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The regression discontinuity (RD) design is a research strategy employed to study the causal

effect of a treatment (e.g., intervention or policy) on an outcome of interest using observational

data. The design was first introduced by Thistlethwaite and Campbell (1960) to analyze the effect

of public recognition of students’ achievement on their attitudes towards education, where the

receipt of public recognition was given only to students who scored above a cutoff on a qualifying

test. RD designs identify causal effects by exploiting the abrupt change in treatment assignment

induced by a discontinuous allocation rule; for example, in the original application, only students

who scored above a cutoff on a qualifying test were eligible to receive the treatment. Cattaneo and

Titiunik (2022) give a comprehensive review of the RD literature, and recent practical introductions

to RD methods can be found in Cattaneo, Idrobo and Titiunik (2020, 2024) and Cattaneo, Keele

and Titiunik (2023). Popular general-purpose statistical software implementing RD methods is

available at https://rdpackages.github.io/.

The RD design belongs to the class of non-experimental methods (e.g., selection-on-observables,

instrumental variables, difference-in-differences), but it is often referred to as a quasi-experimental

method because it can resemble a randomized control experiment. RD designs are also often

described as “local” randomized experiments (Lee and Lemieux, 2010), and thus viewed as natural

experiments (Titiunik, 2021). Due to its popularity and wide applicability, there are many variants

of the RD design, but at their core they all share the same three distinctive elements: a score, a

cutoff, and a discontinuous (as a function of the score) treatment assignment rule that relates the

score and cutoff. These elements differentiate RD designs from all other non-experimental methods:

each unit in the study receives a score, and the treatment is only offered to those units whose scores

are equal to or larger than the cutoff, but not offered to the units whose scores are smaller than

the cutoff. Mathematically, suppose there are n units in the study, indexed by i = 1, 2, . . . , n, and

denote the score of each unit by Xi, then the RD treatment assignment rule is Ti = 1(Xi ≥ c),

where 1(A) is the indicator function that is equal to one when A is true and zero otherwise, and c

is the known (to the researcher at least) fixed cutoff.
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(a) Continuity-Based Framework
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(b) Local Randomization Framework

Figure 1: Schematic Illustration of RD design

Note: µ1(x) and µ0(x) are the average outcomes under treatment and control, respectively, seen as functions of the

score. Dashed lines represent unobserved outcomes, solid lines represent observed outcomes.

In most applications, the score is correlated with the outcome of interest, which means that

treated and control units are systematically different: a comparison of all units below the cutoff

(control units) to all units above the cutoff (treated units) cannot identify a causal treatment

effect. For example, in the original application, students with high test scores may have more

optimistic attitudes towards education regardless of whether they receive the treatment. The RD

design works around this selection problem by leveraging the identifying assumption that any

systematic differences between treated and control units in the absence of the treatment disappear

once attention is restricted to units whose scores are “near” the cutoff: a causal treatment effect

can be recovered by comparing (i) the outcomes of treated units with scores barely above the cutoff

to (ii) the outcomes of control units with scores barely below the cutoff. While units with extreme

values of the score will be systematically different, the RD design only focuses on units whose scores

are sufficiently close to the cutoff determining treatment assignment so that they are comparable

with each other in all respects, except for the fact that those with score barely above the cutoff are

assigned to treatment while those with score barely below the cutoff are not.

The most basic RD design is called the Sharp RD design, and corresponds to the case when

compliance with the treatment assignment is perfect: all units assigned to the treatment condition

actually receive the treatment, and no units assigned to the control condition receive the treatment.

In this case, the defining feature of the design is that the probability of receiving the treatment

jumps from exactly zero to exactly one at the cutoff. There are two ways to formalize the assumption

of comparability near the cutoff in the Sharp RD design. In the continuity-based approach, first

introduced by Hahn, Todd and van der Klaauw (2001), comparability takes the form of continuity

at the cutoff, and relates to the idea of extrapolation using information from units whose scores
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are located near the cutoff. The continuity-based approach is illustrated in Figure 1: the average

outcomes under treatment and control, seen as functions of the score and represented by µ1(x)

and µ0(x), respectively, are assumed to be continuous on the score at the cutoff. This assumption

implies that the average outcome for units with score values near the cutoff would have been roughly

the same in the absence of the treatment, regardless of whether their scores were below or above

the cutoff. Thus, under these continuity assumptions, a causal average effect of the treatment at

the cutoff, represented by τ in Figure 1(a), is identifiable as the vertical difference between the

average treated outcome at the cutoff and the average control outcome at the cutoff.

