)] = E[Z5 (91,71)Z5 (g2,72)] for all (91,71),(g2,72) € § X R, and
o P[||Gn — Z&lgxr > Crev,o TG (t)] < Cae™" for all t > 0,

where Cy and Cy are universal constants, ¢y o = vimax{l + (2a)%,1+ (4a)*}, and

d+1
c{EgTVEMET )m (cglcgEgMgTngg
btk < A (Ft22sTs TS

n2

TG (1) = \/&min{( )W}(tJrklogQ(n) + dlog(cn))*+!

n

(logn)*(t + klogy(n) + dlog(cn))**,

N \/min{klogQ(n)M%,Mg(CgKg.vfR +Mg)}
n

with ¢ = cgcx, d =dg + dgx.
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Proof of Corollary SA.4. The proof follows by Theorem SA.1 with § = n~'/2, and

N(n~'/%) = Ng(1/v2n,Mg)Ng (1/v2n, M) < cgen(2y/n)?T4% = ¢(2v/n)?,

and
J(n™%) = V2J(G,Mg,1/V2n) + V2J(R, Mg, 1/v2n)
< 3n~Y2y/dg log(cgv/n) + 304/dx log(crv/n)
< 38y/(dg + dx)log(cgecrn) < 351/dlog(cn).
The conclusion follows. O

SA-IV Residual-Based Empirical Processes

Recall that z; = (x;,7;) € X xY CRIxR,i=1,...,n, areii.d. random vectors supported on a background

probability space (2, F,IP), and the residual-based empirical process is
1 n
Rn(g,r) = n Z (9(xi)r (i) — Blg(xi)r(y)|xil), (9:7) €G xR
i=1

In particular, (R,(g,7) : g € §,7 € R) can be seen as a combination of the two empirical processes studied

in the previous sections: for r € R and x € X,
Rn(ga 7’) = Gn(g7r) - Xn(gﬁ(,r)), 9(X7T) = E[’/‘(QZ”XZ = X],

where

Results for the X,, process (Section SA-IT) and for the G,, process (Section SA-IIT) will be used to handle

the terms above. The same error decomposition as in Sections SA-IT and SA-III also applies here:

IRy — ZFllgxm < I1Rn — Zi ll(gx®)s + 1 Bn — Ru 0 T(gxm)s llgxr + 12 © m(gxm); — Zallgxr
< MZE = ZF (sxm)s + 1Bn — MaRull(gxm)s + IM2Rn — T Z2 | (gx ),

+ |Rn = Rn o T(gxm)s g + 120 0 W(gxm)s — Zallgxks

where (G x R);s denotes a discretization (or meshing) of § X R (i.e., 5-net of G x R), and the terms | R, — R, o
T(gxR)s|lgxx and || ZF o migxm); — Z[||gxx capture the fluctuations (or oscillations) of R, and ZF relative
to the meshing for each of the stochastic processes. |[IaRy, —Ma ZE| (gxx), and [T ZF — ZF|| g« x), represent
projections onto a Haar function space, where IoR,,(h) = R,, o lIh. The operator Iy is a projection onto

piecewise constant functions that respects the multiplicative structure of the R,, process. The final term
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[M2Ry, — M2 Z [ (gxm), captures the coupling between the empirical process and the Gaussian process (on a
d-net of G x R, after the projection Iy).

The general result under uniform entropy integral conditions is presented in Section SA-IV.2. Theorem
2 and Corollary 4 then follow from that general result. The proofs leverage the existence of a surrogate
measure and a normalizing transformation of § with respect to Py, the distribution of x;, as developed in
Section SA-I1.2. We will use the same class of cylindered quasi-dyadic cell expansions as in Section SA-II1.1.1,
which explicitly exploits the multiplicative structure of R,,. Bounds for each term in the error decomposition
are provided in Section SA-TIV.1, which boils down to handle the extra X, (g6(-,r)) term compared to the

results in Section SA-III.1 and is organized as follows:

e Section SA-IV.1.1 introduces the conditional mean adjusted product-factorized projection that combines

the product-factorized projection for the G, (g,r) part and the Lo projection for the X,,(gé(-,r)) part.

e Section SA-IV.1.2 constructs the Gaussian process (ZF(g,7) : (9,7) € § x R). The construction is
essentially the same as those in Section SA-II.1.3, relying on coupling binomial random variables with

Gaussian random variables.

e Section SA-IV.1.3 handles the meshing errors || R, — R, 0T(gx=), [gxx and | Z om(gxm), — ZE| gxx using

standard empirical process results.

e Section SA-IV.1.4 addresses the strong approximation error [T R,, — I Z||(gxx),- With the help of the

relation between II; and I, we can reuse results from Section SA-III.1.5.

e Section SA-IV.1.5 addresses the projection errors || R, =2 Ry || (gxw); and || Z =11 Z[| (gxx);- We use the
results from Section SA-II1.1.6 for ||G,, —T1 G, || (gx®),, and deal with || X, (g0(-, 7)) —To Xy, (90(-, 7))l (g xR)s

using results from Section SA-II.1.6.

SA-IV.1 Preliminary Technical Results

This section presents preliminary technical results that are used to prove Theorem SA.1. Whenever possible,
these results are presented at a higher level of generality, and therefore may be of independent theoretical
interest. Throughout this section, we assume the same set of conditions (Assumption SA.2) on data generate
process as in Section SA-ITI.1.

Compared to the assumptions in Theorem 2, this assumption does not require the existence of a surrogate
measure or a normalizing transformation. It will be applied in the analysis of terms in the error decompo-
sition, where we work with the P, distribution and extra condition on the existence of Lebesgue density
of Py is assumed whenever necessary (Section SA-IV.1.5). The surrogate measure and the normalizing
transformation will be used in the proof of Theorem SA.1 with the help of Section SA-I1.2, providing greater

flexibility in the data generating process.

SA-IV.1.1 Projection onto Piecewise Constant Functions

For the residual empirical process, we tailor a projection to piecewise constant functions on the quasi-
dyadic cells that differs from the mean square projection from Section SA-I1.1.2 and the product-factorized
projection from Section SA-III.1.2. Given a cylindered quasi-dyadic expansion of R¥*!1, €y v (P, p) with P
the law of random vector (X,Y) € R? x R, and recall the definition of €74y from Section SA-II.1.2, for any
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real valued functions g on R? and r on R such that [5, [ 9(x)*P(dydx) < oo and 5, [p 7(y)*P(dydx) < oo,

the conditional mean adjusted product-factorized projection of g and r is defined as

M2 (Car,n (P, p))[g, 7] = T (Cor,n (P, p))]g, 7] — To(px [Coarn (P, 0))g 0, 7)), (SA-16)

where 6(x,7) = E[r(Y)|X = x] for r € R and x € X, and px[Cu n(P,p)] = {Xx : 0 <I< M 0<k<
2M =1} as defined in Definition SA.7. We denote the collection of conditional mean functions based on R by
Vg ={0(-,r) : r € R}.

This projection can also be represented using the Haar basis as

Mo (Crr, v (P, p) g, 7] = narsn.0(g,T)en+n0 + Z Z (978,
1<j<M+N 0<k<2M+N—j
with
0, if N<j<M+N,
Nik(g,7) = sa)

’Yj,k(gvr)v lfj<N

We will use I as shorthand for Iy (Car, v (P, p)).

Next, we define the empirical processes indexed by these projected functions. With a slight abuse of
notation, let (X, (f) : f € F) be the empirical process based on a random sample ((x;,%;) : 1 < i < n),
where J is a class of real-valued functions on R4+1. Specifically, X,,(f) = n= 123" | (f(xi, vi) —E[f (xi, vi)])
for f € F. For any real valued functions g on R? and r on R such that [y, [ 9(x)*P(dydx) < oo and
Jza Ju (y)?*P(dydx) < oo, we define

HQR”(gaT) =X,o0 HQ(Q,T),

(SA-18)
Mo Rn(g,7) = Xy oo [Cor, N (P, p)](97) — X 0 To(px [Crr, v (P, p)])[g O, 7)]-

SA-IV.1.2 Strong Approximation Constructions

Lemma SA.22. Suppose Assumption SA.2 holds, and a cylindered quasi-dyadic expansion Cx(Pz,p) is
given. Then, (§-R)U(G-Vx) U (G x R)UM2(G x R) Ulp[px (Car,n)]|(G - V) is P z-pregaussian.

Proof. Recall we have shown in the proof of Lemma SA.12 that for all 0 < § < 1,

Jax (G- RMg x Mn y,0) S V2Jx(S,Mg, x,5/v2) + V2Jy(R, My y,5/V2),
Jaxy(M(G X R), cv.aMg x N, 6) S V2Jx(5,Mg 2,6/ (3V2)) + V2 (R, M y,5/(3V2)),

where ¢, o = v(1 + (2a)%). Lemma SA.25 implies Jx(Vx,0(-, Mg y),8) < Jy(R, Mz y,5). Since Assump-
tion SA.2 (iv) implies supyex 0(-, Mz,y) < ¢v,aMg, we know for all 0 < 6 < 1,

Jx (G- V. y.aMg, 0) < V2Jx (5, Mg x,6/V2) + V2Jx (V, 0(-, Mx,y),5/V?2)
< V2Jx(9,Mg,x,0/V2) + V2Jy(R, Mg y,5/V2).
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The same argument for Lemma SA.12 implies that for all 0 < § < 1,
JxMopx (Car,N)|(G - V), CyaMg A N, 0) < Jx(G - Vr, CyaMg x N, 0).

Moreover Lemma SA.15 implies Mx(G x R) C I1(G x R) + Oolpx (Car,n)](G - Vr). It follows from pointwise
separability of § and R and Corollary 2.2.9 in van der Vaart and Wellner (2013) that (§-R) U (G- V) U
M (G x R)U(G x R) UTlg[px (Car,n)](G - V) is P z-pregaussian. O

Lemma SA.23. Suppose Assumption SA.2 holds and a cylindered dyadic expansion Cpr n(Pz,1) is given.
Then on a possibly enlarged probability space, there exists a IP z-Brownian bridge By, indezed by F = (§-R)U
Mo(G x R) UTL4 (G x R) with almost sure continuous trajectories on (F,0p,) such that for any f € F and any

z >0,
]P<

where for both || f||

n

Zf(xz', Yi) — \/HBn(f)‘ > 244 /11fIIZ,,, v ® T4y C{f},M+N$> < 2exp(—x),

i=1

and Cysy vy are defined in Lemma SA.S.

