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Yurinskii’s coupling is a popular theoretical tool for non-asymptotic distri-
butional analysis in mathematical statistics and applied probability, offering a
Gaussian strong approximation with an explicit error bound under easily verifi-
able conditions. Originally stated in `2-norm for sums of independent random
vectors, it has recently been extended both to the `p-norm, for 1≤ p≤∞,
and to vector-valued martingales in `2-norm, under some strong conditions.
We present as our main result a Yurinskii coupling for approximate martin-
gales in `p-norm, under substantially weaker conditions than those previously
imposed. Our formulation further allows for the coupling variable to follow a
more general Gaussian mixture distribution, and we provide a novel third-order
coupling method which gives tighter approximations in certain settings. We
specialize our main result to mixingales, martingales, and independent data,
and derive uniform Gaussian mixture strong approximations for martingale
empirical processes. Applications to nonparametric partitioning-based and
local polynomial regression procedures are provided, alongside central limit
theorems for high-dimensional martingale vectors.

1. Introduction Yurinskii’s coupling [53] has proven to be an important theoretical tool
for developing non-asymptotic distributional approximations in mathematical statistics and
applied probability. For a sum S of n independent zero-mean d-dimensional random vectors,
this coupling technique constructs (on a suitably enlarged probability space) a zero-mean
d-dimensional Gaussian vector T which has the same covariance matrix as S and which is
close to S in probability, bounding the discrepancy ‖S − T‖ as a function of n, d, the choice
of norm, and some features of the underlying distribution. See, for example, Pollard [44,
Chapter 10] for a textbook introduction, and Csörgö and Révész [22] and Lindvall [37] for
background references.

When compared to other coupling approaches, such as the celebrated Hungarian construc-
tion [34] or Zaitsev’s coupling [54, 55], Yurinskii’s approach stands out for its simplicity,
robustness, and wider applicability, while also offering tighter couplings in some applications
(see below for more discussion and examples). These features have led many scholars to use
Yurinskii’s coupling to study the distributional properties of high-dimensional statistical proce-
dures in a variety of settings, often with the end goal of developing uncertainty quantification
or hypothesis testing methods. For example, in recent years, Yurinskii’s coupling has been used
to construct Gaussian approximations for the suprema of empirical processes [18]; to establish
distribution theory for non-Donsker stochastic t-processes generated in nonparametric series
regression [4]; to prove distributional approximations for high-dimensional `p-norms [8]; to
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develop distribution theory for vector-valued martingales [3, 36]; to derive a law of the iter-
ated logarithm for stochastic gradient descent optimization methods [1]; to establish uniform
distributional results for nonparametric high-dimensional quantile processes [5]; to develop
distribution theory for non-Donsker stochastic t-processes generated in partitioning-based
series regression [11]; to deduce Bernstein–von Mises theorems in high-dimensional settings
[46]; and to develop distribution theory for non-Donsker U-processes based on dyadic network
data [12]. There are also many other early applications of Yurinskii’s coupling: Dudley and
Philipp [27] and Dehling [25] establish invariance principles for Banach space-valued random
variables, and Le Cam [35] and Sheehy and Wellner [48] obtain uniform Donsker results for
empirical processes, to name just a few.

This paper presents a new Yurinskii coupling which encompasses and improves upon all of
the results previously available in the literature, offering four new primary features:

(i) It applies to vector-valued approximate martingale data.
(ii) It allows for a Gaussian mixture coupling distribution.
(iii) It imposes no restrictions on degeneracy of the data covariance matrix.
(iv) It establishes a third-order coupling to improve the approximation in certain situations.

Closest to our work are the recent paper by Li and Liao [36] and the unpublished manuscript
by Belloni and Oliveira [3], which both investigated distribution theory for martingale data
using Yurinskii’s coupling and related methods. Specifically, Li and Liao [36] established a
Gaussian `2-norm Yurinskii coupling for mixingales and martingales under the assumption
that the covariance structure has a minimum eigenvalue bounded away from zero. As formally
demonstrated in this paper (see Section 3.1), such eigenvalue assumptions can be prohibitively
strong in practically relevant applications. In contrast, our Yurinskii coupling does not impose
any restrictions on covariance degeneracy (iii), in addition to offering several other new
features not present in Li and Liao [36], including (i), (ii), (iv), and applicability to general
`p-norms. In addition, we correct a slight technical inaccuracy in their proof relating to the
derivation of bounds in probability (see Remark 1).

