
Tuning Adam(W): Default β2 May Be Too Large

Matias D. Cattaneo∗

Princeton University
cattaneo@princeton.edu

Boris Shigida∗

Princeton University
bs1624@princeton.edu

Abstract

The default momentum hyperparameters of Adam(W), with or without decoupled weight decay,
are usually set at β1 = 0.9 and β2 = 0.999. We provide an empirical evaluation of these hyperparameter
choices on several language and vision tasks, focusing on how β2 influences the training dynamics
and performance outcomes. We observe that β2 so close to one leads to unstable training because of
loss spikes, and provide evidence that taking β1 ≈ β2 mitigates this problem in modern and practical
settings. Moreover, for medium and large batch sizes, we find that a much smaller β2 is often better
for generalization: our findings suggest a choice of β2 in the range [0.9, 0.95]. Contrary to common
practice, we observe instances where it is better to take a large β1 and β2 ≪ β1. We also find that
Adam(W) with smaller β2 can train faster (if the batch size is large). Our results suggest that ample
justification is needed for setting a large β2. In particular, for fair comparisons of Adam(W) with
other optimizers, β2 should either be carefully tuned or at least taken much smaller than β2 = 0.999.

1 Introduction

Modifications of Adam (Kingma and Ba, 2014) such as AdamW (Loshchilov and Hutter, 2019) and
AdaFactor (Shazeer and Stern, 2018) have become the standard optimizers for important deep learning
tasks like training large language models (Brown et al., 2020; Anil, A. M. Dai, et al., 2023; Touvron
et al., 2023; Dubey et al., 2024). In addition to the learning rate, Adam has three hyperparameters: two
momentum hyperparameters (β1, β2) (usually called the “betas”), and a numerical stability hyperparameter
ϵ. The choice of their values is a crucial part of preparing the (pre-)training pipeline, and practitioners
often employ commonly accepted heuristics when setting these hyperparameters.

Kingma and Ba (2014) recommend setting β1 = 0.9 and β2 = 0.999. They report a grid search of
β1 ∈ {0, 0.9} and β2 ∈ {0.99, 0.999, 0.9999} on a variational autoencoder training problem, comparing
training speeds after 10 and 100 epochs. Based on this recommendation, the values (β1, β2) = (0.9, 0.999)
have become the default in many libraries such as PyTorch and Optax. It is conventional wisdom that
adaptive gradient methods work well with their default hyperparameters (Sivaprasad et al., 2020). This
practical success appears to be the reason why practitioners rely on default values (with often half-hearted
tuning).

Apart from the practical usage of Adam-based algorithms when training new models, researchers
often use default hyperparameter values when comparing Adam with other optimizers experimentally.
In fact, when a claim is made about the relative performance of a proposed algorithm with respect to
Adam, “Adam” usually implicitly means “Adam with default hyperparameters”, and often minimal or no
tuning takes place for the comparison. As an illustration, it is common to write “SGD with momentum
outperforms Adam” regarding a subset of deep learning tasks, whereas SGD with momentum is essentially
a special case of Adam (by taking large ϵ), and therefore Adam understood generally cannot possibly
underperform relative to SGD with momentum (Choi, 2019; Savarese et al., 2021). Of course, what is meant
is “SGD with momentum outperforms Adam with default (or minimally modified) hyperparameters”, but
such usage hides potential important insights about the possible utility of non-default hyperparameter
values.

The lack of tuning, or minimal tuning, of competing algorithms is common practice: X. Chen et al.
(2023) largely take default hyperparameters when comparing AdamW to Lion, Anil, Gupta, et al. (2020)

∗Equal contribution

1

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://optax.readthedocs.io/en/latest/api/optimizers.html#optax.adam

compare second-order optimizers to Adam and do not tune the betas for larger transformers, Bernstein
et al. (2018) do not tune β2 when comparing Adam with signSGD, Dozat (2016) use default settings when
comparing different optimizers, Gupta, Koren, and Singer (2018) did not report hyperparameter tuning
when comparing Shampoo to Adam, J. Ma and Yarats (2018) did not tune β2 when comparing their
quasi-hyperbolic momentum algorithm with Adam, L. Liu et al. (2019) take the defaults when comparing
Rectified Adam with Adam, Reddi, Kale, and Kumar (2018) do not tune β2 when comparing AMSGrad
to Adam (with only large values β2 ∈ {0.99, 0.999} considered), Taniguchi et al. (2024) do not tune the
hyperparameters of Adam when comparing ADOPT to Adam, Zhuang et al. (2020) do not tune β2 when
comparing AdaBelief with Adam (although they perform a large search tuning other hyperparameters),
Shazeer and Stern (2018) do not tune β2 when comparing Adafactor with Adam (with only two values
β2 ∈ {0.9, 0.999}), to name a few.

If a certain problem of Adam is identified (such as visible training instability), often custom
interventions are used, but a simple approach of re-tuning the hyperparameters is either overlooked or not
reported. For example, in Chowdhery et al. (2023, Section 5.1, “Training Instability”), the loss spikes are
mitigated by restarting the training from an earlier checkpoint and skipping the fraction of data that
was given to the model when the spike occured. It is possible that just tuning the hyperparameters and,
in particular, the β2 schedule can also serve as a mitigation strategy. Relatedly, Taniguchi et al. (2024)
report “Adam causes loss spikes in the early stages of training and fails to converge, while ADOPT is
always able to train stably” when training GPT-2 on OpenWeb with small batch sizes; this may be a
problem of tuning rather than Adam per se (we find that Adam with β1 = β2 = 0.9 is also always able to
train stably).

