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Abstract

We derive sharp upper and lower bounds for the pointwise concentration function
of the maximum statistic of d identically distributed real-valued random variables.
Our first main result places no restrictions either on the common marginal law of
the samples or on the copula describing their joint distribution. We show that, in
general, strictly sublinear dependence of the concentration function on the dimension
d is not possible. We then introduce a new class of copulas, namely those with a
convex diagonal section, and demonstrate that restricting to this class yields a sharper
upper bound on the concentration function. This allows us to establish several new
dimension-independent and poly-logarithmic-in-d anti-concentration inequalities for
a variety of marginal distributions under mild dependence assumptions. Our theory
improves upon the best known results in certain special cases. Applications to high-
dimensional statistical inference are presented, including a specific example pertaining
to Gaussian mixture approximations for factor models, for which our main results lead
to superior distributional guarantees.
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1 Introduction

Concentration of measure has been extensively studied throughout the probability and statistics
literature. Anti-concentration phenomena, on the other hand, appear much less frequently and are
generally not so well understood (Vershynin and Rudelson, 2007). While it is impossible to pin
down the date when anti-concentration became a topic of interest, its systematic study is commonly
attributed to Lévy (1954), who defined the concentration function of a real-valued random variable
Y as L(Y, ε) := supx∈R P(x ≤ Y ≤ x + ε) for ε ≥ 0. The early focus was almost exclusively on
the asymptotic behavior of the concentration function as ε → 0, motivated by applications to
quantitative central limit theorems. The last two decades have seen a revival of interest in anti-
concentration, fueled by advances in high-dimensional and nonparametric statistics (Bakshi et al.,
2020; Chernozhukov et al., 2013, 2014a; Koike, 2021; Kuchibhotla et al., 2021), random matrix theory
(Litvak et al., 2017; Nie, 2022), geometric analysis (Livshyts, 2014, 2021; Paouris, 2012; Paouris and
Valettas, 2018) and applied probability (Aizenman et al., 2009; Belloni et al., 2024; Chernozhukov
et al., 2015; Fox et al., 2021; Götze et al., 2019; Krishnapur, 2016; Meka et al., 2015; Rudelson and
Vershynin, 2015). Recently, attention has shifted to finding sharp non-asymptotic upper bounds for
the concentration function in terms of ε and properties of the law of Y . One particular example of
interest is the maximum statistic Y := maxi∈[d]Xi, with X1, . . . , Xd real-valued random variables.

When the distribution of Y admits a density f(x) with respect to the Lebesgue measure, a simple
upper bound for the concentration function is obtained by observing that L(Y, ε) ≤ ε supx∈R f(x).
This technique was applied by Chernozhukov et al. (2015, Theorem 3) to Y := maxi∈[d]Xi with
(X1, . . . , Xd) a zero-mean multivariate Gaussian random vector with a non-singular covariance
matrix. Their proof leveraged the fact that conditioning on components preserves joint Gaussianity,
and the resulting anti-concentration inequality was used to establish a conditional multiplier central
limit theorem in a high-dimensional regime. A related approach is to provide bounds for the
concentration function in terms of the variance of Y ; Bobkov and Chistyakov (2015) used this
method to establish matching upper and lower bounds (up to a constant factor) under a log-concavity
assumption. Unfortunately, if Xi are log-concave random variables, then there is no guarantee that
maxi∈[d]Xi is similarly log-concave (refer to Saumard and Wellner (2014) for a comprehensive review
of log-concavity properties). Furthermore, lower bounds on the variance of maxi∈[d]Xi are typically
not easy to obtain unless the joint distribution of (X1, . . . , Xd) is specified. In the multivariate
Gaussian setting, Giessing (2023) recently established such bounds in terms of the dimension or
metric entropy of the joint distribution. Another approach builds upon the seminal paper of Nazarov
(2003), establishing anti-concentration inequalities for the maximum statistic using properties of the
Gaussian distribution and tools from convex geometry (Chernozhukov et al., 2017a,b).

Our goal is to study the anti-concentration behavior of maximum statistics by providing upper
and lower bounds for the pointwise concentration function

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
, (1)

where X1, . . . , Xd are real-valued random variables, x ∈ R and ε ≥ 0. In contrast to several
prior results, we refrain from taking a supremum over x ∈ R, with our main results focusing on
pointwise (rather than uniform) anti-concentration phenomena. In principle, this can lead to sharper
inequalities when restricting to x lying in a subset of R (see Section 4 for an illustration). Further, we
seek to impose minimal assumptions on the dependence structure of the random vector (X1, . . . , Xd),
as determined by its associated copula (see Durante and Sempi, 2016, for a contemporary review).
We assume throughout that the variables X1, . . . , Xd share a common marginal distribution.
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Our first main result, given as Theorem 1 in Section 2, gives upper and lower bounds for the
pointwise concentration function of maxi∈[d]Xi, as defined in (1). Crucially, this theorem makes
no assumptions at all on the copula describing the dependence structure of (X1, . . . , Xd). As such,
it is applicable even in cases where the joint distribution is intractable or unspecified. Moreover,
we construct copulas which exactly attain our upper and lower bounds, respectively; therefore
Theorem 1 is not improvable unless extra conditions are imposed on the copula. When considering
marginally Gaussian random variables (Example 1), we show that the worst-case concentration
function (i.e., the maximum over all possible copulas) is substantially larger (as a function of the
dimension d) than when assuming joint Gaussianity (see Chernozhukov et al., 2017b, Theorem 1). It
is therefore essential in applications, particularly in high-dimensional regimes, to consider properties
of the copula associated with (X1, . . . , Xd) as well as their marginal laws. The proof of Theorem 1,
presented in Section 5.1, relies only on basic properties of copulas and their diagonal sections. A
similar copula-based approach was taken by Frank et al. (1987), who obtained optimal upper and
lower bounds for the distribution function of the sum (and other combinations) of several random
variables, under arbitrary dependence.

In Section 3 we obtain a more refined result as Theorem 2 by restricting the class of copulas under
consideration. Specifically, we impose a convexity condition on the diagonal section of the copula; this
assumption is novel, to the best of the authors’ knowledge, and leads to a class of copulas that could
be useful in other applications. We present an explicit copula for which our concentration function
upper bound is tight, demonstrating its optimality. The resulting anti-concentration inequality for
the maximum statistic is typically substantially stronger than that obtained using Theorem 1; when
applied to a joint distribution with Gaussian margins, we improve several well-known results in the
literature where previously a multivariate Gaussian law was assumed (cf. Chernozhukov et al., 2015,
2017b). Moreover, we demonstrate the applicability of Theorem 2 to several popular families of
copulas, and discuss the resulting concentration bounds for a variety of marginal distributions.

Section 4 presents an application of our main results in high-dimensional statistical inference,
highlighting the importance of sharp anti-concentration bounds in distributional analysis. We give
an explicit example in the context of Gaussian mixture approximations for high-dimensional factor
models. In particular, we demonstrate that our main results lead to superior anti-concentration
inequalities, and therefore better guarantees on the quality of the distributional approximation,
especially when the Gaussian mixture components exhibit a wide range of variances.

Proofs and further details are given in Section 5; Section 6 contains concluding remarks.

1.1 Notation

We use N := {1, 2, . . .} for the natural numbers, and for d ∈ N we define [d] := {1, . . . , d}. The
multivariate normal distribution with mean vector µ and covariance matrix Σ is denoted by N (µ,Σ),
and the cumulative distribution function (CDF) and Lebesgue density function of N (0, 1) are written
as Φ and ϕ respectively. The uniform distribution on [0, 1] is denoted by U . For a, b ∈ R, a ∧ b and
a ∨ b are their minimum and maximum, respectively. For a function F of a single real variable, we
use F−(x) for its left limit at x if it exists. For two functions f and g, we write f ◦ g(x) = f

(
g(x)

)
for their composition whenever it is well-defined. The natural logarithm is denoted by log.