2
EM4N

Proof of Lemma SA.23. The result follows from Lemma SA.22 and the same argument as Lemma SA.13.
O

Lemma SA.24. Suppose Assumption SA.2 holds and a cylindered quasi-dyadic expansion Cpr n (P z, p) with
p > 1 1is given. Then on a possibly enlarged probability space, there exists a Brownian bridge B, indexed by
F=(G-R)U(G-Vx)UM1 (G x R)UMN2(G x R) Ul [px (Car,n)](G- Vx) with almost sure continuous trajectories
on (F,0p,) such that for any f € F and any x > 0,

(.

Zf(xi7yi) - \/ﬁBn(f)‘ >C, HfHZsMHV“T +Cpy C{f},M+N93>
=1

< 2exp(—z) +2M 2 exp (—C'an_M) ,

where C,, is a constant that only depends on p.

Proof of Lemma SA.24. The result follows from Lemma SA.22 and the same argument as Lemma SA.14.
O

The above two lemmas enable the construction of Gaussian processes and their projected counterparts
as analogs to the empirical processes defined in Section SA-11.1.3 and Section SA-II1.1.3. In particular, we

define ZF and M, ZF as Gaussian processes indexed by G x R such that, for any g € G and r € R,

fo(g,?") = Bn(g(r - 9(~,7’))),
M, Z%(g,r) = B, (Ilx[g, 7]). (SA-19)

We also define the following ancillary processes for analysis:

Z,?(g,r):Bn(gr)7 HIZS(gﬂr):Bn(Hl[gvr])a
Z3(90(,7)) = Bulg(,7)),  ToZy (96(,7)) = Bu(lo[px (Car,n)][g (-, 7)]). (SA-20)
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Since for any g1,92 € G, 11,72 € R,

Opy, (91(7”1 - 0('7T1))792(T2 - 9(‘,7’2))) < 20IPZ (917“1,927‘2),

and B, has almost sure continuous sample trajectories on (G - R,0p,), Equation (SA-19) also implies
(ZE(g,r) : g € G, € R) has almost sure continuous sample trajectories on (G x R, dp ).

The following ancillary lemma on uniform covering number of the class of conditional means is used for
the proof of Lemma SA.22.

Lemma SA.25. Suppose 8 is a class of functions from a measurable space (¥,B())) to R, where Y C R,
with envelope function Mg y. Let Vs be the class of conditional means {0(-,s) : s € 8} with 0(x,s) =
E[s(y;)|x; = x] for x € X. Then

Nyg x(6,0(, Ms y)) <Ns y(6, Msy).

Proof of Lemma SA.25. Let Q be a finite discrete measure on R?, and let 7, s € 8. Define a new

probability measure PonR by
P(A) = /]E[]l((xi,yi) eRY x A)|x; =x]dQ(x), VACRY

Then [ |0(-, Ms,y)| dP < fRd E[Ms,y(yi)|x; = x] dQ(z) < 00, since sup,,cy, [|m|e < o0

For r,s € 8, we have
/|9 >|2dQ</ E{lr(y:) — s(y:)lxi = x] dQ(a /\rstdP

Here, P is not necessarily finite or discrete, but by a similar argument as in Lemma SA.15, there exists a
subset 8. C § with cardinality no greater than Ng y(d, Ms, y), such that for any s € 8, there exists r € 8§, with
Ir = sllp5 < ell6( Ms )l .- Hence, [[m, —myllg.z < el0(, Ms )l 5.5 = £ll6(-, Ms y)llo.2- The conclusion
then follows. |

SA-IV.1.3 Meshing Error

To simplify notation, the parameters of § (Definitions 4 to 12) are taken with C = X, and the index X is
omitted where there is no ambiguity; the parameters of R (Definitions 4 to 12) are taken with C = Y, and
the index ) is omitted where there is no ambiguity; and the parameters of G x R (Definitions 4 to 12, SA.3,
SA.4) are taken with C = X x ), and the index X x ) is omitted where there is no ambiguity. We also
define

J(8) = V2J(G,Mg,6/V2) + V2J(R, Mz, 6/V2), &€ (0,1],
N(6) = Ng(6/V2,Mg)Ng (6/V2, M%), &€ (0,1].

For 0 < 6 < 1, consider a 0Mg||Mz|/py 2-net of (G X R,| - |lpy,2), denoted by (G x R)s, with cardinality
at most Ngx®(d,Mg||Mz||lpy 2). Define the projection onto the d-net as a mapping m(gxz), : § X R =+ G x R
such that ||m(gxx);(9,7) — g7llp,,2 < Mg||Mg||p, 2 for all g € G and r € R.
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Lemma SA.26. Suppose Assumption SA.2 holds, a cylindered quasi-dyadic expansion Cpr n(IP z, p) is given,
(ZE(g,7) : g € G,r € R) is the Gaussian process constructed as in (SA-19) on a possibly enlarged probability
space, and (G X R)s is chosen in Section SA-III.1.4. For allt >0 and 0 < 0 < 1,

P[[| Ry = Rn o mgxm)sllgxm + 1257 0 mgxmys = Znllgx > Crev.aFyi(t,0)] < exp(—t),
where ¢y o = v(1+ (20)%) and

(logn)*/?Mg J2(6) = Mg Mg
_J l Oéi Oé.
g gyt (leen)t IRt

Proof of Lemma SA.26. Recall for any g € G, r € R,

FR(t,8) = J(6)Mg +

Ry(g,7) = Grnl(g: 1) + Xn[px (Crr,n (P2, )9 0(-, 7).
Lemma SA.16 implies that for any ¢ > 0 and 0 < § < 1,
P[|Gr — Gn o m(gxm)sllsxr + 125 0 migxm); — Z5 lgxr > Crev.aF (L, 6)] < exp(—t).
For g € G, r € R, and take (go,70) = T(gx®),, Jensen’s inequality implies
1Xn(g0(,7)) = Xulg00(-,70)) 13

- % Z E[(g(x:)E[r(yi)xi] — go(x:)E[ro(yi)|x:])°]
=1

IN

% Z E[(g(xi)r(yi) — go(xi)r0(yi))?] = [|Gn(g, ) — Gnlgo,70) 3.

Thus

I Xn(g0(;7)) = Xn 0 m(gxr); (90(,7))ll2llgxx < |G = Gn o mgxm)sll2llgxx-

Lemma SA.25 implies that if we define § x R = {g(r — 0(-,7)) : g € §,7 € R}, then
Ng, %, xxy(0:MgMz) < 2N(0).

The conclusion then follows by applying the same empirical process argument to || X,(g0(-,r)) — X, o

T(5xR)s |gx® as in Lemma SA.16. O

SA-IV.1.4 Strong Approximation Errors

To simplify notation, the parameters of § (Definitions 4 to 12) are taken with C = X, and the index X is
omitted where there is no ambiguity; the parameters of R (Definitions 4 to 12) are taken with C = Y, and
the index ) is omitted where there is no ambiguity; and the parameters of § x R (Definitions 4 to 12, SA.3,
SA.4) are taken with C = X x Y, and the index X’ x ) is omitted where there is no ambiguity. Recall we
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also define

J(8) = V2J(S,Mg,0/v2) + V2J(R, Mz, 56/V2), &€ (0,1],
N(6) = Ng(0/V2,Mg)Ng (6/V2, M%), &€ (0,1].

Lemma SA.27. Suppose Assumption SA.2 holds, a cylindered dyadic expansion Cprn(Pz,1) is given,
(ZE(g,r) : g € G,r € R) and (.ZE(g,7) : g € G,r € R) are the Gaussian processes constructed as
in Equations (SA-13) and (SA-14) on a possibly enlarged probability space, and (G x R)s is chosen in
Section SA-II1.1.4. Then for all t > 0,

N2a+12ME M C
P [||1‘I2Rn L ZE | (gxm); > Creval| ————2 9 4 olcw,/wt] < oN(S)e ™,
n n

where Cy > 0 is a universal constant and c, o = v(1 + (2a)%/2).

Proof of Lemma SA.27. We have shown in the proof of Lemma SA.17 that for any (g,7) € § X R,
M+N
Yoo Y Rkl < N2V EgHg.
j=1 0<k<2M+N—j

It then follows from the relation between ~; , and 7, in Equation (SA-17) that for any (g,7) € § x R,
M+N
S lialen)? < & NP 2MEug,

j=1 0<k<2M+N—j

and hence by Lemma SA.23, for any « > 0, with probability at least 1 — 2 exp(—2x),

NZ2a+19ME:M /C MAN
MaR,(g,7) — D2 Zn(g,7)] < cvﬁa\/n”m + ¢ya %x

The conclusion then follows from a union bound on (G x R)s. O

Lemma SA.28. Suppose Assumption SA.2 holds, a cylindered quasi-dyadic expansion Cpr n(Pz, p) is given
with p > 1, (ZE(g,7) : g € G,r € R) and (1uZF(g,7) : g € G,7 € R) are the Gaussian processes constructed
as in Equations (SA-13) and (SA-14) on a possibly enlarged probability space, and (S x R)s is chosen in
Section SA-III.1.4. Then for allt > 0,

N2a+121VIE M C
P [||H2Rn — L ZE | (gxm), > C,,cm\/ngt + C,,cm\/wt}
< 2N()et +2M exp (—C’pn27M) ,

where C, > 0 is a constant that only depends on p and ¢y o = v(1 + (22)*/2).

Proof. Since Cprn(Pz,p) is a cylindered quasi-dyadic expansion, p~ 127 M=N+i <P, (C; ;) < p2=M=N+i,
forall 0 <j <M+ N, 0<k<2M+N=J Hence following the argument in the proof for Lemma SA.17, for
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any g € §,r € R,

MAN 2MHN = MA4N 2M+N—i
SN Talen <> > Falgr) < g N 2MEgN,
j=1 k=0 j=1 k=0
The result then follows from Lemma SA.14. 0

SA-IV.1.5 Projection Error

To simplify notation, the parameters of G and G- V¢ (Definitions 4 to 12, SA.1, SA.2) are taken with C = X,
and the index X is omitted where there is no ambiguity; the parameters of R (Definitions 4 to 12) are taken
with C = Y, and the index ) is omitted where there is no ambiguity; and the parameters of § x R (Definitions
4 t0 12, SA.3, SA.4) are taken with C = X x ), and the index X x ) is omitted where there is no ambiguity.

Recall we also define

J(8) = V2J(S,Mg,0/v2) + V2J(R, Mz, 56/V2), &€ (0,1],
N(6) = Ng(0/V2,Mg)Ng (6/V2, M%), &€ (0,1].

