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Introduction

Boundary Discontinuity Designs are used in causal inference and policy evaluation.

▶ Multi-dimensional Regression Discontinuity (RD) designs.

▶ Multi-score RD designs / Geographic RD designs.

▶ Two main approach for analysis in practice:

▶ Local regression based on univariate distance to boundary.

▶ Local regression based on bivariate location relative to boundary.

▶ Today: foundational, thorough study of Boundary Discontinuity Designs.

▶ Methodology: guidance on valid and invalid current practices, and more.

▶ Theory: novel strong approximation approach for uniform inference, and more.

▶ Practice: new R software (rd2d package).

https://rdpackages.github.io/
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▶ Ser Pilo Paga (SPP) Colombian policy program; students i = 1, 2, . . . , n.

▶ Xi = (SABER11i, SISBENi)
⊤; SABER11i = exam score and SISBENi = wealth index.

▶ B = {SABER11 ≥ 0 and SISBEN = 0} ∪ {SABER11 = 0 and SISBEN ≥ 0}.

▶ (Yi(0), Yi(1),Xi), i = 1, 2, . . . , n, random sample.

▶ Yi = 1(Xi ∈ A0) · Yi(0) + 1(Xi ∈ A1) · Yi(1); At group t’s assignment area.

4/35



▶ Causal treatment effect along the assignment boundary:

τ(x) = E[Yi(1)− Yi(0)|Xi = x], x ∈ B.

▶ Estimation and Inference Approaches:

▶ Local regression based on univariate distance to boundary:

Di(x) = d(Xi,x)(1(Xi ∈ A1) − 1(Xi ∈ A0)), x ∈ B.

▶ Local regression based on bivariate location relative to boundary.
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▶ Distance-based Estimator: τ̂dis(b1) = e⊤1 γ̂1(b1)− e⊤1 γ̂0(b1), where

γ̂t(x) = argmin
γ

n∑
i=1

[(
Yi − rp(Di(x))

⊤γ
)2

kh(Di(x))1(Di(x) ∈ It)
]
.

▶ rp(u) = (1, u, u2, · · · , up)⊤.

▶ kh(u) = k(u/h)/h, for univariate kernel k(·) and bandwidth h.

▶ I0 = (−∞, 0) and I1 = [0,∞).

▶ Di(x) = d(Xi,x)(1(Xi ∈ A1) − 1(Xi ∈ A0)).

▶ x ∈ B and t ∈ {0, 1}.
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▶ Location-based Estimator: τ̂(b1) = e⊤1 β̂1(b1)− e⊤1 β̂0(b1) for x ∈ B,

β̂t(x) = argmin
β

n∑
i=1

(
Yi −Rp(Xi − x)⊤β

)2
Kh

(Xi − x

h

)
1(Xi ∈ At).

▶ Rp(u) = (1, u1, u2, u
2
1, u

2
2, u1u2, · · · , up

1 , u
p
2)

⊤.

▶ Kh(u) = Kh(u1/h, u2/h)/h
2, for bivariate kernel K(·) and bandwidth h.

▶ A0 = treatment region and A1 control region.

▶ Xi bivariate score.

▶ x ∈ B and t ∈ {0, 1}.
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▶ Distance-based Estimator: τ̂dis(x).

▶ Location-based Estimator: τ̂(x).

▶ Evaluation points along B: x ∈ {b1, . . . ,b10}.
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▶ Distance-based Estimator: τ̂dis(x).

▶ Location-based Estimator: τ̂(x).

▶ Evaluation points along B: x ∈ {b1, . . . ,b15}.
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▶ Distance-based Estimator: τ̂dis(x).

▶ Location-based Estimator: τ̂(x).

▶ Evaluation points along B: x ∈ {b1, . . . ,b21}.

10/35



▶ Distance-based Estimator: τ̂dis(x).

▶ Location-based Estimator: τ̂(x).

▶ Evaluation points along B: x ∈ {b1, . . . ,b30}.

11/35



▶ Distance-based Estimator: τ̂dis(x).