1.2 Preliminary results

Suppose that X1, . . . , Xd are real-valued random variables with a common distribution function
F : R → [0, 1]. By a well-known theorem due to Sklar (Nelsen, 2006, Theorem 2.10.9), the joint
law of (X1, . . . , Xd) decomposes as P(X1 ≤ x1, . . . , Xd ≤ xd) = C

(
F (x1), . . . , F (xd)

)
, where C is a
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d-dimensional copula (Nelsen, 2006, Definition 2.10.6). Considering x1 = · · · = xd =: x, we obtain

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
= C

(
F (x+ ε), . . . , F (x+ ε)

)
− C

(
F (x), . . . , F (x)

)
. (2)

As such, the distribution of maxi∈[d]Xi depends on the copula associated with (X1, . . . , Xd) only
through its diagonal section, as formalized in Definition 1.

Definition 1. Let d ∈ N. A function ∆ : [0, 1] → [0, 1] is a d-dimensional copula diagonal if there
exists a d-dimensional copula C : [0, 1]d → [0, 1] with ∆(u) = C(u, . . . , u) for all u ∈ [0, 1].

Lemma 1 below gives a characterization of d-dimensional copula diagonals. In Fernández-Sánchez
and Úbeda-Flores (2018), an explicit copula C is constructed with a specified diagonal ∆; for our
purposes, any such copula suffices by (2). See Cuculescu and Theodorescu (2001) and Jaworski
(2009) for further background on copulas and their diagonals.

Lemma 1 (Theorem 1, Fernández-Sánchez and Úbeda-Flores, 2018). A function ∆ : [0, 1] → [0, 1]
is a d-dimensional copula diagonal if and only if it satisfies: (i) ∆(1) = 1; (ii) ∆(u) ≤ u for all
u ∈ [0, 1]; and (iii) 0 ≤ ∆(u′)−∆(u) ≤ d(u′ − u) for all u, u′ ∈ [0, 1] with u ≤ u′.

2 Anti-concentration inequalities for arbitrary copulas

We derive sharp upper and lower bounds on the pointwise concentration function of the maximum
statistic of identically distributed (not necessarily independent) random variables, imposing no
further assumptions on either their common marginal law or the copula describing their joint
distribution. The relevant class of distributions is specified in Definition 2.

Definition 2. Let d ∈ N and F : R → [0, 1] be a CDF. Write Pd(F ) for the set of distributions P
on Rd which have joint CDFs of the form

P
(
X1 ≤ x1, . . . , Xd ≤ xd

)
= C

(
F (x1), . . . , F (xd)

)
,

for some d-dimensional copula C.

Our first main result is given in Theorem 1.

Theorem 1. Let d ∈ N and F : R → [0, 1] be a CDF. For each x ∈ R and ε ≥ 0,

max
P∈Pd(F )

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
=
{
d
(
F (x+ ε)− F (x)

)}
∧ F (x+ ε), (3)

min
P∈Pd(F )

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
= 0 ∨

{
1− F (x)− d

(
1− F (x+ ε)

)}
. (4)

Equation (3) in Theorem 1 gives a tight upper bound on the probability of the maximum

statistic falling in (x, x+ ε]. Further, (3) shows that if F (x) ∈ (0, 1) and F (x+ ε)− F (x) ≤ F (x)
d−1 ,

then there exists a joint distribution Pup such that the maximum statistic exhibits strong local
concentration near x. That is, Pup

(
x < maxi∈[d]Xi ≤ x + ε

)
= d

(
F (x + ε) − F (x)

)
, which

increases linearly with the dimension d; see (7) in Section 2.1. If also F admits a Lebesgue

density f on (x, x + ε] which is bounded above by M and below by m, then ε ≤ F (x)
M(d−1) implies

dmε ≤ Pup

(
x < maxi∈[d]Xi ≤ x+ ε

)
≤ dMε. This is a form of “curse of dimensionality,” precluding

the possibility of obtaining anti-concentration bounds which hold uniformly in ε and depend strictly
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sublinearly on d. This local concentration phenomenon can occur at any point x ∈ R satisfying
F (x) > 0; contrast this with the independent setting, in which concentration is restricted to regions
where F (x) is close to 1.

For a lower bound on the concentration probability, (4) establishes a joint distribution Plo which
achieves exact anti-concentration whenever F (x + ε) − F (x) ≤ d−1

d

(
1 − F (x)

)
, in the sense that

Plo

(
x < maxi∈[d]Xi ≤ x+ ε

)
= 0. If F admits a Lebesgue density f on (x, x+ ε] which is bounded

above by M , then ε ≤ d−1
Md

(
1− F (x)

)
suffices to ensure this; see (8) in Section 2.1.

In Example 1 we apply the result from (3) with marginally Gaussian random variables.

Example 1 (Marginal Gaussian distribution). Let d ∈ N, σ > 0 and ε ∈ [0, σ]. By (3), there exists
(X1, . . . , Xd) with Xi ∼ N (0, σ2) for i ∈ [d] such that

sup
x∈R

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
≥ dε

σ
ϕ

(
ε

σ

)
∧ Φ

(
ε

σ

)
≥ dε

σ

e−1/2

√
2π

∧ 1

2
≥ dε

5σ
∧ 1

2
.

Compare Example 1 with Nazarov’s inequality (Nazarov, 2003; see also Chernozhukov et al.,
2017b, for a detailed proof) which, under the assumption of joint Gaussianity, obtains a bound of

sup
x∈R

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
≤ ε

σ

(√
2 log d+ 2

)
. (5)

This slow-growing dependence on d is crucial in high-dimensional statistical applications, where the
dimension may be much larger than the sample size. Example 1 shows that marginal Gaussianity
of each Xi alone is insufficient for obtaining such a bound. Therefore, in the upcoming Section 3
we present a restricted class of copulas for which sharper anti-concentration inequalities hold than
those given in Theorem 1. We recover a form of Nazarov’s inequality (5) as a special case.

2.1 Overview of proof strategy

The proof of Theorem 1 is presented in Section 5.1 and proceeds as follows. Firstly, we consider the
special case where the common law of each variable is the standard uniform distribution, and write Ui

instead of Xi for clarity. The joint CDF of (U1, . . . , Ud) is a d-dimensional copula C : [0, 1]d → [0, 1].
With ∆(u) := C(u, . . . , u) the diagonal section of C, for u ∈ [0, 1] and δ ∈ [0, 1− u], (2) gives

P
(
u < max

i∈[d]
Ui ≤ u+ δ

)
= ∆(u+ δ)−∆(u). (6)

Establishing (3) and (4) thus reduces to finding ∆up and ∆lo which maximize and minimize the
right-hand side of (6) respectively over ∆, subject to the constraints enforced in Lemma 1. The
resulting copula diagonals are described in (7) and (8), and are plotted in Figure 1. Fix d ∈ N and
u ∈ [0, 1], and for t ∈ [0, 1] define

∆up(t) := d ·
{
t−

(
u ∧ d− 1

d

)}
· I
{
u ∧ d− 1

d
< t ≤ du

d− 1

}
+ t · I

{
du

d− 1
∧ 1 < t

}
, (7)

∆lo(t) := t · I{t ≤ u}+ u · I
{
u < t ≤ d+ u− 1

d

}
+ (1− d+ d · t) · I

{
d+ u− 1

d
< t

}
. (8)

For the upper bound (7, Figure 1a), we maximize the increment of ∆ over (u, u+ δ] to obtain
∆up; for the lower bound (8, Figure 1b), we minimize it, yielding ∆lo. Therefore,

Pup

(
u < max

i∈[d]
Ui ≤ u+ δ

)
= (dδ) ∧ (u+ δ),

Plo

(
u < max

i∈[d]
Ui ≤ u+ δ

)
= 0 ∨

(
1− u− d(1− u− δ)

)
.
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The generalization to an arbitrary distribution function F then proceeds by a quantile transform,
taking u := F (x) and δ := F (x+ ε)− F (x), and finally setting Xi := F−1(Ui).

Analogous results to those in Theorem 1 can be derived with the maximum statistic replaced by
the minimum statistic by considering the variables −Xi, with common CDF G(x) := 1−F−(−x). If
F is symmetric in the sense that F (x) = 1−F−(−x) for all x ∈ R, then similar results also hold for
the maximum absolute value statistic (see Example 9), noting that maxi∈[d] |Xi| = maxi∈[d](Xi∨−Xi)
and applying Theorem 1 to the 2d-dimensional vector (X1, . . . , Xd,−X1, . . . ,−Xd).