The projection errors for the R,, and ZF processes can be decomposed by the observation that, for any
g€ GandreR,

Mo Fon(9,7) = Ra(g:7) = (MGulg:7) = Gulg,1)) = (Molpx (€ar) | Xalg 0 7) = X (g0 7)) ).

2 (g,7) ~ Z8(g,r) = (MZE(g.7) = 25 (9,7)) = (Molpx (Can))ZX (90(,1)) = ZX(90(- 7)), (SA-21)

where, in each line, the first term in parentheses is the projection error for the G,-process, as discussed in
Section SA-III.1.6, and the second term is the projection error for the X,-process, detailed in Section SA-
11.1.6, with

Xalgb(,1) = —= Y [9(x)0(x;, ) = Elg(x)0(xi,7)]].

i=1

o[px (Car,n)]Xn(g0(- 7)) =

Si= gl-
-

[Uo[PX(GM,Nﬂ(g 0(,7))(x:) — Ello[px (Car,n)](g 0(:, 7)) (x4)] |-

=1

This decomposition allows us to leverage previously established error bounds and convergence results for
G, and X,, processes, thus facilitating the analysis of the R,, and ZF processes. By utilizing known results
from Sections SA-III.1.6 and SA-II.1.6, this approach simplifies the treatment of the projection errors for

these new processes.

Lemma SA.29. Suppose Assumption SA.2 holds, a cylindered dyadic expansion Cprn(Pz,1) is given,
(ZE(g,7) : g € G,r € R) and (IaZF(g,7) : g € G,7 € R) are the Gaussian processes constructed as in
Equations (SA-19) on a possibly enlarged probability space, and (G X R)s is chosen in Section SA-III.1.4.
Suppose Py admits a Lebesque density fx supported on X C R, Then for all t > N, with probability at
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least 1 — 4N(d)ne~t,

1 1 M
| R — H2Rn||(9><fR)5 S AV/Vgvet? 4+ /Gy 2an/ N2Vg + 2_NM%ta+2 + Cv,aj%ta+l7
M
1ZE = T2 Z |l (gxm)s S V/Vgvat? + v/Crzay/ N2Vg + 2-NM2 2 + Cw\j%b
where ¢y = V(1 4+ (20)%), ¢y20 = vV2(1 + (4a)%), and
: 2 M *
Vg = min{2Mg, L[ Varlloo} ( sup fx (%)) 2 m(Var) [Vas TV,
xeX
2
Vocva = min (2. Lovs Varle} (510 £x(0)) 2V m00) Var TV 0,
xe

with Vi = Ug<j<om (Xo — Xoy1) the upper level quasi-dyadic variation set as in Section SA-II.1.6.

Proof. By Equations (SA-16) and (SA-18), we can show the decomposition in Equation (SA-21) holds. The
terms I, G,, — G,, and I; Z& — Z& can be bounded from results in Lemma SA.21. Recall G- Vg = {g0(-,7) :
g € G,r € R}. We know from Lemma SA.9 for all ¢ > 0,

P (1Molpx (@ )1X(900,1)) = X, (000 )| 2 2Tt + 3 - 2280 ) < 2exp(-0)

P ([No[px (Car,n)1Z5 (9 0C,1) = Z3 (9 0(, )| = 2/Vgov,t) < 2exp(—t).

Moreover, suppose a > 0 in (iv) from Assumption SA.2, sup,cy Elexp(|y;|)|x; = x| < 2, hence by moment
properties of sub-Gaussian random variables,

sup sup E[|r(y:)||x; = x] < v(1 + sup E[|y;|¥|x; = X]) < ¢y.a-

reRxeXx xeX

Hence Mg.y,, < ¢y,oMg. Suppose o = 0 from (iv) from Assumption SA.2 holds, sup,cq supycy |7(x)| < 2v,

hence we also have Mg.y,, < ¢y,oMg. The result then follows from a union bound over (G x R)s. O

SA-IV.2 General Result

The following theorem presents a generalization of Theorem 2 in the paper. To simplify notation, the
parameters of § and G- Vg (Definitions 4 to 12, SA.1, SA.2) are taken with C = Qg, and the index Qg is
omitted where there is no ambiguity; the parameters of R (Definitions 4 to 12) are taken with C = ), and
the index ) is omitted where there is no ambiguity; and the parameters of § x R (Definitions 4 to 12, SA.3,
SA.4) are taken with C = Qg x Y, and the index Qg x Y is omitted where there is no ambiguity.

Theorem SA.2. Suppose (z; = (x;,;) : 1 <1i <n) arei.i.d. random vectors taking values in (R¥!, B(R¥+1))
with common law Pz, where x; has distribution Px supported on X C R?, y; has distribution Py supported
on Y C R, and the following conditions hold.

(i) § is a real-valued pointwise measurable class of functions on (R, B(R?),Px).

(ii) There exists a surrogate measure Qg for Px with respect to G such that Qg = mogg, where the

normalizing transformation ¢g : Qg v [0,1]¢ is a diffeomorphism.
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(iii) Mg < o0 and J(G,Mg, 1) < cc.
(iv) R is a real-valued pointwise measurable class of functions on (R, B(R),Py).

(v) J(R, Mz, 1) < oo, where Mx(y) + PTVg (_ 1y < V(L +[y|?) for all y € Y, for some v > 0, and for
some o > 0. Furthermore, if o > 0, then sup,cy Elexp(Jy;|)|x; = x] < 2.

Then, on a possibly enlarged probability space, there exists a sequence of mean-zero Gaussian processes

(ZE(g,7) : (g,7) € G x R)) with almost surely continuous trajectories on (G x R, 0p, p, ) such that:
o E[R.(g1,71)Ru(g2.72)] = E[Z](91,71) Z}H (g2, 72)] for all (g1,71), (g2,72) € § x R.
o PR, — ZF||gxr > C1C; o TE(t)] < Coe™t for allt >0,

where Cy and Cy are universal constants, Cy o = vmax{1l + (2a)%,1 + (4a)*}, and and

Tt = min (AX(t.5) + FL(1.0))

with

I TVIMATL sty dEZMZTVILY oty
AR(t,8) = Vdmin { (ZE— )" %(“2—2) Tt + log(nig (5/2)Nx (6/2) V)™

(log ) (t + log(nNg (8/2)N= (6/2)N.)) "+,

n n

4 e
NG
log(n)®/?Mg J2(8 M M
- ston OO B

and

Ve ={0(,r):r € R},
TV = max{TV9, TVS-VR} L= aX{Lg, L9-V;R}7

= o { (5 G2 )

TLM T M2d+2 r_}_z
V. = ogyma [ (o) ™ (M)
* 82 EqTV¢ TVILIEZ

Proof of Theorem SA.2. To simplify notation, we will use E[-|Xy;] in short for E[-|x; € Xp,], and
E[|Xo; X Vi j,m] in short for E[-|(x;,y;) € Xo,; X Vi j.m] in this proof.

First, we make a reduction via the surrogate measure and normalizing transformation. Since Supp(§ -
Vx) C Supp(9), we know Qg is also a surrogate measure for Px with respect to G- Vg, and ¢g remains
a valid normalizing transformation. By the same argument as in the proof for Theorem 1, assumption (ii)
implies that on a possibly enriched probability space, there exists (u; : 1 <7 < n) i.i.d distributed with law
Py = Uniform([0, 1]4), and

g(xi) = g5 (0y)), Vge§,1<i<n,

and if g(x;) # 0 for any g € G, then x; = QS;Cl(ui), 1<i<n.
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Define R,, to be the empirical process based on ((u;,y;) : 1 <i<n), and

9= = 3 [Fa)st) ~ Bl

=1

3

and take G = {go ¢3! : g € G}, then
"= > [otr() ~ Blstor x| - - > [aturto) - B lul] =BG,

The relation between constants for R and constants for R can be deduced from Lemma SA.10. Hence,
without loss of generality, we assume (x; : 1 < i < n) are i.i.d under common law Px = Uniform(]0, 1]¢)
distributed and X = [0, 1]%.

Take Aprn(Pz, 1) to be the axis-aligned cylindered quasi-dyadic expansion of R¥*!. By Lemma SA.27
and Lemma SA.29, for all ¢t > N,

N2o+12MEgY c
P [Hnan ~ T2 [(gx2), > Cra\| ——— 1+ Cua 7“2(9XR)’M+Nt <N
I [HRn — Ry |[(5xw); > Cuiay/ 2NV + 2 NMzt‘”z + Cmft““} < 4N(6)net,
, M
P [||Z,§‘ — 1,2 | (gxm)s > Cuay/ 2NV +2-Nuth + Cv,a%t} < 4N(8)net,
n

where V = v/d min {2M9, L2~ LM/d] } 2~ LM/dI Ty and

Crygxoy = sup minqsup | > (=G4 +02 7 Y B (D] LI+ N)
fEm(SXR) k) | jr<j k:Cj1 1 CCik

Let f € I3(G x R). Then there exists g € G and r € R such that f =y[g,r]. Since f is already piecewise-
constant, by definition of §; s and 7; x’s, we know Elm(f) =Mm(g,7). Fix (j,k). We consider two cases.
Case 1: j > N. Then by the design of cell expansions (Section SA-IIL.1.1), Cjr = X;_nk X Vi,n0- By
definition of 7, for any N < j/ < j, we have (j — 5/)(j — j/ + 1)27 ~7 Zk’:cj,yk,gcj,k ﬁ?/vk/(g,r) = 0. Now
consider 0 < 5/ < N. Then

> lwrw(e.r)l
k':Cjr 4 CCy

= Z Z 9(x:)[Xo ]l - [E[r(yi)|Xo1 X Vij—1,2m] — Blr(yi)|Xo,; X Vij—1,2ma1]]

1:X0,1CXj— N,k 0<m <27’

<Coa 3 [Elg0) XN < Con2 NN,
L:X0, 1 CX— Nk

It follows that

YNG=iNG -7 +027 > il <Y G -G 7+ D2 TV CalgNY S Cy Mg N

J'<j k’:Cjzyk/QCj,k 7'<j
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Case 2: j < N. Then Cj = Xo; X Vi j,m. Hence for any 0 < j" < j, we have

S i (g = 1Elg(xi)| Xo]| > IE[r(yi)|Xoq x Vij—1,2m] — Elr(ys)| X0, x Vij—1,2m+1]|

k’:leyk/QCj,k m’:ylyj/,m/gym,m

SCV,Q|E[9(XZ')|XO,Z]|NQ g Cv,aMSNa'

It follows that

G- =7 +027 > [iw(e.)| S CoaMgN®.

