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Abstract

Yurinskii’s coupling is a popular theoretical tool for non-asymptotic distributional analysis
in mathematical statistics and applied probability, offering a Gaussian strong approximation
with an explicit error bound under easily verified conditions. Originally stated in `2-norm for
sums of independent random vectors, it has recently been extended both to the `p-norm, for
1 ≤ p ≤ ∞, and to vector-valued martingales in `2-norm, under some strong conditions. We
present as our main result a Yurinskii coupling for approximate martingales in `p-norm, under
substantially weaker conditions than those previously imposed. Our formulation further allows
for the coupling variable to follow a more general Gaussian mixture distribution, and we provide
a novel third-order coupling method which gives tighter approximations in certain settings. We
specialize our main result to mixingales, martingales, and independent data, and derive uniform
Gaussian mixture strong approximations for martingale empirical processes. Applications to
nonparametric partitioning-based and local polynomial regression procedures are provided.
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1 Introduction

Yurinskii’s coupling (Yurinskii, 1978) has proven to be an important theoretical tool for developing
non-asymptotic distributional approximations in mathematical statistics and applied probability.
For a sum S of n independent zero-mean d-dimensional random vectors, this coupling technique
constructs (on a suitably enlarged probability space) a zero-mean d-dimensional Gaussian vector T
with the same covariance matrix as S and which is close to S in probability, bounding the discrepancy
‖S−T‖ as a function of n, d, the choice of the norm, and some features of the underlying distribution.
See, for example, Pollard (2002, Chapter 10) for a textbook introduction.

When compared to other coupling approaches, such as the celebrated Hungarian construction
(Komlós et al., 1975) or Zaitsev’s coupling (Zaitsev, 1987a,b), Yurinskii’s approach stands out for
its simplicity, robustness, and wider applicability, while also offering tighter couplings in some
applications (see below for more discussion and examples). These features have led many scholars to
use Yurinskii’s coupling to study the distributional features of high-dimensional statistical procedures
in a variety of settings, often with the end goal of developing uncertainty quantification or hypothesis
testing methods. For example, in recent years, Yurinskii’s coupling has been used to construct
Gaussian approximations for the suprema of empirical processes (Chernozhukov et al., 2014b); to
establish distribution theory for non-Donsker stochastic t-processes generated in nonparametric
series regression (Belloni et al., 2015); to prove distributional approximations for high-dimensional
`p-norms (Biau and Mason, 2015); to develop distribution theory for vector-valued martingales
(Belloni and Oliveira, 2018; Li and Liao, 2020); to derive a law of the iterated logarithm for stochastic
gradient descent optimization methods (Anastasiou et al., 2019); to establish uniform distributional
results for nonparametric high-dimensional quantile processes (Belloni et al., 2019); to develop
distribution theory for non-Donsker stochastic t-processes generated in partitioning-based series
regression (Cattaneo et al., 2020); to deduce Bernstein–von Mises theorems in high-dimensions (Ray
and van der Vaart, 2021); and to develop distribution theory for non-Donsker U-processes based
on dyadic network data (Cattaneo et al., 2024). There are also many other early applications of
Yurinskii’s coupling: Dudley and Philipp (1983) and Dehling (1983) establish invariance principles
for Banach space-valued random variables, and Le Cam (1988) and Sheehy and Wellner (1992)
obtain uniform Donsker results for empirical processes, to name just a few.

This paper presents a new Yurinskii coupling which encompasses and improves upon all of the
results previously available in the literature, offering four new features:

(i) It applies to vector-valued approximate martingale data.

(ii) It allows for a Gaussian mixture coupling distribution.

(iii) It imposes no restrictions on degeneracy of the data covariance matrix.

(iv) It establishes a third-order coupling to improve the approximation in certain situations.

Closest to our work are the unpublished manuscript by Belloni and Oliveira (2018) and the
recent paper by Li and Liao (2020), which both investigated distribution theory for martingale
data using Yurinskii’s coupling and related methods. Specifically, Li and Liao (2020) established a
Gaussian `2-norm Yurinskii coupling for mixingales and martingales under the assumption that the
covariance structure has a minimum eigenvalue bounded away from zero. As formally demonstrated
in this paper (Section 3.1), such eigenvalue assumptions can be prohibitively strong in practically
relevant applications. In contrast, our Yurinskii coupling does not impose any restrictions on
covariance degeneracy (iii), in addition to offering several other new features not present in Li and
Liao (2020), including (i), (ii), (iv), and applicability to general `p-norms. In addition, we correct a
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slight technical inaccuracy in their proof relating to the derivation of bounds in probability (Remark
2.1). Belloni and Oliveira (2018) did not establish a Yurinskii coupling for martingales, but rather a
central limit theorem for smooth functions of high-dimensional martingales using the celebrated
second-order Lindeberg method (see Chatterjee, 2006, and references therein), explicitly accounting
for covariance degeneracy. As a consequence, their result could be leveraged to deduce a Yurinskii
coupling for martingales with additional, non-trivial technical work (see Appendix A for details).
Nevertheless, a Yurinskii coupling derived from Belloni and Oliveira (2018) would not feature (i), (ii),
(iv), or general `p-norms, as our results do. We discuss further the connections between our work
and the related literature in the upcoming sections, both when introducing our main theoretical
results and when presenting the examples and statistical applications.

The most general coupling result of this paper (Theorem 2.1) is presented in Section 2, where
we also specialize it to a slightly weaker yet more user-friendly formulation (Proposition 2.1). Our
Yurinskii coupling for approximate martingales is a strict generalization of all previous Yurinskii cou-
plings available in the literature, offering a Gaussian mixture strong approximation for approximate
martingale vectors in `p-norm, with an improved rate of approximation when the third moments of
the data are negligible, and with no assumptions on the spectrum of the data covariance matrix. A
key technical innovation underlying the proof of Theorem 2.1 is that we explicitly account for the
possibility that the minimum eigenvalue of the variance may be zero, or its lower bound may be
unknown, with the argument proceeding using a carefully tailored regularization. Establishing a
coupling to a Gaussian mixture distribution is achieved by an appropriate conditioning argument,
leveraging a conditional version of Strassen’s theorem established by Chen and Kato (2020), along
with some related technical work detailed in Appendix A. A third-order coupling is obtained via a
modification of a standard smoothing technique for Borel sets from classical versions of Yurinskii’s
coupling, enabling improved approximation errors whenever third moments are negligible.

In Proposition 2.1, we explicitly tune the parameters of the aforementioned regularization to
obtain a simpler, parameter-free version of Yurinskii’s coupling for approximate martingales, again
offering Gaussian mixture coupling distributions and an improved third-order approximation error.
This specialization of our main result takes an agnostic approach to potential singularities in the
data covariance matrix and, as such, may be improved in specific applications where additional
knowledge of the covariance structure is available. Section 2 also presents some further refinements
when additional structure is imposed, deriving Yurinskii couplings for mixingales, martingales and
independent data as Corollaries 2.1, 2.2 and 2.3, respectively. We take the opportunity to discuss
and correct in Remark 2.1 a technical issue which is often neglected (Pollard, 2002; Li and Liao,
2020) when using Yurinskii’s coupling to derive bounds in probability. Section 2.5 presents a stylized
example portraying the relevance of our main technical results in the context of canonical factor
models, illustrating the importance of each of our new Yurinskii coupling features (i)–(iv).

Section 3 considers a substantive application of our main results: strong approximation of
martingale empirical processes. We begin with the motivating example of canonical kernel density
estimation, demonstrating how Yurinskii’s coupling can be applied, and showing in Lemma 3.1
why it is essential that we do not place any conditions on the minimum eigenvalue of the variance
matrix (iii). We then present a general-purpose strong approximation for martingale empirical
processes in Proposition 3.1, combining classical results in the empirical process literature (van der
Vaart and Wellner, 1996) with our Corollary 2.2. This statement appears to be the first of its
kind for martingale data, and when specialized to independent (and not necessarily identically
distributed) data, it is shown to be superior to the best known comparable strong approximation
result available in the literature (Berthet and Mason, 2006). Our improvement comes from using
Yurinskii’s coupling for the `∞-norm, where Berthet and Mason (2006) apply Zaitsev’s coupling
(Zaitsev, 1987a,b) with the larger `2-norm.
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Section 4 further illustrates the applicability of our results through two examples in nonparametric
regression estimation. Firstly, we deduce a strong approximation for partitioning-based least squares
series estimators with time series data, applying Corollary 2.2 directly and additionally imposing
only a mild mixing condition on the regressors. We show that our Yurinskii coupling for martingale
vectors delivers the same distributional approximation rate as the best known result for independent
data, and discuss how this can be leveraged to yield a feasible statistical inference procedure. We also
show that if the residuals have vanishing conditional third moment, an improved rate of Gaussian
approximation can be established. Secondly, we deduce a strong approximation for local polynomial
estimators with time series data, using our result on martingale empirical processes (Proposition 3.1)
and again imposing a mixing assumption. Appealing to empirical process theory is essential here as,
in contrast with series estimators, local polynomials do not possess certain additive separability
properties. The bandwidth restrictions we require are relatively mild, and, as far as we know, they
have not been improved upon even with independent data.

Section 5 concludes the paper. All proofs are collected in Appendix A, which also includes other
technical lemmas of potential independent interest, alongside some further results on applications of
our theory to deriving high-dimensional central limit theorems for martingales in Appendix B.

1.1 Notation

We write ‖x‖p for p ∈ [1,∞] to denote the `p-norm if x is a (possibly random) vector or the induced
operator `p–`p-norm if x is a matrix. For X a real-valued random variable and an Orlicz function
ψ, we use |||X|||ψ to denote the Orlicz ψ-norm (van der Vaart and Wellner, 1996, Section 2.2) and
|||X|||p for the Lp(P) norm where p ∈ [1,∞]. For a matrix M , we write ‖M‖max for the maximum
absolute entry and ‖M‖F for the Frobenius norm. We denote positive semi-definiteness by M � 0
and write Id for the d× d identity matrix.

For scalar sequences xn and yn, we write xn . yn if there exists a positive constant C such
that |xn| ≤ C|yn| for sufficiently large n. We write xn � yn to indicate both xn . yn and yn . xn.
Similarly, for random variables Xn and Yn, we write Xn .P Yn if for every ε > 0 there exists a
positive constant C such that P(|Xn| ≤ C|Yn|) ≤ ε, and write Xn →P X for limits in probability.
For real numbers a and b we use a ∨ b = max{a, b}. We write κ ∈ Nd for a multi-index, where
d ∈ N = {0, 1, 2, . . .}, and define |κ| = ∑d

j=1 κj and xκ =
∏d
j=1 x

κj
j for x ∈ Rd, and κ! =

∏d
j=1 κj !.

Since our results concern couplings, some statements must be made on a new or enlarged
probability space. We omit the details of this for clarity of notation, but technicalities are handled
by the Vorob’ev–Berkes–Philipp Theorem (Dudley, 1999, Theorem 1.1.10).

2 Main results

We begin with our most general result: an `p-norm Yurinskii coupling of a sum of vector-valued
approximate martingale differences to a Gaussian mixture-distributed random vector. The general
result is presented in Theorem 2.1, while Proposition 2.1 gives a simplified and slightly weaker
version which is easier to use in applications. We then further specialize Proposition 2.1 to three
scenarios with successively stronger assumptions, namely mixingales, martingales, and independent
data in Corollaries 2.1, 2.2 and 2.3 respectively. In each case we allow for possibly random quadratic
variations (cf. mixing convergence), thereby establishing a Gaussian mixture coupling in the general
setting. In Remark 2.1 we comment on and correct an often overlooked technicality relating to the
derivation of bounds in probability from Yurinskii’s coupling. As a first illustration of the power of
our generalized `p-norm Yurinskii coupling, we present in Section 2.5 a simple factor model example
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relating to all three of the aforementioned scenarios, discussing further how our contributions are
related to the existing literature.

Theorem 2.1 (Strong approximation for vector-valued approximate martingales)
Take a complete probability space with a countably generated filtration H0, . . . ,Hn for some n ≥ 1,
supporting the Rd-valued square-integrable random vectors X1, . . . , Xn. Let S =

∑n
i=1Xi and define

X̃i =

n∑
r=1

(
E[Xr | Hi]− E[Xr | Hi−1]

)
and U =

n∑
i=1

(
Xi − E[Xi | Hn] + E[Xi | H0]

)
.

Let Vi = Var[X̃i | Hi−1] and define Ω =
∑n

i=1 Vi − Σ where Σ is an almost surely positive semi-
definite H0-measurable d× d random matrix. Then, for each η > 0 and p ∈ [1,∞], there exists, on
an enlarged probability space, an Rd-valued random vector T with T | H0 ∼ N (0,Σ) such that

P
(
‖S − T‖p > 6η

)
≤ inf

t>0

{
2P
(
‖Z‖p > t

)
+ min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}}
+ inf
M�0

{
2P
(
Ω �M

)
+ δp(M,η) + εp(M,η)

}
+ P

(
‖U‖p > η

)
, (1)

where Z,Z1, . . . , Zn are i.i.d. standard Gaussian random variables on Rd independent of Hn, the
second infimum is taken over all positive semi-definite d× d non-random matrices M ,

βp,k =

n∑
i=1

E
[
‖X̃i‖k2‖X̃i‖p + ‖V 1/2

i Zi‖k2‖V 1/2
i Zi‖p

]
, π3 =

n∑
i=1

∑
|κ|=3

E
[∣∣E[X̃κ

i | Hi−1]
∣∣]

for k ∈ {2, 3}, with π3 =∞ if the associated conditional expectation does not exist, and with

δp(M,η) = P
(∥∥((Σ +M)1/2 − Σ1/2

)
Z
∥∥
p
≥ η

)
,

εp(M,η) = P
(∥∥(M − Ω)1/2Z

∥∥
p
≥ η, Ω �M

)
.

This theorem offers four novel contributions to the literature on coupling theory and strong
approximation, as discussed in the introduction. Firstly (i), it allows for approximate vector-valued
martingales, with the variables X̃i forming martingale differences with respect to Hi by construction,
and U quantifying the associated martingale approximation error. Such martingale approximation
techniques for sequences of dependent random vectors are well established and have been used
in a range of scenarios: see, for example, Wu and Woodroofe (2004), Dedecker et al. (2007),
Zhao and Woodroofe (2008), Peligrad (2010), Atchadé and Cattaneo (2014), Cuny and Merlevède
(2014), Magda and Zhang (2018), and references therein. In Section 2.2 we demonstrate how this
approximation can be established in practice by restricting our general theorem to the special case
of mixingales, while the upcoming example in Section 2.5 provides an illustration in the context of
auto-regressive factor models.

Secondly (ii), Theorem 2.1 allows for the resulting coupling variable T to follow a multivariate
Gaussian distribution only conditionally, and thus we offer a useful analog of mixing convergence in
the context of strong approximation. To be more precise, the random matrix

∑n
i=1 Vi is the quadratic

variation of the constructed martingale
∑n

i=1 X̃i, and we approximate it using the H0-measurable
random matrix Σ. This yields the coupling variable T | H0 ∼ N (0,Σ), which can alternatively
be written as T = Σ1/2Z with Z ∼ N (0, Id) independent of H0. The errors in this quadratic
variation approximation are accounted for by the terms P(Ω �M), δp(M,η) and εp(M,η), utilizing
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a regularization argument through the free matrix parameter M . If a non-random Σ is used, then
T is unconditionally Gaussian, and one can take H0 to be the trivial σ-algebra. As demonstrated in
our proof, our approach to establishing a mixing approximation is different from naively taking an
unconditional version of Yurinskii’s coupling and applying it conditionally on H0, which will not
deliver the same coupling as in Theorem 2.1 for a few reasons. To begin with, we explicitly indicate
in the conditions of Theorem 2.1 where conditioning is required. Next, our error of approximation
is given unconditionally, involving only marginal expectations and probabilities. Finally, we provide
a rigorous account of the construction of the conditionally Gaussian coupling variable T via a
conditional version of Strassen’s theorem (Chen and Kato, 2020). Section 2.3 illustrates how a
strong approximation akin to mixing convergence can arise when the data forms an exact martingale,
and Section 2.5 gives a simple example relating to factor modeling in statistics and data science.

As a third contribution to the literature (iii), and of particular importance for applications,
Theorem 2.1 makes no requirements on the minimum eigenvalue of the quadratic variation of the
approximating martingale sequence. Instead, our proof technique employs a careful regularization
scheme designed to account for any such exact or approximate rank degeneracy in Σ. This capability
is fundamental in some applications, a fact which we illustrate in Section 3.1 by demonstrating the
significant improvements in strong approximation errors delivered by Theorem 2.1 relative to those
obtained using prior results in the literature.

Finally (iv), Theorem 2.1 gives a third-order strong approximation alongside the usual second-
order version considered in all prior literature. More precisely, we observe that an analog of the
term βp,2 is present in the classical Yurinskii coupling and comes from a Lindeberg telescoping sum
argument, replacing random variables by Gaussians with the same mean and variance to match the
first and second moments. Whenever the third moments of X̃i are negligible (quantified by π3),
this moment-matching argument can be extended to third-order terms, giving a new term βp,3. In
certain settings, such as when the data is symmetrically distributed around zero, using βp,3 rather
than βp,2 can give smaller approximation errors in the coupling given in (1). Such a refinement can
be viewed as a strong approximation counterpart to classical Edgeworth expansion methods. We
illustrate this phenomenon in our upcoming applications to nonparametric inference (Section 4).

2.1 User-friendly formulation of the main result

The result in Theorem 2.1 is given in a somewhat implicit manner, involving infima over the free
parameters t > 0 and M � 0, and it is not clear how to compute these in general. In the upcoming
Proposition 2.1, we set M = ν2Id and approximately optimize over t > 0 and ν > 0, resulting in a
simplified and slightly weaker version of our main general result. In specific applications, where
there is additional knowledge of the quadratic variation structure, other choices of regularization
schemes may be more appropriate. Nonetheless, the choice M = ν2Id leads to arguably the principal
result of our work, due to its simplicity and utility in statistical applications. For convenience, define
the functions φp : N→ R for p ∈ [0,∞],

φp(d) =

{√
pd2/p if p ∈ [1,∞)√
2 log 2d if p =∞

which are related to tail probabilities of the `p-norm of a standard Gaussian.

Proposition 2.1 (Simplified strong approximation for vector-valued approximate martingales)
Assume the setup and notation of Theorem 2.1. For each η > 0 and p ∈ [1,∞], there exists a
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random vector T | H0 ∼ N (0,Σ) satisfying

P
(
‖S − T‖p > η

)
≤ 24

(
βp,2φp(d)2

η3

)1/3

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

+ P
(
‖U‖p >

η

6

)
.

If further π3 = 0 then

P
(
‖S − T‖p > η

)
≤ 24

(
βp,3φp(d)3

η4

)1/4

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

+ P
(
‖U‖p >

η

6

)
.

Proposition 2.1 makes clear the potential benefit of a third-order coupling when π3 = 0, as in

this case the bound features β
1/4
p,3 rather than β

1/3
p,2 . If π3 is small but non-zero, an analogous result

can easily be derived by adjusting the optimal choices of t and ν, but we omit this for clarity of
notation. In applications (see Section 4.1), this reduction of the exponent can provide a significant
improvement in terms of the dependence of the bound on the sample size n, the dimension d, and
other problem-specific quantities. When using our results for strong approximation, it is usual to
set p =∞ to bound the maximum discrepancy over the entries of a vector (to construct uniform
confidence sets, for example). In this setting, we have that φ∞(d) =

√
2 log 2d has a sub-Gaussian

slow-growing dependence on the dimension. The remaining term depends on E[‖Ω‖2] and requires
that the matrix Σ be a good approximation of

∑n
i=1 Vi, while remaining H0-measurable. In some

applications (such as factor modeling; see Section 2.5), it can be shown that the quadratic variation∑n
i=1 Vi remains random and H0-measurable even in large samples, giving a natural choice for Σ.
In the next few sections, we continue to refine Proposition 2.1, presenting a sequence of results

with increasingly strict assumptions on the dependence structure of the data Xi. These allow us to
demonstrate the broad applicability of our main results, providing more explicit bounds in settings
which are likely to be of special interest. In particular, we consider mixingales, martingales, and
independent data, comparing our derived results with those in the existing literature.