Recently, β2 has been adjusted to be smaller (specifically β2 = 0.95) when training large models
with AdamW (Brown et al., 2020; S. Zhang et al., 2022; Zeng et al., 2022; Biderman et al., 2023; Touvron
et al., 2023; Dubey et al., 2024) but the reason for this choice is not reported, and we are not aware of
any comprehensive studies (released publicly) on which this decision may be based.

In addition, when comparing optimizers, different performance metrics may be of importance, such
as training stability, training speed and generalization properties. An algorithm can theoretically train
faster but achieve worse performance on the test set; or it can train faster, achieve better test performance
but have a high risk of irrecoverable loss spikes. It is a highly under-explored question how setting smaller
β2 impacts different training outcomes.

This paper investigates experimentally how β2 affects test accuracy, training speed, and the presence
of loss spikes on a number of language and vision tasks. Our findings are summarized as follows:

• For Adam with and without weight decay, there is a high risk of loss spikes, including irrecoverable
ones, when setting β2 as close to 1. Decreasing β2 even more seriously than in recent large training
runs (e.g., setting β1 ≈ β2) eliminates loss spikes. Our experimental results confirm the findings by
C. Ma, Wu, and Weinan (2022) for simple multi-layers perceptrons on FashionMNIST and Resnet-18
on CIFAR-10 trained by full-batch Adam.

• How the test performance (best achieved before overfitting, or best after a fixed number of iterations)
depends on β2 is different for different batch sizes. For small batch sizes, the higher β2 the better
(ignoring the risk of loss spikes which may lead to divergence). For moderate batch sizes, the
dependence becomes inverse U-shaped with optimal β2 between 0.9 and 0.99. Finally, for large
batches, the smaller β2 the better. The default β2 = 0.999 can only be the best for very small batch
sizes, provided the training survives the loss spikes that appear frequently in this case.

• A similar trend as for the test accuracy is seen for speed of training: for small batch sizes, the higher
β2 the faster; for moderate batch sizes, gradually increasing β2 from 0.9 to 0.999 first increases then
decreases the training speed (if β1 = 0.9); for very large batches, the higher β2 the slower training.

• There is no law forcing β2 to be much larger than β1. In fact, setting β2 = β1 is often better than
β2 > β1; sometimes, the best test accuracy we find is achieved with β2 much smaller than β1. For
example, for a CNN trained on CIFAR-10, setting (β1, β2) = (0.99, 0.9) in full-batch Adam achieves
better test accuracy than β1 = 0.99 and any β2 > 0.9, or than β1 = 0.9 and any β2 ≥ β1; for
ResNet-50 on CIFAR-10, if full-batch Adam is used with β1 = 0.99, setting β2 = 0.8 is better for
test accuracy than any higher β2.
In short, setting β2 = 0.999 is rarely optimal in terms of test accuracy, leads to at least occasional

loss spikes, and for large batches can lead to slower training than if β2 is taken smaller. Our experimental
results suggest (β1, β2) = (0.9, 0.95) is a much more reasonable default choice than (β1, β2) = (0.9, 0.999),
not only for large language models but for modern architectures in general.

2

Notation. Adam (Kingma and Ba, 2014) with decoupled weight decay (Loshchilov and Hutter, 2019) is
an algorithm with the update rule

mt+1 = β1mt + (1− β1)∇θL(θt),

vt+1 = β2vt + (1− β2)[∇θL(θt)]
2,

θt+1 = (1− ηλ)θt − η
mt+1/(1− βt+1

1)√
vt+1/(1− βt+1

2) + ϵ
,

where θt is the vector of network parameters, η is the learning rate, β1, β2 are momentum hyperparameters,
ϵ is the numerical stability hyperparameter, λ > 0 is the weight decay hyperparameter, ∇θL(θt) is the
loss gradient; the square, square root and division are component-wise.

2 Larger β2 Hurts Generalization Except for Very Small Batches

2.1 Training Transformer-XL from Scratch on WikiText-2

We train Transformer-XL (Z. Dai et al., 2019) on WikiText-2 (Merity et al., 2017) with different batch sizes
(all powers of two from 27 to 214) and learning rates in the set {10−3, 10−3.5, 10−4}. The implementation
follows Z. Dai et al. (2019); J. Zhang et al. (2020) as in Kunstner et al. (2023). We fix the default value
β1 = 0.9, and sweep β2 on the log-scale between 0.9 and the typical default value 0.999. As shown in Fig. 1,
the model quickly overfits as training loss continues to go to zero. Therefore, we train for sufficiently many
epochs to let the model overfit, and plot the minimal validation perplexity achieved, depending on β2.

The results are shown in Fig. 2. We observe that larger β2 usually hurts generalization (increases
minimal validation perplexity), except for very small batch sizes, in which case the relationship is U-shaped,
with optimal β2 between 0.93 and 0.98. Note also that taking a very large β2 like the default 0.999 is
never optimal in these experiments. Table 1 shows the relative improvements in validation perplexity of
the tuned β2 versus the default β2 = 0.999, for different batch sizes and learning rates. We see that the
improvements are very substantial, getting up to 12.87%. Note also that for many experiments the best
β2 we found is equal to β1 = 0.9. It is likely that taking β2 < β1 is even better for validation error, but we
did not include those values into our sweeps.