0 1

1

0
u ∧ d−1

d
du
d−1 ∧ 1

du
d−1 ∧ 1

(a) The copula diagonal ∆up defined in (7).

0 1

1

0
u d+u−1

d

u

(b) The copula diagonal ∆lo defined in (8).

0 1

1

0
u ∧ d−1

d
du
d−1 ∧ 1

u ∧ d−1
d

du
d−1 ∧ 1

(c) Extension of ∆up to a copula with d = 2.

0 1

1

0
u

u

d+u−1
d

d+u−1
d

(d) Extension of ∆lo to a copula with d = 2.

Figure 1: Top: the two d-dimensional copula diagonals (7) and (8) constructed to prove (3) and (4)
respectively in Theorem 1. For the upper bound (a), the increment over (u, u+ δ] is maximized,
while for the lower bound (b) it is minimized. Bottom: contour plots for possible two-dimensional
(d = 2) copulas (a) and (b) whose diagonals are given by ∆up and ∆lo respectively. We use the
extension due to Fernández-Sánchez and Úbeda-Flores (2018, proof of Theorem 1), though this is
not unique in general. Recall that every copula satisfies C(0, . . . , 0) = 0 and C(1, . . . , 1) = 1.
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2.2 Comparisons with other well-known copulas

We provide some comparisons of the anti-concentration properties established in Theorem 1 with
those induced by other well-known copulas (see Figure 2). For simplicity, we restrict to the case
that Xi ∼ U are uniformly distributed; extensions to arbitrary common laws proceed using a
straightforward quantile transform, as in the proof of Theorem 1.

Example 2 (Independence copula). If Xi ∼ U are independent for i ∈ [d], then we have that
Pind

(
x < maxi∈[d]Xi ≤ x+ ε

)
= (x+ ε)d − xd. Taking x ∈ (0, 1) and ε ≤ x

d−1 ∧ (1− x),

Pind

(
x < max

i∈[d]
Xi ≤ x+ ε

)
≤ dε(x+ ε)d−1 ≤ dεxd−1

(
1 +

1

d− 1

)d−1
≤ edεxd−1.

In contrast, the law Pup attaining the maximum in (3) has Pup

(
x < maxi∈[d]Xi ≤ x+ ε

)
= dε; its

local concentration probability is greater by a factor of at least x1−d/e→ ∞ as d→ ∞.
If instead one takes ε ∈ (1/d, 1) and x = 1− ε, then for the independence copula one obtains

Pind

(
x < maxi∈[d]Xi ≤ x + ε

)
= 1 − (1 − ε)d while (3) gives Pup

(
x < maxi∈[d]Xi ≤ x + ε

)
= 1.

Although both exhibit concentration of the maximum statistic at x = 1 as expected, the independence
copula does not attain exact concentration.

Regarding lower bounds, if x ∈ (0, 1) and ε ∈ (0, 1 − x], then the independence copula gives
Pind

(
x < maxi∈[d]Xi ≤ x + ε

)
≥ dεxd−1 > 0. In contrast, whenever ε ≤ d−1

d (1 − x), the law Plo

achieving the minimum in (4) satisfies Plo

(
x < maxi∈[d]Xi ≤ x+ ε

)
= 0.

Example 3 (Fréchet–Hoeffding upper bound). Write PFHU for the joint law of X1 = · · · =
Xd ∼ U . For x ∈ [0, 1) and ε ∈ [0, 1 − x], we have PFHU

(
x < maxi∈[d] ≤ x + ε

)
= ε. Since

0∨
(
1−x−d(1−x− ε)

)
≤ ε ≤ (dε)∧ (x+ ε), the Fréchet–Hoeffding upper bound copula interpolates

between the upper bound (3) and the lower bound (4) of Theorem 1.

Example 4 (Fréchet–Hoeffding lower bound). Let PFHL be any joint distribution of Xi ∼ U for
i ∈ [d] with copula diagonal satisfying ∆(x) = 0 ∨ (d · x − d + 1). If x ≥ d−1

d and ε ∈ [0, 1 − x],

then PFHL

(
x < maxi∈[d]Xi ≤ x+ ε

)
= dε, matching (3). If x ∈

[
0, d−1

d

]
and ε ∈

[
0, d−1

d − x
]
, then

PFHL

(
x < maxi∈[d]Xi ≤ x+ ε

)
= 0, agreeing with (4).

0 1

1

0

(a) Independence

0 1

1

0

(b) Upper Fréchet–Hoeffding

0 1

1

0
d−1
d

(c) Lower Fréchet–Hoeffding

Figure 2: The diagonal sections of three well-known d-dimensional copulas.
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3 Anti-concentration inequalities for diagonally convex copulas

The upper bound presented as (3) in Theorem 1 demonstrates that, without imposing further
conditions on the dependence structure (the copula) of the random vector (X1, . . . , Xd), it is
impossible to obtain anti-concentration results which hold uniformly over ε ≥ 0 and exhibit a strictly
sublinear dependence on the dimension (see Example 1). As such, in order to obtain sharper upper
bounds on the concentration probability, it is necessary to restrict the class of admissible copulas.
For example, as discussed in Section 2, in the setting where (X1, . . . , Xd) follows a multivariate
Gaussian law, Nazarov’s inequality can be applied to the maximum statistic and produces a bound
(5) with a square root-logarithmic dependence on the dimension.

Nonetheless, in this section, we propose a method which avoids the assumption of multivariate
(joint) Gaussianity, replacing it with a mild nonparametric convexity condition on the copula
describing the dependence structure (see Definition 3). We also allow for an arbitrary common
marginal distribution; as such, we encompass a substantially wider range of joint distributions than
those covered by Nazarov’s inequality. See the upcoming Examples 8, 9, 10, 11 and 12 for a selection
of novel anti-concentration inequalities derived using our results.

Definition 3. Let d ∈ N and F : R → [0, 1] be a CDF. Write P c
d (F ) for the set of distributions P

on Rd that have joint CDFs of the form

P
(
X1 ≤ x1, . . . , Xd ≤ xd

)
= C

(
F (x1), . . . , F (xd)

)
,

where C is a d-dimensional copula for which ∆ : [0, 1] → [0, 1] defined by ∆(x) = C(x, . . . , x) is a
convex function. We say that P and C are diagonally convex.

Theorem 2. Let d ∈ N and F : R → [0, 1] be a CDF. For each x ∈ R and ε ≥ 0,

max
P∈P c

d (F )
P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
=
(
F (x+ ε)− F (x)

){ 1

1− F (x)
∧ d
}
.

The upper bound given in Theorem 2 holds uniformly over all diagonally convex copulas and,
moreover, imposes no conditions on the common marginal law F . The proof of Theorem 2 is
presented in Section 5.2 and relies only on convexity arguments.

3.1 Examples of diagonally convex copulas

Before applying Theorem 2 with some explicit marginal laws, we first verify that several popular
copula families satisfy the convex diagonal section condition given in Definition 3. Naturally, the two
copulas (3) and (4) constructed in Theorem 1 do not generally satisfy this assumption, as evidenced
by the plots of their diagonal sections presented in Figure 1. We verify in Example 5 that diagonal
convexity does hold for the independence copula, the Fréchet–Hoeffding upper bound copula, and
any copula with diagonal section matching the Fréchet–Hoeffding lower bound; see Figure 2.

Example 5 (Diagonally convex copulas). The d-dimensional independence copula has diagonal
section ∆ind(u) = ud and is diagonally convex. Similarly, the d-dimensional Fréchet–Hoeffding
upper bound copula has diagonal ∆FHU(u) = u and is diagonally convex. Any copula with diagonal
matching the d-dimensional Fréchet–Hoeffding lower bound has ∆FHL(u) = 0 ∨ (du− d+ 1) and is
diagonally convex.

Next, Lemma 2 demonstrates that every multivariate Gaussian copula is diagonally convex.
The proof of this result is given in Section 5.3, and depends on a precise characterization of the
Lebesgue density associated with the maximum statistic of a multivariate Gaussian distribution
(Chernozhukov et al., 2015, Lemmas 5 and 6).
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Lemma 2. Let µ ∈ Rd and suppose Σ ∈ Rd×d is a symmetric, positive semi-definite matrix. Then
N (µ,Σ) has a diagonally convex copula.