2.2 Mixingales

In our first refinement, we provide a natural method for bounding the martingale approximation error
term U . Suppose that Xi form an `p-mixingale in L1(P) in the sense that there exist non-negative
c1, . . . , cn and ζ0, . . . , ζn such that for all 1 ≤ i ≤ n and 0 ≤ r ≤ i,

E
[
‖E [Xi | Hi−r]‖p

]
≤ ciζr, (2)

and for all 1 ≤ i ≤ n and 0 ≤ r ≤ n− i,

E
[∥∥Xi − E

[
Xi | Hi+r

]∥∥
p

]
≤ ciζr+1. (3)

These conditions are satisfied, for example, if Xi are integrable strongly α-mixing random variables
(McLeish, 1975), or if Xi are generated by an auto-regressive or auto-regressive moving average
process (see Section 2.5), among many other possibilities (Bradley, 2005). Then, in the notation of
Theorem 2.1, we have by Markov’s inequality that

P
(
‖U‖p >

η

6

)
≤ 6

η

n∑
i=1

E
[∥∥Xi − E [Xi | Hn]

∥∥
p

+
∥∥E [Xi | H0]

∥∥
p

]
≤ ζ

η
,

with ζ = 6
∑n

i=1 ci(ζi + ζn−i+1). Combining Proposition 2.1 with this martingale error bound yields
the following result for mixingales.
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Corollary 2.1 (Strong approximation for vector-valued mixingales)
Assume the setup and notation of Theorem 2.1, and suppose that the mixingale conditions (2) and
(3) hold. For each η > 0 and p ∈ [1,∞] there exists a random vector T | H0 ∼ N (0,Σ) satisfying

P
(
‖S − T‖p > η

)
≤ 24

(
βp,2φp(d)2

η3

)1/3

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

+
ζ

η
.

If further π3 = 0 then

P
(
‖S − T‖p > η

)
≤ 24

(
βp,3φp(d)3

η4

)1/4

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

+
ζ

η
.

The closest antecedent to Corollary 2.1 is found in Li and Liao (2020, Theorem 4), who also
considered Yurinskii’s coupling for mixingales. Our result improves on this work in the following
manner: it removes any requirements on the minimum eigenvalue of the quadratic variation of
the mixingale sequence; it allows for general `p-norms with p ∈ [1,∞]; it establishes a coupling
to a multivariate Gaussian mixture distribution in general; and it permits third-order couplings
(when π3 = 0). These improvements have important practical implications as demonstrated in
Sections 2.5 and 4, where significantly better coupling approximation errors are demonstrated for a
variety of statistical applications. On the technical side, our result is rigorously established using a
conditional version of Strassen’s theorem (Chen and Kato, 2020), a carefully crafted regularization
argument, and a third-order Lindeberg method (see Chatterjee, 2006, and references therein, for
more discussion on the standard second-order Lindeberg method). Furthermore, as explained in
Remark 2.1, we clarify a technical issue in Li and Liao (2020) surrounding the derivation of valid
probability bounds for ‖S − T‖p.

Corollary 2.1 focused on mixingales for simplicity, but, as previously discussed, any method
for constructing a martingale approximation X̃i and bounding the resulting error U could be used
instead in Proposition 2.1 to derive a similar result.

2.3 Martingales

For our second refinement, suppose that Xi form martingale differences with respect to Hi. In this
case, E[Xi | Hn] = Xi and E[Xi | H0] = 0, so U = 0, and the martingale approximation error term
vanishes. Applying Proposition 2.1 in this setting directly yields the following result.

Corollary 2.2 (Strong approximation for vector-valued martingales)
With the setup and notation of Theorem 2.1, suppose Xi is Hi-measurable with E[Xi | Hi−1] = 0 for
1 ≤ i ≤ n. Then, for each η > 0 and p ∈ [1,∞], there is a random vector T | H0 ∼ N (0,Σ) with

P
(
‖S − T‖p > η

)
≤ 24

(
βp,2φp(d)2

η3

)1/3

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

. (4)

If further π3 = 0 then

P
(
‖S − T‖p > η

)
≤ 24

(
βp,3φp(d)3

η4

)1/4

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

. (5)

The closest antecedents to Corollary 2.2 are Belloni and Oliveira (2018) and Li and Liao (2020),
who also implicitly or explicitly considered Yurinskii’s coupling for martingales. More specifically, Li
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and Liao (2020, Theorem 1) established an explicit `2-norm Yurinskii coupling for martingales under
a strong assumption on the minimum eigenvalue of the martingale quadratic variation, while Belloni
and Oliveira (2018, Theorem 2.1) established a central limit theorem for vector-valued martingale
sequences employing the standard second-order Lindeberg method, implying that their proof could
be adapted to deduce a Yurinskii coupling for martingales with the help of a conditional version of
Strassen’s theorem (Chen and Kato, 2020) and some additional nontrivial technical work.

Corollary 2.2 improves over this prior work as follows. With respect to Li and Liao (2020),
our result establishes an `p-norm Gaussian mixture Yurinskii coupling for martingales without any
requirements on the minimum eigenvalue of the martingale quadratic variation, and permits a
third-order coupling if π3 = 0. The first probability bound (4) in Corollary 2.2 gives the same rate of
strong approximation as that in Theorem 1 of Li and Liao (2020) when p = 2, with non-random Σ,
and when the eigenvalues of a normalized version of Σ are bounded away from zero. In Section 3.1
we demonstrate the crucial importance of removing this eigenvalue lower bound restriction in
applications involving nonparametric kernel estimators, while in Section 4.1 we demonstrate how
the availability of a third-order coupling (5) can give improved approximation rates in applications
involving nonparametric series estimators with conditionally symmetrically distributed residual
errors. Finally, our technical work improves on Li and Liao (2020) in two respects: (i) we employ
a conditional version of Strassen’s theorem (see Lemma A.1 in the appendix) to appropriately
handle the conditioning arguments; and (ii) we deduce valid probability bounds for ‖S − T‖p, as
the following Remark 2.1 makes clear.

Remark 2.1 (Yurinskii’s coupling and bounds in probability)
Given a sequence of random vectors Sn, Yurinskii’s method provides a coupling in the following form:
for each n and any η > 0, there exists a random vector Tn with P

(
‖Sn − Tn‖ > η

)
< rn(η), where

rn(η) is the approximation error. Crucially, each coupling variable Tn is a function of the desired
approximation level η and, as such, deducing bounds in probability on ‖Sn − Tn‖ requires some extra
care. One option is to select a sequence Rn → ∞ and note that P

(
‖Sn − Tn‖ > r−1n (1/Rn)

)
<

1/Rn → 0 and hence ‖Sn − Tn‖ .P r−1n (1/Rn). In this case, Tn depends on the choice of Rn, which
can in turn typically be chosen to diverge slowly enough to cause no issues in applications.

Technicalities akin to those outlined in Remark 2.1 have been both addressed and neglected alike
in the prior literature. Pollard (2002, Chapter 10.4, Example 16) apparently misses this subtlety,
providing an inaccurate bound in probability based on the Yurinskii coupling. Li and Liao (2020)
seem to make the same mistake in the proof of their Lemma A2, which invalidates the conclusion of
their Theorem 1. In contrast, Belloni et al. (2015) and Belloni et al. (2019) directly provide bounds
in oP instead of OP, circumventing these issues in a manner similar to our approach involving a
diverging sequence Rn.

To see how this phenomenon applies to our main results, observe that the second-order martingale
coupling given as (4) in Corollary 2.2 implies that for any Rn →∞,

‖S − T‖p .P β1/3p,2 φp(d)2/3Rn + E[‖Ω‖2]1/2φp(d)Rn.

This bound is comparable to that obtained by Li and Liao (2020, Theorem 1) with p = 2, albeit
with their formulation missing the Rn correction terms. In Section 4.1 we discuss further their
(amended) result, in the setting of nonparametric series estimation. Our approach using p = ∞
obtains superior distributional approximation rates, alongside exhibiting various other improvements
such as the aforementioned third-order coupling.

Turning to the comparison with Belloni and Oliveira (2018), our Corollary 2.2 again offers the
same improvements, with the only exception being that the authors did account for the implications
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of a possibly vanishing minimum eigenvalue. However, their results exclusively concern high-
dimensional central limit theorems for vector-valued martingales, and therefore while their findings
could in principle enable the derivation of a result similar to our Corollary 2.2, this would require
additional technical work on their behalf in multiple ways (see Appendix A): (i) a correct application
of a conditional version of Strassen’s theorem (Lemma A.1); (ii) the development of a third-order
Borel set smoothing technique and associated `p-norm moment control (Lemmas A.2, A.3, and
A.4); (iii) a careful truncation scheme to account for Ω � 0; and (iv) a valid third-order Lindeberg
argument (Lemma A.8), among others.

2.4 Independence

As a final refinement, suppose that Xi are independent and zero-mean conditionally on H0, and take
Hi to be the filtration generated by X1, . . . , Xi and H0 for 1 ≤ i ≤ n. Then, taking Σ =

∑n
i=1 Vi

gives Ω = 0, and hence Corollary 2.2 immediately yields the following result.

Corollary 2.3 (Strong approximation for sums of independent vectors)
Assume the setup of Theorem 2.1, and suppose Xi are independent given H0, with E[Xi | H0] = 0.
Then, for each η > 0 and p ∈ [1,∞], with Σ =

∑n
i=1 Vi, there exists T | H0 ∼ N (0,Σ) satisfying

P
(
‖S − T‖p > η

)
≤ 24

(
βp,2φp(d)2

η3

)1/3

. (6)

If further π3 = 0 then

P
(
‖S − T‖p > η

)
≤ 24

(
βp,3φp(d)3

η4

)1/4

.

TakingH0 to be trivial, the first inequality (6) in Corollary 2.3 provides an `p-norm approximation
analogous to that presented in Belloni et al. (2019). By further restricting to p = 2, we recover
the original Yurinskii coupling as presented in Le Cam (1988, Theorem 1) and Pollard (2002,
Theorem 10). Thus, in the independent data setting, our result improves on prior work as follows:
(i) it establishes a coupling to a multivariate Gaussian mixture distribution; and (ii) it permits a
third-order coupling if π3 = 0.

2.5 Stylized example: factor modeling

In this section, we present a simple statistical example of how our improvements over prior coupling
results can have important theoretical and practical implications. Consider the stylized factor model

Xi = Lfi + εi, 1 ≤ i ≤ n,

with random variables L taking values in Rd×m, fi in Rm, and εi in Rd. We interpret fi as a latent
factor variable and L as a random factor loading, with idiosyncratic disturbances εi. See Fan et al.
(2020), and references therein, for a textbook review of factor analysis in statistics and econometrics.

We employ the above factor model to give a first illustration of the applicability of our main
result Theorem 2.1, the user-friendly Proposition 2.1, and their specialized Corollaries 2.1–2.3. We
consider three different sets of conditions to demonstrate the applicability of each of our corollaries for
mixingales, martingales, and independent data, respectively. We assume throughout that (ε1, . . . , εn)
is zero-mean and finite variance, and that (ε1, . . . , εn) is independent of L and (f1, . . . , fn). Let Hi
be the σ-algebra generated by L, (f1, . . . , fi) and (ε1, . . . , εi), with H0 the σ-algebra generated by
L alone.
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• Independent data. Suppose that the factors (f1, . . . , fn) are independent conditional on
L and satisfy E[fi | L] = 0. Then, since Xi are independent conditional on H0 and with
E[Xi | H0] = E[Lfi + εi | L] = 0, we can apply Corollary 2.3 to

∑n
i=1Xi. In general, we will

obtain a coupling variable which has the Gaussian mixture distribution T | H0 ∼ N (0,Σ)
where Σ =

∑n
i=1(LVar[fi | L]LT + Var[εi]). In the special case where L is non-random and

H0 is trivial, the coupling is Gaussian. Furthermore, if fi | L and εi are symmetric about zero
and bounded almost surely, then π3 = 0, and the coupling is improved.

• Martingales. Suppose instead that we assume only a martingale condition on the latent
factor variables so that E [fi | L, f1, . . . , fi−1] = 0. Then E[Xi | Hi−1] = LE [fi | Hi−1] = 0
and Corollary 2.2 is applicable to

∑n
i=1Xi. The preceding comments on Gaussian mixture

distributions and third-order couplings continue to apply.

• Mixingales. Finally, assume that the factors follow the auto-regressive model fi = Afi−1 +ui
where A ∈ Rm×m is non-random and (u1, . . . , un) are zero-mean, independent, and independent
of (ε1, . . . , εn). Then E [fi | f0] = Aif0, so taking p ∈ [1,∞] we see that E

[
‖E[fi | f0]‖p

]
=

E
[
‖Aif0‖p

]
≤ ‖A‖ip E[‖f0‖p], and that clearly fi − E[fi | Hn] = 0. Thus, whenever ‖A‖p < 1,

the geometric sum formula implies that we can apply the mixingale result from Corollary 2.1
to
∑n

i=1Xi. The conclusions on Gaussian mixture distributions and third-order couplings
parallel the previous cases.

This simple application to factor modeling gives a preliminary illustration of the power of our
main results, encompassing settings which could not be handled by employing Yurinskii couplings
available in the existing literature. Even with independent data, we offer new Yurinskii couplings
to Gaussian mixture distributions (due to the presence of the common random factor loading L),
which could be further improved whenever the factors and residuals possess symmetric (conditional)
distributions. Furthermore, our results do not impose any restrictions on the minimum eigenvalue
of Σ, thereby allowing for more general factor structures. These improvements are maintained in
the martingale, mixingale, and weakly dependent stationary data settings.

3 Strong approximation for martingale empirical processes

In this section, we demonstrate how our main results can be applied to some more substantive
problems in statistics. Having until this point studied only finite-dimensional (albeit potentially
high-dimensional) random vectors, we now turn our attention to infinite-dimensional stochastic
processes. Specifically, we consider empirical processes of the form

S(f) =

n∑
i=1

f(Xi), f ∈ F ,

with F a problem-specific class of real-valued functions, where each f(Xi) forms a martingale
difference sequence with respect to an appropriate filtration. We construct (conditionally) Gaussian
processes T (f) for which an upper bound on the uniform coupling error supf∈F |S(f) − T (f)| is
precisely quantified. We control the complexity of F using metric entropy under Orlicz norms.

The novel strong approximation results which we present concern the entire martingale em-
pirical process (S(f) : f ∈ F), as opposed to just the scalar supremum of the empirical process,
supf∈F |S(f)|. This distinction has been carefully noted by Chernozhukov et al. (2014b), who
studied Gaussian approximation of empirical process suprema in the independent data setting
and wrote (p. 1565): “A related but different problem is that of approximating whole empirical
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processes by a sequence of Gaussian processes in the sup-norm. This problem is more difficult than
[approximating the supremum of the empirical process].” Indeed, the results we establish in this
section are for a strong approximation for the entire empirical process by a sequence of Gaussian
mixture processes in the supremum norm, when the data has a martingale difference structure
(cf. Corollary 2.2). Our results can be further generalized to approximate martingale empirical
processes (cf. Corollary 2.1), but we do not consider this extension to reduce notation and the
technical burden.

3.1 Motivating example: kernel density estimation

We begin with a brief study of a canonical example of an empirical process which is non-Donsker
(thus precluding the use of uniform central limit theorems) due to the presence of a function class
whose complexity increases with the sample size: the kernel density estimator with i.i.d. scalar data.
We give an overview of our general strategy for strong approximation of stochastic processes via
discretization, and show explicitly in Lemma 3.1 how it is crucial that we do not impose lower
bounds on the eigenvalues of the discretized covariance matrix. Detailed calculations for this section
are relegated to Appendix A for conciseness.

Let X1, . . . , Xn be i.i.d. Unif [0, 1], take K(x) = 1√
2π
e−x

2/2 the Gaussian kernel and let h ∈ (0, 1]

be a bandwidth. Then, for a ∈ (0, 1/4] and x ∈ X = [a, 1− a] to avoid boundary issues, the kernel
density estimator of the true density function g(x) = 1 is

ĝ(x) =
1

n

n∑
i=1

Kh(Xi − x), Kh(u) =
1

h
K
(u
h

)
.

Consider establishing a strong approximation for the stochastic process (ĝ(x) − E[ĝ(x)] : x ∈ X )
which is, upon rescaling, non-Donsker whenever the bandwidth decreases to zero in large samples.
To match notation with the upcoming general result for empirical processes, set fx(u) = 1

n(Kh(u−
x)−E[Kh(Xi−x)]) so S(x) := S(fx) = ĝ(x)−E[ĝ(x)]. The next step is standard: a mesh separates
the local oscillations of the processes from the finite-dimensional coupling. For δ ∈ (0, 1/2), set
N =

⌊
1 + 1−2a

δ

⌋
and Xδ = (a+ (j − 1)δ : 1 ≤ j ≤ N). Letting T (x) be the approximating stochastic

process to be constructed, consider the following decomposition:

sup
x∈X

∣∣S(x)− T (x)
∣∣ ≤ sup

|x−x′|≤δ

∣∣S(x)− S(x′)
∣∣+ max

x∈Xδ
|S(x)− T (x)|+ sup

|x−x′|≤δ

∣∣T (x)− T (x′)
∣∣.

Writing S(Xδ) for
(
S(x) : x ∈ Xδ

)
∈ RN , and noting that this is a sum of i.i.d. random vectors, we

apply Corollary 2.3 as maxx∈Xδ |S(x)− T (x)| = ‖S(Xδ)− T (Xδ)‖∞. We thus obtain that, for each
η > 0, there exists a Gaussian vector T (Xδ) with the same covariance matrix as S(Xδ) satisfying

P (‖S(Xδ)− T (Xδ)‖∞ > η) ≤ 31

(
N log 2N

η3n2h2

)1/3

assuming that 1/h ≥ log 2N . By the Vorob’ev–Berkes–Philipp theorem (Dudley, 1999, Theo-
rem 1.1.10), T (Xδ) extends to a Gaussian process T (x) defined for all x ∈ X and with the same
covariance structure as S(x).

Next, it is not difficult to show by chaining with the Bernstein–Orlicz and sub-Gaussian norms
respectively (van der Vaart and Wellner, 1996, Section 2.2) that if log(N/h) . log n and nh & log n,

sup
|x−x′|≤δ

∥∥S(x)− S(x′)
∥∥
∞ .P δ

√
log n

nh3
, and sup

|x−x′|≤δ

∥∥T (x)− T (x′)
∥∥
∞ .P δ

√
log n

nh3
.
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Finally, for any sequence Rn →∞ (see Remark 2.1), the resulting bound on the coupling error is

sup
x∈X

∣∣S(x)− T (x)
∣∣ .P (N log 2N

n2h2

)1/3

Rn + δ

√
log n

nh3
,

where the mesh size δ can then be optimized to obtain the tightest possible strong approximation.
The discretization strategy outlined above is at the core of the proof strategy for our upcoming

Proposition 3.1. Since we will consider martingale empirical processes, our proof will rely on
Corollary 2.2, which, unlike the martingale Yurinskii coupling established by Li and Liao (2020),
does not require a lower bound on the minimum eigenvalue of Σ. Using the simple kernel density
example just discussed, we now demonstrate precisely the crucial importance of removing such
eigenvalue conditions. The following Lemma 3.1 shows that the discretized covariance matrix
Σ = nhVar[S(Xδ)] has exponentially small eigenvalues, which in turn will negatively affect the
strong approximation bound if the Li and Liao (2020) coupling were to be used instead of the results
in this paper.

Lemma 3.1 (Minimum eigenvalue of a kernel density estimator covariance matrix)
The minimum eigenvalue of Σ = nhVar[S(Xδ)] ∈ RN×N satisfies the upper bound

λmin(Σ) ≤ 2e−h
2/δ2 +

h

πaδ
e−a

2/h2 .

Figure 1 shows how the upper bound in Lemma 3.1 captures the behavior of the simulated
minimum eigenvalue of Σ. In particular, the smallest eigenvalue decays exponentially fast in the
discretization level δ and the bandwidth h. As seen in the calculations above, the coupling rate
depends on δ/h, while the bias will generally depend on h, implying that both δ and h must converge
to zero to ensure valid statistical inference. In general, this will lead to Σ possessing extremely
small eigenvalues, rendering strong approximation approaches such as that of Li and Liao (2020)
ineffective in such scenarios.
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(a) h = 0.03
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(b) h = 0.01

Figure 1: Upper bounds on the minimum eigenvalue of the discretized covariance matrix in kernel
density estimation, with n = 100 and a = 0.2. Simulated: the kernel density estimator is simulated,
resampling the data 100 times to estimate its covariance. Computing matrix: the minimum
eigenvalue of the limiting covariance matrix Σ is computed explicitly. Upper bound: the bound
derived in Lemma 3.1 is shown.
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The discussion in this section focuses on the strong approximation of the centered process
ĝ(x)− E[ĝ(x)]. In practice, the goal is often rather to approximate the feasible process ĝ(x)− g(x).
The difference between these is captured by the smoothing bias E[ĝ(x)]−g(x), which is straightforward
to control with supx∈X

∣∣E[ĝ(x)]− g(x)
∣∣ . h

ae
−a2/(2h2). See Section 4 for further discussion.

3.2 General result for martingale empirical processes

We now give our general result on a strong approximation for martingale empirical processes,
obtained by applying the first result (4) in Corollary 2.2 with p = ∞ to a discretization of the
empirical process, as in Section 3.1. We then control the increments in the stochastic processes
using chaining with Orlicz norms, but note that other tools are available, including generalized
entropy with bracketing (van de Geer, 2000) and sequential symmetrization (Rakhlin et al., 2015).

A class of functions is said to be pointwise measurable if it contains a countable subclass which is
dense under the pointwise convergence topology. For a finite class F , write F(x) =

(
f(x) : f ∈ F

)
.