0 25 50 75 100 125 150 175 200
Epoch

0

2

4

6

8

Tr
ai

n
lo

ss

=0.9
=0.9342
=0.9567
=0.9715
=0.9813
=0.9877
=0.9919
=0.9947
=0.9965
=0.9977
=0.9985
=0.999

0 25 50 75 100 125 150 175 200
Epoch

5

6

7

8

9

10

Va
l l

os
s

=0.9
=0.9342
=0.9567
=0.9715
=0.9813
=0.9877
=0.9919
=0.9947
=0.9965
=0.9977
=0.9985
=0.999

Figure 1: Transformer-XL on WikiText-2: training loss continues to decrease but validation loss starts to
increase after about 30 epochs because of overfitting.

2.2 Fine-Tuning DistilBERT on SQuAD

We see the same trend on another language task: fine-tuning a pretrained DistilBERT (Sanh et al., 2019)
model on the question-answering dataset SQuAD (Rajpurkar et al., 2016). We use the HuggingFace
implementation from the “Transformers” library (Wolf et al., 2019), following Kunstner et al. (2023). As

3

0.900 0.925 0.950 0.975 1.000
120.0

122.5

125.0

127.5

130.0
Va

l p
pl

 = 0.001
 = 0.0003162
 = 0.0001

0.900 0.925 0.950 0.975 1.000

118

120

122

124

126

Va
l p

pl

 = 0.001
 = 0.0003162
 = 0.0001

0.900 0.925 0.950 0.975 1.000
120

122

124

126

128

130

Va
l p

pl

 = 0.001
 = 0.0003162
 = 0.0001

0.900 0.925 0.950 0.975 1.000

127.5

130.0

132.5

135.0

137.5

Va
l p

pl

 = 0.001
 = 0.0003162
 = 0.0001

0.900 0.925 0.950 0.975 1.000

130

135

140

Va
l p

pl

 = 0.001
 = 0.0003162
 = 0.0001

0.900 0.925 0.950 0.975 1.000

135

140

145

150

Va
l p

pl

 = 0.001
 = 0.0003162
 = 0.0001

0.900 0.925 0.950 0.975 1.000

150

155

160

Va
l p

pl

 = 0.001
 = 0.0003162
 = 0.0001

0.900 0.925 0.950 0.975 1.000
135

140

145

150

155

Va
l p

pl

 = 0.001
 = 0.0003162
 = 0.0001

Figure 2: Minimal validation perplexity (before overfitting) of Transformer-XL on WikiText-2. Adam with
batch sizes (left to right, top to bottom) 128, 256, 512, 1024, 2048, 4096, 8192 and 16384 (full-batch).
Fixed hyperparameters: β1 = 0.9, ε = 10−6.

Table 1: Transformer-XL trained from scratch on WikiText-2: “optimal” hyperparameter values β2(η) we
found, and relative improvements ∆(η) in validation perplexity for different learning rates η and batch
sizes. Note that all “optimal” β2’s are smaller than even 0.99, let alone the default 0.999.

Batch Size β2(10
−3) ∆(10−3)

128 0.957 3.35%
256 0.957 4.25%
512 0.972 3.92%
1024 0.957 3.87%
2048 0.934 4.76%
4096 0.900 8.18%
8192 0.900 4.88%
16384 0.934 4.45%

Batch Size β2(10
−3.5) ∆(10−3.5)

128 0.972 1.33%
256 0.934 4.79%
512 0.934 4.46%
1024 0.934 4.68%
2048 0.900 5.75%
4096 0.934 8.22%
8192 0.900 5.75%
16384 0.934 7.00%

Batch Size β2(10
−4) ∆(10−4)

128 0.981 2.69%
256 0.957 4.83%
512 0.934 5.57%
1024 0.934 8.23%
2048 0.900 9.50%
4096 0.900 9.68%
8192 0.900 9.31%
16384 0.900 12.87%

shown in Fig. 3, the model also quickly overfits, so we plot the maximal val exact match metric (percentage

4

of answers exactly matching ground-truth on the validation set) achieved, depending on β2. We observe
(Fig. 4) that in all experiments larger β2 hurt generalization (decrease this metric).

0 5 10 15 20 25 30
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
lo

ss

=0.9
=0.9342
=0.9567
=0.9715
=0.9813
=0.9877
=0.9919
=0.9947
=0.9965
=0.9977
=0.9985
=0.999

0 5 10 15 20 25 30
Epoch

60

62

64

66

68

70

72

74

Va
l e

xa
ct

 m
at

ch

=0.9
=0.9342
=0.9567
=0.9715
=0.9813
=0.9877
=0.9919
=0.9947
=0.9965
=0.9977
=0.9985
=0.999

Figure 3: Pretrained DistilBERT fine-tuned on SQuAD: the training loss continues to decrease but the
percentage of answers exactly matching ground-truth on the validation set decreases because of overfitting.

0.900 0.925 0.950 0.975 1.000

75.6

75.8

76.0

Va
l e

xa
ct

 m
at

ch

0.900 0.925 0.950 0.975 1.000

74.4

74.6

74.8

75.0

Va
l e

xa
ct

 m
at

ch

0.900 0.925 0.950 0.975 1.000

73.0

73.2

73.4

73.6

73.8

Va
l e

xa
ct

 m
at

ch

0.900 0.925 0.950 0.975 1.000

84.3

84.4

84.5

84.6

Va
l f

1

0.900 0.925 0.950 0.975 1.000
83.2

83.4

83.6

83.8

Va
l f

1

0.900 0.925 0.950 0.975 1.000

82.2

82.4

82.6

82.8

Va
l f

1

Figure 4: DistilBert fine-tuning on SQuAD. Top: percentage of answers exactly matching ground truth on
the validation set; bottom: F1 score. Adam with batch sizes (left to right) 512, 2048, 8192, learning rate
10−4, β1 = 0.9, ε = 10−6.