We now give a general condition under which every member of a family of Archimedean copulas
possesses a convex diagonal section. A d-dimensional copula C is said to be Archimedean (Nelsen,
2006, Theorem 4.6.2) if there is a continuous strictly decreasing function ψ : [0, 1] → [0,∞] with
ψ(0) = ∞ and ψ(1) = 0 satisfying

C(x1, . . . , xd) = ψ−1

(
d∑

i=1

ψ(xi)

)
, (9)

for all (x1, . . . , xd) ∈ [0, 1]d. The function ψ is known as the generator of C. Since our focus is
on high-dimensional phenomena, we consider only strict Archimedean generators with completely
monotone inverse functions; such generators yield valid copulas through (9) for every d ∈ N.

Lemma 3. Let C be a d-dimensional Archimedean copula with generator ψ which is differentiable
on (0, 1) with ψ′(x) < 0 for all x ∈ (0, 1). Suppose Ψ : (0,∞) → R, defined by

Ψ(x) :=
d · ψ′ ◦ ψ−1(x)

ψ′ ◦ ψ−1(d · x)
=

(
ψ−1

)′
(d · x)(

ψ−1
)′
(x)

,

is non-increasing. Then C is diagonally convex.

We verify in the next example that several popular families of Archimedean copulas (Nelsen,
2006, Examples 4.23–4.25) satisfy the conditions of Lemma 3, and hence are diagonally convex. The
details are contained in Section 5.5.

Example 6 (Archimedean copulas). The Clayton copulas are Archimedean with generator ψ(x) =

x−θ − 1 for θ > 0, the Frank copulas have generator ψ(x) = log e−θ−1
e−θx−1

for θ > 0, and the Gumbel–

Hougaard copulas have generator ψ(x) = (− log x)θ for θ ≥ 1. All of these are diagonally convex.

As a final example of a method for constructing diagonally convex copulas, we consider a model
based on mixtures of copulas. This approach has applications in dependence-based clustering
(Arakelian and Karlis, 2014).

Example 7 (Mixture copula). Take K, d ∈ N and suppose p1, . . . , pK ≥ 0 are such that
∑K

k=1 pk = 1.
For each k ∈ [K], let Ck be a d-dimensional diagonally convex copula. Then for (x1, . . . , xd) ∈ [0, 1]d,
the mixture copula (x1, . . . , xd) 7→

∑K
k=1 pkCk(x1, . . . , xd) is diagonally convex.

3.2 Examples with specific marginal distributions

Having established the existence of several copulas with convex diagonal sections, we now demonstrate
the application of Theorem 2 with a selection of different common marginal laws. In Example 8 we
consider the normal distribution; see Section 5.5 for details.

Example 8 (Marginal Gaussian distribution). Let d ∈ N, µ ∈ R and σ2 > 0. Take (X1, . . . , Xd)
with Xi ∼ N

(
µ, σ2

)
for each i ∈ [d], and suppose it is diagonally convex. Then for x ∈ R and ε ≥ 0,

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
≤ ε

σ

(√
2 log d+ 1

)
.
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We do not require (X1, . . . , Xd) to be jointly Gaussian in Example 8; any copula with a convex
diagonal section suffices. In particular, a square root-logarithmic dependence on the dimension
holds regardless of the form of the copula; for example, any of the copulas described in Examples 5,
6 and 7 are permitted. Therefore, this example offers a version of Nazarov’s inequality (5) for
non-Gaussian joint distributions, with an improved constant.

In particular, combining Example 8 with Lemma 2 allows us to deduce the following result for
the maximum of identically distributed and jointly Gaussian random variables (and also for their
maximum absolute deviation from the mean).

Example 9 (Joint Gaussian distribution). Let d ∈ N, µ ∈ R and σ2 > 0. Suppose (X1, . . . , Xd) is
multivariate Gaussian, with Xi ∼ N (µ, σ2) for each i ∈ [d]. Then for any x ∈ R and ε ≥ 0,

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
≤ ε

σ

(√
2 log d+ 1

)
,

P
(
x < max

i∈[d]
|Xi − µ| ≤ x+ ε

)
≤ ε

σ

(√
2 log 2d+ 1

)
.

More generally, in cases where F admits a decreasing Lebesgue density f , the dimension-
dependence of an anti-concentration bound derived using Theorem 2 is determined by the quantity
H(x) := h(x) ∧

{
d · f(x)

}
, where h(x) := f(x)/

(
1− F (x)

)
is the hazard function (or inverse Mills

ratio) associated with F . Typically, if h is an increasing function (sometimes referred to as an
“increasing failure rate” condition), then the maximum value of H(x) is attained at a point x∗ with
h(x∗) = d · f(x∗), or equivalently with x∗ = F−1(1 − 1/d), yielding a uniform upper bound of
H(x) ≤ d · f

(
F−1(1− 1/d)

)
. If the hazard function h is instead decreasing (known as a “decreasing

failure rate” condition), then, generally, a dimension-independent bound is obtained.
In Example 10 we apply Theorem 2 to a family of Weibull distributions.

Example 10 (Weibull distribution). Let d ∈ N, α ≥ 1 and λ > 0. Suppose (X1, . . . , Xd) is a
random vector with a diagonally convex copula, and P(Xi ≤ x) = 1− exp

(
−(x/λ)α

)
for x ≥ 0 and

i ∈ [d]. Then for each x ≥ 0 and ε ≥ 0,

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
≤ εα

λ

(
log d+ 1

)α−1
α .

The dimension dependence in Example 10 is poly-logarithmic, with the exponent depending
on the value of the shape parameter α. With α = 1, we recover the exponential distribution, and
the bound reduces to ε/λ. This dimension-independent result arises because the hazard function
is constant. For α > 1, the hazard function is increasing, yielding a dimension-dependent bound.
When α = 2, we recover a Rayleigh distribution and the dimension dependence scales as

√
log d; the

same as for the Gaussian distribution (Example 8).
Next, we consider a family of reverse Gumbel distributions.

Example 11 (Reverse Gumbel distribution). Let d ∈ N and λ > 0. Suppose that (X1, . . . , Xd) is
a random vector with a diagonally convex copula and P(Xi ≤ x) = 1− exp

(
−ex/λ

)
for x ∈ R and

i ∈ [d]. Then for any x ∈ R and ε ≥ 0,

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
≤ ε

λ

(
1 + log d

)
.

For reverse Gumbel distributions, the hazard function is increasing, giving a dimension-dependent
bound, here on the order of log d.

In the final example, we consider a family of Pareto distributions.
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Example 12 (Pareto distribution). Let d ∈ N, α > 0 and λ > 0. Suppose (X1, . . . , Xd) is a random
vector with a diagonally convex copula and P(Xi ≤ x) = 1− (λ/x)α for x ≥ λ. For x ≥ 0 and ε ≥ 0,

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
≤ αε

λ
.

Since Pareto distributions have decreasing hazard functions, the resulting bound in Example 12
is dimension-independent.

4 Application to high-dimensional statistical inference

We illustrate the applicability of our results with an example of a statistical inference procedure using
a potentially high-dimensional test statistic. Let X be an Rd-valued random vector constructed
using samples taken from an underlying data set. For example, X might represent (an appropriate
transformation of) the fitted coefficients of a parametric model or a discretized version of a
nonparametric estimator. Since weak convergence of the law of X routinely fails in high-dimensional
settings, we suppose instead that a coupling (strong approximation) for X is available (see, for
example, Chernozhukov et al., 2013, 2014a,b; Cattaneo et al., 2022, 2024; Cattaneo and Yu, 2025,
and references therein). That is, there exists an Rd-valued random vector T = (T1, . . . , Td), on the
same probability space as X = (X1, . . . , Xd), with

P
(
∥X − T∥∞ > ε

)
≤ p(ε)

for some decreasing function p : [0,∞) → [0, 1], where ∥x∥∞ := maxi∈[d] |xi|. Typically, either
one knows the law of T explicitly, or can draw samples from it. Inference proceeds by choosing a
significance level α ∈ (0, 1) and computing a quantile qα := inf

{
q ∈ R : P

(
maxi∈[d] Ti ≤ q

)
≥ 1−α

}
.