▶ Location-based Estimator: τ̂(x).

▶ Evaluation points along B: x ∈ {b1, . . . ,b40}.
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▶ Estimators: τ̂dis(x) and τ̂(x), for each x ∈ {b1, . . . ,b40}.

▶ Uncertainty Quantification: Confidence Intervals. For each x ∈ {b1, . . . ,b40},

Î(x;α) =

[
τ̂(x)− qα

√
Ω̂x , τ̂(x) + qα

√
Ω̂x

]
.

▶ qα = Φ−1(1 − α/2), where Φ(x) be the standard Gaussian CDF.

▶ q0.95 ≈ 1.96.
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▶ Estimators: τ̂dis(x) and τ̂(x), uniformly in x ∈ B.

▶ Uncertainty Quantification: Confidence Bands. Uniformly in x ∈ B,

Î(x;α) =

[
τ̂(x)− qα

√
Ω̂x , τ̂(x) + qα

√
Ω̂x

]
.

▶ qα = inf{c > 0 : P[supx∈B |Ẑn(x)| ≥ c|data] ≤ α}.

▶ (Ẑn : x ∈ B) is a Gaussian process conditional on data, with E[Ẑn(x1)|data] = 0 and an

estimated covariance function E[Ẑn(x1)Ẑn(x2)|data] for all x1,x2 ∈ B.
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Overview

▶ Analysis based on univariate distance to boundary: τ̂dis(x).

1. Give sufficient conditions for identification.

2. Show existence of “large” misspecification bias near a kink of B.

3. Show “small” misspecification bias when B is smooth.

4. Establish pointwise and uniform convergence rates and distribution theory.

5. Discuss connects and differences with standard univariate RD designs.

▶ Analysis based on bivariate location relative to boundary: τ̂(x).

1. Identification and misspecification bias are standard.

2. Mean square error expansions and bandwidth selection.

3. Establish pointwise and uniform convergence rates and distribution theory.

4. New methods for analysis of Boundary Discontinuity Designs.

▶ New strong approximation result for empirical processes.

1. Finite polynomial moments.

2. Incorporates possibly lower dimensional manifold structure B ⊆ Supp(Xi).
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Distance-Based Methods: Identification

▶ Parameter. τ(x) = E[Yi(1)− Yi(0)|Xi = x] for all x ∈ B.

▶ Estimator. τ̂dis(x) = e⊤1 γ̂1(x)− e⊤1 γ̂0(x) for x ∈ B, where

γ̂t(x) = argmin
γ

n∑
i=1

[(
Yi − rp(Di(x))

⊤γ
)2

kh(Di(x))1(Di(x) ∈ It)
]
.

▶ Assumption. Let t ∈ {0, 1}.

▶ d : R2 7→ [0,∞) satisfies ∥x1 − x2∥ ≲ d(x1,x2) ≲ ∥x1 − x2∥ for all x1,x2 ∈ X.

▶ k : R → [0,∞) is compact supported and Lipschitz continuous, or k(u) = 1(u ∈ [−1, 1]).

▶ lim infh↓0 infx∈B

∫
At

kh(d(u,x))du ≳ 1.

▶ Identification. For all x ∈ B,

τ(x) = lim
r↓0

θ1,x(r)− lim
r↑0

θ0,x(r)

with

θt,x(r) = E[Yi|Di(x) = r,Di(x) ∈ It].
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▶ Best L2 Approximation. The distance-based estimator τ̂dis(b) is sample analogue of

τ∗dis(b) = e⊤1 γ∗
1 (b)− e⊤1 γ∗

0 (b),

where

γ∗
t (x) = argmin

γ
E
[(
Yi − rp(Di(x))

⊤γ
)2

kh(Di(x))1(Di(x) ∈ It)
]

for t ∈ {0, 1}.
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▶ θ∗t,b(0) = e⊤1 γ∗
t (b) is the best L2-approx of θt,b(r) = E[Yi|Di(b) = r,Di(x) ∈ It].