Define the set of Orlicz functions

Ψ =

{
ψ : [0,∞)→ [0,∞) convex increasing, ψ(0) = 0, lim sup

x,y→∞

ψ(x)ψ(y)
ψ(Cxy) <∞ for C > 0

}
and, for real-valued Y , the Orlicz norm |||Y |||ψ = inf {C > 0 : E [ψ(|Y |/C) ≤ 1]} as in van der Vaart
and Wellner (1996, Section 2.2).

Proposition 3.1 (Strong approximation for martingale empirical processes)
Let Xi be random variables for 1 ≤ i ≤ n taking values in a measurable space X , and F be a
pointwise measurable class of functions from X to R. Let H0, . . . ,Hn be a filtration such that each
Xi is Hi-measurable, with H0 the trivial σ-algebra, and suppose that E[f(Xi) | Hi−1] = 0 for all
f ∈ F . Define S(f) =

∑n
i=1 f(Xi) for f ∈ F and let Σ : F × F → R be an almost surely positive

semi-definite H0-measurable random function. Suppose that for a non-random metric d on F ,
constant L and ψ ∈ Ψ,

Σ(f, f)− 2Σ(f, f ′) + Σ(f ′, f ′) +
∣∣∣∣∣∣S(f)− S(f ′)

∣∣∣∣∣∣2
ψ
≤ L2d(f, f ′)2 a.s. (7)

Then for each η > 0 there is a process T (f) indexed by f ∈ F which, conditional on H0, is zero-mean
and Gaussian, satisfying E

[
T (f)T (f ′) | H0

]
= Σ(f, f ′) for all f, f ′ ∈ F , and for all t > 0 has

P

(
sup
f∈F

∣∣S(f)− T (f)
∣∣ ≥ Cψ(t+ η)

)
≤ Cψ inf

δ>0
inf
Fδ

{
β
1/3
δ (log 2|Fδ|)1/3

η

+

(√
log 2|Fδ|

√
E [‖Ωδ‖2]

η

)2/3

+ ψ

(
t

LJψ(δ)

)−1
+ exp

( −t2
L2J2(δ)2

)}
where Fδ is any finite δ-cover of (F , d) and Cψ is a constant depending only on ψ, with

βδ =
n∑
i=1

E
[
‖Fδ(Xi)‖22‖Fδ(Xi)‖∞ + ‖Vi(Fδ)1/2Zi‖22‖Vi(Fδ)1/2Zi‖∞

]
,

Vi(Fδ) = E
[
Fδ(Xi)Fδ(Xi)

T | Hi−1
]
, Ωδ =

n∑
i=1

Vi(Fδ)− Σ(Fδ),

Jψ(δ) =

∫ δ

0
ψ−1

(
Nε

)
dε+ δψ−1

(
N2
δ

)
, J2(δ) =

∫ δ

0

√
logNε dε,

where Nδ = N(δ,F , d) is the δ-covering number of (F , d) and Zi are i.i.d. N
(
0, I|Fδ|

)
independent

of Hn. If Fδ is a minimal δ-cover of (F , d), then |Fδ| = Nδ.
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Proposition 3.1 is given in a rather general form to accommodate a range of different settings
and applications. In particular, consider the following well known Orlicz functions.

Polynomial: ψ(x) = xa for a ≥ 2 has |||X|||2 ≤ |||X|||ψ and
√

log x ≤ √aψ−1(x).

Exponential: ψ(x) = exp(xa)− 1 for a ∈ [1, 2] has |||X|||2 ≤ 2|||X|||ψ and
√

log x ≤ ψ−1(x).

Bernstein: ψ(x) = exp
((√

1+2ax−1
a

)2)
−1 for a > 0 has |||X|||2 ≤ (1+a)|||X|||ψ and

√
log x ≤ ψ−1(x).

For these Orlicz functions and when Σ(f, f ′) = Cov[S(f), S(f ′)] is non-random, the terms involving
Σ in (7) can be controlled by the Orlicz ψ-norm term; similarly, J2 is bounded by Jψ. Further,
Cψ can be replaced by a universal constant C which does not depend on the parameter a. See
Section 2.2 in van der Vaart and Wellner (1996) for details. If the conditional third moments of
f(Xi) given Hi−1 are all zero (if f and Xi are appropriately symmetric, for example), then the
second inequality in Corollary 2.2 can be applied to obtain a tighter coupling inequality; the details
of this are omitted for brevity, and the proof would proceed in exactly the same manner.

In general, however, Proposition 3.1 allows for a random covariance function, yielding a coupling
to a stochastic process that is Gaussian only conditionally. Such a process can equivalently be
viewed as a mixture of Gaussian processes, writing T = Σ1/2Z with an operator square root and
where Z is a Gaussian white noise on F independent of H0. This extension is in contrast with
much of the existing strong approximation and empirical process literature, which tends to focus on
couplings and weak convergence results with marginally Gaussian processes.

A similar approach was taken by Berthet and Mason (2006), who used a Gaussian coupling due to
Zaitsev (1987a,b) along with a discretization method to obtain strong approximations for empirical
processes with independent data. They handled fluctuations in the stochastic processes with uniform
L2 covering numbers and bracketing numbers where we opt instead for chaining with Orlicz norms.
Our version using the (martingale) Yurinskii coupling can improve upon theirs in approximation
rate even for independent data under certain circumstances, as follows. Suppose the setup of
Proposition 1 in Berthet and Mason (2006); that is, X1, . . . , Xn are i.i.d. and supF ‖f‖∞ ≤ M ,
with the VC-type assumption supQN(ε,F , dQ) ≤ c0ε

−ν0 where dQ(f, f ′)2 = EQ
[
(f − f ′)2

]
for a

measure Q on X and M, c0, ν0 are constants. Then, using uniform L2 covering numbers rather
than Orlicz norm chaining in our Proposition 4 gives the following. Firstly as Xi are i.i.d. we take
Σ(f, f ′) = Cov[S(f), S(f ′)] so Ωδ = 0. Let Fδ be a minimal δ-cover of (F , dP) with cardinality
Nδ . δ−ν0 where δ → 0. It is not difficult to show that βδ . nδ−ν0

√
log(1/δ). Theorem 2.2.8 and

Theorem 2.14.1 in van der Vaart and Wellner (1996) give

E

[
sup

dP(f,f ′)≤δ

(
|S(f)− S(f ′)|+ |T (f)− T (f ′)|

)]
. sup

Q

∫ δ

0

√
n logN(ε,F , dQ) dε . δ

√
n log(1/δ),

where we used the VC-type property to bound the entropy integral. So by our Proposition 3.1, for
any sequence Rn →∞ (see Remark 2.1),

sup
f∈F

∣∣S(f)− T (f)
∣∣ .P n1/3δ−ν0/3√log(1/δ)Rn + δ

√
n log(1/δ) .P n

2+ν0
6+2ν0

√
log nRn,

where we minimized over δ in the last step. Berthet and Mason (2006, Proposition 1) achieved

sup
f∈F

∣∣S(f)− T (f)
∣∣ .P n 5ν0

4+10ν0 (log n)
4+5ν0
4+10ν0 ,
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showing that our approach achieves a better approximation rate whenever ν0 > 4/3. In particular,
our method is superior in richer function classes with larger VC-type dimension. For example, if F
is smoothly parametrized by θ ∈ Θ ⊆ Rd where Θ contains an open set, then ν0 > 4/3 corresponds
to d ≥ 2 and our rate is better as soon as the parameter space is more than one-dimensional. The
difference in approximation rate is due to Zaitsev’s coupling having better dependence on the sample
size but worse dependence on the dimension. In particular, Zaitsev’s coupling is stated only in
`2-norm and hence Berthet and Mason (2006, Equation 5.3) are compelled to use the inequality
‖ · ‖∞ ≤ ‖ · ‖2 in the coupling step, a bound which is loose when the dimension of the vectors (here
on the order of δ−ν0) is even moderately large. We use the fact that our version of Yurinskii’s
coupling applies directly to the supremum norm, giving sharper dependence on the dimension.

In Section 4.2 we apply Proposition 3.1 to obtain strong approximations for local polynomial
estimators in the nonparametric regression setting. In contrast with the series estimators of the
upcoming Section 4.1, local polynomial estimators are not linearly separable and hence cannot be
analyzed directly using the finite-dimensional Corollary 2.2.

4 Applications to nonparametric regression

We illustrate the applicability of our previous strong approximation results with two substantial
and classical examples in nonparametric regression estimation. Firstly, we present an analysis of
partitioning-based series estimators, in which we can apply Corollary 2.2 directly due to an intrinsic
linear separability property. Secondly, we consider local polynomial estimators, this time using
Proposition 3.1 due to the presence of a non-linearly separable martingale empirical process.

4.1 Partitioning-based series estimators

Partitioning-based least squares methods are essential tools for estimation and inference in non-
parametric regression, encompassing splines, piecewise polynomials, compactly supported wavelets
and decision trees as special cases. See Cattaneo et al. (2020) for further details and references
throughout this section. We illustrate the usefulness of Corollary 2.2 by deriving a Gaussian strong
approximation for partitioning series estimators based on multivariate martingale data. Proposi-
tion 4.1 shows how we achieve the best known rate of strong approximation for independent data
by imposing an additional mild α-mixing condition to control the time series dependence of the
regressors.

Consider the nonparametric regression setup with martingale difference residuals defined by Yi =
µ(Wi)+εi for 1 ≤ i ≤ n where the regressors Wi have compact connected supportW ⊆ Rm, Hi is the
σ-algebra generated by (W1, . . . ,Wi+1, ε1, . . . , εi), E[εi | Hi−1] = 0 and µ :W → R is the estimand.
Let p(w) be a k-dimensional vector of bounded basis functions on W which are locally supported
on a quasi-uniform partition (Cattaneo et al., 2020, Assumption 2). Under minimal regularity
conditions, the least-squares partitioning-based series estimator is µ̂(w) = p(w)TĤ−1

∑n
i=1 p(Wi)Yi

with Ĥ =
∑n

i=1 p(Wi)p(Wi)
T. The approximation power of the estimator µ̂(w) derives from letting

k → ∞ as n → ∞. The assumptions made on p(w) are mild enough to accommodate splines,
wavelets, piecewise polynomials, and certain types of decision trees. For such a tree, p(w) is
comprised of indicator functions over k axis-aligned rectangles forming a partition of W (a Haar
basis), provided that the partitions are constructed using independent data (e.g., with sample
splitting).

Our goal is to approximate the law of the stochastic process (µ̂(w) − µ(w) : w ∈ W), which
upon rescaling is typically not asymptotically tight as k →∞ and thus does not converge weakly.
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Nevertheless, exploiting the intrinsic linearity of the estimator µ̂(w), we can apply Corollary 2.2
directly to construct a Gaussian strong approximation. Specifically, we write

µ̂(w)− µ(w) = p(w)TH−1S + p(w)T
(
Ĥ−1 −H−1

)
S + Bias(w),

where H =
∑n

i=1 E
[
p(Wi)p(Wi)

T
]

is the expected outer product matrix, S =
∑n

i=1 p(Wi)εi is the

score vector, and Bias(w) = p(w)TĤ−1
∑n

i=1 p(Wi)µ(Wi)− µ(w). Imposing some mild time series
restrictions and assuming stationarity for simplicity, it is not difficult to show (see Appendix A)
that ‖Ĥ −H‖1 .P

√
nk and supw∈W |Bias(w)| .P k−γ for some γ > 0, depending on the specific

structure of the basis functions, the dimension m of the regressors, and the smoothness of the
regression function µ. Thus, it remains to study the k-dimensional mean-zero martingale S by
applying Corollary 2.2 with Xi = p(Wi)εi. Controlling the convergence of the quadratic variation
term E[‖Ω‖2] also requires some time series dependence assumptions; we impose an α-mixing
condition on (W1, . . . ,Wn) for illustration (Bradley, 2005).

Proposition 4.1 (Strong approximation for partitioning series estimators)
Consider the nonparametric regression setup described above and further assume the following:

(i) (Wi, εi)1≤i≤n is strictly stationary.

(ii) W1, . . . ,Wn is α-mixing with mixing coefficients satisfying
∑∞

j=1 α(j) <∞.

(iii) Wi has a Lebesgue density on W which is bounded above and away from zero.

(iv) E
[
|εi|3

]
<∞ and E

[
ε2i | Hi−1

]
= σ2(Wi) is bounded away from zero.

(v) p(w) forms a basis with k features satisfying Assumptions 2 and 3 in Cattaneo et al. (2020).

Then, for any sequence Rn →∞, there is a zero-mean Gaussian process G(w) indexed on W with
Var[G(w)] � k

n satisfying Cov[G(w), G(w′)] = Cov[p(w)TH−1S, p(w′)TH−1S] and

sup
w∈W

|µ̂(w)− µ(w)−G(w)| .P
√
k

n

(
k3(log k)3

n

)1/6

Rn + sup
w∈W

|Bias(w)|

assuming the number of basis functions satisfies k3/n→ 0. If further E
[
ε3i | Hi−1

]
= 0 then

sup
w∈W

|µ̂(w)− µ(w)−G(w)| .P
√
k

n

(
k3(log k)2

n

)1/4

Rn + sup
w∈W

|Bias(w)|.

The core of the proof of Proposition 4.1 involves applying Corollary 2.2 with S =
∑n

i=1 p(Wi)εi
and p =∞ to construct T ∼ N

(
0,Var[S]

)
such that ‖S − T‖∞ is small, and then setting G(w) =

p(w)TH−1T . So long as the bias can be appropriately controlled, this result allows for uniform
inference procedures such as uniform confidence bands or shape specification testing. The condition
k3/n→ 0 is the same (up to logs) as that imposed by Cattaneo et al. (2020) for i.i.d. data, which
gives the best known strong approximation rate for this problem. Thus, Proposition 4.1 gives the
same best approximation rate without requiring any extra restrictions for α-mixing time series data.

Our results improve substantially on Li and Liao (2020, Theorem 1): using the notation of our
Corollary 2.2, and with any sequence Rn →∞, a valid (see Remark 2.1) version of their martingale
Yurinskii coupling is

‖S − T‖2 .P d1/2r1/2n + (Bnd)1/3Rn,
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where Bn =
∑n

i=1 E[‖Xi‖32] and rn is a term controlling the convergence of the quadratic variation,
playing a similar role to our term E[‖Ω‖2]. Under the assumptions of our Proposition 4.1, applying
this result with S =

∑n
i=1 p(Wi)εi yields a rate no better than ‖S − T‖2 .P (nk)1/3Rn. As such,

they attain a rate of strong approximation no faster than

sup
w∈W

|µ̂(w)− µ(w)−G(w)| .P
√
k

n

(
k5

n

)1/6

Rn + sup
w∈W

|Bias(w)|.

Hence, for this approach to yield a valid strong approximation, the number of basis functions must
satisfy k5/n→ 0, a more restrictive assumption than our k3/n→ 0 (up to logs). This difference
is due to Li and Liao (2020) using the `2-norm version of Yurinskii’s coupling rather than the
more recently established `∞-norm version. Further, our approach allows for an improved rate of
distributional approximation whenever the residuals have zero conditional third moment.

To illustrate the statistical applicability of Proposition 4.1, consider constructing a feasible
uniform confidence band for the regression function µ, using standardization and Studentization for
statistical power improvements. We assume throughout that the bias is negligible. Proposition 4.1
and anti-concentration for Gaussian suprema (Chernozhukov et al., 2014a, Corollary 2.1) yield a
distributional approximation for the supremum statistic whenever k3(log n)6/n→ 0, giving

sup
t∈R

∣∣∣∣∣P
(

sup
w∈W

∣∣∣∣∣ µ̂(w)− µ(w)√
ρ(w,w)

∣∣∣∣∣ ≤ t
)
− P

(
sup
w∈W

∣∣∣∣∣ G(w)√
ρ(w,w)

∣∣∣∣∣ ≤ t
)∣∣∣∣∣→ 0,

where ρ(w,w′) = E[G(w)G(w′)]. Furthermore, using a Gaussian–Gaussian comparison result
(Chernozhukov et al., 2013, Lemma 3.1) and anti-concentration again, it is not difficult to show (see
the proof of Proposition 4.1) that with W = (W1, . . . ,Wn) and Y = (Y1, . . . , Yn),

sup
t∈R

∣∣∣∣∣P
(

sup
w∈W

∣∣∣∣∣ µ̂(w)− µ(w)√
ρ̂(w,w)

∣∣∣∣∣ ≤ t
)
− P

(
sup
w∈W

∣∣∣∣∣ Ĝ(w)√
ρ̂(w,w)

∣∣∣∣∣ ≤ t
∣∣∣∣ W,Y

)∣∣∣∣∣→P 0,

where Ĝ(w) is a zero-mean Gaussian process conditional on W and Y with conditional covariance

function ρ̂(w,w′) = E
[
Ĝ(w)Ĝ(w′) |W,Y

]
= p(w)TĤ−1V̂ar[S]Ĥ−1p(w′) for some estimator V̂ar[S]

satisfying k(logn)2

n

∥∥V̂ar[S] − Var[S]
∥∥
2
→P 0. For example, one could use the plug-in estimator

V̂ar[S] =
∑n

i=1 p(Wi)p(Wi)
Tσ̂2(Wi) where σ̂2(w) satisfies (log n)2 supw∈W |σ̂2(w) − σ2(w)| →P 0.

This leads to the following feasible and asymptotically valid 100(1− τ)% uniform confidence band
for partitioning-based series estimators based on martingale data.

Proposition 4.2 (Feasible uniform confidence bands for partitioning series estimators)
Assume the setup of the preceding section. Then

P
(
µ(w) ∈

[
µ̂(w)± q̂(τ)

√
ρ̂(w,w)

]
for all w ∈ W

)
→ 1− τ,

where

q̂(τ) = inf

{
t ∈ R : P

(
sup
w∈W

∣∣∣∣∣ Ĝ(w)√
ρ̂(w,w)

∣∣∣∣∣ ≤ t ∣∣∣ W,Y

)
≥ τ

}

is the conditional quantile of the supremum of the Studentized Gaussian process. This can be
estimated by resampling the conditional law of Ĝ(w) |W,Y with a discretization of w ∈ W.
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4.2 Local polynomial estimators

As a second example application we consider nonparametric regression estimation with martingale
data employing local polynomial methods (Fan and Gijbels, 1996). In contrast with the partitioning-
based series methods of Section 4.1, local polynomials induce stochastic processes which are not
linearly separable, allowing us to showcase the empirical process result given in Proposition 3.1.

As before, suppose that Yi = µ(Wi) + εi for 1 ≤ i ≤ n where Wi has compact connected
support W ⊆ Rm, Hi is the σ-algebra generated by (W1, . . . ,Wi+1, ε1, . . . , εi), E[εi | Hi−1] = 0 and
µ :W → R is the estimand. Let K be a kernel function on Rm and Kh(w) = h−mK(w/h) for some
bandwidth h > 0. Take γ ≥ 0 a fixed polynomial order and let k = (m+ γ)!/(m!γ!) be the number
of monomials up to order γ. Using multi-index notation, let p(w) be the k-dimensional vector
collecting the monomials wκ/κ! for 0 ≤ |κ| ≤ γ, and set ph(w) = p(w/h). The local polynomial
regression estimator of µ(w) is, with e1 = (1, 0, . . . , 0)T ∈ Rk the first standard unit vector,

µ̂(w) = eT1 β̂(w) where β̂(w) = arg min
β∈Rk

n∑
i=1

(
Yi − ph(Wi − w)Tβ

)2
Kh(Wi − w).

Our goal is again to approximate the distribution of the entire stochastic process, (µ̂(w)− µ(w) :
w ∈ W), which upon rescaling is non-Donsker if h→ 0, and decomposes as follows:

µ̂(w)− µ(w) = eT1H(w)−1S(w) + eT1
(
Ĥ(w)−1 −H(w)−1

)
S(w) + Bias(w)

where Ĥ(w) =
∑n

i=1Kh(Wi−w)ph(Wi−w)ph(Wi−w)T, H(w) = E
[
Ĥ(w)

]
, S(w) =

∑n
i=1Kh(Wi−

w)ph(Wi − w)εi and Bias(w) = eT1 Ĥ(w)−1
∑n

i=1Kh(Wi − w)ph(Wi − w)µ(Wi) − µ(w). A key

distinctive feature of local polynomial regression is that both Ĥ(w) and S(w) are functions of the
evaluation point w ∈ W; contrast this with the partitioning-based series estimator discussed in
Section 4.1, for which neither Ĥ nor S depend on w. Therefore we use Proposition 3.1 to obtain a
Gaussian strong approximation for the martingale empirical process directly.

Under some mild regularity conditions, including stationarity for simplicity and an α-mixing
assumption on the time-dependence of the data, we first show supw∈W ‖Ĥ(w) − H(w)‖2 .P√
nh−2m log n. Further, supw∈W |Bias(w)| .P hγ provided that the regression function is sufficiently

smooth. Thus it remains to analyze the martingale empirical process
(
eT1H(w)−1S(w) : w ∈ W

)
via

Proposition 3.1 by setting

F =
{

(Wi, εi) 7→ eT1H(w)−1Kh(Wi − w)ph(Wi − w)εi : w ∈ W
}
.

With this approach, we obtain the following result.