3'<J k":Cj/’k/ngyk

Moreover, for all (j,k), we have Bjyk(g,r) < CuoMgN®. Hence Cpygxn) S (CuaMgN®)2. The rest of

~

the proofs follow from choosing optimal M, N and Lemma SA.16 in the same way as in the proof for
Theorem SA.1. 0O

SA-IV.3 Proof of Theorem 2

The proof follows by Theorem SA.2 with § = n~'/2, and

N(n /%) = Ng(1/v2n,Mg)Nx (1/V2n, Mg) < cger(2v/n)* T = c(2v/n)°,

and
J(n~Y?) = V2J(G,Mg,1/v2n) + V2J(R, M, 1/V/2n)
< 3n~Y2y/dg log(cgv/n) + 304/dx log(crv/n)
< 364/(dg + dx)log(cgecrn) < 351/dlog(cn).
This completes the proof. O

SA-IV.4 Proof of Corollary 4

Take t = C'logn with C' > 1 in Theorem 2. O

SA-IV.5 Example: Local Polynomial Estimators

The following lemma provides sufficient conditions for the rate of non-linearity error and smoothing bias

claimed in Section 4.1.

Lemma SA.30. Consider the setup of Section 4.1. Recall we assume that ((x;,y;) : 1 < i < n) are i.i.d
random vectors taking values in (R, B(RHY)), with x; ~ Px admitting a continuous Lebesque density fx
on its support X = [0,1]¢. Assume in addition that w v+ 0(w;7) is (p + 1)-times continuously differentiable
with (p + 1)th partial derivatives bounded uniformly over w € W C X and r € Ry, 1 = 1,2, for some p > 0.

68



If (nb®)~tlogn — 0, then

sup |e1r (I/-\IV_V1 - H;l)Sw7T| = O((nb?%)~'logn) a.s., and
weW,reRo

sup |E[§(W,’/‘)|X1, LX) = O(w, )| = O(b'TP) a.s., 1=1,2.
weW,reR,

If, in addition, sup,cy Elexp(|y;|)|x; = x| < 2, then

sup |e1r (ITIV_V1 - Hv_vl)Sw’,«| = O((nb%)~logn + (nb?)~3/%(logn)®/?) a.s.
weW,reR,
Proof of Lemma SA.30. We concisely flash out the arguments that are standard from the empirical

process literature.

Convergence rate for each entry of ﬁw — Hy: Consider ulT(IfIW — Hy )uy, where up, up are multi-

indices such that |u;],|uz| < p. Take v = u; 4+ ug. Define

gn(§,w) = <£_hw) %K <£_hw) , EeX, weW.

Define F = {g,(-,w) : w € W}. Then sup,cyy lu] (Hy, — Hy)uy| = sup req [Enlf(x:)] — E[f(x:)]]. By
standard arguments from kernel regression literature, we can show F forms a VC-type class over X with
exponent d and constant [|X||o/b, with Mg x = O(b~%), 02 = supscq V[f(x;)] = O(b=%?). By Corollary
5.1 in Chernozhukov et al. (2014), we can show E[supcq [En[f(x)] — E[f(x:)]]] = O((nb%)~1/2\/logn +
(nb?)~!logn). Since T is separable, we can use Talagrand’s inequality (Giné and Nickl, 2016, Theorem 3.3.9)
to get for all ¢ > 0,

P(igg IEn[f(x:)] — B[f (x:)]| > C1(nbh) "2/t +logn + Cy (nb®) " (t + logn)) < exp(—t),

where C is a constant not depending on n. This shows for any multi-indices uy, up with |us|, |us| < p,

sup |u] (Hy — Hy)ug| = O((nb)~"/2/logn + (nb%) "' logn), a.s.
wew

Convergence rate for SupWEWHf_\I\:Il —H_'||: Since Hy, and Hy, are finite-dimensional, supweWHﬁw -
Hy || = O((ndb?)~Y2\/logn + (nb%)~tlogn) a.s.. By Weyl’s Theorem, supyeyy \ad(ﬁw) —oq(Hy)| =
O((nb)~1/2/logn + (nb?)~logn) a.s., which also implies infyey oq(Hy) = (1) a.s.. Hence

onp L~ HL | < sup LBy — B[ = O(nb) 2 logm). - a.

Convergence rate for sup,c)y Sup,ex, |Sw,r|ls £ = 1,2: Consider v' Sy, where |v| < p. Define H; =
{(z,y) — gn(z,W)(r(y) — 0(z,7)) : w € W,r € Rg}, £ = 1,2. It is not hard to check both H; and Hy are
VC-type classes over . By similar arguments as in ﬁw — Hy, for all ¢t > 0,

P sup [Eafh(xi, )] ~ B, )] 2 Calnb) ™2 /E Togm + Co(nb’) !t +logn) ) < exp(~1)
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where C is a constant that does not depend on n. And if we further assume sup, ¢y E[exp(|y;|)|x; = x] < 2,
then for all ¢t > 0,

P sup [Enlh(xi 1)) = BlhGei,ul] 2 Calnb") ™2/t Togn + Co(mb) ™ log )¢ + logn) ) < exp(~1).

Together with finite dimensionality of the vector Sy, ,,

sup sup [|Sw.r|| = O((nb?)~Y/2\/logn + (nb?)~t(logn)?), a.s.,

weWwreR,
sup sup [|Sw.r|| = O((nb?)~Y/2\/logn), a.s.
weW reRa

Putting together for Non-Linearity Errors:

sup sup |e] (Hg! — H,)Sw..| = O((nb?) " tlogn + (nb?)~3/2(logn)>/?), a.s.,

weW reR, w

Tp-1 -1 _ dy—1
sup sup |e; (H,," — H_ )Sw | = O((nb*)""logn), a.s..
weW reRy

Smoothing Error: Take Ry, , =E, [rp (Xih_w) Kp(X; — w)tw (X5 T)] where
OL0(w;r)
V!

tw(&r) =0(&r) — Y (€ —w)”.

0<|v|<p

Since all 0(-;r),r € Ry are (p + 1)-times continuously differentiable with derivatives bounded uniformly

over X and Ry, we have almost surely sup,c, Supywey [Rw,r| = O(bP*1), £ = 1,2. We have proved that

~

infwew 04(Hy) = Q(1) a.s.. Hence

sup sup |]E[§(W,7")|x17 <o Xp] — 0(w,r)| = sup sup \elTI/-\I‘;lRW,T\ =0(b"th), a.s., for £ =1,2.
reRy, weWw reR, weWw
This completes the proof. O

The following two examples provide the omitted details concerning uniform Gaussian strong approxima-

tion rates obtained via other methods, which are discussed in Section 4.1 of the paper.

Example SA.1 (Strong Approximation via Rio (1994)). Consider the setup of Section 4.1, and assume the

following regularity conditions hold:

(a) (x4,9:) = (Xi,p(xi,u;)), where the law of b; = (Xi,u;), Pp, has continuous and positive Lebesgue

density fg on its support B = [0,1]4+1.

(b) M{Lp},B = O(l); K{Lp},B = O(l); and SUPgeg TV{Lp},Supp(g)X[OJ] = O(Sngeg m(supp(g)))
(¢) supgeg TVv, supp(g) = O(Supgeg m(Supp(g))) and Ky, s = O(1), for I =1,2.

Recall § = {b=¥2Rw (52) : w € W} with 8w (u) = e] H'p(u)K (u). For Ry, take H; = {hoTIP_[lg the
H9Y, where HY = {(x,u) € B~ g(x)p(x,u) — g(x)0(x,1d) : g € G}, Tp, is the Rosenblatt transformation
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based on Pp given in Section 3.1. Recall we denote X = [0,1]%. Then,

M}C1,B < MS,XM{L,D},B = O(b_d/2)7
?2
TVse,8 < 22 (TVg,x + Mg x supm(Supp(g))) = O(b*>71),

iB geS
i+ (SA-22)
Kye,5 < (2Vd)4? }3‘1 (M{y},8Kg.x + Mg xK(o},8 + Mg vKy, ) = O(b~?),
B

Ng¢, (0, Mac, 5) = 06471, 0<d<1,

where fp = supyep fe(x) and f 5 = infxen fB(x). Rio (1994, Theorem 1.1) implies that (X,(h) : h €
Hy) = (Vnble] Hy'Sw , : w € W,r € Ry) admits a uniform Gaussian strong approximation with rate

Su(t) = Cpppy (b)Y D e dlogn + Cypop,, (nb) ~Y2(t + dlogn),

where Cq,p 1, 15 a quantity that only depends on d, ¢ and Pp.
For Ry, take Ho = {ho TDZ; : h € HS}, where HS = {(x,u) € B — g(x)roo(x,u) — g(x)0(x,r) : g €
G,r € Ro}. Then

Mgc, = Mg xMipy8 = o2,
—2

TVg¢, < %(TVS,X + Eg,x + Mg, x Sugm(Supp(g))) max{L,} 5,1}t = O(b¥*71),
‘B ge

Ni}fzﬁ(def}Cz,B) = 0(57d71)7 0<d< 1.
Rio (1994, Theorem 1.1) implies that (X, (h) : h € Hy) = (WQIH#SW,T W e W,r € Ry) admits a

Gaussian strong approximation with rate function

1
Sn(t) = Capry (nbd+t1)=1/@d+2) | T dlogn + CapoPp %(t + dlogn),

where Cq o P, 15 a quantity that only depends on d, ¢ and Pp.
The strong approrimation rates stated in Section 4.1 now follow directly from the strong approximation

results above. A

Proof of Example SA.1. Recall § = {b~¥/28,,(5¥) : w € W} with & (u) = ef Hy!'p(u)K (u).

(1) Properties of § Since supy,cyy|Hy'| < 1 and K is continuous with compact support, we know
Mg x = O(bid/z).

By a change of variables, we can show

Eg.x = sup I Hb—d/Qﬁw(XZ’ =) H — 0(b™?).
' wew b
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e (2% )y, (2w B K(A3%)_K u —w B
( T\u)—u’Hoc - = O(b 1)7 and SUPwew SUPy,u/ I [Hu)_u,H(oo ] = O(b 1), hence

And supy,eyy SUDy

Lgx =0~ 271).

Notice that the support of functions in § has uniformly bounded volume, i.e. sup,cgm (Supp(g)) = O(bd).
Together with the rate for Lg x, we know

TVg x < Lgx Supg)m (Supp(g)) = O(b%*l).
g€

Now we will show that M;XS is a VC-type class. We know supy, wew|[Hw — Hw ||/[|W — W'[lc = O(b71).
Since infwew|[Hw|| = (1), we also have supy, wew|[Hg! = Hyl ||/|w — W[ = O(b71). It follows that

_ r_
Lo = sup sup [0 (55 7) — 07200 (5 )|~ ¥l = 007,

To upper bound Kg x, let D C X be a cube with edges of length a parallel to the coordinate axises. Consider
the following two cases: (i) if a < b, then TVgp < Cgb ¥/?7'a? < Cxb~¥2ad~1; (ii) if a > b, then
TVg p < Ck SUPy ey M(SUpp(Rw))Lg v < Crbdb™271 < Opb=4/2p4=1 < Cb~4/2a%1. This shows

Kg x < CKb_d/z.