Belloni and Oliveira [3] did not establish a Yurinskii coupling for martingales, but rather a
central limit theorem for smooth functions of high-dimensional martingales using the cele-
brated second-order Lindeberg method [see 15, and references therein], explicitly accounting
for covariance degeneracy. As a consequence, their result could be leveraged to deduce a
Yurinskii coupling for martingales with additional, non-trivial technical work (see the supple-
mentary material [13] for details). Nevertheless, a Yurinskii coupling derived from Belloni
and Oliveira [3] would not feature (i), (ii), (iv), or general `p-norms, as our results do. We
discuss further the connections between our work and the related literature in the upcoming
sections, both when introducing our main theoretical results and when presenting examples
and statistical applications.

The most general coupling result of this paper (Theorem 2.1) is presented in Section 2,
where we also specialize it to a slightly weaker yet more user-friendly formulation (Propo-
sition 2.1). Our Yurinskii coupling for approximate martingales is a strict generalization
of all previous Yurinskii couplings available in the literature, offering a Gaussian mixture
strong approximation for approximate martingale vectors in `p-norm, with an improved rate of
approximation when the third moments of the data are negligible, making no assumptions on
the spectrum of the data covariance matrix. A key technical innovation underlying the proof of
Theorem 2.1 is that we explicitly account for the possibility that the minimum eigenvalue of
the variance may be zero, or that its lower bound may be unknown, with the argument proceed-
ing using a carefully tailored regularization. Establishing a coupling to a Gaussian mixture
distribution is achieved by an appropriate conditioning argument, leveraging a conditional
version of Strassen’s theorem [16, Theorem B.2; 41, Theorem 4], along with some related
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technical work detailed in the supplementary material [13]. A third-order coupling is obtained
via a modification of a standard smoothing technique for Borel sets from classical versions of
Yurinskii’s coupling (see Lemma SA.2 in the supplementary material [13]), enabling improved
approximation errors whenever third moments are negligible.

In Proposition 2.1, we explicitly tune the parameters of the aforementioned regularization to
obtain a simpler, parameter-free version of Yurinskii’s coupling for approximate martingales,
again offering Gaussian mixture coupling distributions and an improved third-order approxima-
tion. This specialization of our main result takes an agnostic approach to potential singularities
in the data covariance matrix and, as such, may be improved in specific applications where
additional knowledge of the covariance structure is available. Section 2 also presents some
further refinements when additional structure is imposed, deriving Yurinskii couplings for
mixingales, martingales, and independent data as Corollaries 2.1, 2.2, and 2.3, respectively.
We take the opportunity to discuss and correct in Remark 1 a technical issue which is often
neglected [44, 36] when using Yurinskii’s coupling to derive bounds in probability. Section 2.5
presents a stylized example portraying the relevance of our main technical results in the
context of canonical factor models, illustrating the importance of each of our new Yurinskii
coupling features (i)–(iv).

Section 3 considers a substantive application of our main results: strong approximation of
martingale empirical processes. We begin with the motivating example of canonical kernel
density estimation, demonstrating how Yurinskii’s coupling can be applied, and showing in
Lemma 3.1 why it is essential that we do not place any conditions on the minimum eigenvalue
of the variance matrix (iii). We then present a general-purpose strong approximation for
martingale empirical processes in Proposition 3.1, combining classical results in the empirical
process literature [50] with our coupling from Corollary 2.2. This statement appears to be the
first of its kind for martingale data, and when specialized to independent (and not necessarily
identically distributed) data, it is shown to be superior to the best known comparable strong
approximation result available in the literature [6]. Our improvement comes from using
Yurinskii’s coupling for the `∞-norm, where Berthet and Mason [6] apply Zaitsev’s coupling
[54, 55] with the larger `2-norm.