Proposition 4.3 (Strong approximation for local polynomial estimators)
Under the nonparametric regression setup described above, assume further that

(i) (Wi, εi)1≤i≤n is strictly stationary.

(ii) (Wi, εi)1≤i≤n is α-mixing with mixing coefficients α(j) ≤ e−2j/Cα for some Cα > 0.

(iii) Wi has a Lebesgue density on W which is bounded above and away from zero.

(iv) E
[
e|εi|/Cε

]
<∞ for Cε > 0 and E

[
ε2i | Hi−1

]
= σ2(Wi) is bounded away from zero.

(v) K is a non-negative Lipschitz compactly supported kernel with
∫
K(w) dw = 1.
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Then for any Rn →∞, there is a zero-mean Gaussian process T (w) on W with Var[T (w)] � 1
nhm

satisfying Cov[T (w), T (w′)] = Cov[eT1H(w)−1S(w), eT1H(w′)−1S(w′)] and

sup
w∈W

|µ̂(w)− µ(w)− T (w)| .P
Rn√
nhm

(
(log n)m+4

nh3m

) 1
2m+6

+ sup
w∈W

|Bias(w)|,

provided that the bandwidth sequence satisfies nh3m →∞.

If the residuals further satisfy E
[
ε3i | Hi−1

]
= 0, then a third-order Yurinskii coupling delivers

an improved rate of strong approximation for Proposition 4.3; this is omitted here for brevity. For
completeness, the proof of Proposition 4.3 verifies that if the regression function µ(w) is γ times
continuously differentiable on W then supw |Bias(w)| .P hγ . Further, the assumption that p(w) is
a vector of monomials is unnecessary in general; any collection of bounded linearly independent
functions which exhibit appropriate approximation power will suffice (Eggermont and LaRiccia,
2009). As such, we can encompass local splines and wavelets, as well as polynomials, and also choose
whether or not to include interactions between the regressor variables. The bandwidth restriction of
nh3m →∞ is analogous to that imposed in Proposition 4.1 for partitioning-based series estimators,
and as far as we know, has not been improved upon for non-i.i.d. data.

Applying an anti-concentration result for Gaussian process suprema, such as Corollary 2.1 in
Chernozhukov et al. (2014a), allows one to write a Kolmogorov–Smirnov bound comparing the law of
supw∈W |µ̂(w)− µ(w)| to that of supw∈W |T (w)|. With an appropriate covariance estimator, we can
further replace T (w) by a feasible version T̂ (w) or its Studentized counterpart, enabling procedures for
uniform inference analogous to the confidence bands constructed in Section 4.1. We omit the details
of this to conserve space but note that our assumptions on Wi and εi ensure that Studentization
is possible even when the discretized covariance matrix has small eigenvalues (Section 3.1), as we
normalize only by the diagonal entries. Chernozhukov et al. (2014b, Remark 3.1) achieve better
rates for approximating the supremum of the t-process based on i.i.d. data in Kolmogorov–Smirnov
distance by bypassing the step where we first approximate the entire stochastic process (see Section 3
for a discussion).

We finally remark that in this setting of kernel-based local empirical processes, it is essential
that our initial strong approximation result (Corollary 2.2) does not impose a lower bound on
the eigenvalues of the variance matrix Σ. This effect was demonstrated by Lemma 3.1 and its
surrounding discussion in Section 3.1, and as such, the result of Li and Liao (2020) is unsuited for
this application due to its strong minimum eigenvalue assumption.

5 Conclusion

In this paper we introduced as our main result a new version of Yurinskii’s coupling which strictly
generalizes all previously known forms of the result. Our formulation gave a Gaussian mixture
coupling for approximate martingale vectors in `p-norm where 1 ≤ p ≤ ∞, with no restrictions on
the minimum eigenvalues of the associated covariance matrices. We further showed how to obtain an
improved approximation whenever third moments of the data are negligible. We demonstrated the
applicability of this main result by first deriving a user-friendly version, and then specializing it to
mixingales, martingales, and independent data, illustrating the benefits with a collection of simple
factor models. We then considered the problem of constructing uniform strong approximations for
martingale empirical processes, demonstrating how our new Yurinskii coupling can be employed
in a stochastic process setting. As substantive illustrative applications of our theory to some well
established problems in statistical methodology, we showed how to use our coupling results for both
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vector-valued and empirical process-valued martingales in developing uniform inference procedures
for partitioning-based series estimators and local polynomial models in nonparametric regression.
At each stage we addressed issues of feasibility, compared our work with the existing literature, and
provided implementable statistical inference procedures.
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Merlevède, F., Peligrad, M., and Rio, E. (2009). Bernstein inequality and moderate deviations
under strong mixing conditions. In High dimensional probability V: the Luminy volume, pages
273–292. Institute of Mathematical Statistics.

Nazarov, F. (2003). On the maximal perimeter of a convex set in Rn with respect to a Gaussian
measure. In Geometric aspects of functional analysis, pages 169–187. Springer.

Peligrad, M. (2010). Conditional central limit theorem via martingale approximation. In Dependence
in Probability, Analysis and Number Theory, volume in memory of Walter Philipp, pages 295–311.
Kendrick Press I. Berkes, RC Bradley, H. Dehling, M. Peligrad, R. Tichy Editors.

Pollard, D. (2002). A User’s Guide to Measure Theoretic Probability. Cambridge University Press.

Rakhlin, A., Sridharan, K., and Tewari, A. (2015). Sequential complexities and uniform martingale
laws of large numbers. Probability Theory and Related Fields, 161(1):111–153.

Ray, K. and van der Vaart, A. (2021). On the Bernstein–von Mises theorem for the Dirichlet process.
Electronic Journal of Statistics, 15(1):2224–2246.

Rio, E. (2017). Asymptotic theory of weakly dependent random processes, volume 80. Springer.

23



Sheehy, A. and Wellner, J. A. (1992). Uniform Donsker classes of functions. Annals of Probability,
20(4):1983–2030.

van de Geer, S. and Lederer, J. (2013). The Bernstein–Orlicz norm and deviation inequalities.
Probability Theory and Related Fields, 157(1):225–250.

van de Geer, S. A. (2000). Empirical Processes in M-estimation, volume 6. Cambridge University
Press.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes.
Springer Series in Statistics. Springer, New York, NY.

Wu, W. B. and Woodroofe, M. (2004). Martingale approximations for sums of stationary processes.
Annals of Probability, 32(2):1674–1690.

Yurinskii, V. V. (1978). On the error of the Gaussian approximation for convolutions. Theory of
Probability & its Applications, 22(2):236–247.
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A Proofs of main results

A.1 Preliminary lemmas

We give a sequence of preliminary lemmas which are useful for establishing our main results. Firstly,
we present a conditional version of Strassen’s theorem for the `p-norm (Chen and Kato, 2020,
Theorem B.2), stated for completeness as Lemma A.1.

Lemma A.1 (A conditional Strassen theorem for the `p-norm)
Let (Ω,H,P) be a probability space supporting the Rd-valued random variable X for some d ≥ 1. Let
H′ be a countably generated sub-σ-algebra of H and suppose there exists a Unif [0, 1] random variable
on (Ω,H,P) which is independent of the σ-algebra generated by X and H′. Consider a regular
conditional distribution F (· | H′) satisfying the following. Firstly, F (A | H′) is an H′-measurable
random variable for all Borel sets A ∈ B(Rd). Secondly, F (· | H′)(ω) is a Borel probability measure
on Rd for all ω ∈ Ω. Taking η, ρ > 0 and p ∈ [1,∞], with E∗ the outer expectation, if

E∗
[

sup
A∈B(Rd)

{
P
(
X ∈ A | H′

)
− F

(
Aηp | H′

)}]
≤ ρ,

where Aηp = {x ∈ Rd : ‖x − A‖p ≤ η} and ‖x − A‖p = infx′∈A ‖x − x′‖p, then there exists an
Rd-valued random variable Y with Y | H′ ∼ F (· | H′) and P (‖X − Y ‖p > η) ≤ ρ.

Proof (Lemma A.1)
By Theorem B.2 in Chen and Kato (2020), noting that the σ-algebra generated by Z is countably
generated and using the metric induced by the `p-norm. �

Next, we present in Lemma A.2 an analytic result concerning the smooth approximation of
Borel set indicator functions, similar to that given in Belloni et al. (2019, Lemma 39).

Lemma A.2 (Smooth approximation of Borel indicator functions)
Let A ⊆ Rd be a Borel set and Z ∼ N (0, Id). For σ, η > 0 and p ∈ [1,∞], define

gAη(x) =

(
1− ‖x−A

η‖p
η

)
∨ 0 and fAησ(x) = E

[
gAη(x+ σZ)

]
.

Then f is infinitely differentiable and with ε = P(‖Z‖p > η/σ), for all k ≥ 0, any multi-index

κ = (κ1, . . . , κd) ∈ Nd, and all x, y ∈ Rd, we have |∂κfAησ(x)| ≤
√
κ!

σ|κ|
and∣∣∣∣∣fAησ(x+ y)−

k∑
|κ|=0

1

κ!
∂κfAησ(x)yκ

∣∣∣∣∣ ≤ ‖y‖p‖y‖k2σkη
√
k!
,

(1− ε)I
{
x ∈ A

}
≤ fAησ(x) ≤ ε+ (1− ε)I

{
x ∈ A3η

}
.

Proof (Lemma A.2)
Drop the subscripts on gAη and fAησ. By Taylor’s theorem with Lagrange remainder, for a t ∈ [0, 1],∣∣∣∣∣f(x+ y)−

k∑
|κ|=0

1

κ!
∂κf(x)yκ

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
|κ|=k

yκ

κ!

(
∂κf(x+ ty)− ∂κf(x)

)∣∣∣∣∣.
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Now with φ(x) = 1√
2π
e−x

2/2,

f(x) = E
[
g(x+ σW )

]
=

∫
Rd
g(x+ σu)

d∏
j=1

φ(uj) du =
1

σd

∫
Rd
g(u)

d∏
j=1

φ

(
uj − xj
σ

)
du

and since the integrand is bounded, we exchange differentiation and integration to compute

∂κf(x) =
1

σd+|κ|

∫
Rd
g(u)

d∏
j=1

∂κjφ

(
uj − xj
σ

)
du

=

(−1

σ

)|κ|∫
Rd
g(x+ σu)

d∏
j=1

∂κjφ(uj) du

=

(−1

σ

)|κ|
E

[
g(x+ σZ)

d∏
j=1

∂κjφ(Zj)

φ(Zj)

]
, (8)

where Z ∼ N (0, Id). Recalling that |g(x)| ≤ 1 and applying the Cauchy–Schwarz inequality,

|∂κf(x)| ≤ 1

σ|κ|

d∏
j=1

E

[(
∂κjφ(Zj)

φ(Zj)

)2
]1/2

≤ 1

σ|κ|

d∏
j=1

√
κj ! =

√
κ!

σ|κ|
,

as the expected square of the Hermite polynomial of degree κj against the standard Gaussian
measure is κj !. By the reverse triangle inequality, |g(x+ ty)− g(x)| ≤ t‖y‖p/η, so by (8),∣∣∣∣∣∣

∑
|κ|=k

yκ

κ!

(
∂κf(x+ ty)− ∂κf(x)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|κ|=k

yκ

κ!

1

σ|κ|
E

[(
g(x+ ty + σZ)− g(x+ σZ)

) d∏
j=1

∂κjφ(Zj)

φ(Zj)

]∣∣∣∣∣∣
≤ t‖y‖p

σkη
E

∣∣∣∣∣ ∑
|κ|=k

yκ

κ!

d∏
j=1

∂κjφ(Zj)

φ(Zj)

∣∣∣∣∣
 .

Therefore by the Cauchy–Schwarz inequality,( ∑
|κ|=k

yκ

κ!

(
∂κf(x+ ty)− ∂κf(x)

))2

≤
t2‖y‖2p
σ2kη2

E

( ∑
|κ|=k

yκ

κ!

d∏
j=1

∂κjφ(Zj)

φ(Zj)

)2


=
t2‖y‖2p
σ2kη2

∑
|κ|=k

∑
|κ′|=k

yκ+κ
′

κ!κ′!

d∏
j=1

E

[
∂κjφ(Zj)

φ(Zj)

∂κ
′
jφ(Zj)

φ(Zj)

]
.
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Orthogonality of Hermite polynomials gives zero if κj 6= κ′j . By the multinomial theorem,∣∣∣∣∣∣f(x+ y)−
k∑
|κ|=0

1

κ!
∂κf(x)yκ

∣∣∣∣∣∣ ≤ ‖y‖pσkη

( ∑
|κ|=k

y2κ

κ!

)1/2

≤ ‖y‖p
σkη
√
k!

( ∑
|κ|=k

k!

κ!
y2κ

)1/2

≤ ‖y‖p‖y‖
k
2

σkη
√
k!
.

For the final result, since f(x) = E [g(x+ σZ)] and I
{
x ∈ Aη

}
≤ g(x) ≤ I

{
x ∈ A2η

}
,

f(x) ≤ P
(
x+ σZ ∈ A2η

)
≤ P

(
‖Z‖p >

η

σ

)
+ I
{
x ∈ A3η

}
P
(
‖Z‖p ≤

η

σ

)
= ε+ (1− ε)I

{
x ∈ A3η

}
,

f(x) ≥ P (x+ σZ ∈ Aη) ≤ I {x ∈ A}P
(
‖Z‖p ≤

η

σ

)
= (1− ε)I {x ∈ A} .

�

We provide a useful Gaussian inequality in Lemma A.3 which helps bound the β∞,k moment
terms appearing in several places throughout the paper.

Lemma A.3 (A useful Gaussian inequality)
Let X ∼ N (0,Σ) where σ2j = Σjj ≤ σ2 for all 1 ≤ j ≤ d. Then

E
[
‖X‖22‖X‖∞

]
≤ 4σ

√
log 2d

d∑
j=1

σ2j and E
[
‖X‖32‖X‖∞

]
≤ 8σ

√
log 2d

( d∑
j=1

σ2j

)3/2

.

Proof (Lemma A.3)

By Cauchy–Schwarz, with k ∈ {2, 3}, we have E
[
‖X‖k2‖X‖∞

]
≤ E

[
‖X‖2k2

]1/2E[‖X‖2∞]1/2. For the
first term, by Hölder’s inequality and the fourth and sixth moments of the normal distribution,

E
[
‖X‖42

]
= E

[( d∑
j=1

X2
j

)2
]

=

d∑
j=1

d∑
k=1

E
[
X2
jX

2
k

]
≤
( d∑
j=1

E
[
X4
j

] 1
2

)2

= 3

( d∑
j=1

σ2j

)2

,

E
[
‖X‖62

]
=

d∑
j=1

d∑
k=1

d∑
l=1

E
[
X2
jX

2
kX

2
l

]
≤
( d∑
j=1

E
[
X6
j

] 1
3

)3

= 15

( d∑
j=1

σ2j

)3

.

For the second term, by Jensen’s inequality and the χ2 moment generating function,

E
[
‖X‖2∞

]
= E

[
max
1≤j≤d

X2
j

]
≤ 4σ2 log

d∑
j=1

E
[
eX

2
j /(4σ

2)
]
≤ 4σ2 log

d∑
j=1

√
2 ≤ 4σ2 log 2d.

�

We provide an `p-norm tail probability bound for Gaussian variables in Lemma A.4, motivating
the definition of the term φp(d).

Lemma A.4 (Gaussian `p-norm bound)
Let X ∼ N (0,Σ) where Σ ∈ Rd×d is positive semi-definite. Then E [‖X‖p] ≤ φp(d) max1≤j≤d

√
Σjj

where φp(d) =
√
pd2/p for p ∈ [1,∞) and φ∞(d) =

√
2 log 2d.
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Proof (Lemma A.4)

For p ∈ [1,∞), as each Xj is Gaussian, we have
(
E
[
|Xj |p

])1/p ≤√pE[X2
j ] =

√
pΣjj . Therefore

E
[
‖X‖p

]
≤
(

d∑
j=1

E
[
|Xj |p

])1/p

≤
(

d∑
j=1

pp/2Σ
p/2
jj

)1/p

≤
√
pd2/p max

1≤j≤d

√
Σjj

by Jensen’s inequality. For p =∞, with σ2 = maxj Σjj , for t > 0,

E
[
‖X‖∞

]
≤ t log

d∑
j=1

E
[
e|Xj |/t

]
≤ t log

d∑
j=1

E
[
2eXj/t

]
≤ t log

(
2deσ

2/(2t2)
)

≤ t log 2d+
σ2

2t
,

again by Jensen’s inequality. Setting t = σ√
2 log 2d

gives E
[
‖X‖∞

]
≤ σ√2 log 2d. �

We give a Gaussian–Gaussian `p-norm approximation as Lemma A.5, useful for ensuring
approximations remain valid upon substituting an estimator for the true variance matrix.

Lemma A.5 (Gaussian–Gaussian approximation in `p-norm)
Let Σ1,Σ2 ∈ Rd×d be positive semi-definite and take Z ∼ N (0, Id). For p ∈ [1,∞] we have

P
(∥∥∥(Σ

1/2
1 − Σ

1/2
2

)
Z
∥∥∥
p
> t

)
≤ 2d exp

(
−t2

2d2/p
∥∥Σ

1/2
1 − Σ

1/2
2

∥∥2
2

)
.

Proof (Lemma A.5)
Let Σ ∈ Rd×d be positive semi-definite and write σ2j = Σjj . For p ∈ [1,∞) by a union bound and
Gaussian tail probabilities,

P
(∥∥Σ1/2Z

∥∥
p
> t
)

= P

(
d∑
j=1

∣∣∣∣(Σ1/2Z
)
j

∣∣∣∣p > tp

)
≤

d∑
j=1

P

(∣∣∣∣(Σ1/2Z
)
j

∣∣∣∣p > tpσpj
‖σ‖pp

)

=
d∑
j=1

P

(
|σjZj |p >

tpσpj
‖σ‖pp

)
=

d∑
j=1

P
(
|Zj | >

t

‖σ‖p

)

≤ 2d exp

( −t2
2‖σ‖2p

)
.

The same result holds for p =∞ since

P
(∥∥Σ1/2Z

∥∥
∞ > t

)
= P

(
max
1≤j≤d

∣∣∣∣(Σ1/2Z
)
j

∣∣∣∣ > t

)
≤

d∑
j=1

P
(∣∣∣∣(Σ1/2Z

)
j

∣∣∣∣ > t

)

=
d∑
j=1

P (|σjZj | > t) ≤ 2
d∑
j=1

exp

(
−t2
2σ2j

)
≤ 2d exp

( −t2
2‖σ‖2∞

)
.

Now we apply this to the matrix Σ =
(
Σ
1/2
1 − Σ

1/2
2

)2
. For p ∈ [1,∞),

‖σ‖pp =

d∑
j=1

(Σjj)
p/2 =

d∑
j=1

((
Σ
1/2
1 − Σ

1/2
2

)2)p/2
jj
≤ d max

1≤j≤d

((
Σ
1/2
1 − Σ

1/2
2

)2)p/2
jj

≤ d
∥∥∥(Σ1/2

1 − Σ
1/2
2

)2∥∥∥p/2
2

= d
∥∥Σ

1/2
1 − Σ

1/2
2

∥∥p
2
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Similarly for p =∞ we have

‖σ‖∞ = max
1≤j≤d

(Σjj)
1/2 = max

1≤j≤d

((
Σ
1/2
1 − Σ

1/2
2

)2)1/2
jj
≤
∥∥Σ

1/2
1 − Σ

1/2
2

∥∥
2
.

Thus for all p ∈ [1,∞] we have ‖σ‖p ≤ d1/p
∥∥Σ

1/2
1 − Σ

1/2
2

∥∥
2
, with d1/∞ = 1. Hence

P
(∥∥∥(Σ

1/2
1 − Σ

1/2
2

)
Z
∥∥∥
p
> t

)
≤ 2d exp

( −t2
2‖σ‖2p

)
≤ 2d exp

(
−t2

2d2/p
∥∥Σ

1/2
1 − Σ

1/2
2

∥∥2
2

)
.

�

We also include, for completeness, a variance bound (Lemma A.6) and an exponential concen-
tration inequality (Lemma A.7) for α-mixing random variables.

Lemma A.6 (Variance bounds for α-mixing random variables)
Let X1, . . . , Xn be real-valued α-mixing random variables with mixing coefficients α(j). Then

(i) If for constants Mi we have |Xi| ≤Mi a.s. then

Var

[
n∑
i=1

Xi

]
≤ 4

∞∑
j=1

α(j)
n∑
i=1

M2
i .

(ii) If α(j) ≤ e−2j/Cα then for any r > 2 there is a constant Cr depending only on r such that

Var

[
n∑
i=1

Xi

]
≤ CrCα

n∑
i=1

E
[
|Xi|r

]2/r
.

Proof (Lemma A.6)
Define α−1(t) = inf{j ∈ N : α(j) ≤ t} and Qi(t) = inf{s ∈ R : P(|Xi| > s) ≤ t}. By Corollary 1.1 in
Rio (2017) and Hölder’s inequality for r > 2,

Var

[
n∑
i=1

Xi

]
≤ 4

n∑
i=1

∫ 1

0
α−1(t)Qi(t)

2 dt

≤ 4
n∑
i=1

(∫ 1

0
α−1(t)

r
r−2 dt

) r−2
r
(∫ 1

0
|Qi(t)|r dt

) 2
r

dt.