It is straightforward to verify that for all ε ≥ 0,∣∣∣P(max
i∈[d]

Xi > qα

)
− α

∣∣∣ ≤ p(ε) +
{
P
(
qα − ε < max

i∈[d]
Ti ≤ qα

)
∨ P
(
qα < max

i∈[d]
Ti ≤ qα + ε

)}
;

this bound can then be minimized over ε ≥ 0. In this setting, it suffices to control the anti-
concentration terms in a neighborhood of the quantile qα; our Theorem 2 therefore provides sharper
bounds than those derived using the Lévy concentration function L

(
maxi∈[d] Ti, ε

)
. As such, the

validity of the resulting test based on X relies on the availability of both (i) a tight coupling
inequality for ∥T −X∥∞, and (ii) a sharp anti-concentration bound for maxi∈[d] Ti.

Our main anti-concentration results given in Section 2 and Section 3 can be applied whenever
the entries T1, . . . , Td are identically distributed. While this is, in principle, a restrictive assumption,
it is often satisfied in practice for the purpose of maximizing statistical power against alternative
hypotheses. For example, consider the canonical setting in which the law of X is approximated using
a multivariate Gaussian random vector T . It is usual to standardize the entries of X (and therefore
also the corresponding entries of T ) so that E[Xi] = 0 and E

[
X2

i

]
= 1; it follows immediately that

each Ti is distributed marginally as N (0, 1).
Our results are applicable to a substantially broader class of inference procedures than existing

approaches, which typically require joint Gaussianity of the entries of T . Specifically, under
Theorem 2 we allow for an arbitrary common marginal distribution as well as a wide range of joint
distributions, so long as the underlying copula is diagonally convex (Definition 3). Moreover, the
resulting anti-concentration inequality is agnostic to the precise form of the copula, allowing for
settings where the joint distribution of T is unknown or difficult to estimate.
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4.1 Gaussian mixture approximations for factor models

For a specific example in a non-Gaussian regime, we consider the Gaussian mixture approximation
for martingale factor models discussed by Cattaneo et al. (2022, Section 2.5). In this setting, a
size-n sample of d-dimensional observations

(
X(1), . . . , X(n)

)
is taken from an underlying random

process and is assumed to form a zero-mean martingale. For example, X(1), . . . , X(n) may denote
multivariate quantities derived from a time series estimation procedure. We impose further structure
by means of a factor model; take m ∈ N and suppose that

X(i) = Lg(i) + ε(i)

for i ∈ [n], where L takes values in Rd×m, g(i) in Rm, and ε(i) in Rd. We interpret g(i) as a latent
factor variable and L as a random factor loading, with independent disturbances ε(i). We assume
that ε(i) is zero-mean and finite-variance for each i ∈ [n], and that

(
ε(1), . . . , ε(n)

)
is independent of

L and
(
g(1), . . . , g(n)

)
. Suppose that E

[
g(i) | L, g(1), . . . , g(i−1)

]
= 0 for each i ∈ [n].

Corollary 2.2 in Cattaneo et al. (2022) provides sufficient conditions for a coupling between∑n
i=1X

(i) and an Rd-valued random vector T with conditional distribution T | L ∼ N (0,Σ), where

Σ :=
n∑

i=1

(
LVar

[
g(i) | L

]
LT +Var

[
ε(i)
])
.

We now impose some further conditions on the law of T ; in particular, we ensure that the copula
associated with T is the independence copula and that the entries Tj share a common marginal
distribution. Therefore, suppose that the Lebesgue density function f : Rd → [0,∞) of T satisfies

f(x1, . . . , xd) =
d∏

j=1

(
K∑
k=1

pk
σk
ϕ

(
xj
σk

))
=

K∑
k1=1

· · ·
K∑

kd=1

(
d∏

j=1

pkj

)(
d∏

j=1

1

σkj
ϕ

(
xj
σkj

))
, (10)

where σk > 0 and pk ∈ [0, 1] for k ∈ [K] satisfy
∑K

k=1 pk = 1. The variables T1, . . . , Td are seen to
be independent and identically distributed by the factorization given in the first equality in (10).
Further, T follows a multivariate Gaussian mixture distribution with Kd components by the second
equality in (10); in general, T is not a Gaussian random vector. The copula associated with T
is, therefore, the independence copula, which is diagonally convex by Example 5. In Example 13,
we present an anti-concentration bound based on Theorem 2 for the maximum statistic of such a
distribution, using the result from Example 8 and the structure of the multivariate mixture model.

Example 13 (Gaussian mixture with independent entries). Let d,K ∈ N and suppose (T1, . . . , Td)
has Lebesgue density as given in (10), where pk ∈ (0, 1] with

∑K
k=1 pk = 1 and 0 < σk ≤ 1, for

k ∈ [K]. We assume that σ1 = 1, and write σ := mink∈[K] σk. Then for any x ∈ R and ε ≥ 0,

P
(
x < max

j∈[d]
Tj ≤ x+ ε

)
≤

{
ε

p1

(√
2 log d+ 2

K∑
k=1

pk
σk

)}
∧
{
ε

σ

(√
2 log d+ 1

)}
. (11)

By applying Nazarov’s inequality (5) instead of our Theorem 2, one can show that (11) admits
an upper bound of ε

σ

(√
2 log d+ 2

)
. As such, our Example 13 offers a sharper anti-concentration

inequality, especially when the minimum variance σ is small. For instance, consider the setting
where σk = 1 for k ∈ [K − 1] and σK = σ ≤ 1, and suppose for simplicity that pk = 1/K for all
k ∈ [K]. Then Example 13 gives

P
(
x < max

j∈[d]
Tj ≤ x+ ε

)
≤ Kε

(√
2 log d+

2(K − 1)

K
+

2

Kσ

)
.
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Crucially, the dependence on the dimension d (which may be large in high-dimensional regimes)
and the minimum variance σ2 (which could be small in the presence of approximately degenerate
Gaussian mixture components) is additive; contrast this with the corresponding bound from
Nazarov’s inequality (5), which contains the multiplicative term ε

σ

√
2 log d.

Such a separation between the high-dimensional and the degenerate variance terms is to be
expected in the resulting anti-concentration inequality for the following reason. Either (i) d is
large: then since Ti are i.i.d., the maximum statistic will be realized far from the origin with high
probability; here, the marginal density is dominated by the component with the largest (unit)
variance; or (ii) d is small; then the maximum statistic may realize near zero, where the component
with the smallest variance dominates the density. This approach is similar to that taken by Lopes
et al. (2020) in the context of bootstrap approximations under variance decay.

5 Proofs

We give full proofs for all of our results, along with detailed calculations associated with examples
given in the main paper.

5.1 Theorem 1

Before proving Theorem 1, we first establish the result in the special case where the common law is
the standard uniform distribution, in Lemma 4. For clarity, we write Ui ∼ U for each i ∈ [d].

Lemma 4. Let d ∈ N. For u ∈ [0, 1] and δ ∈ [0, 1− u],

max
P∈Pd(U)

P
(
u < max

i∈[d]
Ui ≤ u+ δ

)
= (dδ) ∧ (u+ δ), (12)

min
P∈Pd(U)

P
(
u < max

i∈[d]
Ui ≤ u+ δ

)
= 0 ∨

{
1− u− d(1− u− δ)

}
. (13)

Proof of Lemma 4. By a union bound, for any P ∈ Pd(U),

P
(
u < max

i∈[d]
Ui ≤ u+ δ

)
≤ P

(
{U1 ≤ u+ δ} ∩

⋃
i∈[d]

{u < Ui ≤ u+ δ}
)

≤ (dδ) ∧ (u+ δ),

P
(
u < max

i∈[d]
Ui ≤ u+ δ

)
≥ 0 ∨

{
1− P

(
max
i∈[d]

Ui ≤ u

)
− P

(
max
i∈[d]

Ui > u+ δ

)}
≥ 0 ∨

{
1− u− d(1− u− δ)

}
.