Table 2: Pretrained DistilBERT fine-tuned on SQuAD: “optimal” hyperparameter values β2(η) we found,
and relative improvements ∆(η) in validation perplexity for learning rate η and different batch sizes.

Batch Size β2(10
−4) ∆(10−4)

512 0.900 0.73%
2048 0.900 0.78%
8192 0.900 1.14%

5

2.3 Training GPT-2 from Scratch on FineWeb

We also train the GPT-2 (124M) model Radford et al., 2019 on the FineWeb-10B (10 billion tokens)
dataset Penedo et al., 2024 from scratch. Our implementation is based on the nanoGPT repository and
Xie, Mohamadi, and Z. Li (2024). The algorithm we use is AdamW with weight decay parameter 0.1. The
learning rate is warmed up linearly from zero to 1.8 · 10−3 for 2000 iterations, then decayed to 1.8 · 10−4

using cosine schedule. We only do one pass over the training set, and plot in Fig. 5 the best validation
loss achieved depending on β2 for a few different batch sizes. We observe the same trend as we did in
Section 2.1: for small batch sizes, larger β2 can be optimal, but for medium-to-large batch sizes the best β2

is much smaller than the default value 0.999. Note that we effectively constrain the number of iterations
and sweep β2’s rather than waiting for the model to overfit, which would be computationally expensive.
Thus, the results may be influenced by how β2 affects the speed of training, which we discuss in more
detail in Section 4.

0.900 0.925 0.950 0.975 1.000

3.4

3.5

3.6

3.7

3.8

Va
l l

os
s

0.900 0.925 0.950 0.975 1.000

3.3

3.4

3.5

3.6
Va

l l
os

s

0.90 0.95 1.00

3.24

3.26

3.28

Va
l l

os
s

0.90 0.95 1.00
3.325

3.350

3.375

3.400

3.425

Va
l l

os
s

0.90 0.95 1.00

4.000

4.025

4.050

4.075

Va
l l

os
s

Figure 5: GPT-2 (124M) trained from scratch on FineWeb-10B: validation loss achieved after one pass
over the training set. The batch sizes are (left to right, top to bottom) 215, 217, 219, 221, 223, sequence
length 1024. AdamW with β1 = 0.9, ε = 10−6, weight decay 0.1.

2.4 Training CNN on CIFAR-10

To investigate large-batch training on vision tasks, we train a small CNN on CIFAR-10 with full-batch
Adam. The implementation is based on Cattaneo, Klusowski, and Shigida (2024), and the CNN is taken
from there. Throughout CIFAR-10 experiments, we use cross-entropy loss, subtract per-pixel mean and
divide by standard deviation, and use data-augmentation from Lee et al. (2015), (padding followed by
random crop and random horizontal flip).

Since full-batch training is slow and the model is small, we train for around 30K iterations to give
the model enough time to achieve near-perfect train accuracy. If the default hyperparameter β1 = 0.9 is
taken, large β2 incur very large loss spikes, to the point where β2 ≈ 0.999 fails to get to interpolating
solution: the spikes are too frequent and most of the training is spent recovering from them (Fig. 6).
However, we observe that large β2 achieve better validation accuracy in this highly spiky regime, with the
range of validation accuracies achieved 83.2% to 84% (Fig. 7).

To avoid loss spikes, we also take β1 = 0.99. Then, all training curves look smooth (Fig. 8). In this
case, the best validation accuracy achieved decreases as β2 grows, with the range of validation accuracies
83.2% at β2 ≈ 0.9977 to 85.5% at β2 = 0.9 (Fig. 9). Note that the best validation accuracy is achieved
at 0.9 = β2 < β1 = 0.99, and this is the boundary of the range of β2’s we sweeped (it may be the case
that much smaller β2’s are even better). Note also that in addition to training curves being smooth, the
validation accuracies are significantly better than in the spiky regime.

6

https://github.com/karpathy/nanoGPT

0 5000 10000 15000 20000 25000 30000
Epoch

0.2

0.4

0.6

0.8

1.0
Tr

ai
n

ac
cu

ra
cy

=0.9
=0.9342
=0.9567
=0.9715
=0.9813
=0.9877
=0.9919
=0.9947
=0.9965
=0.9977
=0.9985
=0.999

Figure 6: CNN trained on CIFAR-10 with full-batch Adam, β1 = 0.9, ε = 10−6. Train accuracy curves are
very spiky.

2.5 Training ResNet-50 on CIFAR-10

To investigate further how β2 affects generalization on a vision task for different batch sizes, we train
ResNet-50 on CIFAR-10 with Adam, taking batch sizes 1024, 4096, 16384, and 50000. Because of the issue
of loss spikes as described in Section 2.4, we take β1 = 0.99. Since the best test accuracy in Section 2.4
was achieved at β2 = 0.9 which was the boundary of the sweep, we include smaller values of β2 (using the
log-scale from 0.8 to 0.999). For batch sizes 1024 and 4096, the training with β2 < 0.9 is divergent. For
batch size 1024, higher β2 slightly improves test accuracy, the dependence becomes inverse U-shaped as
the batch size increases, and finally in full-batch training the smaller β2 the better. For full-batch Adam,
the best test accuracy is achieved at β2 = 0.8, which is again the boundary of the sweep. The results are
shown in Fig. 10.