Now note that if U ∼ U(0, 1) then Qi(U) has the same distribution as Xi. Therefore

Var

[
n∑
i=1

Xi

]
≤ 4

(∫ 1

0
α−1(t)

r
r−2 dt

) r−2
r

n∑
i=1

E[|Xi|r]
2
r .

If α(j) ≤ e−2j/Cα then α−1(t) ≤ −Cα log t
2 so, for some constant Cr depending only on r,

Var

[
n∑
i=1

Xi

]
≤ 2Cα

(∫ 1

0
(− log t)

r
r−2 dt

) r−2
r

n∑
i=1

E[|Xi|r]
2
r ≤ CrCα

n∑
i=1

E[|Xi|r]
2
r .

Alternatively, if for constants Mi we have |Xi| ≤Mi a.s. then

Var

[
n∑
i=1

Xi

]
≤ 4

∫ 1

0
α−1(t) dt

n∑
i=1

M2
i ≤ 4

∞∑
j=1

α(j)

n∑
i=1

M2
i .

�
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Lemma A.7 (Exponential concentration inequalities for α-mixing random variables)
Let X1, . . . , Xn be zero-mean real-valued variables with α-mixing coefficients α(j) ≤ e−2j/Cα.

(i) Suppose |Xi| ≤M a.s. for each 1 ≤ i ≤ n. Then for all t > 0 there is a constant C1 with

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > C1M
(√
nt+ (log n)(log log n)t

))
≤ C1e

−t.

(ii) Suppose further
∑n

j=1 |Cov[Xi, Xj ]| ≤ σ2. Then for all t > 0 there is a constant C2 with

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ C2

(
(σ
√
n+M)

√
t+M(log n)2t

))
≤ C2e

−t.

Proof (Lemma A.7)
We apply results from Merlevède et al. (2009),adjusting constants where necessary.

(i) By Theorem 1 in Merlevède et al. (2009),

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤ exp

(
− C1t

2

nM2 +Mt(log n)(log log n)

)
.

Replace t by M
√
nt+M(log n)(log logn)t.

(ii) By Theorem 2 in Merlevède et al. (2009),

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤ exp

(
− C2t

2

nσ2 +M2 +Mt(log n)2

)
.

Replace t by σ
√
n
√
t+M

√
t+M(log n)2t.

�

A.2 Main results

To establish Theorem 2.1, we first give the analogous result for martingales as Lemma A.8. Our
approach is similar to that used in modern versions of Yurinskii’s coupling for independent data, as
in Theorem 1 in Le Cam (1988) and Theorem 10 in Chapter 10 of Pollard (2002). The proof of
Lemma A.8 relies on constructing a “modified” martingale, which is close to the original martingale,
but which has an H0-measurable terminal quadratic variation.

Lemma A.8 (Strong approximation for vector-valued martingales)
Let X1, . . . , Xn be Rd-valued square-integrable random vectors adapted to a countably generated
filtration H0, . . . ,Hn. Suppose that E[Xi | Hi−1] = 0 for all 1 ≤ i ≤ n and define the martingale
S =

∑n
i=1Xi. Let Vi = Var[Xi | Hi−1] and Ω =

∑n
i=1 Vi − Σ where Σ is a positive semi-definite

H0-measurable d× d random matrix. For each η > 0 and p ∈ [1,∞] there is T | H0 ∼ N (0,Σ) with

P
(
‖S − T‖p > 5η

)
≤ inf

t>0

{
2P
(
‖Z‖p > t

)
+ min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}}
+ inf
M�0

{
2γ(M) + δp(M,η) + εp(M,η)

}
,
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where the second infimum is over all positive semi-definite d× d non-random matrices, and

βp,k =
n∑
i=1

E
[
‖Xi‖k2‖Xi‖p + ‖V 1/2

i Zi‖k2‖V 1/2
i Zi‖p

]
, γ(M) = P

(
Ω �M

)
,

δp(M,η) = P
(∥∥((Σ +M)1/2 − Σ1/2

)
Z
∥∥
p
≥ η

)
, π3 =

n+m∑
i=1

∑
|κ|=3

E
[∣∣E [Xκ

i | Hi−1]
∣∣],

εp(M,η) = P
(∥∥(M − Ω)1/2Z

∥∥
p
≥ η, Ω �M

)
,

for k ∈ {2, 3}, with Z,Z1, . . . , Zn i.i.d. standard Gaussian on Rd independent of Hn.

Proof (Lemma A.8)
Part 1: constructing a modified martingale
Take M � 0 a fixed positive semi-definite d× d matrix. We start by constructing a new martingale
based on S whose quadratic variation is Σ +M . Take m ≥ 1 and define

Hk = Σ +M −
k∑
i=1

Vi, τ = sup
{
k ∈ {0, 1, . . . , n} : Hk � 0

}
,

X̃i = XiI{i ≤ τ}+
1√
m
H1/2
τ ZiI{n+ 1 ≤ i ≤ n+m}, S̃ =

n+m∑
i=1

X̃i,

where Zn+1, . . . , Zn+m is an i.i.d. sequence of standard Gaussian vectors in Rd independent of
Hn, noting that H0 = Σ + M � 0 a.s. Define the filtration H̃0, . . . , H̃n+m, where H̃i = Hi for
0 ≤ i ≤ n and is the σ-algebra generated by Hn and Zn+1, . . . , Zi for n+ 1 ≤ i ≤ n+m. Observe
that τ is a stopping time with respect to H̃i because Hi+1 − Hi = −Vi+1 � 0 almost surely,
so {τ ≤ i} = {Hi+1 � 0} for 0 ≤ i < n. This depends only on V1, . . . , Vi+1 and Σ which are
H̃i-measurable. Similarly, {τ = n} = {Hn � 0} ∈ H̃n−1. Let Ṽi = ViI{i ≤ τ} for 1 ≤ i ≤ n and
Ṽi = Hτ/m for n + 1 ≤ i ≤ n + m. Note that X̃i is H̃i-measurable and Ṽi is H̃i−1-measurable.

Further, E
[
X̃i | H̃i−1

]
= 0 and E

[
X̃iX̃

T
i | H̃i−1

]
= Ṽi.

Part 2: bounding the difference between the original and modified martingales
By the triangle inequality,

‖S − S̃‖p ≤
∥∥∥∥∥

n∑
i=τ+1

Xi

∥∥∥∥∥
p

+

∥∥∥∥∥ 1√
m

m∑
i=n+1

H1/2
τ Zi

∥∥∥∥∥
p

.

The first term on the right vanishes on {τ = n} = {Hn � 0} = {Ω �M}. For the second term, note

that 1√
m

∑m
i=n+1H

1/2
τ Zi is distributed as H

1/2
τ Z, where Z is an independent standard Gaussian

variable. Also P
(
‖H1/2

τ Z‖p > η
)
≤ P

(
‖H1/2

n Z‖p > η, Ω �M) + P
(
Ω �M

)
. Therefore

P
(
‖S − S̃‖p > η

)
≤ 2P

(
Ω �M

)
+ P

(
‖(M − Ω)1/2Z‖p > η, Ω �M

)
= 2γ(M) + εp(M,η). (9)

Part 3: strong approximation of the modified martingale

Let Z̃1, . . . , Z̃n+m be i.i.d. N (0, Id) and independent of H̃n+m. Define X̌i = Ṽ
1/2
i Z̃i and Š =∑n+m

i=1 X̌i. Fix a Borel set A ⊆ Rd and σ, η > 0 and let f = fAησ be the function defined in
Lemma A.2. By the Lindeberg method, write the telescoping sum

E
[
f
(
S̃
)
− f

(
Š
)
| H0

]
=

n+m∑
i=1

E
[
f
(
Yi + X̃i

)
− f

(
Yi + X̌i

)
| H0

]
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where Yi =
∑i−1

j=1 X̃i +
∑n+m

j=i+1 X̌i. By Lemma A.2 we have for k ≥ 0∣∣∣∣∣E[f(Yi + X̃i)− f(Yi + X̌i) | H0

]
−

k∑
|κ|=0

1

κ!
E
[
∂κf(Yi)

(
X̃κ
i − X̌κ

i

) ∣∣ H0

] ∣∣∣∣∣
≤ 1

σkη
√
k!
E
[
‖X̃i‖p‖X̃i‖k2 + ‖X̌i‖p‖X̌i‖k2

∣∣ H0

]
.

With k ∈ {2, 3}, we bound each summand. With |κ| = 0 we have X̃κ
i = X̌κ

i , so consider |κ| = 1.
Noting that

∑n+m
i=1 Ṽi = Σ +M , define

Ỹi =
i−1∑
j=1

X̃j + Z̃i

(
n+m∑
j=i+1

Ṽj

)1/2

=
i−1∑
j=1

X̃j + Z̃i

(
Σ +M −

i∑
j=1

Ṽj

)1/2

and let Ȟi be the σ-algebra generated by H̃i−1 and Z̃i. Note that Ỹi is Ȟi-measurable and that Yi
and Ỹi have the same distribution conditional on H̃n+m. So∑

|κ|=1

1

κ!
E
[
∂κf(Yi)

(
X̃κ
i − X̌κ

i

) ∣∣ H0

]
= E

[
∇f(Yi)

T
(
X̃i − Ṽ 1/2

i Z̃i
) ∣∣ H0

]
= E

[
∇f(Ỹi)

TX̃i

∣∣ H0

]
− E

[
∇f(Yi)

TṼ
1/2
i Z̃i

∣∣ H0

]
= E

[
∇f(Ỹi)

TE
[
X̃i | Ȟi

] ∣∣ H0

]
− E

[
Z̃i

]
E
[
∇f(Yi)

TṼ
1/2
i

∣∣ H0

]
= E

[
∇f(Ỹi)

TE
[
X̃i | H̃i−1

] ∣∣ H0

]
− 0 = 0.

Next, if |κ| = 2 then∑
|κ|=2

1

κ!
E
[
∂κf(Yi)

(
X̃κ
i − X̌κ

i

) ∣∣ H0

]
=

1

2
E
[
X̃T
i ∇2f(Yi)X̃i − Z̃T

i Ṽ
1/2
i ∇2f(Yi)Ṽ

1/2
i Z̃i

∣∣ H0

]
=

1

2
E
[
E
[
Tr∇2f(Ỹi)X̃iX̃

T
i

∣∣ Ȟi] ∣∣ H0

]
− 1

2
E
[
Tr Ṽ

1/2
i ∇2f(Yi)Ṽ

1/2
i

∣∣ H0

]
E
[
Z̃iZ̃

T
i

]
=

1

2
E
[
Tr∇2f(Yi)E

[
X̃iX̃

T
i

∣∣ H̃i−1] ∣∣ H0

]
− 1

2
E
[
Tr∇2f(Yi)Ṽi

∣∣ H0

]
= 0.

Finally if |κ| = 3, then since X̌i ∼ N (0, Ṽi) conditional on H̃n+m, we have by symmetry of the
Gaussian distribution and Lemma A.2,∣∣∣∣∣∣

∑
|κ|=3

1

κ!
E
[
∂κf(Yi)

(
X̃κ
i − X̌κ

i

) ∣∣ H0

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|κ|=3

1

κ!

(
E
[
∂κf(Ỹi)E

[
X̃κ
i | Ȟi

] ∣∣ H0

]
− E

[
∂κf(Yi)E

[
X̌κ
i

∣∣ H̃n+m] ∣∣ H0

])∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|κ|=3

1

κ!
E
[
∂κf(Yi)E

[
X̃κ
i | H̃i−1

] ∣∣ H0

]∣∣∣∣∣∣ ≤ 1

σ3

∑
|κ|=3

E
[∣∣∣E [X̃κ

i | H̃i−1
]∣∣∣ ∣∣ H0

]
.
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Combining these and summing over i with k = 2 shows

E
[
f
(
S̃
)
− f

(
Š
) ∣∣ H0

]
≤ 1

σ2η
√

2

n+m∑
i=1

E
[
‖X̃i‖p‖X̃i‖22 + ‖X̌i‖p‖X̌i‖22

∣∣ H0

]
On the other hand, taking k = 3 gives

E
[
f
(
S̃
)
− f

(
Š
) ∣∣ H0

]
≤ 1

σ3η
√

6

n+m∑
i=1

E
[
‖X̃i‖p‖X̃i‖32 + ‖X̌i‖p‖X̌i‖32

∣∣ H0

]
+

1

σ3

n+m∑
i=1

∑
|κ|=3

E
[∣∣∣E [X̃κ

i | H̃i−1
]∣∣∣ ∣∣ H0

]
.

For 1 ≤ i ≤ n we have ‖X̃i‖ ≤ ‖Xi‖ and ‖X̌i‖ ≤ ‖V 1/2
i Z̃i‖. For n + 1 ≤ i ≤ n + m we have

X̃i = H
1/2
τ Zi/

√
m and X̌i = H

1/2
τ Z̃i/

√
m which are equal in distribution given H0. Therefore with

β̃p,k =

n∑
i=1

E
[
‖Xi‖p‖Xi‖k2 + ‖V 1/2

i Zi‖p‖V 1/2
i Zi‖k2

∣∣ H0

]
,

we have, since k ∈ {2, 3},
n+m∑
i=1

E
[
‖X̃i‖p‖X̃i‖k2 + ‖X̌i‖p‖X̌i‖k2

∣∣ H0

]
≤ β̃p,k +

2√
m
E
[
‖H1/2

τ Z‖p‖H1/2
τ Z‖k2

∣∣ H0

]
.

Since Hi is weakly decreasing under the semi-definite partial order, we have Hτ � H0 = Σ + M

implying that |(Hτ )jj | ≤ ‖Σ + M‖max and E
[
|(H1/2

τ Z)j |3 | H0

]
≤
√

8/π ‖Σ + M‖3/2max. Hence as
p ≥ 1 and k ∈ {2, 3},

E
[
‖H1/2

τ Z‖p‖H1/2
τ Z‖k2

∣∣ H0

]
≤ E

[
‖H1/2

τ Z‖k+1
1

∣∣ H0

]
≤ dk+1 max

1≤j≤d
E
[
|(H1/2

τ Z)j |k+1
∣∣ H0

]
≤ 3d4 ‖Σ +M‖(k+1)/2

max ≤ 6d4 ‖Σ‖(k+1)/2
max + 6d4‖M‖.

Assuming some Xi is not identically zero so the result is non-trivial, and supposing that Σ is
bounded a.s. (replacing Σ by Σ · I{‖Σ‖max ≤ C} for an appropriately large C if necessary), take m
large enough that

2√
m
E
[
‖H1/2

τ Z‖p‖H1/2
τ Z‖k2

∣∣ H0

]
≤ 1

4
βp,k. (10)

Further, if |κ| = 3 then
∣∣E[X̃κ

i | H̃i−1
]∣∣ ≤ ∣∣E [Xκ

i | Hi−1]
∣∣ for 1 ≤ i ≤ n while by symmetry of the

Gaussian distribution E
[
X̃κ
i | H̃i−1

]
= 0 for n+ 1 ≤ i ≤ n+m. Hence with

π̃3 =
n+m∑
i=1

∑
|κ|=3

E
[∣∣E [Xκ

i | Hi−1]
∣∣ | H0

]
,
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we have

E
[
f
(
S̃
)
− f

(
Š
) ∣∣ H0

]
≤ min

{
3β̃p,2
4σ2η

+
βp,2
4σ2η

,
3β̃p,3
4σ3η

+
βp,3
4σ3η

+
π̃3
σ3

}
.

Along with Lemma A.2, and with σ = η/t and ε = P(‖Z‖p > t), we conclude that

P(S̃ ∈ A | H0) = E
[
I{S̃ ∈ A} − f(S̃) | H0

]
+ E

[
f(S̃)− f

(
Š
)
| H0

]
+ E

[
f
(
Š
)
| H0

]
≤ εP(S̃ ∈ A | H0) + min

{
3β̃p,2
4σ2η

+
βp,2
4σ2η

,
3β̃p,3
4σ3η

+
βp,3
4σ3η

+
π̃3
σ3

}
+ ε+ (1− ε)P

(
Š ∈ A3η

p | H0

)
≤ P

(
Š ∈ A3η

p | H0

)
+ 2P(‖Z‖p > t) + min

{
3β̃p,2t

2

4η3
+
βp,2t

2

4η3
,
3β̃p,3t

3

4η4
+
βp,3t

3

4η4
+
π̃3t

3

η3

}
.

Taking a supremum and an outer expectation yields with βp,k = E
[
β̃p,k

]
and π3 = E[π̃3],

E∗
[

sup
A∈B(Rd)

{
P(S̃ ∈ A | H0)− P

(
Š ∈ A3η

p | H0

)}]

≤ 2P(‖Z‖p > t) + min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}
.

Finally, since Š =
∑n

i=1 Ṽ
1/2
i Z̃i ∼ N (0,Σ +M) conditional on H0, the conditional Strassen theorem

in Lemma A.1 ensures the existence of S̃ and T̃ | H0 ∼ N (0,Σ +M) such that

P
(
‖S̃ − T̃‖p > 3η

)
≤ inf

t>0

{
2P(‖Z‖p > t) + min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}}
, (11)

since the infimum is attained by continuity of ‖Z‖p.
Part 4: conclusion

We show how to write T̃ = (Σ+M)1/2W where W ∼ N (0, Id) and use this representation to construct
T | H0 ∼ N (0,Σ). By the spectral theorem, let Σ+M = UΛUT where U is a d×d orthogonal random
matrix and Λ is a diagonal d× d random matrix with diagonal entries satisfying λ1 ≥ · · · ≥ λr > 0
and λr+1 = · · · = λd = 0 where r = rank(Σ +M). Let Λ+ be the Moore–Penrose pseudo-inverse of
Λ (obtained by inverting its non-zero elements) and define W = U(Λ+)1/2UTT̃ + UW̃ , where the
first r elements of W̃ are zero and the last d − r elements are i.i.d. N (0, 1) independent from T̃ .
Then, it is easy to check that W ∼ N (0, Id) and that T̃ = (Σ +M)1/2W . Now define T = Σ1/2W so

P
(
‖T − T̃‖p > η

)
= P

(∥∥((Σ +M)1/2 − Σ1/2
)
W
∥∥
p
> η

)
= δp(M,η). (12)

Finally (9), (11), (12), the triangle inequality and a union bound conclude the proof since by taking
an infimum over M � 0, and by possibly reducing the constant of 1/4 in (10) to account for this
infimum being potentially unattainable,

P
(
‖S − T‖p > 5η

)
≤ P

(
‖S̃ − T̃‖p > 3η

)
+ P

(
‖S − S̃‖p > η

)
+ P

(
‖T − T̃‖p > η

)
≤ inf

t>0

{
2P
(
‖Z‖p > t

)
+ min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}}
+ inf
M�0

{
2γ(M) + δp(M,η) + εp(M,η)

}
.

�
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Applying Lemma A.8 and the martingale approximation immediately yields Theorem 2.1.

Proof (Theorem 2.1)
Apply Lemma A.8 to the martingale

∑n
i=1 X̃i, noting that S −∑n

i=1 X̃i = U . �

Providing bounds for quantities in Theorem 2.1 gives a user-friendly version as Proposition 2.1.

Proof (Proposition 2.1)
We set M = ν2Id and bound each term appearing on the right-hand side of (1).

Part 1: bounding P(‖Z‖p > t)
By Markov’s inequality and Lemma A.4, we have P(‖Z‖p > t) ≤ E[‖Z‖p]/t ≤ φp(d)/t.

Part 2: bounding γ(M)
With M = ν2Id and by Markov’s inequality, γ(M) = P

(
Ω �M

)
= P

(
‖Ω‖2 > ν2

)
≤ ν−2E[‖Ω‖2].

Part 3: bounding δ(M,η)
By Markov’s inequality and Lemma A.4, using maxj |Mjj | ≤ ‖M‖2 for M � 0,

δp(M,η) = P
(∥∥((Σ +M)1/2 − Σ1/2

)
Z
∥∥
p
≥ η

)
≤ φp(d)

η
E
[∥∥(Σ +M)1/2 − Σ1/2

∥∥
2

]
.

For semi-definite matrices the eigenvalue operator commutes with smooth matrix functions so

‖(Σ +M)1/2 − Σ1/2‖2 = max
1≤j≤d

∣∣∣∣√λj(Σ) + ν2 −
√
λj(Σ)

∣∣∣∣ ≤ ν
and hence δp(M,η) ≤ φp(d)ν/η.

Part 4: bounding ε(M,η)

Note that (M − Ω)1/2Z is a centered Gaussian conditional on Hn, on the event {Ω �M}. We thus
have by Markov’s inequality, Lemma A.4 and Jensen’s inequality that

εp(M,η) = P
(∥∥(M − Ω)1/2Z

∥∥
p
≥ η, Ω �M

)
≤ 1

η
E
[
I{Ω �M}E

[∥∥(M − Ω)1/2Z
∥∥
p
| Hn

]]
≤ φp(d)

η
E
[
I{Ω �M} max

1≤j≤d

√
(M − Ω)jj

]
≤ φp(d)

η
E
[√
‖M − Ω‖2

]
≤ φp(d)

η
E
[√
‖Ω‖2 + ν

]
≤ φp(d)

η

(√
E[‖Ω‖2] + ν

)
.