Section 4 further illustrates the applicability of our results through two examples in nonpara-
metric regression estimation. Firstly, we deduce strong approximations for partitioning-based
least squares series estimators with time series data, applying Corollary 2.2 directly and
additionally imposing only a mild mixing condition on the regressors. We show that our
Yurinskii coupling for martingale vectors delivers the same distributional approximation rate
as the best known result for independent data, and discuss how this can be leveraged to yield
a feasible statistical inference procedure. We also show that if the residuals have vanishing
conditional third moment, an improved rate of Gaussian approximation can be established.
Secondly, we deduce a strong approximation for local polynomial estimators with time series
data, using our result on martingale empirical processes (Proposition 3.1) and again imposing
a mixing assumption. Appealing to empirical process theory is essential here as, in contrast
with series estimators, local polynomials do not possess certain additive separability properties.
The bandwidth restrictions we require are relatively mild, and, as far as we know, they have
not been improved upon even with independent data.

Section 5 concludes the paper. Appendix A demonstrates how our coupling results can be
used to derive distributional Gaussian approximations (central limit theorems) for possibly
high-dimensional martingale vectors (Proposition A.1). This result complements a recent
literature on probability and statistics studying the same problem but with independent data
[see 10, 38, 21, 33, and references therein]. We also present a version of this result employing
a covariance estimator (Proposition A.2), enabling the construction of valid high-dimensional
confidence sets via a Gaussian multiplier bootstrap.
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All proofs are collected in the supplementary material [13], where we also include other
technical lemmas of potential independent interest, alongside some further results on distribu-
tional approximations for `p-norms of high-dimensional martingale vectors.

1.1. Notation We write ‖x‖p for p ∈ [1,∞] to denote the `p-norm if x is a (possibly
random) vector or the induced operator `p–`p-norm if x is a matrix. For X a real-valued
random variable and an Orlicz function ψ, we use |||X|||ψ to denote the Orlicz ψ-norm [50,
Section 2.2] and |||X|||p for the Lp(P) norm where p ∈ [1,∞]. For a matrix M , we write
‖M‖max for the maximum absolute entry and ‖M‖F for the Frobenius norm. We denote
positive semi-definiteness by M � 0 and write Id for the d× d identity matrix.

For scalar sequences xn and yn, we write xn . yn if there exists a positive constant C
such that |xn| ≤ C|yn| for sufficiently large n. We write xn � yn to indicate both xn . yn
and yn . xn. Similarly, for random variables Xn and Yn, we write Xn .P Yn if for every
ε > 0 there exists a positive constant C such that P(|Xn| ≥C|Yn|)≤ ε, and write Xn→P X
for limits in probability. For real numbers a and b we use a ∨ b = max{a, b}. We write
κ ∈Nd for a multi-index, where d ∈N= {0,1,2, . . .}, and define |κ|=∑d

j=1 κj , along with
κ! =

∏d
j=1 κj !, and xκ =

∏d
j=1 x

κj
j for x ∈Rd.

Since our results concern couplings, some statements must be made on a new or enlarged
probability space. We omit the details of this for clarity of notation, but technicalities are
handled by the Vorob’ev–Berkes–Philipp Theorem [26, Theorem 1.1.10].

2. Main results We begin with our most general result: an `p-norm Yurinskii coupling for
a sum of vector-valued approximate martingale differences to a Gaussian mixture-distributed
random vector. The general result is presented in Theorem 2.1, while Proposition 2.1 gives
a simplified and slightly weaker version which is easier to use in many applications. We
then further specialize Proposition 2.1 to three scenarios with successively stronger assump-
tions, namely mixingales, martingales, and independent data, in Corollaries 2.1, 2.2, and 2.3
respectively. In each case we allow for possibly random quadratic variations (cf. mixing con-
vergence), thereby establishing Gaussian mixture couplings in the general setting. In Remark 1
we comment on and correct an often overlooked technicality relating to the derivation of
bounds in probability from Yurinskii’s coupling. As a first illustration of the power of our
generalized `p-norm Yurinskii coupling, we present in Section 2.5 a simple factor model
example relating to all three of the aforementioned scenarios, discussing further how our
contributions are related to the existing literature.

THEOREM 2.1 (Strong approximation for vector-valued approximate martingales). Take a
complete probability space with a countably generated filtration H0, . . . ,Hn for some n≥ 1,
supporting the Rd-valued square-integrable random vectors X1, . . . ,Xn. Let S =

∑n
i=1Xi

and define

X̃i =
n∑
r=1

(
E[Xr | Hi]−E[Xr | Hi−1]

)
and U =

n∑
i=1

(
Xi −E[Xi | Hn] +E[Xi | H0]

)
.