It remains to show these bounds can be attained. Let ∆ : [0, 1] → [0, 1] be a d-dimensional
copula diagonal, and C : [0, 1]d → [0, 1] be a copula satisfying ∆(t) = C(t, . . . , t) for all t ∈ [0, 1] (see
Lemma 1). By Sklar’s theorem (Nelsen, 2006, Theorem 2.10.9), C is the joint distribution function
of a random vector (U1, . . . , Ud) where Ui ∼ U for each i ∈ [d]. Further, if (U1, . . . , Ud) ∼ C then

P
(
u < max

i∈[d]
Ui ≤ u+ δ

)
= C(u+ δ, . . . , u+ δ)− C(u, . . . , u) = ∆(u+ δ)−∆(u).

For (12), consider taking ∆ = ∆up as defined by (7). Clearly ∆up(1) = 1. If t ≤ du
d−1 then

d(t− u)− t ≤ 0, so ∆up(t) ≤ t for all t ∈ [0, 1]. Further, ∆up is piecewise linear with the gradient of
each piece bounded below by zero and above by d, so 0 ≤ ∆up(t

′) −∆up(t) ≤ d(t′ − t) whenever
0 ≤ t ≤ t′ ≤ 1. Thus ∆up satisfies the conditions of Lemma 1 and is a d-dimensional copula diagonal.
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If u ≤ d−1
d , then ∆up(u) = 0, while u > d−1

d implies ∆up(u) = du− d+ 1. If u+ δ ≤ du
d−1 (which

occurs if and only if dδ ≤ u + δ), then u ≤ d−1
d gives ∆up(u + δ) = dδ, while u > d−1

d implies

∆up(u+ δ) = du+ dδ − d+ 1. Conversely if u+ δ > du
d−1 , then u ≤ d−1

d and ∆up(u+ δ) = u+ δ.
For (13), consider taking ∆ = ∆lo as defined by (8). Clearly we have ∆lo(1) = 1, and

1− d(1− t)− t ≤ 0, so ∆lo(t) ≤ t for all t ∈ [0, 1]. Further, ∆lo is piecewise linear with each gradient
bounded below by zero and above by d, so 0 ≤ ∆lo(t

′) −∆lo(t) ≤ d(t′ − t) when 0 ≤ t ≤ t′ ≤ 1.
Thus ∆lo satisfies the conditions of Lemma 1 and is a d-dimensional copula diagonal.

Now observe that ∆lo(u) = u. If u+ δ ≤ d+u−1
d (if and only if 1− u− d(1− u− δ) ≤ 0), then

∆lo(u+ δ) = u. Conversely if u+ δ > d+u−1
d , then ∆lo(u+ δ) = 1− d(1− u− δ).

Proof of Theorem 1. Let u := F (x) ∈ [0, 1] and δ := F (x+ε)−F (x) ∈ [0, 1−u]. Let F−1 : [0, 1] → R
be the quantile function satisfying F−1(t) ≤ s if and only if t ≤ F (s) for all s ∈ R and t ∈ [0, 1].
If U ∼ U and X = F−1(U), then P(X ≤ x) = P

(
F−1(U) ≤ x

)
= P

(
U ≤ F (x)

)
= F (x), so X ∼ F .

To prove (3), take (U1, . . . , Ud) as in (12) of Lemma 4 and set Xi = F−1(Ui) for i ∈ [d] so

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
= P

(
x < max

i∈[d]
F−1(Ui) ≤ x+ ε

)
= P

(
u < max

i∈[d]
Ui ≤ u+ δ

)
= (dδ) ∧ (u+ δ) =

{
d
(
F (x+ ε)− F (x)

)}
∧ F (x+ ε).

To show (4), take (U1, . . . , Ud) as in (13) of Lemma 4 and Xi = F−1(Ui) for i ∈ [d] so that

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
= P

(
u < max

i∈[d]
Ui ≤ u+ δ

)
= 0 ∨

(
1− u− d(1− u− δ)

)
= 0 ∨

{
1− F (x)− d

(
1− F (x+ ε)

)}
.

5.2 Theorem 2

Proof of Theorem 2. Let ∆ be the copula diagonal section associated with the law of (X1, . . . , Xd),
and suppose it is a convex function on [0, 1]. Since ∆(1) = 1, for any u ∈ [0, 1] and δ ∈ [0, 1− u],

∆(u+ δ) = ∆

(
1− u− δ

1− u
· u+

δ

1− u
· 1
)

≤ 1− u− δ

1− u
∆(u) +

δ

1− u
.

Combining this with the facts that ∆(u+ δ)−∆(u) ≤ dδ and ∆(u) ≥ 0 (see Lemma 1) gives

∆(u+ δ)−∆(u) ≤
{

δ

1− u

(
1−∆(u)

)}
∧ (dδ) ≤ δ

(
1

1− u
∧ d
)
.

A quantile transform (see the proof of Theorem 1) with u := F (x) and δ := F (x+ ε)− F (x) yields

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
= P

(
F (x) < max

i∈[d]
F (Xi) ≤ F (x+ ε)

)
= ∆ ◦ F (x+ ε)−∆ ◦ F (x)

≤
(
F (x+ ε)− F (x)

){ 1

1− F (x)
∧ d
}
.

We now show that the maximum is attained. For d ∈ N and u ∈ [0, 1], define

∆u(t) :=

{
t−

(
u ∧ d− 1

d

)}(
1

1− u
∧ d
)
· I
{
u ∧ d− 1

d
< t

}
,

which is a valid d-dimensional copula diagonal by Lemma 1. Note that for δ ∈ [0, 1− u], we have
∆u(u+ δ)−∆u(u) = δ

(
1

1−u ∧ d
)
. Apply the quantile transform as above to conclude.
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5.3 Lemma 2

Proof of Lemma 2. If d ≥ 2 and Σ11 = 0, by Sklar’s theorem (Nelsen, 2006, Theorem 2.10.9),
given a copula C ′ : [0, 1]d−1 → [0, 1] for (X2, . . . , Xd), construct a copula for (X1, . . . , Xd) as
C(x1, . . . , xd) = x1 ∧ C ′(x2, . . . , xd). The diagonal of C is C(x, . . . , x) = C ′(x, . . . , x). If d = 1 and
Σ11 = 0 then take C(x) = x. We thus assume without loss of generality that Σii > 0 for all i ∈ [d].

The copula of (X1, . . . , Xd) is the same as that for (Z1, . . . , Zd), where Zi = (Xi − µi)/σi and
σ2i = Σii for each i ∈ [d]. Therefore, without loss of generality, set µ = 0 and Σii = 1 for each i ∈ [d].

If Σij = 1 where 1 ≤ i < j ≤ d then maxi∈[d]Xi = maxi∈[d]\{j}Xi almost surely so, without loss
of generality, we take Σij < 1 whenever i ̸= j. Lemmas 5 and 6 in Chernozhukov et al. (2015) show
maxi∈[d]Xi has Lebesgue density f(x) = ϕ(x)g(x) where g : R → R is increasing. For x ∈ (0, 1),
note ∆(x) = P

(
maxi∈[d]Xi ≤ Φ−1(x)

)
, so ∆ is differentiable on (0, 1) with increasing derivative

∆′(x) =
f ◦ Φ−1(x)

ϕ ◦ Φ−1(x)
= g ◦ Φ−1(x).

Thus ∆ is convex on (0, 1), and also on [0, 1] as 0 = ∆(0) ≤ ∆(x) ≤ ∆(1) = 1 for all x ∈ (0, 1).

5.4 Lemma 3

Proof of Lemma 3. The diagonal section of the Archimedean copula C is

∆(x) = ψ−1
(
d · ψ(x)

)
.

As ψ is differentiable with non-zero derivative on (0, 1), the inverse function theorem gives

∆′(x) =
d · ψ′(x)

ψ′ ◦ ψ−1
(
d · ψ(x)

) = d ·Ψ ◦ ψ(x).

Since ψ is strictly decreasing and Ψ is non-increasing, ∆′ is non-decreasing on (0, 1). As 0 = ∆(0) ≤
∆(x) ≤ ∆(1) = 1 for all x ∈ (0, 1), we conclude that ∆ is convex on [0, 1].