Consider hyw(-) = VblelHy'r,()K(-), w € W. Then b=¥28,(5¥) = hw (-3%), w € W. Recall that
x; has common law Px with Lebesgue density fx. Then there exists a constant ¢ only depending on
supyex K(x), Lixy.x, 0k = ([ K(X)dx)'/2, fy = sup,cx fx(x), [ = infxex fx(x) that

sup [lhwlle < c,
wew

|frw (W) = hw (V)]

sup sup ————— <,
wewu,veWw Hu_VHOO
h —h
sup sup o (W) ,w,(u)| <
w,w/EW uew HW - W ”00

We can again apply Lemma 7 from Cattaneo et al. (2024) to show that, for all 0 < 6 < 1,
Nx(Mg G, || ]|y .2, 6) < €577 + 1.
(2) Properties of 3§ Let g € G. Take H¢ = {g-p:g € G} and H? = {g-0(-,1d) : g € G}. Then
My, B < Mg, aMipy -

We have shown that all functions in G are Lipschitz and Lg x = O(b~%2~1), Ambrosio et al. (2000, Propo-
sition 3.2 (b)) then implies

TVyce 8 < Moy 8TVg & + Mg x Sug TVie},supp(g)x[0,1]-
gc
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Let C be any cube of side-length a in R%*!. By Ambrosio et al. (2000, Proposition 3.2 (b)),

TVacg.c < Mipy 5TVs.c + Mg, SUD TV (0} supp(g)x[0,11ne < M), 8Kg,xa” + Kig) sMg,xa,
ges

which implies
Kgce, 8 < Mypy 8Kg,x + Kip) 8Mg x-
Similar argument shows
Myep v Mg aMipy s TV o < TVg x + Mg x 3161199 TVio(-1a)},supp(9)
Kger x < Moy, 8Kg x + Mg xKio( 1a)},x-

Then by assumptions supyecg TV (o} supp(g)x(0,1] = O(SuP,cgm(Supp(g))) and sup,cq TV(o(.1d)},Supp(e) =
O(sup,eg m(Supp(g))), we have

Mgco < Mg xMipy,58, TVaco = O(TVg x + Mg x Sugm(Supp(g))),
ge

Kgco < My} 8Kg,x + Mg xKioy 5 + Mg, xKio( 10)},x-

By standard empirical process argument, H¢ is a VC-type class with constant c2?*! and exponent 2d + 2

with respect to envelope function Mg xMy,y,5 over B.

(3) Properties of F{9 The main challenge is that Ry contains non-differentiable indicator. First, we

study properties of G- Ry. By Definition 4,

TVg.®,,8 = SUp SUp sup / / (u < y)div(d)(x, u)dudx
9€S YER peD 44 ([0,1)411) J[0,1]¢ J[0,1]
lHi#ll2lleo <1
<supsup  sup / / (u < y)(div ¢ (x) + ¥’ (u))dudx
25 vk ge(lo,114) $eDa (0 1oy Jro 0’

lII#ll2 Htx)<1 ll%]loo <

= sup sup sup / g(x) div ¢(x)dx + supsup  sup / g(x)dx(v(1) — (0))
95 YER peDy([0,1]%) /[0,1]¢ g€ yeR peD1([0,1]) J/[0,1]4
[Hell2 Hoo<1 %]l oo <1

< TVg,x + 2Eg x,

where Dg,1([0,1]91) denotes the space of infinitely differentiable functions from [0,1]%*! to R4+, and

D4([0,1]¢) is analogously defined. Similar argument as in the proof for properties of H¢ gives
TV5.vy.5 < TVgx + Mg x sup TV, Supp(g) = O(TVg.x + Mg x Sugm(Supp(g)))-
ge ge

It follows that

TVG.R,+6v4,8 = O(TVg x +Eg x + Mg x Sugm(Supp(g)))-
ge
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Consider the change of variables function T' : [0,1]9t! — R9*+! given by T(x,u) = (x,¢(x,u)). Since
Liry,5 < max{L{, 5,1}, Theorem 3.16 from Ambrosio et al. (2000) implies

d—1 d—1
TVsc5.8 < Li7y 5TVS-Rot5.v,8 = O(max{Liyy 5, 1}*7 TVg.0,46.v5.B8)-

By standard empirical process argument, Hg is a VC-type class with constant C;29T! and exponent 2d 4 2

with respect to envelope function Mg x, where C is a constant that does not depend on n.

(4) Effects of Rosenblatt Transformation By Lemma SA.10 with Qg = Px and ¢g = Id, we have

=2 -2
TVg, < TV:HngiBl, TVg, < TV:}cngiBl, Mg, = Mgeo, Mg, = Mgeg. Moreover, H; and Hy are VC-type
classes with constant C229*1 and exponent 2d + 2 with respect to envelope functions Mg xMy,y,5 and Mg x

respectively, with Cy a constant that does not depend on n.

(5) Application of Theorem 1.1 in Rio (1994) We can now apply Theorem 1.1 in Rio (1994) to get

{X,(h) : h € H;1} admits a Gaussian strong approximation with rate function

dﬁa \/MQ,XM{W},B(TVS,X + Mg, x SUP,eg m(Supp(g)))

Ca,p T \/t+dlogn
iB nzd+2
—d+1
Mg aMio) 5 2V/d)?-1
+ Cap\f % min {\/IOg(n)MS,XM{ga},& ()fde(KQ,XM{go},B +Mg 2Ky 8)) ¢ (¢ + dlogn),
< B

where Cy , is a quantity that only depends on d and ¢. And {X,(h) : h € Hy} admits a Gaussian strong

approximation with rate function

—2
df 5 VM. xTVs.x {4} .B Mg, M
Ca 5 vMs 9%, {5 t+dlogn+0d,¢%(t+dlog”>v

s iB nIe

where TVg v {38 = max{L;.} 5, l}dfl(TVS’X + Eg,x + Mg x Sup,eg m(Supp(g))). O

Example SA.2 (Strong Approximation via Theorem 1). Consider the setup of Section 4.1, and assume the

following regularity conditions hold:

(a) (xi,9i) = (xi, p(x4,u;)), where the law of b; = (x;,u;), Pp, has a continuous and positive Lebesgue

density fp on its support B = [0, 1]4+1.

(b) Myyy.8 =0(1), suPgeg TV} Supp(g) = O(supgeg m(Supp(9))), Kipy,8 = O(1), and Ly, g = O(1).
() suDyeq, SUDx yer 1906,7) — B0y, /% = ¥llow < 00 for £ = 1,2

Recall § = {b~ 2Ry (5¥) : w € W} with Rw(u) = e Hy,'p(u)K(u). For Ry, take H, = {h OTI;; the
HS}, where HY = {(x,u) € B — g(x)p(x,u) — g(x)0(x,1d) : g € G}, Tp, is the Rosenblatt transformation
based on Pp given in Section 3.1. Recall we denote X = [0,1]%. Then, Equation (SA-22) holds, and

|

B < (Lg,aMiey,8 + Mg xLipy,5 + MS,XLVyl,X)% _ O(b—d/Q—l)'
LB

Lyc, < Loco

I~
=
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Theorem 1 implies (X, (h) : h € Hy) = (Vnble] H'Sy . : x € [0,1]%,r € Ry) admits a uniform Gaussian

strong approximation with rate

S (t) = Capppy (b)Yt dlogn + Cypp,, (b)) 7YV2(t + dlogn)

where Cq, o P, 15 a quantity that only depends on d, ¢ and Pp.
The strong approximation rate stated in Section 4.1 in the paper now follows directly from the strong

approzimation result above. A

Proof of Example SA.2. Besides the properties given in the proof of Example SA.1, using product
rule we can show Lgce < Lg ¥Mgoy 5 + Mg xLioy s + Mg xlv, v = O(b=%2?~1). By the discussion on
Rosenblatt transformation in Section 3.1, Lg¢, x < L:H(vafB/iB' Take the surrogate measure to be Qg¢, =
Uniform([0, 1]4*1) with ¢g¢, = Id. The result then follows from application of Theorem SA.1 on

Xn(h) = [h(xi, u;) — E[h(x:, u;)]], h e H;.

1

n

Si-

7

This completes the proof. ([

Example SA.3 (Strong Approximation via Theorem 2). Consider the setup of Section 4.1 and assume the

following regularity conditions hold:

(a) x; has Px with Lebesque density fx continuous on its support X, which is a compact subset of R?,

and supye x Blexp(lyi])lxi = x] < 2.

(b) Sup, e, Sy ye 100%,7) — 6y, 1)|/x — ¥llow < 00 for £ =1,2.

Recall that § = {b=¥28x (%) : x € X}. Take the surrogate measure Qg = Px and the normalizing

transformation ¢g = Id. Then, using the notation introduced in the paper,
—2

c1 = dg7

where fy = supyex fx(x), [y =infxex fx(x), and

Mg = O(b™"/%), Eg=00"?), Tvg=00"*"), Lg=00b""*"),
Ng(6) =0(67%1), 0<d<1.

Theorem 2 implies that (R,(g,7) : g € G, € Ry) = (Vnble] H'Sy . : x € [0,1]4,7 € Ry) admits a uniform

Gaussian strong approximation with rate function

-3 —d__

3(d+2)

Sp(t) = (?) Vid(nb®) Y42 (¢ 4 dlogn)®/? + (nb?) Y2 (t + dlogn).
Lx

If, in addition, supyc(o 1je Elexp(|yi|)|[x; = x] < 2, then Theorem 2 implies (Ru(g,7) : g € §,7 € Ry) =
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(Vnble] Hy 'Sy : x € [0,1]%,r € Ry) admits a uniform Gaussian strong approzimation with rate function

-3 _d

2(d+2)

Sn(t) = <f§> Vd(nd®) Y42 (¢ 4 dlogn)®? + (nb?) V2 (t + dlogn).
Ix

The strong approzimation rate stated in Section 4.1 in the paper now follow directly from the strong approz-

imation result above. A

Proof of Example SA.3. The conditions of § can be verified from Part (1) Properties of G in Section SA.1.
It is easy to check that R, satisfies the conditions in Theorem 2 with c¢, =1, dg, = 1 and o = 1. Moreover,
Ro satisfies the conditions in Theorem 2 with cg, some universal constant and dg, = 2 by van der Vaart
and Wellner (2013, Theorem 2.6.7). The results then follow from Theorem 2. O

SA-V  Quasi-Uniform Haar Basis

This section provides the proofs and additional results for Section 5. In Section SA-V.1, we present the
proofs of Theorem 3 and Corollary 5, and verify the claims for Example 2. In Section SA-V.2, we present
the proofs of Theorem 4, Corollary 6 and the Haar Partitioning-based Regression example in Section 5.3,

with the additional results for M,, and R,, processes under generic entropy conditions.