Let Vi = Var[X̃i | Hi−1] and define Ω =
∑n

i=1 Vi −Σ where Σ is an almost surely positive
semi-definite H0-measurable d × d random matrix. Then, for each η > 0 and p ∈ [1,∞],
there exists, on an enlarged probability space, an Rd-valued random vector T with T | H0 ∼
N (0,Σ) such that

P
(
‖S − T‖p > 6η

)
≤ inf

t>0

{
2P
(
‖Z‖p > t

)
+ min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}}
+ inf
M�0

{
2P
(
Ω�M

)
+ δp(M,η) + εp(M,η)

}
+ P
(
‖U‖p > η

)
,(1)
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where Z,Z1, . . . ,Zn are i.i.d. standard Gaussian random variables on Rd independent of Hn,
the second infimum is taken over all positive semi-definite d× d non-random matrices M ,

βp,k =
n∑
i=1

E
[
‖X̃i‖k2‖X̃i‖p + ‖V 1/2

i Zi‖k2‖V 1/2
i Zi‖p

]
, π3 =

n∑
i=1

∑
|κ|=3

E
[∣∣E[X̃κ

i | Hi−1]
∣∣]

for k ∈ {2,3}, with π3 =∞ if the associated conditional expectation does not exist, and with

δp(M,η) = P
(∥∥((Σ +M)1/2 −Σ1/2

)
Z
∥∥
p
≥ η
)
,

εp(M,η) = P
(∥∥(M −Ω)1/2Z

∥∥
p
≥ η, Ω�M

)
.

This theorem offers four novel contributions to the literature on coupling theory and strong
approximation, as discussed in the introduction. Firstly (i), it allows for approximate vector-
valued martingales, with the variables X̃i forming martingale differences with respect to
Hi by construction, and U quantifying the associated martingale approximation error. Such
martingale approximation techniques for sequences of dependent random vectors are well
established and have been used in a range of scenarios: see, for example, Wu and Woodroofe
[52], Wu [51], Dedecker, Merlevède and Volnỳ [24], Zhao and Woodroofe [56], Peligrad [43],
Atchadé and Cattaneo [2], Cuny and Merlevède [23], Magda and Zhang [39], and references
therein. In Section 2.2 we demonstrate how this approximation can be established in practice
by restricting our general theorem to the special case of mixingales, while the upcoming
example in Section 2.5 provides an illustration in the context of auto-regressive factor models.

Secondly (ii), Theorem 2.1 allows for the resulting coupling variable T to follow a mul-
tivariate Gaussian distribution only conditionally, and thus we offer a useful analog of mix-
ing convergence in the context of strong approximation. To be more precise, the random
matrix

∑n
i=1 Vi is the quadratic variation of the constructed martingale

∑n
i=1 X̃i, and we

approximate it using the H0-measurable random matrix Σ. This yields the coupling variable
T | H0 ∼N (0,Σ), which can alternatively be written as T = Σ1/2Z with Z ∼N (0, Id) in-
dependent of H0. The errors in this quadratic variation approximation are accounted for by
the terms P(Ω�M), δp(M,η) and εp(M,η), utilizing a regularization argument through the
free matrix parameter M . If a non-random Σ is used, then T is unconditionally Gaussian, and
one can take H0 to be the trivial σ-algebra. As demonstrated in our proof, our approach to
establishing a mixing approximation is different from naively taking an unconditional version
of Yurinskii’s coupling and applying it conditionally on H0, which will not deliver the same
coupling as in Theorem 2.1 for a few reasons. To begin with, we explicitly indicate in the
conditions of Theorem 2.1 where conditioning is required. Next, our error of approximation is
given unconditionally, involving only marginal expectations and probabilities. Finally, we pro-
vide a rigorous account of the construction of the conditionally Gaussian coupling variable T
via a conditional version of Strassen’s theorem [16, Theorem B.2; 41, Theorem 4]. Section 2.3
illustrates how a strong approximation akin to mixing convergence can arise when the data
forms an exact martingale, and Section 2.5 gives a simple example relating to factor modeling
in statistics and data science.