5.5 Examples

Details for Example 6. We apply Lemma 3 to each family. Firstly, the Clayton copula has inverse
generator ψ−1(x) = (1 + x)−1/θ for θ > 0 (Nelsen, 2006, Example 4.23). With x ∈ (0,∞),

(
ψ−1

)′
(x) = −1

θ
(1 + x)−1/θ−1 < 0, Ψ(x) =

(
1 + x

1 + d · x

)1/θ+1

and is decreasing, since d
dx

1+x
1+d·x = 1−d

(1+d·x)2 ≤ 0.

Next, the Frank copula has inverse generator ψ−1(x) = −1
θ log

(
1 −

(
1 − e−θ

)
e−x
)
for θ > 0

(Nelsen, 2006, Example 4.24). With x ∈ (0,∞) and setting a =
(
1− e−θ

)
∈ (0, 1),

(
ψ−1

)′
(x) = −1

θ

ae−x

1− ae−x
< 0, Ψ(x) =

ex − a

edx − a
,

Ψ′(x) =
(1− d)e(d+1)x − aex + adedx(

edx − a
)2 ≤ 0,

since by convexity, edx ≤ d−1
d e(d+1)x + 1

de
x. Thus Ψ is non-increasing.
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Finally, the Gumbel–Hougaard copula has inverse generator ψ−1(x) = exp
(
−x1/θ

)
for θ ≥ 1

(Nelsen, 2006, Example 4.25). With x ∈ (0,∞),(
ψ−1

)′
(x) = −1

θ
x1/θ−1 exp

(
−x1/θ

)
< 0, Ψ(x) = d1/θ−1 exp

(
x1/θ(1− d1/θ)

)
and is decreasing, since d1/θ ≥ 1.

Details for Example 7. As each Ck is diagonally convex, x 7→
∑K

k=1 pkCk(x, . . . , x) is convex. The
mixture copula is verified to be a copula using Nelsen (2006, Definition 2.10.6).

Details for Example 8. Let µ = 0 and σ = 1; consider µ+ σXi for the general case. By Theorem 2,

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
≤
(
Φ(x+ ε)− Φ(x)

){ 1

1− Φ(x)
∧ d
}
.

For x ≤ 0 we have Φ(x) ≤ 1/2 and Φ(x+ ε)− Φ(x) ≤ εϕ(0) = 1√
2π
, so

(
Φ(x+ ε)− Φ(x)

){ 1

1− Φ(x)
∧ d
}

≤ ε√
2π

(2 ∧ d) = ε

√
2

π
.

If x ≥ 0 then Φ(x+ ε)− Φ(x) ≤ εϕ(x) and ϕ(x)
1−Φ(x) ≤

2√
x2+4−x

≤ x+ 1 by Birnbaum (1942), so

(
Φ(x+ ε)− Φ(x)

){ 1

1− Φ(x)
∧ d
}

≤ εϕ(x)

{
x+ 1

ϕ(x)
∧ d
}

= ε
{
(x+ 1) ∧

(
d · ϕ(x)

)}
.

Setting x =
√
2 log d ≥ 0 gives x+1 =

√
2 log d+1 and d ·ϕ(x) = 1√

2π
. Since x 7→ x+1 is continuous

and strictly increasing, while x 7→ d · ϕ(x) is continuous and strictly decreasing on [0,∞), we have

sup
x≥0

{
(x+ 1) ∧

(
d · ϕ(x)

)}
= inf

x≥0

{
(x+ 1) ∨

(
d · ϕ(x)

)}
≤
(√

2 log d+ 1
)
∨ 1√

2π
=
√

2 log d+ 1. (14)

The result follows as
√
2 log d+ 1 ≥

√
2
π .

Details for Example 9. The first result follows by Lemma 2 and Example 8. For the second, consider
the 2d-dimensional random vector Y = (X1 − µ, . . . ,Xd − µ, µ − X1, . . . , µ − Xd), which has a
multivariate Gaussian distribution with Yi ∼ N (0, σ2) for each i ∈ [2d]. By the first inequality,

P
(
x < max

i∈[d]
|Xi − µ| ≤ x+ ε

)
= P

(
x < max

i∈[2d]
Yi ≤ x+ ε

)
≤ ε

σ

(√
2 log 2d+ 1

)
.

Details for Example 10. We assume that the scale parameter is λ = 1; the general result for λ > 0
then follows by considering λXi for i ∈ [d]. The CDF and Lebesgue density of Xi are therefore

F (x) = 1− exp
(
−xα

)
, f(x) = αxα−1 exp

(
−xα

)
.

With x∗ =
(
α−1
α

)1/α
, f increases on [0, x∗] and decreases on [x∗,∞). By Theorem 2, if x ≤ x∗,

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
≤ εf(x∗)

1− F (x∗)
= εαxα−1

∗ = εα

(
α− 1

α

)α−1
α

≤ εα.
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Conversely, if x > x∗ then

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
≤ εf(x)

{
1

1− F (x)
∧ d
}

= εαxα−1
{
1 ∧

(
d exp

(
−xα

))}
.

Take x = (log d + 1)1/α ≥ x∗ so that xα−1 = (log d + 1)
α−1
α and exp

(
−xα

)
≤ 1

d . As x 7→ xα−1 is
increasing and x 7→ xα−1 exp

(
−xα

)
is decreasing to zero on [x∗,∞), we have

sup
x≥x∗

{
xα−1 ∧

(
dxα−1 exp

(
−xα

))}
≤ inf

x≥x∗

{
xα−1 ∨

(
dxα−1 exp

(
−xα

))}
≤ (log d+ 1)

α−1
α .

Details for Example 11. We assume that the scale parameter is λ = 1; the general result for λ > 0
follows by considering λXi for i ∈ [d]. The CDF, Lebesgue density, and hazard function of Xi are

F (x) = 1− exp
(
−ex

)
, f(x) = exp

(
x− ex

)
, h(x) = ex.

Note that f(x) is increasing on (−∞, 0], so for x ≤ 0, by Theorem 2, there exists (X1, . . . , Xd) with

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
≤ εf(0)

1− F (0)
= ε.

Further, f is decreasing on [0,∞) while h is increasing on [0,∞). Note that for d ≥ 2, we have
h(x) = d · f(x) if and only if x = log log d, and if d = 1 then d · f(x) ≤ 1. So for x ≥ 0,

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
≤ εf(x)

{
1

1− F (x)
∧ d
}

≤ ε
{
h(x) ∧

(
d · f(x)

)}
≤ ε
(
1 + log d

)
.

Details for Example 12. We assume that the scale parameter is λ = 1; the general result follows by
considering λXi for i ∈ [d]. The CDF, Lebesgue density, and hazard function of Xi are therefore

F (x) = 1− x−α, f(x) = αx−α−1, h(x) = α/x,

for x ≥ 1. Since f and h are both decreasing, and by Theorem 2,

P
(
x < max

i∈[d]
Xi ≤ x+ ε

)
≤ ε
{
h(x) ∧

(
d · f(x)

)}
≤ ε
{
h(1) ∧

(
d · f(1)

)}
= αε.

Details for Example 13. We begin by showing that the first term on the right-hand side is an upper
bound for the left-hand side. Note that the common CDF and density function of Tj , for j ∈ [d], are

F (x) =

K∑
k=1

pkΦ

(
x

σk

)
, f(x) =

K∑
k=1

pk
σk
ϕ

(
x

σk

)
,

respectively. As (T1, . . . , Td) are i.i.d., and recalling that the independence copula is diagonally
convex by Example 5, we have by Theorem 2 that

P
(
x < max

j∈[d]
Tj ≤ x+ ε

)
≤
(
F (x+ ε)− F (x)

){ 1

1− F (x)
∧ d
}

=
K∑
k=1

pk

(
Φ(x/σk + ε/σk)− Φ(x/σk)

){ 1

1−
∑K

k=1 pkΦ(x/σk)
∧ d

}

≤
K∑
k=1

pk

(
Φ(x/σk + ε/σk)− Φ(x/σk)

){ 1

p1
(
1− Φ(x)

) ∧ d}.
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Consider first the case that x ≤ 0; then Φ(x+ ε)− Φ(x) ≤ εϕ(0) and Φ(x) ≤ 1/2, so

P
(
x < max

j∈[d]
Tj ≤ x+ ε

)
≤ 2εϕ(0)

p1

K∑
k=1

pk
σk
.