From observations here and Section 2.4 we may conclude, in particular, that for large batch sizes
experimenting with β2 < β1 can be beneficial for generalization on vision tasks.

3 Loss Spikes

It is known that the training of Adam (with or without decoupled weight decay) can be spiky Shazeer
and Stern (2018); Chowdhery et al. (2023); C. Ma, Wu, and Weinan (2022). In particular, C. Ma, Wu,
and Weinan (2022) demonstrate that when training ResNets on CIFAR-10 spiky training happens in
the setting β2 ≫ β1. We reproduce this, and verify that the same phenomenon is present when training
modern architectures on all our language tasks. In addition, our observations are not constrained to large
batches, and our training pipeline is closer to modern practice. In particular, we use both a learning
rate decay schedule and weight decay when training GPT-2. We find that for β1 = 0.9, β2 > 0.99 large
loss spikes are a very frequent problem, essentially guaranteed for moderate batch sizes. If β2 is reduced,
loss spikes are mitigated, and if β1 = β2 we do not observe large spikes at all. For a vision task, Fig. 6
should provide a convincing illustration. For a language task, see Fig. 11 (loss curves of GPT-2 trained on

7

0.90 0.92 0.94 0.96 0.98 1.00

0.833

0.834

0.835

0.836

0.837

0.838

0.839

0.840
Va

l a
cc

ur
ac

y

Figure 7: CNN trained on CIFAR-10 with full-batch Adam, β1 = 0.9, ε = 10−6, learning rate 2 · 10−4.
Best test accuracy achieved after about 30K epochs. The results are averaged across 6 runs with different
initialization seeds.

FineWeb) as an example.
However, in practice it appears to be rare to attribute loss spikes to a large β2 and attempt to fix the

problem by decreasing it (see a more detailed discussion of this in the introduction). We stress that it is
not fair to blame Adam itself for being unstable, rather than Adam with a specific hyperparameter choice.
We recommend trying β1 ≈ β2 as a sufficiently simple intervention to improve the stability of training.

4 Speed of Training

For CNN on CIFAR-10 trained with full-batch Adam, we plot the training loss curves and how many
epochs are required to reach the training loss threshold 0.1. The results in Fig. 12 show that small β2

improves training speed (measured by how fast the training loss decreases).
Similarly, we plot how many epochs are required to reach the training loss threshold 0.6 for all

the Transformer-XL training on WikiText-2 tasks with learning rate 10−4 (only one learning rate to
improve presentation; the trends for other learning rates are the same). The results in Fig. 13 show that
the relationship of the number of epochs required depending on β2 is different for different batch sizes,
similarly to validation perplexity: for small batch sizes, it is decreasing (larger β2 makes training faster),
for moderate batch sizes it is inverse U-shaped, and finally for very large batches it becomes increasing
(larger β2 makes training slower).

5 A Note on How β1 Affects Generalization

Similarly to the β2 sweeps in Section 2, we train Transformer-XL on WikiText-2 with different batch sizes
and learning rates, and plot the minimal validation perplexity achieved depending on β1. We fix the default
value β2 = 0.999 to ensure that β1 < β2 which is common practice. The results are shown in Fig. 14. It

8

0 5000 10000 15000 20000 25000 30000
Epoch

0.2

0.4

0.6

0.8

1.0
Tr

ai
n

ac
cu

ra
cy

=0.9
=0.9342
=0.9567
=0.9715
=0.9813
=0.9877
=0.9919
=0.9947
=0.9965
=0.9977
=0.9985
=0.999

Figure 8: CNN trained on CIFAR-10 with full-batch Adam, β1 = 0.99, ε = 10−6. Train accuracy curves
are smooth.

can be observed that for medium learning rates, validation perplexity has a U-shaped dependence on β1,
with optimal β1 somewhere in between 0.9 and 0.99, but for very small learning rates the trend reverses.
For very small learning rates and large-batch training, increasing β1 improves generalization.

6 A Note on Sharpness and Edge of Stability

Cohen et al. (2022) notice that in a sense Adam trains at the edge of stability. They view Adam as
momentum gradient descent with evolving preconditioner

Pt+1 = (1− βt+1
1)

[
diag

(√
νt+1

1− βt+1
2

)
+ ϵI

]
.

They define “preconditioned sharpness” to be the top eigenvalue of the preconditioned Hessian λ1(P
−1
t Ht),

where Ht is the Hessian of the loss, and observe that this quantity often oscillates around the stability
threshold 2+2β1

(1−β1)η
, where η is the learning rate. (This fraction comes from the fact that if the preconditioner

were constant, Adam would become a form of preconditioned gradient descent with EMA-style momentum,
and this is the ordinary stability threshold of EMA-style heavy-ball momentum on the quadratic Taylor
approximation of the loss; we refer to Cohen et al. (2022) for details.) They use large-batch training on
CIFAR-10/100. We train a CNN on CIFAR-10, and reproduce this result in Fig. 15. We also plot ordinary
sharpness λ1(Ht) (top hessian eigenvalue), which first increases and then decreases. Recall from Fig. 6
that this is an extremely unstable regime of training.

Note, however, that if we take β1 = 0.99 which is the “smooth” regime of training, preconditioned
sharpness does not reach the stability threshold (Fig. 16). Note also that ordinary sharpness λ1(Ht) (top
hessian eigenvalue) is much lower for small β2 (especially noticeable for β1 = 0.9). This suggests that in
this situation taking β2 < β1 may regularize training, moving the model parameters to flatter regions of
the loss space.