SA-V.1 General Empirical Process
SA-V.1.1 Proof of Theorem 3

First, we make a reduction through the surrogate measure Qg¢ (Definition 2). Denote E5¢ = X N Supp(H).
The definition of surrogate measure implies Px|e,, = Qg¢le,,. We use a coupling argument similar to
the proof of Theorem 1. Define a probability measure O on (R? x R? B(R??)) such that for all A €
B(R??), Olgyxes (A) = Px (H1.g(AN{(x,%) : x € E3c})), Oleyexee, (A) = Oleg xey (A) = 0, Olge xec (A) =
f£5{ Px(AY N &S )dQ(y) where AY = {x € R? : (x,y) € A}, where we take I1.4(F) = {x € R? : (x,y) €
E for some y € R} for any E € B(R?9).

The definition of @ implies the marginals are IP x and Q4¢, respectively. By Skorohod embedding (Dudley,

2014, Lemma 3.35), on a possibly enlarged probability space, there exists (z; : 1 < i < n) i.i.d. with law
Q¢ such that (x;,z;) has joint law O for each 1 < i < n. In particular, when x; € &5, z; = x;; and

O({x; € &5} A {z; € E5:}) = 0. Moreover, since Qg¢(Supp(3) \ &) = 0, and the definition of @ on E5¢ x Eg¢
as a product measure between P x and Qg¢, we know O({x; € &5} A {z; € Supp(H)°}) = 0. This allows for

the reduction to z;-based processes, since for 1 < i < n, almost surely

h(x;) = h(x;)L(x; € E3¢) +0- L(x; € E5)

(xi)
= h(z;)1(z; € Eg¢) + 0 - 1(z; € Supp(H)©)
= N(z:)1(z; € E3¢) + h(z:) - 1(z; € Supp(H)©)
= h(zi)1(z; € Ex¢) + (zi) - Lz € E5)
— h(z;), Vhed,
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where the first line is due to h = 0 on Supp(FH)°, the second line is by O({x; € £} A{z; € Supp(H)°}) =0,
the third line is due to h = 0 on Supp(H)¢, and the fourth line by Qg¢(Supp(H) \ X') = 0. Almost surely,

1 n n
Xall) = = 3 [h6x) ~ B = = Y- i) - Elh(a]).  vhe 5
i=1 j
Hence we reduce the problem to coupling for (X, (k) : h € H), with the process defined by
~ 1 <&
Xn(h) = — h(z;) — E[h(z;)]], h e %,
with (z; : 1 <4 < n)iid ~ Qgc. Suppose 25 < L < 2K+1 For each [ € {1,2,...,d}, we can divide at most

2% cells into two intervals of equal measure under Qg such that we get a new partition of Qg = Uo<j<ar+1 4]

and satisfies

maXO§l<2K+1 Q}C(AE)
min0§l<2K+1 @}C(A;)

< 2p.

By construction, there exists an axis-aligned quasi-dyadic expansion Ax1(Quc,2p) = {Cjr : 0 < j <
K +1,0 <k < 2K+177} such that

0,k U > + = 12V 3
{Cor:0< k<28 ={A]:0< 1< 2K}

and J C Span{la; : 0 < j < L} C Span{lc,, : 0 <k < 2K+11 Now we consider the term Cg¢ from
Lemma SA.5. Let h € H. By definition of S and the step of splitting each cell into at most two, there exists
i, ,las € {0, ,2KF1 — 1} such that h = Zzil cq1(A],) where cq| < Mpy. Fix (j,k). Let (I, m) be an
index such that C;,,, C C;. Since each A;q belongs to at most one C;_1 x, 5lﬁm(]l(A;q)) =0if A;q is not
contained in €y, and B,m (1(A] ) = 2- 1+ if Aj, € Cip. Hence

25 28
S BT <28Y° YT (B(1(A,)? <28 227 < 452327
m:Cpm CCj ke q=1m:C; ;n CCj & g=1

It follows that

Coyc=supmin{ sup |y (i —0G—1+1277 Y BE(h)| M (K +1) 3 SM5 min{K, S%}.
hed (j’k) 1<j m:szmng,k/

Then apply Lemma SA.5, we get there exists a mean-zero Gaussian process fo with the same covariance
structure as X, such that with probability at least 1 — 2exp(—t) — 2K+ exp(—C,n27K-1),

~ ~ 2K +2MqEq¢
X, — Z¥5 < mi C\/t log Noc (6, M
1%, = Z2lc < i { o) B 0 4 o Noc (B.100)

3 2
+ CN%M%@ + log Nac (5, Mgc)) + Fa(t, 5)},

where K <log,(L), and C, is a constant that only depends on p. The conclusion then follows from taking

(Zp(h) : h € H) = (Zp(h) : h € H) and the fact that (X,,(h) : h € H) = (X, (h) : b € H) almost surely. O
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SA-V.1.2 Proof of Corollary 5

Take t = C'logn with C > 1 and 6 = n~2 in Theorem 3. O

SA-V.1.3 Example 2: Histogram Density Estimation

Recall for w € W, we define

hw()=VL Y LTmeA)L(wed), ucX,weWw,

0<l<P
and H = {hw(-) : w € W}. Then H C Span(la, : 0 <[ < P). In particular, for every u € X and w € W, at
most one of 1 (u € A;) 1 (x € A;) will be non-zero. Hence My ga = L/2. Each function in 3 can be written
as c1(4A;) for some ! < L, which implies we can take Sg¢c = 1.

If W = X, since we assume the partition is quasi-uniform of Qg = X with Q4 = Px, we know

maxo<i<p Px (4;) < ch’l for some constant ¢, > 0 that only depends on p, which implies
Eg¢ < Px (A) -Mgc < ¢, L7WVL < ¢,L71/?
w_gﬁjx(ﬂ 5 <c, LWL <, ,

where in this case P = L.
IfW C &, take P to be the unique number in Z such that P <
consider the following two cases. Set L = P + P.

Px ((Vo<i<pAr))
l’nings[<p ]Px(Al)

< ]DDJrl. Then we

Case 1: P > 1. The construction in Example 2 implies for every P <[ < L,

1 < Qqc(Ay)

< — <14+ Pl<2
ming<x<p Px(Ag)

In particular, ming<g<r Px (4;) = ming<r<p P x(4;). Combined with quasi-uniformity of {A; : 0 <1 < P},

we have

maxo<i<r Px(Ag)
mino<p<r Px(Ag)

< max{p, 2}.

Since P x agrees with Qg¢ on Up<i<pA;, and Up<j<rA; € X USupp(H)©, Q¢ is a surrogate measure of P x
with respect to H. And we verified that {A; : 0 <[ < L} is a quasi-uniform partition of Qg¢ with respect to

Q.
Case 2: P = 0. Then for any 0 <[ < P, there exists Pl € N such that

Px(A))

< P +1.
Py ((Uoci<pA)e)

P <

Taking arbitrary Ap with Px(Ap) = Px ((Uo<i<pA;)), and for 0 <[ < P break A; into P pieces of equal
measure by Py, we can show by similar arguments as above that the refined cells with the additional Ap
together forms a quasi-uniform partition of X with respect to P x. Suppose also in this case, the number of
cells in the quasi-uniform partition is L after refinement.

In both cases, we know maxo<;< Px (4;) < ch_1 for some constant c, that only depends on p, which
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implies

Eg-(j S max IPX (Al) . Mg{ S CpL_l\/E S CpL_1/2.
0<i<P

We can then apply Theorem 3 to get the stated rates. O

SA-V.2 Residual-Based (and Multiplicative Separable) Empirical Process

For € (0,1], define
N(5) = Ng(6/V/2,Mg )N (5/V/2, M)
and
J(8) = V2J(S,Mg,6/V2) + V2J(R, Mx,5/V2).

To simplify notation, the parameters of § and G- V& (Definitions 4 to 12, SA.1, SA.2) are taken with
C = Qg, and the index Qg is omitted where there is no ambiguity; the parameters of R (Definitions 4 to 12)
are taken with C = ), and the index ) is omitted where there is no ambiguity; and the parameters of G x R
(Definitions 4 to 12, SA.3, SA.4) are taken with C = Qg x Y, and the index Qg x ) is omitted where there

is no ambiguity.

Theorem SA.3. Suppose (z; = (x;,y;) : 1 < i <n) arei.i.d. random vectors taking values in (R¥1, B(RI+1)),
where x; has distribution Px supported on X C R%, y; has distribution Py supported on Y C R, and the

following conditions hold.
(i) G C Span{la, : 0 <1 < L} is a class of Haar functions on (R, B(R?),P ).

(i) There exists a surrogate measure Qg for Px with respect to G such that {A; : 0 <1 < L} forms a

quasi-uniform partition of Qg with respect to Qg:

maxo<i<r, Qg(4A;)
ming<;<z Qg(4A)

Qg C Uo<i<r A and < p < oo.

i) G is a VC-type class with envelope function Mg over Qg with cg > e and dg > 1.
9 S S S
(iv) R is a real-valued pointwise measurable class of functions on (R, B(R), Py).

(v) R is a VC-type class with envelope Mgy over Y with cxy > e and dgy > 1, where My y(y) +
PTVg iyl 1y < V(L + [y|*) for ally € Y, for some v >0, and for some a > 0. Furthermore, if a > 0,
then sup.e x Blexp(il)lx: = x] < 2

Then, on a possibly enlarged probability space, there exists mean-zero Gaussian processes (ZS(g,r) : g €

G,r € R) with almost sure continuous trajectory such that:
o E[Gn(91,71)Gn(g2,72)] = E[ZF (91,71)Z7 (92, 72)] for all (g1,71), (g2,72) € G x R, and

o P[||G,, — Z§||gxr > C1Cy.aCpminge(o.1)(HS (¢, 6) + FG (2, 0))] < Coe™t + Le= %™/ L for all t > 0,
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where Cy and Cy are universal constants, Cy o = vmax{l + (2a)%,1 + (4a)®}, C, is a constant that only

depends on p, and

LMgE atl
HEL(t,6) = \/ === (¢t +10g N5 (6/2) + log N (§/2) + logy N*)**
+\/min{L+N*,S%}

n

Mg (log n)® (t + log Ng (6/2) + log Nax (6/2) + logy N*)**,

and recall

a/2 cJ?
(logn)*/“Mg J=(6) +Mii\/i+(10gn)aM79ta,

FO(t,8) = J(6)Mg + = 7 T

with N* = [logQ (%)_‘ , Sg = SUPycg Zlel 1(Supp(g) N A; # 0).