Thus by Theorem 2.1 and the previous parts,

P
(
‖S − T‖p > 6η

)
≤ inf

t>0

{
2P
(
‖Z‖p > t

)
+ min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}}
+ inf
M�0

{
2γ(M) + δp(M,η) + εp(M,η)

}
+ P

(
‖U‖p > η

)
≤ inf

t>0

{
2φp(d)

t
+ min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}}
+ inf
ν>0

{
2E [‖Ω‖2]

ν2
+

2φp(d)ν

η

}
+
φp(d)

√
E [‖Ω‖2]
η

+ P
(
‖U‖p > η

)
.
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In general, set t = 21/3φp(d)1/3β
−1/3
p,2 η and ν = E[‖Ω‖2]1/3φp(d)−1/3η1/3, replacing η with η/6 to see

P
(
‖S − T‖p > 6η

)
≤ 24

(
βp,2φp(d)2

η3

)1/3

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

+ P
(
‖U‖p >

η

6

)
.

Whenever π3 = 0 we can set t = 21/4φp(d)1/4β
−1/4
p,3 η, and with ν as above we obtain

P
(
‖S − T‖p > η

)
≤ 24

(
βp,3φp(d)3

η4

)1/4

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

+ P
(
‖U‖p >

η

6

)
.

�

After establishing Proposition 2.1, Corollaries 2.1, 2.2 and 2.3 follow easily, as in the main text.

Proof (Corollary 2.1)
By Proposition 2.1 with P(‖U‖p > η

6 ) ≤ 6
η

∑n
i=1 ci(ζi + ζn−i+1). �

Proof (Corollary 2.2)
By Proposition 2.1 with U = 0 a.s. �

Proof (Corollary 2.3)
By Corollary 2.2 with Ω = 0 a.s. �

We conclude this section with a discussion expanding on the comments made in Remark 2.1 on
deriving bounds in probability from Yurinskii’s coupling. Consider for illustration the independent
data result (6) given in Corollary 2.3: for each η > 0, there exists Tn | H0 ∼ N (0,Σ) satisfying

P
(
‖Sn − Tn‖p > η

)
≤ 24

(
βp,2φp(d)2

η3

)1/3

,

where here we make explicit the dependence on the sample size n for clarity. The naive approach
to converting this into a probability bound for ‖Sn − Tn‖p is to select η to ensure the right-hand
side is of order 1, arguing that the probability can then be made arbitrarily small by taking, in

this case, η to be a large enough multiple of β
1/3
p,2 φp(d)2/3. However, the somewhat subtle mistake

is in neglecting the fact that the realization of the coupling variable Tn will in general depend on
η, rendering the resulting bound invalid. As an explicit example of this phenomenon, take η > 1
and suppose ‖Sn − Tn(η)‖ = η with probability 1− 1/η and ‖Sn − Tn(η)‖ = n with probability 1/η.
Then P

(
‖Sn − Tn(η)‖ > η

)
= 1/η but it is not true for any η that ‖Sn − Tn(η)‖ .P 1.

We propose in Remark 2.1 the following fix. Instead of selecting η to ensure the right-hand side
is of order 1, we instead choose it so the bound converges (slowly) to zero. This is easily achieved
by taking the naive and incorrect bound and multiplying by some divergent sequence Rn. The

resulting inequality reads, in the case of (6) with η = β
1/3
p,2 φp(d)2/3Rn,

P
(
‖Sn − Tn‖p > β

1/3
p,2 φp(d)2/3Rn

)
≤ 24

Rn
→ 0.

We thus recover, for the price of a rate which is slower by an arbitrarily small amount, a valid upper
bound in probability, as we can immediately conclude that

‖Sn − Tn‖p .P β1/3p,2 φp(d)2/3Rn.
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A.3 Strong approximation for martingale empirical processes

We begin by presenting some calculations omitted from the main text relating to the motivating
example of kernel density estimation with i.i.d. data. First, the bias of this estimator is bounded as

∣∣E[ĝ(x)
]
− g(x)

∣∣ =

∣∣∣∣∣
∫ 1−x

h

−x
h

K(ξ) dξ − 1

∣∣∣∣∣ ≤ 2

∫ ∞
a
h

1√
2π
e−

ξ2

2 dξ ≤ h

a

√
2

π
e−

a2

2h2 .

Next, we do the calculations necessary to apply Corollary 2.3. Define kij = 1
nhK

(
Xi−xj
h

)
and

ki = (kij : 1 ≤ j ≤ N). Then ‖ki‖∞ ≤ 1
nh
√
2π

a.s. and E[‖ki‖22] ≤ N
n2h

∫∞
−∞K(ξ)2 dξ ≤ N

2n2h
√
π

. Let

V = Var[ki] ∈ RN×N , so assuming that 1/h ≥ log 2N , by Lemma A.3 we bound

β∞,2 = nE
[
‖ki‖22‖ki‖∞

]
+ nE

[
‖V 1/2Z‖22‖V 1/2Z‖∞

]
≤ N√

8n2h2π
+

4N
√

log 2N√
8n2h3/2π3/4

≤ N

n2h2
.

Finally, we verify the stochastic continuity bounds. By the Lipschitz property of K, it is easy

to show that for x, x′ ∈ X we have
∣∣∣ 1hK (Xi−xh

)
− 1

hK
(
Xi−x′
h

)∣∣∣ . |x−x′|
h2

almost surely, and also

that E
[ ∣∣∣ 1hK (Xi−xh

)
− 1

hK
(
Xi−x′
h

)∣∣∣2 ] . |x−x′|2h3
. By chaining with the Bernstein–Orlicz norm and

polynomial covering numbers,

sup
|x−x′|≤δ

∥∥S(x)− S(x′)
∥∥
∞ .P δ

√
log n

nh3

whenever log(N/h) . log n and nh & log n. By a Gaussian process maximal inequality (van der
Vaart and Wellner, 1996, Corollary 2.2.8) the same bound holds for T (x) with

sup
|x−x′|≤δ

∥∥T (x)− T (x′)
∥∥
∞ .P δ

√
log n

nh3
.

Proof (Lemma 3.1)
For x, x′ ∈ [a, 1− a], the scaled covariance function of this nonparametric estimator is

nhCov
[
ĝ(x), ĝ(x′)

]
=

1

h
E
[
K

(
Xi − x
h

)
K

(
Xi − x′

h

)]
− 1

h
E
[
K

(
Xi − x
h

)]
E
[
K

(
Xi − x′

h

)]
=

1

2π

∫ 1−x
h

−x
h

exp

(
− t

2

2

)
exp

(
−1

2

(
t+

x− x′
h

)2
)

dt− hI(x)I(x′)

where I(x) = 1√
2π

∫ (1−x)/h
−x/h e−t

2/2 dt. Completing the square and a substitution gives

nhCov
[
ĝ(x), ĝ(x′)

]
=

1

2π
exp

(
−1

4

(
x− x′
h

)2
)∫ 2−x−x′

2h

−x−x′
2h

exp
(
−t2
)

dt− hI(x)I(x′).
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Now we show that since x, x′ are not too close to the boundary of [0, 1], the limits in the above
integral can be replaced by ±∞. Note that −x−x

′

2h ≤ −ah and 2−x−x′
2h ≥ a

h so

∫ ∞
−∞

exp
(
−t2
)

dt−
∫ 2−x−x′

2h

−x−x′
2h

exp
(
−t2
)

dt ≤ 2

∫ ∞
a/h

exp
(
−t2
)

dt ≤ h

a
exp

(
−a

2

h2

)
.

Therefore since
∫∞
−∞ e

−t2 dt =
√
π,∣∣∣∣∣nhCov

[
ĝ(x), ĝ(x′)

]
− 1

2
√
π

exp

(
−1

4

(
x− x′
h

)2
)

+ hI(x)I(x′)

∣∣∣∣∣ ≤ h

2πa
exp

(
−a

2

h2

)
.

Define the N × N matrix Σ̃ij = 1
2
√
π

exp

(
−1

4

(
xi−xj
h

)2)
. By Baxter (1994, Proposition 2.4,

Proposition 2.5 and Equation 2.10), with Bk =
{
b ∈ RZ :

∑
i∈Z I{bi 6= 0} ≤ k

}
,

inf
k∈N

inf
b∈Rk

∑k
i=1

∑k
j=1 bibj e

−λ(i−j)2∑k
i=1 b

2
i

=

√
π

λ

∞∑
i=−∞

exp

(
−(πe+ 2πi)2

4λ

)
.

We use Riemann sums, noting that πe+ 2πx = 0 at x = −e/2 ≈ −1.359. Consider the substitutions
Z ∩ (−∞,−3] 7→ (−∞,−2], {−2,−1} 7→ {−2,−1} and Z ∩ [0,∞) 7→ [−1,∞).

∑
i∈Z

e−(πe+2πi)2/4λ ≤
∫ −2
−∞

e−(πe+2πx)2/4λ dx+ e−(πe−4π)
2/4λ

+ e−(πe−2π)
2/4λ +

∫ ∞
−1

e−(πe+2πx)2/4λ dx.

Now use the substitution t = πe+2πx
2
√
λ

and suppose λ < 1, yielding

∑
i∈Z

e−(πe+2πi)2/4λ ≤
√
λ

π

∫ πe−4π

2
√
λ

−∞
e−t

2
dt+ e−(πe−4π)

2/4λ

+ e−(πe−2π)
2/4λ +

√
λ

π

∫ ∞
πe−2π

2
√
λ

e−t
2

dt

≤
(

1 +
1

π

λ

4π − πe

)
e−(πe−4π)

2/4λ +

(
1 +

1

π

λ

πe− 2π

)
e−(πe−2π)

2/4λ

≤ 13

12
e−(πe−4π)

2/4λ +
8

7
e−(πe−2π)

2/4λ ≤ 9

4
exp

(
− 5

4λ

)
.

Therefore

inf
k∈N

inf
b∈Bk

∑
i∈Z
∑

j∈Z bibj e
−λ(i−j)2∑

i∈Z b
2
i

<
4√
λ

exp

(
− 5

4λ

)
< 4e−1/λ.

From this and since Σ̃ij = 1
2
√
π
e−λ(i−j)

2
with λ = 1

4(N−1)2h2 ≤ δ2

h2
, for each h and some δ ≤ h,

λmin(Σ̃) ≤ 2e−h
2/δ2 .
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Recall that ∣∣∣Σij − Σ̃ij + hI(xi)I(xj)
∣∣∣ ≤ h

2πa
exp

(
−a

2

h2

)
.

Now for any positive semi-definite N ×N matrices A and B and vector v we have λmin(A− vvT) ≤
λmin(A) and λmin(B) ≤ λmin(A) + ‖B −A‖2 ≤ λmin(A) +N‖B −A‖max. Hence with Ii = I(xi),

λmin(Σ) ≤ λmin(Σ̃− hIIT) +
Nh

2πa
exp

(
−a

2

h2

)
≤ 2e−h

2/δ2 +
h

πaδ
e−a

2/h2 .

�

Proof (Proposition 3.1)
Let Fδ be a δ-cover of (F , d). Using a union bound, we can write

P

(
sup
f∈F

∣∣S(f)− T (f)
∣∣ ≥ 2t+ η

)
≤ P

(
sup
f∈Fδ

∣∣S(f)− T (f)
∣∣ ≥ η)

+ P

(
sup

d(f,f ′)≤δ

∣∣S(f)− S(f ′)
∣∣ ≥ t)+ P

(
sup

d(f,f ′)≤δ

∣∣T (f)− T (f ′)
∣∣ ≥ t) .

Part 1: bounding the difference on Fδ
We apply Corollary 2.2 with p =∞ to the martingale difference sequence Fδ(Xi) =

(
f(Xi) : f ∈ Fδ

)
which takes values in R|Fδ|. Square integrability can be assumed otherwise βδ = ∞. Note∑n

i=1Fδ(Xi) = S(Fδ) and φ∞(Fδ) ≤
√

2 log 2|Fδ|. Therefore there exists a conditionally Gaussian
vector T (Fδ) with the same covariance structure as S(Fδ) conditional on H0 satisfying

P

(
sup
f∈Fδ

∣∣S(f)− T (f)
∣∣ ≥ η) ≤ 24β

1
3
δ (2 log 2|Fδ|)

1
3

η
+ 17

(√
2 log 2|Fδ|

√
E [‖Ωδ‖2]

η

) 2
3

.

Part 2: bounding the fluctuations in S(f)
Since

∥∥S(f)− S(f ′)
∥∥
ψ
≤ Ld(f, f ′), by Theorem 2.2.4 in van der Vaart and Wellner (1996)∥∥∥∥∥ sup

d(f,f ′)≤δ

∣∣S(f)− S(f ′)
∣∣∥∥∥∥∥
ψ

≤ CψL
(∫ δ

0
ψ−1(Nε) dε+ δψ−1(N2

δ )

)
= CψLJψ(δ).

Then, by Markov’s inequality and the definition of the Orlicz norm,

P

(
sup

d(f,f ′)≤δ

∣∣S(f)− S(f ′)
∣∣ ≥ t) ≤ ψ( t

CψLJψ(δ)

)−1
.

Part 3: bounding the fluctuations in T (f)
By the Vorob’ev–Berkes–Philipp theorem (Dudley, 1999), T (Fδ) extends to a conditionally Gaussian
process T (f). Firstly since

∣∣∣∣∣∣T (f) − T (f ′)
∣∣∣∣∣∣
2
≤ Ld(f, f ′) conditionally on H0, and T (f) is a

conditional Gaussian process, we have
∥∥T (f)− T (f ′)

∥∥
ψ2
≤ 2Ld(f, f ′) conditional on H0 by van der

Vaart and Wellner (1996, Chapter 2.2, Complement 1), where ψ2(x) = exp(x2)− 1. Thus again by
Theorem 2.2.4 in van der Vaart and Wellner (1996), again conditioning on H0,∥∥∥∥∥ sup

d(f,f ′)≤δ

∣∣T (f)− T (f ′)
∣∣∥∥∥∥∥
ψ2

≤ C1L

∫ δ

0

√
logNε dε = C1LJ2(δ)
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for some universal constant C1 > 0, where we used ψ−12 (x) =
√

log(1 + x) and monotonicity of
covering numbers. Then by Markov’s inequality and the definition of the Orlicz norm,

P

(
sup

d(f,f ′)≤δ

∣∣T (f)− T (f ′)
∣∣ ≥ t) ≤ (exp

(
t2

C2
1L

2J2(δ)2

)
− 1

)−1
∨ 1

≤ 2 exp

( −t2
C2
1L

2J2(δ)2

)
.

Part 4: conclusion
The result follows by scaling t and η and enlarging constants if necessary. �

A.4 Applications to nonparametric regression

Proof (Proposition 4.1)
We proceed according to the decomposition given in Section 4.1. By stationarity and Lemma SA-2.1
in Cattaneo et al. (2020), we have supw ‖p(w)‖1 . 1 and also ‖H‖1 . n/k and ‖H−1‖1 . k/n.

Part 1: bounding β∞,2 and β∞,3
Set Xi = p(Wi)εi so S =

∑n
i=1Xi and set σ2i = σ2(Wi) and Vi = Var[Xi | Hi−1] = σ2i p(Wi)p(Wi)

T.
Recall from Corollary 2.2 that for r ∈ {2, 3},

β∞,r =
n∑
i=1

E
[
‖Xi‖r2‖Xi‖∞ + ‖V 1/2

i Zi‖r2‖V 1/2
i Zi‖∞

]
with Zi ∼ N (0, 1) i.i.d. and independent of Vi. For the first term, we use supw ‖p(w)‖2 . 1 and
bounded third moments of εi:

E [‖Xi‖r2‖Xi‖∞] ≤ E
[
|εi|3‖p(Wi)‖r+1

2

]
. 1.

For the second term, apply Lemma A.3 conditionally on Hn with supw ‖p(w)‖2 . 1 to see

E
[
‖V 1/2

i Zi‖r2‖V 1/2
i Zi‖∞

]
.
√

log 2k E

 max
1≤j≤k

(Vi)
1/2
jj

( k∑
j=1

(Vi)jj

)r/2
.
√

log 2k E

σr+1
i max

1≤j≤k
p(Wi)j

( k∑
j=1

p(Wi)
2
j

)r/2
.
√

log 2k E
[
σr+1
i

]
.
√

log 2k.

Putting these together yields β∞,2 . n
√

log 2k and β∞,3 . n
√

log 2k.

Part 2: bounding Ω
Set Ω =

∑n
i=1

(
Vi − E[Vi]

)
as in Lemma A.8 so

Ω =
n∑
i=1

(
σ2i p(Wi)p(Wi)

T − E
[
σ2i p(Wi)p(Wi)

T
] )
.

Observe that Ωjl is the sum of a zero-mean strictly stationary α-mixing sequence and so E[Ω2
jl] . n

by Lemma A.6(i). Since the basis functions satisfy Assumption 3 in Cattaneo et al. (2020), Ω has a
bounded number of non-zero entries in each row, and so by Jensen’s inequality

E [‖Ω‖2] ≤ E [‖Ω‖F] ≤

 k∑
j=1

k∑
l=1

E
[
Ω2
jl

]1/2

.
√
nk.
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Part 3: strong approximation
By Corollary 2.2 and the previous parts, with any sequence Rn →∞,

‖S − T‖∞ .P β1/3∞,2(log 2k)1/3Rn +
√

log 2k
√
E[‖Ω‖2]Rn

.P n
1/3
√

log 2kRn + (nk)1/4
√

log 2kRn.

If further E
[
ε3i | Hi−1

]
= 0 then the third-order version of Corollary 2.2 applies since

π3 =

n∑
i=1

∑
|κ|=3

E
[∣∣E[Xκ

i | Hi−1]
∣∣] =

n∑
i=1

∑
|κ|=3

E
[∣∣p(Wi)

κ E[ε3i | Hi−1]
∣∣] = 0,

giving

‖S − T‖∞ .P β1/4∞,3(log 2k)3/8Rn +
√

log 2k
√
E[‖Ω‖2]Rn .P (nk)1/4

√
log 2kRn.

By Hölder’s inequality and with ‖H−1‖1 . k/n we have

sup
w∈W

∣∣∣p(w)TH−1S − p(w)TH−1T
∣∣∣ ≤ sup

w∈W
‖p(w)‖1‖H−1‖1‖S − T‖∞ . n−1k‖S − T‖∞.

Part 4: convergence of Ĥ

We have Ĥ −H =
∑n

i=1

(
p(Wi)p(Wi)

T − E
[
p(Wi)p(Wi)

T
] )

. Observe that (Ĥ −H)jl is the sum

of a zero-mean strictly stationary α-mixing sequence and so E[(Ĥ −H)2jl] . n by Lemma A.6(i).

Since the basis functions satisfy Assumption 3 in Cattaneo et al. (2020), Ĥ −H has a bounded
number of non-zero entries in each row and so by Jensen’s inequality

E
[
‖Ĥ −H‖1

]
= E

max
1≤i≤k

k∑
j=1

∣∣(Ĥ −H)ij
∣∣ ≤ E

 ∑
1≤i≤k

(
k∑
j=1

|(Ĥ −H)ij |
)2
 1

2

.
√
nk.

Part 5: bounding the matrix term

Note ‖Ĥ−1‖1 ≤ ‖H−1‖1 + ‖Ĥ−1‖1‖Ĥ −H‖1‖H−1‖1 so by the previous part, we deduce

‖Ĥ−1‖1 ≤
‖H−1‖1

1− ‖Ĥ −H‖1‖H−1‖1
.P

k/n

1−
√
nk k/n

.P
k

n

as k3/n→ 0. Also, note that by the martingale structure, since p(Wi) is bounded and supported on
a region with volume at most of the order 1/k, and as Wi has a Lebesgue density,

Var[Tj ] = Var[Sj ] = Var

[
n∑
i=1

εip(Wi)j

]
=

n∑
i=1

E
[
σ2i p(Wi)

2
j

]
.
n

k
.