9

0.90 0.92 0.94 0.96 0.98 1.00

0.835

0.840

0.845

0.850

0.855
Va

l a
cc

ur
ac

y

Figure 9: CNN trained on CIFAR-10 with full-batch Adam, β1 = 0.99, ε = 10−6. Best validation accuracy
achieved after about 30K epochs. The results are averaged across 3 runs with different initialization seeds.

7 Final Remarks

Based on the evidence provided, we conclude that tuning the hyperparameters of Adam (in particular
β2) is highly beneficial and often not done enough. In particular, in most cases the default (β1, β2) pair
leads to unstable training and is very suboptimal in terms of test performance in modern tasks. We
have observed that decreasing β2 can increase test performance by up to 12.87% for large batches. Loss
spikes, a very popular problem when training with AdamW, are mitigated when taking β1 ≈ β2. Finally,
decreasing β2 with respect to β1 is sometimes (for large batches) beneficial for the training speed as well.
As a simple rule, we recommend taking β2 in the range [0.9, 0.95] if β1 = 0.9. In the next version of this
article, we plan to expand the grids and average the results across multiple runs to smooth out the plots.
For reproducibility, we plan to make the code available.

Acknowledgments

Cattaneo gratefully acknowledges financial support from the National Science Foundation through DMS-
2210561 and SES-2241575. We acknowledge the Princeton Research Computing resources, coordinated
by the Princeton Institute for Computational Science and Engineering (PICSciE) and the Office of
Information Technology’s Research Computing.

References

Anil, Rohan, Andrew M Dai, et al. (2023). “Palm 2 technical report”. In: arXiv preprint arXiv:2305.10403
(cit. on p. 1).

Anil, Rohan, Vineet Gupta, et al. (2020). “Scalable second order optimization for deep learning”. In:
arXiv preprint arXiv:2002.09018 (cit. on p. 1).

10

0.94 0.95 0.96 0.97 0.98 0.99 1.00

0.938

0.939

0.940

0.941

0.942

0.943
Va

l a
cc

ur
ac

y

0.94 0.95 0.96 0.97 0.98 0.99 1.00
0.931

0.932

0.933

0.934

0.935

0.936

Va
l a

cc
ur

ac
y

0.80 0.85 0.90 0.95 1.00
0.919

0.920

0.921

0.922

0.923

0.924

0.925

0.926

Va
l a

cc
ur

ac
y

0.80 0.85 0.90 0.95 1.00

0.885

0.890

0.895

0.900

0.905

Va
l a

cc
ur

ac
y

Figure 10: ResNet-50 trained on CIFAR-10 with Adam, β1 = 0.99, ε = 10−6, learning rate 10−3. Batch
sizes, left to right, top to bottom: 1024, 4096, 16384, 50000 (full-batch).

0 2500 5000 7500 10000 12500 15000 17500
Epoch

4

6

8

10

Tr
ai

n
lo

ss

=0.9

0 2500 5000 7500 10000 12500 15000 17500
Epoch

4

6

8

10

Tr
ai

n
lo

ss

=0.9919
=0.9947
=0.9965
=0.9977
=0.9985
=0.999

Figure 11: GPT-2 (124M) trained from scratch on FineWeb-10B: for β2 close to β1 the training is relatively
smooth, and for β2 ≫ β1 there are large loss spikes. Batch size 219, sequence length 1024. AdamW with
β1 = 0.9, ε = 10−6.

Bernstein, Jeremy et al. (2018). “signSGD: Compressed optimisation for non-convex problems”. In:
International Conference on Machine Learning. PMLR, pp. 560–569 (cit. on p. 2).

Biderman, Stella et al. (2023). “Pythia: A Suite for Analyzing Large Language Models Across Training
and Scaling”. In: Proceedings of the 40th International Conference on Machine Learning. Ed. by

11

https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html

0 5000 10000 15000 20000 25000 30000
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

n
lo

ss
=0.9
=0.9342
=0.9567
=0.9715
=0.9813
=0.9877
=0.9919
=0.9947
=0.9965
=0.9977
=0.9985
=0.999

0.90 0.92 0.94 0.96 0.98 1.00

5000

6000

7000

8000

9000

10000

11000

Ep
oc

h

Figure 12: CNN trained on CIFAR-10 with full-batch Adam, β1 = 0.99, ε = 10−6, learning rate 2 · 10−4.
Left: training loss curves. Right: how many epochs were required to reach loss threshold 0.1 (averaged
over three runs with different initialization seeds).

0.900 0.925 0.950 0.975 1.000
80

90

100

110

120

Ep
oc

h

0.900 0.925 0.950 0.975 1.000
110

120

130

140

Ep
oc

h

0.900 0.925 0.950 0.975 1.000

165

170

175

180

185
Ep

oc
h

0.900 0.925 0.950 0.975 1.000

250

260

270

Ep
oc

h

0.900 0.925 0.950 0.975 1.000

400

410

420

Ep
oc

h

0.900 0.925 0.950 0.975 1.000
600

610

620

630

Ep
oc

h

0.900 0.925 0.950 0.975 1.000
912.5

915.0

917.5

920.0

922.5

925.0

Ep
oc

h

0.900 0.925 0.950 0.975 1.000

1360

1370

1380

1390

1400

Ep
oc

h

Figure 13: Transformer-XL on WikiText-2: how many epochs are required to reach the training loss
threshold 0.6. Adam with batch sizes (left to right, top to bottom) 128, 256, 512, 1024, 2048, 4096, 8192
and 16384 (full-batch). Fixed hyperparameters: β1 = 0.9, ε = 10−6, learning rate 10−4.