Proof of Theorem SA.3. First, we make a reduction through the surrogate measure and normalizing

zs = Qg

transformation. Let Zg = X N Supp(G). Definition 2 implies P x
measure @ on (R% x RY, B(R2?)) such that for all A € B(R2?)

z4- Define a joint probability

@(A n (Zg X Zg)) = Px(led(A n {(X, X) X € Zg})),
O(AN(Zg x 2§)) = O(AN (2§ x Zg)) =0,

O(AN (2§ x Z5)) = /Z Px(4¥ 1 25)dQs (y),

c
S

where for A € B(R?9), T1.4(A) = {x € R%: (x,y) € A for some y € R?}, AY = {x e R?: (x,y) € A}.

Then we can check that (i) the marginals of O are Px and Qg, respectively; (ii) O]z, xriurixz, I8
supported on {(x,x) : x € Zg}. By Skorohod embedding (Dudley, 2014, Lemma 3.35), on a possibly
enlarged probability space, there exists a u;,1 < i < n i.i.d. ~ Qg such that (x;,u;) has joint law Q. In
particular, if x; € Zg, then x; = w; if x; € Z§, then u; € Z§, and since Qg C X' U (Nyeg Supp(9)©),
u; € Ngeg Supp(g)¢. Thus for any g € G, r € R,

Gulg,r) = % S [(ei)r(ws) — Blg(ei)r(w)]] = % S [g(ui)r(ys) — Elg(u)r)]],
=1 i=1

where the second equality follows because x; = u; on the event {x; € Zg}, and g(x;) = g(u;) =0 (a.s.) on

the event {x; € Zg} Hence, we work with an equivalent empirical process

Gnlgr) = % S [o(w)rw) - Elgu)r()]],  geGreR.
=1

In particular (én(g,r) g€ 9,reR) = (Gn(g,r): 9 €G,r€R). Hence w.lo.g. assume Qg = Px and we
work with the (G, (g,7): g € G, € R) process.
Suppose 2M < [ < 2M+1 For each I € {1,2,...,d}, we can divide at most 2 cells into two intervals of

equal measure under IPx such that we get a new partition of X = Ly<;com+1A] and satisfies

maxg<;<onm+1 Px (A])

< 2p.
min0§l<2M+1 ]PX(A;) =P
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By construction, for each N € N, there exists an axis-aligned quasi-dyadic expansion Apr+1,nv(P2z,2p) =
{Cik:0<j<M+1+N,0<k<2MFIHTN=I} guch that

{Xop:0< k<2t ={A]:0< <2V}
and § C Span{la, : 0 < j < J} C Span{ly,, : 0 <k < 2M¥1}. Hence

Mo(g,7) =T (g,7) = Z Z L(Xop X Vjrm)glae, Elr(yi)lxi € Xou,yi € Vitml- (SA-23)

0<I<2K+1 0<m<2N

Again, consider (§ x R)s which is a §||[MgMzx|lp, of § x R of cardinality no greater than Ngyx (4, MgMz),
0 < 0 < 1. The SA error for projected process on the §-net is given by Lemma SA.18: For all ¢ > 0,

N2a+19M+1g .M C
g HHlGn _H1Z7?||(9><93)5 > Cv,a\/ n g 9t+ Cv,av wt}

< 2N9ng(5, MgMgR)eit + oM exp (prn27M) .

Now we find an upper bound for Cp, (gxx),a74n- Consider the following two cases.

Case 1: j > N Let g € G,r € R. Fix (j, k). Let (j,m') be an index such that Cj v C Cjp. If
N < j' < M + N, then by definition of S and the step of splitting each cell into at most two, there exists
li, - ,lag € {0,--- ,2M+1 — 1} with possible duplication such that g = Zjil cqL(A],) where [cq| < Mgy
Since each A belongs to at most one Xjr_n k, Vjrm (1(A] ),7) = 0if A] is not contained in Xjr_n v and
i m (L(AL),7)] < Cy.o27 L if A}, € Xy N where Cy o = v(1+4(2y/a)®). For j" such that N < j" < j,

25 25
~ 2 ~ 2 — _
Yo Fralen) 28> >0 (e (L(A), 7)) <2028 2o <4C?  S7Mg2
m’:Cj/,m/QCM g=1 m’:Cj/YmrQCj,k q=1
For 0 < j' <,
> rwlen)
k/:Cj/,k/gcj,k
= Z Z IElg(xi)[x: € Xoul| - [E[r(yi)|xi € Xo1,yi € Vij—1,2m]

1: X0, 1 CXj— Nk 0<m <25’
—E[r(yi)|xi € Xou,vi € Vij—1,2m+1)]

<Coa Y. [Elg(xi)lxi € Xo]INY < Cy o2 NMgN®.
1:X0,1CXj Nk

Since [31,m(g,7)| S Co.aMg N for all (I,m), 3 Zpc,  cc, 32w (g,m) < CF 27" NME N2, Putting together

SNG-NG-3+02 3T F(g,r) S C2,8M + C2 MEN

J'<j k':Cj/)k/ngyk
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Case 2: | < N Hence for any 0 < j' < j, we have
Z i wr (g,7)| = [Elg(x:)[xi € Xo,1]| Z IE[r(yi)|xi € Xo,9i € Vij-1,2m
k':Cj/)k/ng,k m':ylyj/,m/ gyl,j,m

—Elr(y:)|xi € Xou,vi € Vij—1,2m+1]]
S Cv7a|]E[g(Xi)|Xi S XOJ]lNa S Cv,aMSNa-

It follows that

DG D2 Y Fpwl(gr)] < Cualig N

J'<J k’:Cj/‘k/gcj,k

It follows that

Cr, (gx®),M+N = SUp min ¢ sup Z(j —D(—1+1)2" Z Aim(B) | M2 (gxemy (M + N)
hedt k) | 1<) miCrm CCj 1

< CZ MZN**min{M + N, S* +1}.

By the characterization of projections in Equation SA-23, we know the mis-specification error is zero,
that is, 11 G, (g9,7) = DoGyr(g,7) and 1 ZS (g, 1) = NoGr(g, 7). Since g is already piecewise-constant on Xp;’s,
the Lo-projection error is solely contributed from r. Consider B = o ({]]‘Co,k :0<k< 2M+N+1}). Denote

rr = T‘[_Tl/aﬂ_l/a]. Then

IE [g(xi)r- () |B] — g(xi)r+(yi)| < Mg [r+(yi) — Elr-(y:)|B]] -

Then by the same argument as in the proof for Lemma SA.20 and the argument for truncation error in the
proof for Lemma SA.21, for all t > N,

M
P (||Gn — I Gall(gxn)s + 125 = ZS |(gxmy, = N 2*NM%t“+% + \/%t”l) < ANgyx (5, Mg Mg)ne ",
(SA-24)

Then apply Lemma SA.18, we get there exists a mean-zero Gaussian process Z& with the same covariance
structure as G,, such that with probability at least 1 — 2exp(—t) — 2™+ exp(—C,n2=M-1),

. 2M+2ME 1
G =28 sscn < €y i {3250 4 g i M)+

CH1(9><iR),M+N(

+ t+logN9XR(6aM9MR))a+1 +Fn(t75)}’

where C, > 0 is a constant that only depends on p. O

The following theorem presents a generalization of Theorem 4 in the paper. To simplify notation, the
parameters of § and G- Vg (Definitions 4 to 12, SA.1, SA.2) are taken with C = Qg, and the index Qg is
omitted where there is no ambiguity; the parameters of R (Definitions 4 to 12) are taken with C = Y, and

the index ) is omitted where there is no ambiguity; and the parameters of G x R (Definitions 4 to 12, SA.3,
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SA.4) are taken with C = Qg x ), and the index Qg x ) is omitted where there is no ambiguity.

Theorem SA.4. Suppose (z; = (x;,y;) : 1 < i <n) arei.i.d. random vectors taking values in (R¥1, B(RI+1)),
where x; has distribution Px supported on X C R%, y; has distribution Py supported on Y C R, and the

following conditions hold.
(i) G C Span{la, : 0 <1 < L} is a class of Haar functions on (R, B(R?),Px).

(i) There exists a surrogate measure Qg for Px with respect to G such that {A; : 0 <1 < L} forms a
quasi-uniform partition of Qg with respect to Qg:

maxo<i<r Qg (L)

Qg C Uo<i<r Ay and -
- m1no§1<L Qg(Al)

< p < o0.

i) G is a VC-type class with envelope function Mg over Qg with cg > e and dg > 1.
S S S S
(iv) R is a real-valued pointwise measurable class of functions on (R, B(R),Py).

(v) R is a VC-type class with envelope Mgy over Y with cxy > e and dgy > 1, where My y(y) +
PTVg iyl 1y < V(L + [y|*) for ally € Y, for some v >0, and for some a > 0. Furthermore, if a > 0,
then sup,c vy Elexp(|y;|)|x; = x] < 2.