Next, if x > 0 then Φ(x+ ε)− Φ(x) ≤ εϕ(x) and ϕ(x)
1−Φ(x) ≤ x+ 1 by Birnbaum (1942), so

P
(
x < max

j∈[d]
Tj ≤ x+ ε

)
≤ ε

K∑
k=1

pk
ϕ(x/σk)

σkϕ(x)

{
ϕ(x)

p1
(
1− Φ(x)

) ∧ (d · ϕ(x))}

≤ ε

K∑
k=1

pk
ϕ(x/σk)

σkϕ(x)

{
x+ 1

p1
∧
(
d · ϕ(x)

)}
.

If x ≥ 1 then since 0 < σk ≤ 1 for each k ∈ [K], it follows that 2 log(1/σk) ≤ 1/σ2k − 1 and so

we have x ≥
√

2 log(1/σk)
1/σ2

k−1
. Then log(1/σk) ≤ x2(1/σ2k − 1)/2, so e−x2/(2σ2

k) ≤ σke
−x2/2 and hence

ϕ(x/σk) ≤ σkϕ(x). In this case, by (14),

P
(
x < max

j∈[d]
Tj ≤ x+ ε

)
≤ ε

p1

{
(x+ 1) ∧

(
d · ϕ(x)

)}
≤ ε

p1

(√
2 log d+ 1

)
.

Alternatively, if 0 < x < 1, then since σk ≤ 1 for each k ∈ [K], we have ϕ(x/σk) ≤ ϕ(x) so

P
(
x < max

j∈[d]
Tj ≤ x+ ε

)
≤ 2ε

p1

K∑
k=1

pk
σk
.

Combining these cases, we deduce that for all x ∈ R,

P
(
x < max

j∈[d]
Tj ≤ x+ ε

)
≤
{
ε

p1

(√
2 log d+ 1

)}
∨

{
2ε

p1

K∑
k=1

pk
σk

}
≤ ε

p1

(√
2 log d+ 2

K∑
k=1

pk
σk

)
.

We now address the second term on the right-hand side. By the second equality in (10), (T1, . . . , Td)
follow a Gaussian mixture distribution with Kd components, so consider the following representation:

(T1, . . . , Td) =

K∑
k1=1

· · ·
K∑

kd=1

I
{
Z = (k1, . . . , kd)

}(
Yk1 , . . . , Ykd

)
,

where the latent group assignment Z takes values in [K]d with P
(
Z = (k1, . . . , kd)

)
=
∏d

j=1 pkj , and

with Ykj ∼ N
(
0, σkj

)
independently for j ∈ [d] and independently of Z. Therefore by conditioning
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on Z and applying the result of Example 8,

P
(
x < max

j∈[d]
Tj ≤ x+ ε

)
= E

[
P
(
x < max

j∈[d]
Tj ≤ x+ ε

∣∣∣ Z)]
=

K∑
k1=1

· · ·
K∑

kd=1

(
d∏

j=1

pkj

)
P
(
x < max

j∈[d]
Tj ≤ x+ ε

∣∣∣ Z = (k1, . . . , kd)

)

=
K∑

k1=1

· · ·
K∑

kd=1

(
d∏

j=1

pkj

)
P
(
x < max

j∈[d]
Ykj ≤ x+ ε

)

≤
K∑

k1=1

· · ·
K∑

kd=1

(
d∏

j=1

pkj

)
ε

minj∈[d] σkj

(√
2 log d+ 1

)

=
ε
(√

2 log d+ 1
)

σ

d∏
j=1

(
K∑
k=1

pk

)
=
ε

σ

(√
2 log d+ 1

)
.

We remark that the inequality minj∈[d] σkj ≥ σ is essentially optimal in the regime where the
dimension d is much larger than the number of original components K, since they differ in only
(K − 1)d of the Kd possible values for (k1, . . . , kd).

6 Conclusion

We presented sharp upper and lower bounds for the pointwise concentration function of the maximum
(or minimum) statistic of d identically distributed random variables, under no further assumptions
on their dependence structure (copula). When further restricted to copulas with convex diagonal
sections, we demonstrated an improved (and similarly optimal) upper bound on the aforementioned
concentration function. We verified this condition for a range of popular copulas and applied
our results to several different marginal distributions. Among other contributions, we recovered a
version of Nazarov’s inequality with substantially relaxed assumptions and derived similar results
for non-Gaussian laws. We presented an application to high-dimensional statistical inference, giving
an explicit example pertaining to Gaussian mixture approximations for factor models.

There are some potential directions for future research. Firstly, our main results apply only
when the marginal distributions of each entry in (X1, . . . , Xd) agree. This is a somewhat restrictive
assumption, precluding applications in settings where the random vector of interest is not standard-
ized entry-wise. For instance, in Example 9 we are currently unable to accommodate the setting
of (X1, . . . , Xd) ∼ N (µ,Σ) with µ ∈ Rd and Σ ∈ Rd×d an arbitrary positive semi-definite matrix,
which is handled by Nazarov’s inequality (Nazarov, 2003; Chernozhukov et al., 2017b) whenever
mini∈[d]Σii > 0. It is desirable to know whether anti-concentration inequalities can be derived
in regimes where the marginal laws are Gaussian but the copula is non-Gaussian, for example,
following our Example 8. The main challenge in establishing such generalizations is to formulate
a natural extension of the “diagonally convex” property introduced in Definition 3, along with a
corresponding result analogous to our Theorem 2. A secondary task would then be to verify the
new condition for a selection of popular multivariate copulas; initial investigation suggests that this
is unlikely to be as straightforward as in Section 3.

A closely related problem is that of providing bounds for the probability that (X1, . . . , Xd) lies
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near the perimeter of a (high-dimensional) rectangle. That is, to control

P

(
d⋂

i=1

{
Xi ≤ xi + εi

})
− P

(
d⋂

i=1

{
Xi ≤ xi

})
(15)

where xi ∈ R and εi > 0 for i ∈ [d]. Setting Yi := (Xi − xi)/εi for i ∈ [d], (15) is equal to
P
(
0 < maxi∈[d] Yi ≤ 1

)
. To establish bounds for (15), it would be sufficient to generalize our main

results to the setting where the marginal distributions of X1, . . . , Xd may differ.
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Fernández-Sánchez, J. and Úbeda-Flores, M. (2018). Constructions of copulas with given diagonal
(and opposite diagonal) sections and some generalizations. Dependence Modeling, 6(1):139–155.

Fox, J., Kwan, M., and Sauermann, L. (2021). Combinatorial anti-concentration inequalities, with
applications. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 171,
pages 227–248. Cambridge University Press.

Frank, M. J., Nelsen, R. B., and Schweizer, B. (1987). Best-possible bounds for the distribution of a
sum—a problem of Kolmogorov. Probability Theory and Related Fields, 74(2):199–211.

Giessing, A. (2023). Anti-concentration of suprema of Gaussian processes and Gaussian order
statistics. arXiv:2310.12119.

Götze, F., Naumov, A., Spokoiny, V. G., and Ulyanov, V. V. (2019). Large ball probabilities,
Gaussian comparison and anti-concentration. Bernoulli, 25(4A):2538–2563.

Jaworski, P. (2009). On copulas and their diagonals. Information Sciences, 179(17):2863–2871.

Koike, Y. (2021). Notes on the dimension dependence in high-dimensional central limit theorems
for hyperrectangles. Japanese Journal of Statistics and Data Science, 4:257–297.

Krishnapur, M. (2016). Anti-concentration inequalities. Lecture notes, Advanced Training in
Mathematics Workshop in Applied Probability, Indian Institute of Technology Bombay.

Kuchibhotla, A. K., Mukherjee, S., and Banerjee, D. (2021). High-dimensional CLT: Improvements,
non-uniform extensions and large deviations. Bernoulli, 27(1):192 – 217.
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