Andreas Krause et al. Vol. 202. Proceedings of Machine Learning Research. PMLR, pp. 2397–2430
(cit. on p. 2).

Brown, Tom et al. (2020). “Language Models are Few-Shot Learners”. In: Advances in Neural Information
Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., pp. 1877–1901
(cit. on pp. 1, 2).

Cattaneo, Matias D., Jason Matthew Klusowski, and Boris Shigida (2024). “On the Implicit Bias of
Adam”. In: Proceedings of the 41st International Conference on Machine Learning. Ed. by Ruslan
Salakhutdinov et al. Vol. 235. Proceedings of Machine Learning Research. PMLR, pp. 5862–5906
(cit. on p. 6).

Chen, Xiangning et al. (2023). “Symbolic Discovery of Optimization Algorithms”. In: Thirty-seventh
Conference on Neural Information Processing Systems (cit. on p. 1).

Choi, D (2019). “On empirical comparisons of optimizers for deep learning”. In: arXiv preprint arX-
iv:1910.05446 (cit. on p. 1).

Chowdhery, Aakanksha et al. (2023). “Palm: Scaling language modeling with pathways”. In: Journal of
Machine Learning Research 24.240, pp. 1–113 (cit. on pp. 2, 7).

Cohen, Jeremy M et al. (2022). “Adaptive gradient methods at the edge of stability”. In: arXiv preprint
arXiv:2207.14484 (cit. on p. 9).

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.mlr.press/v235/cattaneo24a.html
https://proceedings.mlr.press/v235/cattaneo24a.html
https://openreview.net/forum?id=ne6zeqLFCZ

0.900 0.925 0.950 0.975 1.000
120

130

140

150
Va

l p
pl

 = 0.0003162
 = 0.0001
 = 3.16e-05

0.900 0.925 0.950 0.975 1.000

130

135

140

145

Va
l p

pl

 = 0.0003162
 = 0.0001
 = 3.16e-05

0.900 0.925 0.950 0.975 1.000
135

140

145

150

155

Va
l p

pl

 = 0.0003162
 = 0.0001
 = 3.16e-05

0.900 0.925 0.950 0.975 1.000

140

145

150

155

160

Va
l p

pl

 = 0.0003162
 = 0.0001
 = 3.16e-05

Figure 14: Minimal validation perplexity (before overfitting) of Transformer-XL on WikiText-2. Adam
with batch sizes (left to right) 128, 1024, 4096, and 16384 (full-batch). Fixed hyperparameters: β2 = 0.999,
ε = 10−6.

0 2000 4000 6000 8000 10000 12000 14000
Epoch

100000

150000

200000

250000

To
p

pr
ec

on
di

tio
ne

d
he

ss
ia

n
ei

ge
nv

al
ue

=0.9
=0.9342
=0.9567
=0.9715
=0.9813

=0.9877
=0.9919
=0.9947
=0.9965

=0.9977
=0.9985
=0.999

EOS

0 2000 4000 6000 8000 10000 12000 14000
Epoch

2000

3000

4000

5000

To
p

he
ss

ia
n

ei
ge

nv
al

ue

=0.9
=0.9342
=0.9567
=0.9715
=0.9813
=0.9877
=0.9919
=0.9947
=0.9965
=0.9977
=0.9985
=0.999

Figure 15: CNN trained on CIFAR-10 with full-batch Adam, β1 = 0.9, ϵ = 10−6. Left: preconditioned
sharpness λ1(P

−1
t Ht) oscillates around the stability threshold. Right: the plots of ordinary sharpness

λ1(Ht).

Dai, Zihang et al. (2019). “Transformer-XL: Attentive Language Models beyond a Fixed-Length Context”.
In: Annual Meeting of the Association for Computational Linguistics (cit. on p. 3).

Dozat, Timothy (2016). “Incorporating nesterov momentum into adam”. In: (cit. on p. 2).

13

https://api.semanticscholar.org/CorpusID:57759363

0 2000 4000 6000 8000 10000 12000 14000
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
To

p
pr

ec
on

di
tio

ne
d

he
ss

ia
n

ei
ge

nv
al

ue

1e6
=0.9
=0.9342
=0.9567
=0.9715
=0.9813
=0.9877
=0.9919
=0.9947
=0.9965
=0.9977
=0.9985
=0.999

EOS

0 2000 4000 6000 8000 10000 12000 14000
Epoch

0

2000

4000

6000

8000

10000

12000

14000

To
p

he
ss

ia
n

ei
ge

nv
al

ue =0.9
=0.9342
=0.9567
=0.9715
=0.9813
=0.9877
=0.9919
=0.9947
=0.9965
=0.9977
=0.9985
=0.999

Figure 16: CNN trained on CIFAR-10 with full-batch Adam, β1 = 0.99, ϵ = 10−6. Left: preconditioned
sharpness λ1(P

−1
t Ht) does not reach the stability threshold. Right: the plots of ordinary sharpness λ1(Ht).

Dubey, Abhimanyu et al. (2024). “The llama 3 herd of models”. In: arXiv preprint arXiv:2407.21783
(cit. on pp. 1, 2).

Gupta, Vineet, Tomer Koren, and Yoram Singer (2018). “Shampoo: Preconditioned stochastic tensor
optimization”. In: International Conference on Machine Learning. PMLR, pp. 1842–1850 (cit. on
p. 2).

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (cit. on pp. 1, 3).

Kunstner, Frederik et al. (2023). “Noise Is Not the Main Factor Behind the Gap Between Sgd and Adam on
Transformers, But Sign Descent Might Be”. In: The Eleventh International Conference on Learning
Representations (cit. on p. 3).