▶ Bias. Using the identification result,

Bn(b) =
[
θ∗1,b(0)− θ1,b(0)

]
−

[
θ∗0,b(0)− θ0,b(0)

]
= θ∗1,b(0)− θ∗0,b(0)− τ(b)

is the best-L2 misspecification bias of the estimator τ̂dis(b).

▶ Smoothness. If r 7→ θt,b(r) is locally to zero (p+ 1)th smooth, then Bn(b) ≲ hp+1.

20/35
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▶ Bias. Bn(b) =
[
θ∗1,b(0)− θ1,b(0)

]
−

[
θ∗0,b(0)− θ0,b(0)

]
= θ∗1,b(0)− θ∗0,b(0)− τ(b).

▶ Smoothness. r 7→ θt,b(r) is locally to zero Lipschitz, thus Bn(b) ≲ h.

▶ Derivatives. r 7→ θt,b(r) is not differentiable for all r ≥ r3, and

lim
r↑r3

d

dr
θt,b(r) ̸= lim

r↓r3

d

dr
θt,b(r)
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▶ Bias. Bn(b) =
[
θ∗1,b(0)− θ1,b(0)

]
−

[
θ∗0,b(0)− θ0,b(0)

]
= θ∗1,b(0)− θ∗0,b(0)− τ(b).

▶ Smoothness. r 7→ θt,b(r) is locally to zero Lipschitz, thus Bn(b) ≲ h.

▶ Pointwise Analysis. Need to choose bandwidth h ≤ r3 = d(b, kink).

▶ Bandwidth must vary with b ∈ B, depending on “smoothness” of boundary!

▶ The closer to a kink point on B, the smaller the bandwidth h must be.
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▶ Uniform Analysis. Under minimal regularity conditions, and for any p ≥ 1,

1 ≲ lim inf
n→∞

sup
P∈P

sup
x∈B

Bn(x)

h
≤ lim sup

n→∞
sup
P∈P

sup
x∈B

Bn(x)

h
≲ 1.

▶ Bias cannot be better than order h (Lipschitz continuity) if B is non-smooth!

▶ If B is smooth, then supx∈B Bn(x) ≲ hp+1.
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New York-Philadelphia Media Market Boundary

New York Media Market
Philadelphia Media Market

Treated Area of Analysis
Control Area of Analysis

Montgomery Township School District

Princeton School District
Hopewell Valley School District

Frankling Township School District

South Brunswick School District

Cranbury Township School District

East Windsor School District

Robbinsville Township School District Milestone Township School District

West Windsor-Plainsboro School District

Upper Freehold School District

Lawrence Township School District
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Other Results for Distance-Based Methods

▶ Regularity Condition. supx∈X E[|Yi(t)|2+v |Xi = x] < ∞ for some v ≥ 2.

▶ Convergence Rates. Under minimal regularity conditions,

|τ̂dis(x)− τ(x)| ≲P
1

√
nh2

+
1

n
1+v
2+v h2

+ |Bn(x)|, x ∈ B,

and

sup
x∈B

|τ̂dis(x)− τ(x)| ≲P

√
logn

nh2
+

logn

n
1+v
2+v h2

+ sup
x∈B

|Bn(x)|.

▶ Pointwise Inference. Ignoring the potential bias problem when B is non-smooth,
paper establishes distribution theory with valid standard errors for each x ∈ B. This
result is fairly standard, up to handling B.

▶ Uniform Inference. Ignoring the potential bias problem when B is non-smooth, paper
establishes feasible uniform distribution theory via simulation. This result requires new
technical tools, and requires careful handling of B. More details later.

▶ Practice. Valid and invalid practices based on standard univariate RD designs methods.
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Location-Based Methods: Setup

▶ Parameter. τ(x) = E[Yi(1)− Yi(0)|Xi = x] for all x ∈ B.

▶ Estimator. τ̂(b1) = e⊤1 β̂1(b1)− e⊤1 β̂0(b1) for x ∈ B,

β̂t(x) = argmin
β

n∑
i=1

(
Yi −Rp(Xi − x)⊤β

)2
Kh

(Xi − x

h

)
1(Xi ∈ At).