Then, on a possibly enlarged probability space, there exists mean-zero Gaussian processes (ZI(g,r) : g €

G,r € R) with almost sure continuous trajectory such that:
o E[R,(g1,71)Ru(g2,72)] = B[Z}(91,71) Z}} (g2, 72)] for all (g1,71),(g2,72) € G x R, and

o P|R, — ZE|gxx > C1Cy,aCpminse o1y (HE(2, 6) + FE(t,8)) + W, (t))] < Cae™ + Le= ™ E for all
t>0,

where Cy and Cy are universal constants, Cy o = vmax{l + (2a)%,1 + (4a)®}, C, is a constant that only

depends on p,

LMcE 1
HE(t,6) = ,/% (t + logNg(6/2) + log N (6/2) + logy N*)* 2

Tg(log n)® (t +logNg (5/2) + log N (5/2) + logy N*)*
Wi (1) = 1(1R] > 1) /MgEg ( e | Al Lo, /2 F 10 N5(6/2) + log N (6/2) + log, N*.

with Vg = {0(-,7) : x = E[r(y;)|x; = x|,x € X,r € R} and N* = [logQ(QLE( )]

Proof of Theorem SA.4. By the same reduction through surrogate measure, we can w.l.o.g. assume
Qg = Px. Suppose 2M < J < 2M+1 By the same cell divisions in the proof for Theorem SA.3, there exists

a quasi-dyadic expansion Cps41,5 such that
Span ({1(A;): 0 < j < J}) C Span ({1(Xpy) : 0 <1< 2M¥1}).
By definition, the projection error can be decomposed as

Rn(g,T) - Han(g,T) = Gn(gvr) - HlGn(g’T) + Xn(g9(~,7‘)) - HOXn(ge('7T))7
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where Iy denotes the Lo-projection from La(R%) to Span({1(&p;) : 0 <1 < 2M+1}). For any g € G, since
g € Span({1(Xp,) : 0 <1 < 2M+1}),

E [(X.(90(-,7)) — X, (g6 = > Px(A))¢%|a,BE[(0(xi,x) — Tof(xi,%))%[x; € A;]
0<j<J

< Elg(x:)*] max [|4; 5L,

< 2 L3 .
< MgEg max || A5 Ly,
Then X,,(g0(-,7)) — X, (g 0(-,7)) is bounded through Bernstein inequality and union bound, for all ¢ > 0,

4 M
P (12 (0.7)) ~ Mo X (0.7 lls30s > 5SS g I v VE + 2Cu0 T2t ) < 2exp(-0)

vn

Combining Lemma SA.18 and Equation (SA-24), and the same calculation as in the proof for Theo-
rem SA.2 to get Cpy(g,x) S (Cv,aMgN®)?, for all ¢ > N,, with probability at least 1 — 2Ng % (5, Mg Mgz )e ™" —
2M exp(—C,n2~—M),

4 ol
IRy — ZF |l (gxm)s < 3 VHisEg max 1A l[ooLvy VE + Coa Ny 2

JESMS \[ +1
t+ 5, a—to‘
f
The rest follows from the error for fluctuation off the d-net given in Lemma SA.16. The “bias” term
VMgEg maxo<;j< 7|/ ALy, vVt comes from X, (g0(-,7)) — o X, (g0(-,7)) in the decomposition.
In the special case that we have a singleton R = {r}, we can get rid of the "bias” term by redefining &; =
sign(r(y:) — Er (vi)|x:])|r(yi) — Blr(y:) |x:]|/*. Take 7(u) = sign(u)|u|®, v € R. In particular, E[F(e;)|x;] = 0

almost surely. Either r is bounded and we can take o = 0, which makes 7 also bounded; or o > 0 and

supycx Elexp(Jyi|)|xi = x| < 2 and |r(u)] < 1+ |u|*, which implies sup, ¢y Elexp(|e;|)|x; = x] < 2 and 7
has polynomial growth. Then for any g € G,

Rulg.r) = 7= 3 gloe)7(e0) ~ Elg(x)T(=0)] = G(0.7)

where G, denotes the empirical process based on random sample ((x;,&;) : 1 < ¢ < n). The result then

follows from Theorem SA.3. By similar arguments as in the proof of Theorem SA.4,

Cn(g{7}) = Sup minq sup Z(J — G~ +1)20 Z B?’,k/(f) FIZ (M +N) o
f€H1(97{F}) (J!k) i’ <g k’:C.r .1 CCj
7'<7 3/, k! =%5.k

but Ej,k(f) vanishes for all j > N and we obtain similarly Cp, (g (7}) S (Cv,aMgN®)2. O

SA-V.2.1 Proof of Theorem 4

By standard empirical process arguments, Ng(§) < cgd™% and Ng(§) < cxd~4* for § € (0,1], and the result
follows by Lemma SA 4. O
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SA-V.2.2 Proof of Corollary 6

Take t = C'logn with C > 1 in Theorem 4. O

SA-V.3 Example: Haar Partitioning-based Regression
The following lemma gives precise regularity conditions for the example in Section 5.3 of the paper.

Lemma SA.31 (Haar Basis Regression Estimators). Consider the setup in Ezample 3, and assume in
addition that sup,.cq, Supy yex [0(%,7) = 0(y,7)|/[x = ylloo < 00 for £ =1,2.
Iflog(nL)L/n — 0, then

sup sup |p(w)—r((§_1 - Q N)T,| = O(log(nL)L/n) a.s., and
reRo wew

]Eé ) s Ty n_e 5 =0 A 0o .S., l:1,2
sup sup [BO(w, r)fxr, - xa] = 0(w, )| = O poax [|Adll) a5

If, in addition, sup,cy Elexp(|y;|)|x; = x| < 2, then

swp sup [p(w)"(Q! = QT | = Oflog(nL)L/n + (logn)(log(nL)L/n)*/%) a5

reRa we

Proof of Lemma SA.31. We use the notation Py (A;) = P(x; € A;), and Px (A;) =n~ ' S0 1(x; € Ay),
0<I<L.

Non-linearity Errors: For / =1,2, w € W,r € Ry, we have

p(w) (It —JHT, = E:jMwezMﬂL‘ﬁﬁ&Aﬂ‘l—L‘WﬁﬂAQ‘H%E:EQ%géQq@L

0<I<L i=1

where €;(r) = r(y;) — Elr(y;)|x;]. By maximal inequality for sub-Gaussian random variables (van der Vaart
and Wellner, 2013, Lemma 2.2.2), maxo<i<r, |LP x (A)) —LPx(A))| =0,/ %) a.s.. Since {A;: 0< 1<
L} is a quasi-uniform partition of X with respect to Px, ming<;<r, LIPx (4A;) = Q(1). Hence

max IL7'Px(A) " = L'Px(A) Y = O(/(n/L)Tlog(nL)), a.s.. (SA-25)
Take Hy = {(w,y) — L1(w € A))(r(y) —0(w,r)) : 0 <1< L,r € Ry}, for £ =1,2. In particular, if we take
G={L1(- € A}):0<1< L}, then G is a VC-type class w.r.p. constant envelope L with constant cg = L
and exponent dg = 1. In the main text, we explained that both R; and Re are VC-type class with cx, = 1,
dg, = 1 and cg, some universal constant, dg, = 2. By standard empirical process arguments, both J,’s
are VC-type class with cs¢, = L, dge, = 1, ca¢, = O(L), dge, = 2. Since sup,.cq, maxo<i<r, |2 >0 L1(x; €
Ap)ei(r)| = suppeqe, [Enlh(xi,v:)] — E[h(xi,y:)]| is the suprema of empirical process, by Corollary 5.1 in
Chernozhukov et al. (2014),

1< log(nL) log(nL)
- L1(x; € A)e; ‘ = 1 -8
ngujg 0<io L ‘n 1:21 (i € AJe(r) O( n/L +log(n) n/L s

lo;gl(/nLL) )

(SA-26)

1 n
3 — Ll(x; € A i ‘ =0
sup max, ‘n ; (xi € Ay)ei(r) (
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Putting together Equations (SA-25), (SA-26), we have

- 000 1 10 oo 502) ),

Smoothing Bias: Since we have assumed that sup,.c», supy yer 11X, 7)—p(y, 7)|/[|x=y|loo < 00, £ =1,2,

sup sup [p(w)" (@~ — 37T,
weW reRy

> 16ce A ERlg e SIEL )

0<I<L i=1

sup sup [E[u(x, r)[x1, -, xp] — p(x,7)| =
xXEX reR,;

= O(max [|Arllsc)-

86



References

Adamczak, R. (2008). “A tail inequality for suprema of unbounded empirical processes with applications to
Markov chains,” Electronic Journal of Probability, 13(34), 1000-1034.

Ambrosio, L., Fusco, N., and Pallara, D. (2000). Functions of bounded variation and free discontinuity

problems: Oxford university press.

Bretagnolle, J. and Massart, P. (1989). “Hungarian Constructions from the Nonasymptotic Viewpoint,”
Annals of Probability, 17(1), 239-256.

Brown, L. D., Cai, T. T., and Zhou, H. H. (2010). “Nonparametric regression in exponential families,”
Annals of Statistics, 38(4), 2005-2046.

Cattaneo, M. D., Chandak, R., Jansson, M., and Ma, X. (2024). “Local Polynomial Conditional Density
Estimators,” Bernoulli, 30(4), 3193-3223.

Chernozhukov, V., Chetverikov, D., and Kato, K. (2014). “Gaussian approximation of suprema of empirical
processes,” Annals of Statistics, 42(4), 1564-1597.

Dudley, R. M. (2014). Uniform central limit theorems, 142: Cambridge university press.

Giné, E. and Nickl, R. (2016). Mathematical Foundations of Infinite-dimensional Statistical Models: Cam-
bridge University Press.

Rio, E. (1994). “Local Invariance Principles and Their Application to Density Estimation,” Probability
Theory and Related Fields, 98(1), 21-45.

Sakhanenko, A. (1996). “Estimates for the accuracy of coupling in the central limit theorem,” Siberian
Mathematical Journal, 37(4), 811-823.

van der Vaart, A. and Wellner, J. (2013). Weak convergence and empirical processes: with applications to

statistics: Springer Science & Business Media.

87



	Additional Notation
	Additional Main Definitions

	General Empirical Process
	Preliminary Technical Results
	Cells Expansions
	Projection onto Piecewise Constant Functions
	Strong Approximation Constructions
	Meshing Error
	Strong Approximation Errors
	Projection Error

	Surrogate Measure and Normalizing Transformation
	General Result: Proof of Theorem 1
	Additional Results
	Proofs of Corollaries 1, 2, and 3
	Example 1: Kernel Density Estimation
	Surrogate Measure and Normalizing Transformation
	Class H and Its Corresponding Constants


	Multiplicative-Separable Empirical Process
	Preliminary Technical Results
	Cells Expansions
	Projection onto Piecewise Constant Functions
	Strong Approximation Construction
	Meshing Error
	Strong Approximation Errors
	Projection Error

	General Result
	Additional Results

	Residual-Based Empirical Processes
	Preliminary Technical Results
	Projection onto Piecewise Constant Functions
	Strong Approximation Constructions
	Meshing Error
	Strong Approximation Errors
	Projection Error

	General Result
	Proof of Theorem 2
	Proof of Corollary 4
	Example: Local Polynomial Estimators

	Quasi-Uniform Haar Basis
	General Empirical Process
	Proof of Theorem 3
	Proof of Corollary 5
	Example 2: Histogram Density Estimation

	Residual-Based (and Multiplicative Separable) Empirical Process
	Proof of Theorem 4
	Proof of Corollary 6

	Example: Haar Partitioning-based Regression