Lee, Chen-Yu et al. (2015). “Deeply-supervised nets”. In: Artificial intelligence and statistics. Pmlr,
pp. 562–570 (cit. on p. 6).

Liu, Liyuan et al. (2019). “On the variance of the adaptive learning rate and beyond”. In: arXiv preprint
arXiv:1908.03265 (cit. on p. 2).

Loshchilov, Ilya and Frank Hutter (2019). Decoupled Weight Decay Regularization (cit. on pp. 1, 3).
Ma, Chao, Lei Wu, and E Weinan (2022). “A qualitative study of the dynamic behavior for adaptive

gradient algorithms”. In: Mathematical and Scientific Machine Learning. PMLR, pp. 671–692 (cit. on
pp. 2, 7).

Ma, Jerry and Denis Yarats (2018). “Quasi-hyperbolic momentum and adam for deep learning”. In: arXiv
preprint arXiv:1810.06801 (cit. on p. 2).

Merity, Stephen et al. (2017). “Pointer Sentinel Mixture Models”. In: International Conference on Learning
Representations (cit. on p. 3).

Penedo, Guilherme et al. (2024). The FineWeb Datasets: Decanting the Web for the Finest Text Data at
Scale (cit. on p. 6).

Radford, Alec et al. (2019). “Language Models are Unsupervised Multitask Learners”. In: (cit. on p. 6).
Rajpurkar, Pranav et al. (2016). “SQuAD: 100,000+ Questions for Machine Comprehension of Text”. In:

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Ed. by
Jian Su, Kevin Duh, and Xavier Carreras. Austin, Texas: Association for Computational Linguistics,
pp. 2383–2392 (cit. on p. 3).

Reddi, Sashank J., Satyen Kale, and Sanjiv Kumar (2018). “On the Convergence of Adam and Beyond”.
In: International Conference on Learning Representations (cit. on p. 2).

Sanh, Victor et al. (2019). “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter”.
In: ArXiv abs/1910.01108 (cit. on p. 3).

Savarese, Pedro et al. (2021). “Domain-independent dominance of adaptive methods”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16286–16295 (cit. on
p. 1).

Shazeer, Noam and Mitchell Stern (2018). “Adafactor: Adaptive learning rates with sublinear memory
cost”. In: International Conference on Machine Learning. PMLR, pp. 4596–4604 (cit. on pp. 1, 2, 7).

14

https://openreview.net/forum?id=a65YK0cqH8g
https://openreview.net/forum?id=a65YK0cqH8g
https://arxiv.org/abs/1711.05101
https://openreview.net/forum?id=Byj72udxe
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://doi.org/10.18653/v1/D16-1264
https://openreview.net/forum?id=ryQu7f-RZ
https://api.semanticscholar.org/CorpusID:203626972

Sivaprasad, Prabhu Teja et al. (2020). “Optimizer benchmarking needs to account for hyperparameter
tuning”. In: International conference on machine learning. PMLR, pp. 9036–9045 (cit. on p. 1).

Taniguchi, Shohei et al. (2024). “ADOPT: Modified Adam Can Converge with Any $\beta 2$ with the
Optimal Rate”. In: The Thirty-eighth Annual Conference on Neural Information Processing Systems
(cit. on p. 2).

Touvron, Hugo et al. (2023). “Llama 2: Open foundation and fine-tuned chat models”. In: arXiv preprint
arXiv:2307.09288 (cit. on pp. 1, 2).

Wolf, Thomas et al. (2019). “Transformers: State-of-the-Art Natural Language Processing”. In: Conference
on Empirical Methods in Natural Language Processing (cit. on p. 3).

Xie, Shuo, Mohamad Amin Mohamadi, and Zhiyuan Li (2024). Adam Exploits ℓ∞-geometry of Loss
Landscape via Coordinate-wise Adaptivity (cit. on p. 6).

Zeng, Aohan et al. (2022). “Glm-130b: An open bilingual pre-trained model”. In: arXiv preprint arX-
iv:2210.02414 (cit. on p. 2).

Zhang, Jingzhao et al. (2020). “Why are adaptive methods good for attention models?” In: Advances in
Neural Information Processing Systems 33, pp. 15383–15393 (cit. on p. 3).

Zhang, Susan et al. (2022). “Opt: Open pre-trained transformer language models”. In: arXiv preprint
arXiv:2205.01068 (cit. on p. 2).

Zhuang, Juntang et al. (2020). “Adabelief optimizer: Adapting stepsizes by the belief in observed gradients”.
In: Advances in neural information processing systems 33, pp. 18795–18806 (cit. on p. 2).

15

https://openreview.net/forum?id=rzvVm0LsyK
https://openreview.net/forum?id=rzvVm0LsyK
https://api.semanticscholar.org/CorpusID:274421273
https://arxiv.org/abs/2410.08198
https://arxiv.org/abs/2410.08198

	1 Introduction
	2 Larger beta2 Hurts Generalization Except for Very Small Batches
	2.1 Training Transformer-XL from Scratch on WikiText-2
	2.2 Fine-Tuning DistilBERT on SQuAD
	2.3 Training GPT-2 from Scratch on FineWeb
	2.4 Training CNN on CIFAR-10
	2.5 Training ResNet-50 on CIFAR-10

	3 Loss Spikes
	4 Speed of Training
	5 A Note on How beta1 Affects Generalization
	6 A Note on Sharpness and Edge of Stability
	7 Final Remarks