▶ Assumption. Let t ∈ {0, 1}.

▶ K : R → [0,∞) compact supported & Lipschitz continuous, or K(u) = 1(u ∈ [−1, 1]2).

▶ lim infh↓0 infx∈B

∫
At

Kh(u − x)du ≳ 1.

▶ Identification. For all b ∈ B,

τ(b) = lim
x→b,x∈A1

E[Yi|Xi = x]− lim
x→b,x∈A0

E[Yi|Xi = x].

This is standard from the literature.
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Point Estimation Results for Location-Based Methods

▶ Regularity Condition. supx∈X E[|Yi(t)|2+v |Xi = x] < ∞ for some v ≥ 2.

▶ Convergence Rates. Under minimal regularity conditions,

|τ̂(x)− τ(x)| ≲P |τ̂(x)− τ(x)| ≲P
1

√
nh2

+
1

n
1+v
2+v h2

+ hp+1, x ∈ B,

and

sup
x∈B

|τ̂(x)− τ(x)| ≲P

√
logn

nh2
+

logn

n
1+v
2+v h2

+ hp+1.

▶ MSE Expansions. Under minimal regularity conditions,

E[(τ̂(x)− τ(x))2|X] = h2(p+1)B2
x +

1

nh2
Vx x ∈ B,

and ∫
B

E[(τ̂(x)− τ(x))2|X]w(x)dx = h2(p+1)

∫
B

B2
xdw(x) +

1

nh2

∫
B

Vxw(x)dx

▶ Standard bandwidth selection methods developed in the paper.
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Inference Results for Location-Based Methods

▶ Feasible t-test. Using standard least squares algebra, T̂(x) = τ̂(x)−τ(x)√
Ω̂x,x

.

▶ Uncertainty Quantification. Confidence intervals and confidence bands,

Î(x;α) =

[
τ̂(x)− qα

√
Ω̂x , τ̂(x) + qα

√
Ω̂x

]
, x ∈ B,

▶ Pointwise Inference. By standard CLT result, for each x ∈ B, set qα = Φ−1(1−α/2).

▶ Uniform Inference. Note that

P
[
τ(x) ∈ Î(x;α) , for all x ∈ B

]
= P

[
sup
x∈B

∣∣T̂(x)∣∣ ≤ qα

]
.

1. Establish strong approximation for (T̂(x) : x ∈ B) by (Ẑn : x ∈ B), a Gaussian process
conditional on data.

2. Deduce the distribution of supx∈B

∣∣T̂(x)∣∣.
3. Using simulations, set qα = inf{c > 0 : P[supx∈B |Ẑn(x)| ≥ c|data] ≤ α}.

▶ Implementation and Bias. (I)MSE-optimal bandwidth selection for point estimation,
robust bias correction for inference.
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▶ Ser Pilo Paga (SPP) Colombian policy program; students i = 1, 2, . . . , n.

▶ Xi = (SABER11i, SISBENi)
⊤; SABER11i = exam score and SABER11i = wealth index.

▶ B = {SABER11 ≥ 0 and SISBEN = 0} ∪ {SABER11 = 0 and SISBEN ≥ 0}.

▶ (Yi(0), Yi(1),Xi), i = 1, 2, . . . , n, random sample.

▶ Yi = 1(Xi ∈ A0) · Yi(0) + 1(Xi ∈ A1) · Yi(1); At group t’s assignment area.
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Conclusion

▶ Multi-dimensional RD designs are widely used across disciplines.

▶ Methodological and formal results lagging behind its popularity in practice.

▶ We offer a through treatment of Boundary Discontinuity Designs.

▶ Distance-based methods may exhibit large bias when B is non-smooth.

▶ Location-based methods do not suffer of this drawback.

▶ We develop pointwise and uniform estimation and inference methods.

▶ rd2d package for R.

https://rdpackages.github.io/
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