In the local randomization approach, the comparability of units near the cutoff is formalized by

assuming that, for units with scores near the cutoff, the assignment of the treatment resembles the

assignment that one would have seen in a randomized experiment that had assigned the treatment

randomly among the subpopulation of units with scores near the cutoff. This analogy between the

RD design and a randomized experiment was first noted by Thistlethwaite and Campbell (1960),

then heuristically discussed by Lee (2008) and Lee and Lemieux (2010), and later formalized by

Cattaneo, Frandsen and Titiunik (2015) and Cattaneo, Titiunik and Vazquez-Bare (2017). The

local randomization assumption is illustrated in Figure 1(b), where the average outcome functions

under treatment (µ1(x)) and control (µ0(x)) become constant for all values of the score in the

window [c−w, c+w] around the cutoff, where w is the half-width of the so-called local randomization

window. The flatness of both average outcomes indicates that there is no relationship between

these outcomes and the score inside the window, and therefore units with scores above the cutoff

in this window are comparable to units with scores below the cutoff in this window. The local

randomization causal RD treatment effect is the vertical distance between the average outcome

under treatment and the average outcome under control inside the window, represented by θ in

Figure 1(b).

Methods for estimation and inference differ depending on whether the continuity-based ap-

proach or the local randomization approach is adopted. In the continuity-based approach, the

most common implementation uses local polynomial regression methods (Fan and Gijbels, 1996).

This non-parametric method approximates the two functions µ1(x) and µ0(x) in Figure 1(a) sepa-

rately for observations above and below the cutoff, fitting in each case a least squares regression of

the observed outcome on a polynomial of the score of order p, and keeping the intercept of each fit.

The point estimate is obtained by taking the difference between these two intercepts. The band-

width that determines which observations are included in the fit can be chosen in different ways,

depending on the optimality criterion used (Calonico, Cattaneo and Farrell, 2020). If the goal is to

obtain an optimal point estimator, a common method is to choose the value of h that minimizes

an approximation to the mean squared error (MSE) of the local polynomial point estimator. The

MSE-optimal bandwidth balances the variance-bias trade-off: as h shrinks, the error or bias in

the polynomial approximation decreases, but the variance increases because fewer observations are

included, and vice versa when h increases. Alternatively, if the goal is to obtain optimal inference,

the bandwidth can be chosen to minimize the coverage error of the confidence intervals based on
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the RD point estimator. See Cattaneo and Vazquez-Bare (2016) for more discussion on tuning

parameter selection in RD designs.

The construction of confidence intervals based on local polynomials is affected by the error in

the local polynomial approximation, that is, by how different the least squares fit is from the actual

functional form of the average outcomes near the cutoff. If an MSE-optimal bandwidth is used,

the approximation error affects the Gaussian approximation upon which conventional confidence

intervals are based. A method to build valid confidence intervals in the presence of misspecification

error is the robust bias correction approach proposed by Calonico, Cattaneo and Titiunik (2014).

This method corrects the point estimate by subtracting an estimate of the approximation error,

and simultaneously increases the variance to account for the additional variability introduced in

the error correction estimation step. A practical discussion of continuity-based methods for RD

estimation and inference is given by Cattaneo, Idrobo and Titiunik (2020). This approach to

identification, estimation, and inference is the default methodology in empirical work.

In the local randomization approach, estimation and inference is instead implemented by follow-

ing methods commonly used for the analysis of experiments (Rosenbaum, 2010). Implementation

usually proceeds in two steps. In the first step, researchers use predetermined covariates (that is,

variables not affected by the treatment) to choose a window near the cutoff such that the covariate

distribution of the treated units in that window is similar to the covariate distribution of the control

units in that window. If such a window exists, the average treatment effect in the window is esti-

mated by the difference in means between treated and control units in that window, as is normally

done in randomized experiments. For inference, both finite-sample and large-sample methods can

be used. Finite-sample methods assume that units in the window were assigned to treatment with

a known distribution, and use that distribution in combination with the so-called Fisherian null

hypothesis to enumerate all the possible values that the test statistic could have had, which are

then used to build an exact p-value. In contrast, large-sample methods rely on the usual Gaussian

approximations to standard test statistics. For a practical discussion of these methods, see Section

2 in Cattaneo, Idrobo and Titiunik (2024). These methods are often used as complementary robust-

ness checks in settings where the continuity-based approach is valid, but they are sometimes used

in isolation when the canonical continuity RD assumptions are not satisfied. See Cattaneo, Keele

and Titiunik (2023) for more practical discussion, and Hyytinen, Meriläinen, Saarimaa, Toivanen

and Tukiainen (2018) for an interesting empirical application juxtaposing both approaches.