So by the Gaussian maximal inequality in Lemma A.4, ‖T‖∞ .P
√

n log 2k
k . Since k3/n→ 0,

sup
w∈W

∣∣∣p(w)T(Ĥ−1 −H−1)S
∣∣∣ ≤ sup

w∈W
‖p(w)T‖1‖Ĥ−1‖1‖Ĥ −H‖1‖H−1‖1‖S − T‖∞

+ sup
w∈W

‖p(w)T‖1‖Ĥ−1‖1‖Ĥ −H‖1‖H−1‖1‖T‖∞

.P
k

n

√
nk
k

n

(
n1/3

√
log 2k + (nk)1/4

√
log 2k

)
+
k

n

√
nk
k

n

√
n log 2k

k

.P
k2

n

√
log 2k.
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Part 6: conclusion of the main result

By the previous parts, with G(w) = p(w)TH−1T ,

sup
w∈W

∣∣∣µ̂(w)− µ(w)− p(w)TH−1T
∣∣∣

= sup
w∈W

∣∣∣p(w)TH−1(S − T ) + p(w)T(Ĥ−1 −H−1)S + Bias(w)
∣∣∣

.P
k

n
‖S − T‖∞ +

k2

n

√
log 2k + sup

w∈W
|Bias(w)|

.P
k

n

(
n1/3

√
log 2k + (nk)1/4

√
log 2k

)
Rn +

k2

n

√
log 2k + sup

w∈W
|Bias(w)|

.P n
−2/3k

√
log 2kRn + n−3/4k5/4

√
log 2kRn +

k2

n

√
log 2k + sup

w∈W
|Bias(w)|

.P n
−2/3k

√
log 2kRn + sup

w∈W
|Bias(w)|

since k3/n→ 0. If further E
[
ε3i | Hi−1

]
= 0 then

sup
w∈W

∣∣∣µ̂(w)− µ(w)− p(w)TH−1T
∣∣∣ .P k

n
‖S − T‖∞ +

k2

n

√
log 2k + sup

w∈W
|Bias(w)|

.P n
−3/4k5/4

√
log 2kRn + sup

w∈W
|Bias(w)|.

Finally, we verify the variance bounds for the Gaussian process. Since σ2(w) is bounded above,

Var[G(w)] = p(w)TH−1 Var

[
n∑
i=1

p(Wi)εi

]
H−1p(w)

= p(w)TH−1E

[
n∑
i=1

p(Wi)p(Wi)
Tσ2(Wi)

]
H−1p(w)

. ‖p(w)‖22‖H−1‖22‖H‖2 . k/n.

Similarly, since σ2(w) is bounded away from zero,

Var[G(w)] & ‖p(w)‖22‖H−1‖22‖H−1‖−12 & k/n.

Part 7: bounding the bias
We delegate the task of carefully deriving bounds on the bias to Cattaneo et al. (2020), who provide
a high-level assumption on the approximation error in Assumption 4 and then use it to derive bias
bounds in Section 3 of the form supw∈W |Bias(w)| .P k−γ . This assumption is then verified for
B-splines, wavelets and piecewise polynomials in their supplemental appendix.

�
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Proof (Proposition 4.2)
Part 1: infeasible supremum approximation
Provided that the bias is negligible, for all s > 0 we have

sup
t∈R

∣∣∣∣∣P
(

sup
w∈W

∣∣∣∣∣ µ̂(w)− µ(w)√
ρ(w,w)

∣∣∣∣∣ ≤ t
)
− P

(
sup
w∈W

∣∣∣∣∣ G(w)√
ρ(w,w)

∣∣∣∣∣ ≤ t
)∣∣∣∣∣

≤ sup
t∈R

P

(
t ≤ sup

w∈W

∣∣∣∣∣ G(w)√
ρ(w,w)

∣∣∣∣∣ ≤ t+ s

)
+ P

(
sup
w∈W

∣∣∣∣∣ µ̂(w)− µ(w)−G(w)√
ρ(w,w)

∣∣∣∣∣ > s

)
.

By the Gaussian anti-concentration result given as Corollary 2.1 in Chernozhukov et al. (2014a)
applied to a discretization of W, the first term is at most s

√
log n up to a constant factor, and

the second term converges to zero whenever 1
s

(
k3(log k)3

n

)1/6
→ 0. Thus a suitable value of s exists

whenever k3(logn)6

n → 0.

Part 2: feasible supremum approximation
By Chernozhukov et al. (2013, Lemma 3.1) and discretization, with ρ(w,w′) = E[ρ̂(w,w′)],

sup
t∈R

∣∣∣∣∣P
(

sup
w∈W

∣∣∣∣∣ Ĝ(w)√
ρ̂(w,w)

∣∣∣∣∣ ≤ t
∣∣∣∣W,Y

)
− P

(∣∣∣∣∣ G(w)√
ρ(w,w)

∣∣∣∣∣ ≤ t
)∣∣∣∣∣

.P sup
w,w′∈W

∣∣∣∣∣ ρ̂(w,w′)√
ρ̂(w,w)ρ̂(w′, w′)

− ρ(w,w′)√
ρ(w,w)ρ(w′, w′)

∣∣∣∣∣
1/3

(log n)2/3

.P
(n
k

)1/3
sup

w,w′∈W
|ρ̂(w,w′)− ρ(w,w′)|1/3(log n)2/3

.P

(
n(log n)2

k

)1/3

sup
w,w′∈W

∣∣∣p(w)TĤ−1
(

V̂ar[S]−Var[S]
)
Ĥ−1p(w′)

∣∣∣1/3
.P

(
k(log n)2

n

)1/3 ∥∥∥V̂ar[S]−Var[S]
∥∥∥1/3
2

,

and goes to zero in probability whenever k(logn)2

n

∥∥V̂ar[S]−Var[S]
∥∥
2
→P 0. For the plug-in estimator,

∥∥∥V̂ar[S]−Var[S]
∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

p(Wi)p(W
T
i )σ̂2(Wi)− nE

[
p(Wi)p(W

T
i )σ2(Wi)

]∥∥∥∥∥
2

.P sup
w∈W

|σ̂2(w)− σ2(w)|
∥∥Ĥ∥∥

2

+

∥∥∥∥∥
n∑
i=1

p(Wi)p(W
T
i )σ2(Wi)− nE

[
p(Wi)p(W

T
i )σ2(Wi)

]∥∥∥∥∥
2

.P
n

k
sup
w∈W

|σ̂2(w)− σ2(w)|+
√
nk,

where the second term is bounded by the same argument used to bound ‖Ĥ − H‖1. Thus, the

feasible approximation is valid whenever (log n)2 supw∈W |σ̂2(w)− σ2(w)| →P 0 and k3(logn)4

n → 0.
The validity of the uniform confidence band follows immediately. �
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Proof (Proposition 4.3)
We apply Proposition 3.1 with the metric d(fw, fw′) = ‖w − w′‖2 and the function class

F =
{

(Wi, εi) 7→ eT1H(w)−1Kh(Wi − w)ph(Wi − w)εi : w ∈ W
}
,

with ψ chosen as a suitable Bernstein Orlicz function.

Part 1: bounding H(w)−1

Recall that H(w) =
∑n

i=1 E[Kh(Wi−w)ph(Wi−w)ph(Wi−w)T] and let a(w) ∈ Rk with ‖a(w)‖2 = 1.
Since the density of Wi is bounded away from zero on W,

a(w)TH(w)a(w) = nE
[(
a(w)Tph(Wi − w)

)2
Kh(Wi − w)

]
& n

∫
W

(
a(w)Tph(u− w)

)2
Kh(u− w) du

& n
∫
W−w
h

(
a(w)Tp(u)

)2
K(u) du.

This is continuous in a(w) on the compact set ‖a(w)‖2 = 1 and p(u) forms a polynomial basis so
a(w)Tp(u) has finitely many zeroes. Since K(u) is compactly supported and h → 0, the above
integral is eventually strictly positive for all x ∈ W, and hence is bounded below uniformly in
w ∈ W by a positive constant. Therefore supw∈W ‖H(w)−1‖2 . 1/n.

Part 2: bounding βδ
Let Fδ be a δ-cover of (F , d) with cardinality |Fδ| � δ−m and let Fδ(Wi, εi) =

(
f(Wi, εi) : f ∈ Fδ

)
.

Define the truncated errors ε̃i = εiI{−a log n ≤ εi ≤ b log n} and note that E
[
e|εi|/Cε

]
<∞ implies

that P(∃i : ε̃i 6= εi) . n1−(a∨b)/Cε . Hence, by choosing a and b large enough, with high probability,
we can replace all εi by ε̃i. Further, it is always possible to increase either a or b along with some
randomization to ensure that E[ε̃i] = 0. Since K is bounded and compactly supported, Wi has a
bounded density and |ε̃i| . log n,

∣∣∣∣∣∣f(Wi, ε̃i)
∣∣∣∣∣∣
2

= E
[∣∣∣eT1H(w)−1Kh(Wi − w)ph(Wi − w)ε̃i

∣∣∣2]1/2
≤ E

[
‖H(w)−1‖22Kh(Wi − w)2‖ph(Wi − w)‖22σ2(Wi)

]1/2
. n−1E

[
Kh(Wi − w)2

]1/2
. n−1h−m/2,∣∣∣∣∣∣f(Wi, ε̃i)

∣∣∣∣∣∣
∞ ≤

∣∣∣∣∣∣‖H(w)−1‖2Kh(Wi − w)‖ph(Wi − w)‖2|ε̃i|
∣∣∣∣∣∣
∞

. n−1
∣∣∣∣∣∣Kh(Wi − w)

∣∣∣∣∣∣
∞ log n . n−1h−m log n.

Therefore

E
[
‖Fδ(Wi, ε̃i)‖22‖Fδ(Wi, ε̃i)‖∞

]
≤
∑
f∈Fδ

∣∣∣∣∣∣f(Wi, ε̃i)
∣∣∣∣∣∣2
2

max
f∈Fδ

∣∣∣∣∣∣f(Wi, ε̃i)
∣∣∣∣∣∣
∞

. n−3δ−mh−2m log n.

Let Vi(Fδ) = E
[
Fδ(Wi, ε̃i)Fδ(Wi, ε̃i)

T | Hi−1
]

and Zi ∼ N (0, Id) be i.i.d. and independent of Hn.
Note that Vi(f, f) = E[f(Wi, ε̃i)

2 |Wi] . n−2h−2m and E[Vi(f, f)] = E[f(Wi, ε̃i)
2] . n−2h−m. Thus
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by Lemma A.3,

E
[∥∥Vi(Fδ)1/2Zi∥∥22∥∥Vi(Fδ)1/2Zi∥∥∞] = E

[
E
[∥∥Vi(Fδ)1/2Zi∥∥22∥∥Vi(Fδ)1/2Zi∥∥∞ | Hn]]

≤ 4
√

log 2|Fδ|E
[

max
f∈Fδ

√
Vi(f, f)

∑
f∈Fδ

Vi(f, f)

]
. n−3h−2mδ−m

√
log(1/δ).

Thus since log(1/δ) � log(1/h) � log n,

βδ =

n∑
i=1

E
[
‖Fδ(Wi, ε̃i)‖22‖Fδ(Wi, ε̃i)‖∞ +

∥∥Vi(Fδ)1/2Zi∥∥22∥∥Vi(Fδ)1/2Zi∥∥∞]
.

log n

n2h2mδm
.

Part 3: bounding Ωδ

Let CK > 0 be the radius of a `2-ball containing the support of K and note that∣∣Vi(f, f ′)∣∣ =
∣∣∣E[eT1H(w)−1ph(Wi − w)eT1H(w′)−1ph(Wi − w′)

×Kh(Wi − w)Kh(Wi − w′)ε̃2i
∣∣∣ Hi−1]∣∣∣

. n−2Kh(Wi − w)Kh(Wi − w′)

. n−2h−mKh(Wi − w)I{‖w − w′‖2 ≤ 2CKh}.

Since Wi are α-mixing with α(j) < e−2j/Cα , Lemma A.6(ii) with r = 3 gives

Var

[
n∑
i=1

Vi(f, f
′)

]

.
n∑
i=1

E
[
|Vi(f, f ′)|3

]2/3
. n−3h−2mE

[
Kh(Wi − w)3

]2/3 I{‖w − w′‖2 ≤ 2CKh}

. n−3h−2m(h−2m)2/3I{‖w − w′‖2 ≤ 2CKh}

. n−3h−10m/3I{‖w − w′‖2 ≤ 2CKh}.

Therefore, by Jensen’s inequality,

E
[
‖Ωδ‖2

]
≤ E

[
‖Ωδ‖F

]
≤ E

[ ∑
f,f ′∈Fδ

(Ωδ)
2
f,f ′

]1/2
≤
( ∑
f,f ′∈Fδ

Var

[
n∑
i=1

Vi(f, f
′)

])1/2

. n−3/2h−5m/3
( ∑
f,f ′∈Fδ

I{‖w − w′‖2 ≤ 2CKh}
)1/2

. n−3/2h−5m/3
(
hmδ−2m

)1/2
. n−3/2h−7m/6δ−m.

Note that we could have used ‖ · ‖1 rather than ‖ · ‖F, but this term is negligible either way.
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Part 4: regularity of the stochastic processes
For each f, f ′ ∈ F , define the mean-zero and α-mixing random variables

ui(f, f
′) = eT1

(
H(w)−1Kh(Wi − w)ph(Wi − w)−H(w′)−1Kh(Wi − w′)ph(Wi − w′)

)
ε̃i.

To bound this we use that for all 1 ≤ j ≤ k, by the Lipschitz property of the kernel and monomials,∣∣Kh(Wi − w)−Kh(Wi − w′)
∣∣

. h−m−1‖w − w′‖2
(
I{‖Wi − w‖ ≤ CKh}+ I{‖Wi − w′‖ ≤ CKh}

)
,∣∣ph(Wi − w)j − ph(Wi − w′)j

∣∣ . h−1‖w − w′‖2,
to deduce that for any 1 ≤ j, l ≤ k,∣∣H(w)jl −H(w′)jl

∣∣ =
∣∣nE[Kh(Wi − w)ph(Wi − w)jph(Wi − w)l

−Kh(Wi − w′)ph(Wi − w′)jph(Wi − w′)l
]∣∣

≤ nE
[∣∣Kh(Wi − w)−Kh(Wi − w′)

∣∣ |ph(Wi − w)jph(Wi − w)l|
]

+ nE
[∣∣ph(Wi − w)j − ph(Wi − w′)j

∣∣ ∣∣Kh(Wi − w′)ph(Wi − w)l
∣∣]

+ nE
[∣∣ph(Wi − w)l − ph(Wi − w′)l

∣∣ ∣∣Kh(Wi − w′)ph(Wi − w′)j
∣∣]

. nh−1‖w − w′‖2.

Therefore as the dimension of the matrix H(w) is fixed,∥∥H(w)−1 −H(w′)−1
∥∥
2
≤
∥∥H(w)−1

∥∥
2

∥∥H(w′)−1
∥∥
2

∥∥H(w)−H(w′)
∥∥
2
.
‖w − w′‖2

nh
.

Hence ∣∣ui(f, f ′)∣∣ ≤ ∥∥H(w)−1Kh(Wi − w)ph(Wi − w)−H(w′)−1Kh(Wi − w′)ph(Wi − w′)ε̃i
∥∥
2

≤
∥∥H(w)−1 −H(w′)−1

∥∥
2

∥∥Kh(Wi − w)ph(Wi − w)ε̃i
∥∥
2

+
∣∣Kh(Wi − w)−Kh(Wi − w′)

∣∣∥∥H(w′)−1ph(Wi − w)ε̃i
∥∥
2

+
∥∥ph(Wi − w)− ph(Wi − w′)

∥∥
2

∥∥H(w′)−1Kh(Wi − w′)ε̃i
∥∥
2

.
‖w − w′‖2

nh

∣∣Kh(Wi − w)ε̃i
∣∣+

1

n

∣∣Kh(Wi − w)−Kh(Wi − w′)
∣∣ |ε̃i|

.
‖w − w′‖2 log n

nhm+1
,

and from the penultimate line, we also deduce that

Var[ui(f, f
′)] .

‖w − w′‖22
n2h2

E
[
Kh(Wi − w)2σ2(Xi)

]
+

1

n2
E
[(
Kh(Wi − w)−Kh(Wi − w′)

)2
σ2(Xi)

]
.
‖w − w′‖22
n2hm+2

.

Further, E[ui(f, f
′)uj(f, f

′)] = 0 for i 6= j so by Lemma A.7(ii), for a constant C1 > 0,

P

(∣∣∣ n∑
i=1

ui(f, f
′)
∣∣∣ ≥ C1‖w − w′‖2√

nhm/2+1

(
√
t+

√
(log n)2

nhm

√
t+

√
(log n)6

nhm
t

))
≤ C1e

−t.
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Therefore, adjusting the constant if necessary and since nhm & (log n)7,

P

(∣∣∣ n∑
i=1

ui(f, f
′)
∣∣∣ ≥ C1‖w − w′‖2√

nhm/2+1

(√
t+

t√
log n

))
≤ C1e

−t.

By Lemma 2 in van de Geer and Lederer (2013) with ψ(x) = exp
((√

1 + 2x/
√

log n−1
)2

log n
)
−1,

∣∣∣∣∣∣∣∣∣ n∑
i=1

ui(f, f
′)
∣∣∣∣∣∣∣∣∣
ψ
.
‖w − w′‖2√
nhm/2+1

so we take L = 1√
nhm/2+1 . Noting ψ−1(t) =

√
log(1 + t) + log(1+t)

2
√
logn

and Nδ . δ−m,

Jψ(δ) =

∫ δ

0
ψ−1

(
Nε

)
dε+ δψ−1

(
Nδ

)
.
δ log(1/δ)√

log n
+ δ
√

log(1/δ) . δ
√

log n,

J2(δ) =

∫ δ

0

√
logNε dε . δ

√
log(1/δ) . δ

√
log n.

Part 5: strong approximation
Recalling that ε̃i = εi for all i with high probability, by Proposition 3.1, for all t, η > 0 there exists
a zero-mean Gaussian process T (w) satisfying

E

[(
n∑
i=1

fw(Wi, εi)

)(
n∑
i=1

fw′(Wi, εi)

)]
= E

[
T (w)T (w′)

]
for all w,w′ ∈ W and

P

(
sup
w∈W

∣∣∣∣∣
n∑
i=1

fw(Wi, εi)− T (w)

∣∣∣∣∣ ≥ Cψ(t+ η)

)

≤ Cψ inf
δ>0

inf
Fδ

{
β
1/3
δ (log 2|Fδ|)1/3

η
+

(√
log 2|Fδ|

√
E [‖Ωδ‖2]

η

)2/3

+ ψ

(
t

LJψ(δ)

)−1
+ exp

( −t2
L2J2(δ)2

)}

≤ Cψ
{( logn

n2h2mδm

)1/3
(log n)1/3

η
+

(√
log n

√
n−3/2h−7m/6δ−m

η

)2/3

+ ψ

(
t

1√
nhm/2+1Jψ(δ)

)−1
+ exp

 −t2(
1√

nhm/2+1

)2
J2(δ)2

}

≤ Cψ
{

(log n)2/3

n2/3h2m/3δm/3η
+

(
n−3/4h−7m/12δ−m/2

√
log n

η

)2/3

+ ψ

(
t
√
nhm/2+1

δ
√

log n

)−1
+ exp

(−t2nhm+2

δ2 log n

)}
.

47



Noting ψ(x) ≥ ex2/4 for x ≤ 4
√

log n, any Rn →∞ gives the probability bound

sup
w∈W

∣∣∣∣∣
n∑
i=1

fw(Wi, εi)− T (w)

∣∣∣∣∣ .P (log n)2/3

n2/3h2m/3δm/3
Rn +

√
log n

n3/4h7m/12δm/2
Rn +

δ
√

log n√
nhm/2+1

.

Optimizing over δ gives δ �
(

logn
nhm−6

) 1
2m+6

= h
(

logn
nh3m

) 1
2m+6

and so

sup
w∈W

∣∣∣∣∣
n∑
i=1

fw(Wi, εi)− T (w)

∣∣∣∣∣ .P
(

(log n)m+4

nm+4hm(m+6)

) 1
2m+6

Rn.

Part 6: convergence of Ĥ(w)
For 1 ≤ j, l ≤ k define the zero-mean random variables

uijl(w) = Kh(Wi − w)ph(Wi − w)jph(Wi − w)l

− E
[
Kh(Wi − w)ph(Wi − w)jph(Wi − w)l

]
and note that |uijl(w)| . h−m. By Lemma A.7(i) for a constant C2 > 0 and all t > 0,

P

(∣∣∣∣∣
n∑
i=1

uijl(w)

∣∣∣∣∣ > C2h
−m(√nt+ (log n)(log logn)t

))
≤ C2e

−t.

Further, note that by Lipschitz properties,∣∣∣∣∣
n∑
i=1

uijl(w)−
n∑
i=1

uijl(w
′)

∣∣∣∣∣ . h−m−1‖w − w′‖2
so there is a δ-cover of (W, ‖ · ‖2) with size at most naδ−a for some a > 0. Adjusting C2,

P

(
sup
w∈W

∣∣∣∣∣
n∑
i=1

uijl(w)

∣∣∣∣∣ > C2h
−m(√nt+ (log n)(log logn)t

)
+ C2h

−m−1δ

)
≤ C2n

aδ−ae−t

and hence

sup
w∈W

∣∣∣∣∣
n∑
i=1

uijl(w)

∣∣∣∣∣ .P h−m√n log n+ h−m(log n)3 .P

√
n log n

h2m
.

Therefore

sup
w∈W

‖Ĥ(w)−H(w)‖2 .P
√
n log n

h2m
.

Part 7: bounding the matrix term

Firstly note that, since
√

logn
nh2m

→ 0, we have that uniformly in w ∈ W

‖Ĥ(w)−1‖2 ≤
‖H(w)−1‖2

1− ‖Ĥ(w)−H(w)‖2‖H(w)−1‖2
.P

1/n

1−
√

n logn
h2m

1
n

.P
1

n
.
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Therefore

sup
w∈W

∣∣eT1 (Ĥ(w)−1 −H(w)−1
)
S(w)

∣∣ ≤ sup
w∈W

∥∥Ĥ(w)−1 −H(w)−1
∥∥
2
‖S(w)‖2

≤ sup
w∈W

∥∥Ĥ(w)−1
∥∥
2

∥∥H(w)−1
∥∥
2

∥∥Ĥ(w)−H(w)
∥∥
2
‖S(w)‖2

.P

√
log n

n3h2m
sup
w∈W

‖S(w)‖2.

Now for 1 ≤ j ≤ k write uij(w) = Kh(Wi − w)ph(Wi − w)j ε̃i so that S(w)j =
∑n

i=1 uij(w) with
high probability. Note that uij(w) are zero-mean with Cov[uij(w), ui′j(w)] = 0 for i 6= i′. Also
|uij(w)| . h−m log n and Var[uij(w)] . h−m. Thus by Lemma A.7(ii) for a constant C3 > 0,

P

(∣∣∣ n∑
i=1

uij(w)
∣∣∣ ≥ C3

(
(h−m/2

√
n+ h−m log n)

√
t+ h−m(log n)3t

))
≤ C3e

−t,

P

(∣∣∣ n∑
i=1

uij(w)
∣∣∣ > C3

(√
tn

hm
+
t(log n)3

hm

))
≤ C3e

−t,

where we used nhm & (log n)2 and adjusted the constant if necessary. As before, uij(w) is Lipschitz
in w with a constant which is at most polynomial in n, so for some a > 0

P

(
sup
w∈W

∣∣∣ n∑
i=1

uij(w)
∣∣∣ > C3

(√
tn

hm
+
t(log n)3

hm

))
≤ C3n

ae−t,

sup
w∈W

‖S(w)‖2 .P
√
n log n

hm
+

(log n)4

hm
.P

√
n log n

hm

as nhm & (log n)7. Finally

sup
w∈W

∣∣eT1 (Ĥ(w)−1 −H(w)−1
)
S(w)

∣∣ .P √ log n

n3h2m

√
n log n

hm
.P

log n√
n2h3m

.

Part 8: bounding the bias
Since µ ∈ Cγ , we have, by the multivariate version of Taylor’s theorem,

µ(Wi) =

γ−1∑
|κ|=0

1

κ!
∂κµ(w)(Wi − w)κ +

∑
|κ|=γ

1

κ!
∂κµ(w′)(Wi − w)κ

for some w′ on the line segment connecting w and Wi. Now since ph(Wi − w)1 = 1,

eT1 Ĥ(w)−1
n∑
i=1

Kh(Wi − w)ph(Wi − w)µ(w)

= eT1 Ĥ(w)−1
n∑
i=1

Kh(Wi − w)ph(Wi − w)ph(Wi − w)Te1µ(w) = eT1 e1µ(w) = µ(w).
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Therefore

Bias(w) = eT1 Ĥ(w)−1
n∑
i=1

Kh(Wi − w)ph(Wi − w)µ(Wi)− µ(w)

= eT1 Ĥ(w)−1
n∑
i=1

Kh(Wi − w)ph(Wi − w)

×
(

γ−1∑
|κ|=0

1

κ!
∂κµ(w)(Wi − w)κ +

∑
|κ|=γ

1

κ!
∂κµ(w′)(Wi − w)κ − µ(w)

)

=

γ−1∑
|κ|=1

1

κ!
∂κµ(w)eT1 Ĥ(w)−1

n∑
i=1

Kh(Wi − w)ph(Wi − w)(Wi − w)κ

+
∑
|κ|=γ

1

κ!
∂κµ(w′)eT1 Ĥ(w)−1

n∑
i=1

Kh(Wi − w)ph(Wi − w)(Wi − w)κ

=
∑
|κ|=γ

1

κ!
∂κµ(w′)eT1 Ĥ(w)−1

n∑
i=1

Kh(Wi − w)ph(Wi − w)(Wi − w)κ,

where we used that ph(Wi − w) is a vector containing monomials in Wi − w of order up to γ, so
eT1 Ĥ(w)−1

∑n
i=1Kh(Wi − w)ph(Wi − w)(Wi − w)κ = 0 whenever 1 ≤ |κ| ≤ γ. Finally

sup
w∈W

|Bias(w)|

= sup
w∈W

∣∣∣∣∣∣
∑
|κ|=γ

1

κ!
∂κµ(w′)eT1 Ĥ(w)−1

n∑
i=1

Kh(Wi − w)ph(Wi − w)(Wi − w)κ

∣∣∣∣∣∣
.P sup

w∈W
max
|κ|=γ

∣∣∂κµ(w′)
∣∣ ‖Ĥ(w)−1‖2

∥∥∥∥∥
n∑
i=1

Kh(Wi − w)ph(Wi − w)

∥∥∥∥∥
2

hγ

.P
hγ

n
sup
w∈W

∥∥∥∥∥
n∑
i=1

Kh(Wi − w)ph(Wi − w)

∥∥∥∥∥
2

.

Now write ũij(w) = Kh(Wi − w)ph(Wi − w)j and note that |ũij(w)| . h−m and E[ũij(w)] . 1. By
Lemma A.7(i), for a constant C4,

P

(∣∣∣∣∣
n∑
i=1

ũij(w)− E
[

n∑
i=1

ũij(w)

]∣∣∣∣∣ > C4h
−m(√nt+ (log n)(log log n)t

))
≤ C4e

−t.

As in previous parts, by Lipschitz properties, this implies

sup
w∈W

∣∣∣∣∣
n∑
i=1

ũij(w)

∣∣∣∣∣ .P n
(

1 +

√
log n

nh2m

)
.P n.

Therefore supw∈W |Bias(w)| .P nhγ/n .P hγ .
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Part 9: conclusion
By the previous parts,

sup
w∈W

|µ̂(w)− µ(w)− T (w)| ≤ sup
w∈W

∣∣∣eT1H(w)−1S(w)− T (w)
∣∣∣

+ sup
w∈W

∣∣∣eT1 (Ĥ(w)−1 −H(w)−1
)
S(w)

∣∣∣+ sup
w∈W

|Bias(w)|

.P

(
(log n)m+4

nm+4hm(m+6)

) 1
2m+6

Rn +
log n√
n2h3m

+ hγ

.P
Rn√
nhm

(
(log n)m+4

nh3m

) 1
2m+6

+ hγ ,

where the last inequality follows because nh3m →∞ and 1
2m+6 ≤ 1

2 . Finally, we verify the upper and

lower bounds on the variance of the Gaussian process. Since the spectrum of H(w)−1 is bounded
above and below by 1/n,

Var[T (w)] = Var

[
eT1H(w)−1

n∑
i=1

Kh(Wi − w)ph(Wi − w)εi

]

= eT1H(w)−1 Var

[
n∑
i=1

Kh(Wi − w)ph(Wi − w)εi

]
H(w)−1eT1

. ‖H(w)−1‖22 max
1≤j≤k

n∑
i=1

Var
[
Kh(Wi − w)ph(Wi − w)jσ(Wi)

]
.

1

n2
n

1

hm
.

1

nhm
.

Similarly Var[T (w)] & 1
nhm by the same argument given to bound the eigenvalues of H(w)−1. �

B High-dimensional central limit theorems for martingales

We present an application of our main results to high-dimensional central limit theorems for
martingales. Our main contribution here is the generality of our results, which are broadly applicable
to martingale data and impose minimal extra assumptions. In exchange for the scope and breadth
of our results, we naturally do not necessarily achieve state-of-the-art distributional approximation
errors in certain special cases, such as with independent data or when restricting the class of sets
over which the central limit theorem must hold. Extensions of our high-dimensional central limit
theorem results to mixingales and other approximate martingales, along with third-order refinements
and Gaussian mixture target distributions, are possible through methods akin to those used to
establish our main results in Section 2, but we omit these for succinctness.

Our approach to deriving a high-dimensional martingale central limit theorem proceeds as
follows. Firstly, the upcoming Proposition B.1 uses our main result on martingale coupling
(Corollary 2.2) to reduce the problem to that of providing anti-concentration results for high-
dimensional Gaussian vectors. We then demonstrate the utility of this reduction by employing a
few such anti-concentration methods from the existing literature. Proposition B.2 gives a feasible
implementation via the Gaussian multiplier bootstrap, enabling valid resampling-based inference
using the resulting conditional Gaussian distribution. Finally in Section B.1 we provide an explicit
example application: distributional approximation for `p-norms of high-dimensional martingale
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vectors in Kolmogorov–Smirnov distance, relying on some recent results concerning Gaussian
perimetric inequalities (Nazarov, 2003; Kozbur, 2021; Giessing, 2023).

We begin this section with some notation. Assume the setup of Corollary 2.2 and suppose Σ is
non-random. Let A be a class of measurable subsets of Rd and take T ∼ N (0,Σ). For η > 0 and
p ∈ [1,∞] define the Gaussian perimetric quantity

∆p(A, η) = sup
A∈A

{
P(T ∈ Aηp \A) ∨ P(T ∈ A \A−ηp )

}
,

where Aηp = {x ∈ Rd : ‖x − A‖p ≤ η}, A−ηp = Rd \ (Rd \ A)ηp and ‖x − A‖p = infx′∈A ‖x − x′‖p.
Using this perimetric term allows us to convert coupling results to central limit theorems as follows.
Denote by Γp(η) the rate of strong approximation attained in Corollary 2.2:

Γp(η) = 24

(
βp,2φp(d)2

η3

)1/3

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

.

Proposition B.1 (High-dimensional central limit theorem for martingales)
Assume the setup of Corollary 2.2, with Σ non-random. For a class A of measurable subsets of Rd,

sup
A∈A

∣∣P(S ∈ A)− P(T ∈ A)
∣∣ ≤ inf

p∈[1,∞]
inf
η>0

{
Γp(η) + ∆p(A, η)

}
. (13)

Proof (Proposition B.1)
This follows from Strassen’s theorem (Lemma A.1), but we provide a proof for completeness. Note

P(S ∈ A) ≤ P(T ∈ A) + P(T ∈ Aηp \A) + P(‖S − T‖ > η)

and applying this to Rd \A gives

P(S ∈ A) = 1− P(S ∈ Rd \A)

≥ 1− P(T ∈ Rd \A)− P(T ∈ (Rd \A)ηp \ (Rd \A))− P(‖S − T‖ > η)

= P(T ∈ A)− P(T ∈ A \A−ηp )− P(‖S − T‖ > η).

Since this holds for all p ∈ [1,∞],

sup
A∈A

∣∣P(S ∈ A)− P(T ∈ A)
∣∣ ≤ sup

A∈A

{
P(T ∈ Aηp \A) ∨ P(T ∈ A \A−ηp )

}
+ P(‖S − T‖ > η)

≤ inf
p∈[1,∞]

inf
η>0

{
Γp(η) + ∆p(A, η)

}
.

�

The term ∆p(A, η) in (13) is a Gaussian anti-concentration quantity so it depends on the law of
S only through the covariance matrix Σ. A few results are available in the literature for bounding
this term. For instance, with A = C = {A ⊆ Rd is convex}, Nazarov (2003) showed

∆2(C, η) � η
√
‖Σ−1‖F, (14)

whenever Σ is invertible. Then Proposition B.1 with p = 2 combined with (14) yields for convex sets

sup
A∈C

∣∣P(S ∈ A)− P(T ∈ A)
∣∣ . inf

η>0

{(
βp,2d

η3

)1/3

+

(
E[‖Ω‖2]d

η2

)1/3

+ η
√
‖Σ−1‖F

}
.
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Alternatively, one can take A = R, the class of axis-aligned rectangles in Rd. By Nazarov’s
Gaussian perimetric inequality (Nazarov, 2003; Chernozhukov et al., 2017),

∆∞(R, η) ≤ η(
√

2 log d+ 2)

σmin
(15)

whenever minj Σjj ≥ σ2min for some σmin > 0. Proposition B.1 with p =∞ and (15) yields

sup
A∈R

∣∣P(S ∈ A)− P(T ∈ A)
∣∣

. inf
η>0

{(
β∞,2 log 2d

η3

)1/3

+

(
E[‖Ω‖2] log 2d

η2

)1/3

+
η
√

log 2d

σmin

}
.

In situations where lim infn minj Σjj = 0, it may be possible in certain cases to regularize the
minimum variance away from zero and then apply a Gaussian–Gaussian rectangular approximation
result such as Lemma 2.1 from Chernozhukov et al. (2023).

Remark B.1 (Comparisons with the literature)
The literature on high-dimensional central limit theorems has developed rapidly in recent years (see
Zhai, 2018; Koike, 2021; Buzun et al., 2022; Lopes, 2022; Chernozhukov et al., 2023, and references
therein), particularly for the special case of sums of independent random vectors on the rectangular
sets R. Our corresponding results are rather weaker in terms of dependence on the dimension than
for example Chernozhukov et al. (2023, Theorem 2.1). This is an inherent issue due to our approach
of first considering the class of all Borel sets and only afterwards specializing to the smaller class R,
where sharper results in the literature directly target the Kolmogorov–Smirnov distance via Stein’s
method and Slepian interpolation.

Next, we present a version of Proposition B.1 in which the covariance matrix Σ is replaced by
an estimator Σ̂. This ensures that the associated conditionally Gaussian vector is feasible and can
be resampled, allowing Monte Carlo quantile estimation via a Gaussian multiplier bootstrap.

Proposition B.2 (Bootstrap central limit theorem for martingales)
Assume the setup of Corollary 2.2, with Σ non-random, and let Σ̂ be an X-measurable random d× d
positive semi-definite matrix, where X = (X1, . . . , Xn). For a class A of measurable subsets of Rd,

sup
A∈A

∣∣∣P(S ∈ A)− P(Σ̂1/2Z ∈ A
∣∣ X
)∣∣∣

≤ inf
p∈[1,∞]

inf
η>0

{
Γp(η) + 2∆p(A, η) + 2d exp

(
−η2

2d2/p
∥∥Σ̂1/2 − Σ1/2

∥∥2
2

)}
,

where Z ∼ N (0, Id) is independent of X.

Proof (Proposition B.2)
Since T = Σ1/2Z is independent of X,∣∣∣P(S ∈ A)− P(Σ̂1/2Z ∈ A

∣∣ X
)∣∣∣

≤
∣∣P(S ∈ A)− P(T ∈ A)∣∣+

∣∣∣P(Σ1/2Z ∈ A
)
− P

(
Σ̂1/2Z ∈ A

∣∣ X
)∣∣∣ .
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The first term is bounded by Proposition B.1; the second by Lemma A.5 conditional on X.∣∣∣P(S ∈ A)− P(Σ̂1/2Z ∈ A
∣∣ X
)∣∣∣

≤ Γp(η) + ∆p(A, η) + ∆p′(A, η′) + 2d exp

(
−η′2

2d2/p′
∥∥Σ̂1/2 − Σ1/2

∥∥2
2

)

for all A ∈ A and any p, p′ ∈ [1,∞] and η, η′ > 0. Taking a supremum over A and infima over p = p′

and η = η′ yields the result. Note that we need not insist that p = p′ and η = η′ in general. �

A natural choice for Σ̂ in certain situations is the sample covariance matrix
∑n

i=1XiX
T
i , or a

correlation-corrected variant thereof. In general, whenever Σ̂ does not depend on unknown quantities,
one can sample from the law of T̂ = Σ̂1/2Z conditional on X to approximate the distribution of S.
Proposition B.2 verifies that this Gaussian multiplier bootstrap approach is valid whenever Σ̂ and Σ

are sufficiently close. To this end, Theorem X.1.1 in Bhatia (1997) gives
∥∥Σ̂1/2−Σ1/2

∥∥
2
≤
∥∥Σ̂−Σ

∥∥1/2
2

and Problem X.5.5 in the same gives
∥∥Σ̂1/2−Σ1/2

∥∥
2
≤
∥∥Σ−1/2

∥∥
2

∥∥Σ̂−Σ
∥∥
2

when Σ is invertible. The
latter often gives a tighter bound when the minimum eigenvalue of Σ can be bounded away from
zero, and consistency of Σ̂ can be established using a range of matrix concentration inequalities.

In Section B.1 we apply Proposition B.1 to the special case of approximating the distribution of
the `p-norm of a high-dimensional martingale. Proposition B.2 is then used to ensure that feasible
distributional approximations are also available.

B.1 Application: distributional approximation of martingale `p-norms

In some empirical applications, including nonparametric significance tests (Lopes et al., 2020) and
nearest neighbor search procedures (Biau and Mason, 2015), an estimator or test statistic can be
expressed under the null hypothesis as the `p-norm of a zero-mean (possibly high-dimensional)
martingale for some p ∈ [1,∞]. In the notation of Corollary 2.2, it is therefore of interest to bound
Kolmogorov–Smirnov quantities of the form

sup
t≥0

∣∣P(‖S‖p ≤ t)− P(‖T‖p ≤ t)
∣∣.

Let Bp be the class of closed `p-balls in Rd centered at the origin and set

∆p(η) := ∆p(Bp, η) = sup
t≥0
P(t < ‖T‖p ≤ t+ η).

Proposition B.3 (Distributional approximation of martingale `p-norms)
Assume the setup of Corollary 2.2, with Σ non-random. Then for T ∼ N (0,Σ),

sup
t≥0

∣∣P(‖S‖p ≤ t)− P (‖T‖p ≤ t)
∣∣ ≤ inf

η>0

{
Γp(η) + ∆p(η)

}
. (16)

Proof (Proposition B.3)
Applying Proposition B.1 with A = Bp gives

sup
t≥0

∣∣P(‖S‖p ≤ t)− P (‖T‖p ≤ t)
∣∣ = sup

A∈Bp

∣∣P(S ∈ A)− P(T ∈ A)
∣∣

≤ inf
η>0

{
Γp(η) + ∆p(Bp, η)

}
≤ inf

η>0

{
Γp(η) + ∆p(η)

}
.

�
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The right-hand side of (16) can be controlled in various ways. In the case of p =∞, note that
`∞-balls are rectangles so B∞ ⊆ R and (15) applies, giving ∆∞(η) ≤ η(

√
2 log d+ 2)/σmin whenever

minj Σjj ≥ σ2min. Alternatively, Giessing (2023, Theorem 1) provides ∆∞(η) . η/
√

Var[‖T‖∞] + η2.
In fact, by Hölder duality of `p-norms, we can write ‖T‖p = sup‖u‖q≤1 u

TT where 1/p+ 1/q = 1.
Then, applying the Gaussian process anti-concentration result of Giessing (2023, Theorem 2)
yields the more general ∆p(η) . η/

√
Var[‖T‖p] + η2. Thus, the problem can be reduced to that

of bounding Var [‖T‖p], with techniques for doing so discussed, for example, in Giessing (2023,
Section 4). Note that alongside the `p-norms, other functionals can be analyzed in this manner,
including the maximum statistic and other order statistics (Kozbur, 2021; Giessing, 2023).

To conduct inference in this situation, we need to feasibly approximate the quantiles of ‖T‖p.
To that end, take a significance level τ ∈ (0, 1) and define

q̂p(τ) = inf
{
t ∈ R : P(‖T̂‖p ≤ t | X) ≥ τ} where T̂ | X ∼ N (0, Σ̂),

with Σ̂ any X-measurable positive semi-definite estimator of Σ. Note that for the canonical estimator
Σ̂ =

∑n
i=1XiX

T
i we can write T̂ =

∑n
i=1XiZi with Z1, . . . , Zn i.i.d. standard Gaussian independent

of X, yielding the Gaussian multiplier bootstrap. Now assuming the law of ‖T̂‖p | X has no atoms,
we can apply Proposition B.2 to see

sup
τ∈(0,1)

∣∣P (‖S‖p ≤ q̂p(τ))− τ
∣∣ ≤ E [sup

t≥0

∣∣P(‖S‖p ≤ t)− P(‖T̂‖p ≤ t | X)
∣∣]

≤ inf
η>0

{
Γp(η) + 2∆p(η) + 2dE

[
exp

(
−η2

2d2/p
∥∥Σ̂1/2 − Σ1/2

∥∥2
2

)]}

and hence the bootstrap is valid whenever ‖Σ̂1/2 − Σ1/2
∥∥2
2

is sufficiently small. See the preceding
discussion regarding methods for bounding this object.

Remark B.2 (One-dimensional distributional approximations)
In our application to distributional approximation of `p-norms, the object of interest ‖S‖p is a
one-dimensional functional of the high-dimensional martingale; contrast this with the more general
Proposition B.1 which directly considers the d-dimensional random vector S. As such, our coupling-
based approach may be improved in certain settings by applying a more carefully tailored smoothing
argument. For example, Belloni and Oliveira (2018) employ a “log sum exponential” bound (see
also Chernozhukov et al., 2013) for the maximum statistic max1≤j≤d Sj along with a coupling due
to Chernozhukov et al. (2014b) to attain an improved dependence on the dimension. Naturally their
approach does not permit the formulation of high-dimensional central limit theorems over arbitrary
classes of Borel sets as in our Proposition B.1.
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