The continuity and local randomization assumptions are not implied by the RD treatment

assignment rule. Instead, they must be invoked, and in cases where units have the ability to change

their score to obtain the treatment condition that they most desire, these assumptions may not

hold. Such active manipulation of the score by the units of analysis is the most important threat

to the validity of any RD design. For this reason, it is common for researchers to include validation

and falsification tests as part of their RD analysis, which include (i) studying the effects of the

treatment on pre-determined covariates and placebo outcomes, both of which should be unaffected

by the treatment, (ii) checking that the score density near the cutoff is continuous, and (iii) repeating

4



estimation and inference using an artificial cutoff value and for different values of tuning parameters.

The implementation of these falsification analyses differs depending on whether a continuity-based

or a local randomization approach is used; see, respectively, Section 5 in Cattaneo, Idrobo and

Titiunik (2020) and Section 2.3 in Cattaneo, Idrobo and Titiunik (2024).

The canonical Sharp RD design has been extended in multiple directions. The Fuzzy RD

design arises when compliance with the treatment assignment is imperfect, so that some of the

units assigned to the treatment condition fail to actually receive the treatment, and some units

assigned to the control condition take the treatment anyway. In this case, the probability of

receiving treatment continues to change discontinuously at the cutoff but, in contrast to the Sharp

RD design, the change in the probability of receiving treatment at the cutoff is less than one.

Local randomization and continuity-based approaches for RD estimation and inference with non-

compliance parallel the instrumental variables approaches commonly used in experimental and non-

experimental settings. For practical discussions, see Section 3 in Cattaneo, Idrobo and Titiunik

(2024), and Cattaneo, Keele and Titiunik (2023).

Multi-dimensional RD designs are another common extension of the canonical RD setup. They

arise when either the score has more than one dimension, or there is more than one cutoff deter-

mining treatment assignment. In the Multi-Score RD design, the score that determines treatment

assignment has two or more components, a generalization that was developed by Papay, Willett

and Murnane (2011) and Reardon and Robinson (2012), among others. For example, a scholarship

may be given to students on the basis of two exams, so that only students who score above a

qualifying cutoff in both a mathematics and an English exam are eligible to receive the scholarship.

An important special case of the Multi-Score RD design is the Geographic RD design (Dell, 2010;

Keele and Titiunik, 2015), where units reside in a geographic region that is split into two adjacent

areas by a boundary, and the treatment is offered only to units residing in one of those areas. In

this case, the score is a two-dimensional vector that captures the geographic coordinates of every

unit in space, and the boundary between the treated and control areas collects all the points at

which the treatment assignment changes abruptly from zero to one. The presence of a boundary

separating treatment and control areas in two dimensions implies that many treatment effects of

interest can be studied, including treatment effects at a specific boundary point, as well as treat-

ment effects averaged along the entire boundary. See Section 4 in Cattaneo, Idrobo and Titiunik

(2024) for more discussion.

The Multiple-Cutoff RD design is another popular extension that arises when multiple sub-

populations of units are assigned to treatment according to an RD assignment rule, but each sub-

population uses a different cutoff value for assignment. This is common, for example, when social

programs are assigned on the basis of need, and socio-economic conditions change by geographic

region. A formalization of the Multiple-Cutoff RD design was given in Cattaneo et al. (2016), and

a practical discussion can be found in Section 4 in Cattaneo, Idrobo and Titiunik (2024).

Yet another generalization of the RD design is known as the Regression Kink Design, which was

developed by Card, Lee, Pei and Weber (2015). In this case, different levels of the treatment are
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given on the basis of a score according to a policy formula that changes slope at known cutoff values

(known as kink points). Just like in the RD design we expect the level of the average outcome

to change abruptly at the cutoff, in a Regression Kink design the expectation is that the first

derivative of the observed outcomes will change abruptly at the kink point. A common example is

tax rates that increase at certain cutoffs of baseline income. This and other generalizations, as well

as a thorough discussion of the extensive RD methodological literature, is reviewed by Cattaneo

and Titiunik (2022).
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