As a third contribution to the literature (iii), and of particular importance for applications,
Theorem 2.1 makes no requirements on the minimum eigenvalue of the quadratic variation
of the approximating martingale sequence. Instead, our proof technique employs a careful
regularization scheme designed to account for any such exact or approximate rank degeneracy
in Σ. This capability is fundamental in some applications, a fact which we illustrate in Section
3.1 by demonstrating the significant improvements in strong approximation errors delivered
by Theorem 2.1 relative to those obtained using prior results in the literature.
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Finally (iv), Theorem 2.1 gives a third-order strong approximation alongside the usual
second-order version considered in all prior literature. More precisely, we observe that an
analog of the term βp,2 is present in the classical Yurinskii coupling and comes from a Lin-
deberg telescoping sum argument, replacing random variables by Gaussians with the same
mean and variance to match the first and second moments. Whenever the third conditional
moments of X̃i are negligible (quantified by π3), this moment-matching argument can be
extended to third-order terms, giving a new quantity βp,3. At this level of generality, it is not
possible to obtain explicit bounds on π3 because we make no assumptions on the relationship
between the data Xi and the σ-algebras Hi (and therefore the variables X̃i resulting from
the martingale approximation). However, if X1, . . . ,Xn form martingale differences with
respect toH0, . . . ,Hn, then X̃i =Xi almost surely (see Section 2.3). In this setting, assuming
that E

[
Xκ
i | Hi−1

]
= 0 for each multi-index κ with |κ|= 3 (e.g. if the data is conditionally

symmetrically distributed around zero), then using βp,3 rather than βp,2 can give smaller cou-
pling approximation errors in (1). Such a refinement can be viewed as a strong approximation
counterpart to classical Edgeworth expansion methods, and we illustrate this phenomenon in
our upcoming applications to nonparametric inference (Section 4).

2.1. User-friendly formulation of the main result The result in Theorem 2.1 is given in
a somewhat implicit manner, involving infima over the free parameters t > 0 and M � 0,
and it is not clear how to compute these in general. In the upcoming Proposition 2.1, we
set M = ν2Id and approximately optimize over t > 0 and ν > 0, resulting in a simplified
and slightly weaker version of our main general result. In specific applications, where there
is additional knowledge of the quadratic variation structure, other choices of regularization
schemes may be more appropriate. Nonetheless, the choice M = ν2Id leads to arguably the
principal result of our work, due to its simplicity and utility in statistical applications. For
convenience, define the functions φp : {1,2, . . .}→R, for p ∈ [0,∞], by

φp(d) =

{√
pd2/p if p ∈ [1,∞),√
2 log 2d if p=∞.

With Z ∼N (0, Id) and t > 0, these functions satisfy P(‖Z‖p > t)≤ E[‖Z‖p]/t≤ φp(d)/t
(see Lemma SA.4 in the supplementary material [13]).

PROPOSITION 2.1 (Simplified strong approximation for vector-valued approximate martin-
gales). Assume the setup and notation of Theorem 2.1. For each η > 0 and p ∈ [1,∞], there
exists a random vector T | H0 ∼N (0,Σ) satisfying

P
(
‖S − T‖p > η

)
≤ 24

(
βp,2φp(d)2

η3

)1/3

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

+ P
(
‖U‖p >

η

6

)
.

If further π3 = 0, then also

P
(
‖S − T‖p > η

)
≤ 24

(
βp,3φp(d)3

η4

)1/4

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

+ P
(
‖U‖p >

η

6

)
.

Proposition 2.1 makes clear the potential benefit of a third-order coupling when π3 = 0, as
in this case the bound features β1/4

p,3 rather than β1/3
p,2 . If π3 is small but non-zero, an analogous

result can easily be derived by adjusting the optimal choices of t and ν, but we omit this
for clarity of notation. In applications (see Section 4.1), this reduction of the exponent can
provide a significant improvement in terms of the dependence of the bound on the sample
size n, the dimension d, and other problem-specific quantities. When using our results for
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strong approximation, it is usual to set p=∞ to bound the maximum discrepancy over the
entries of a vector (to construct uniform confidence sets, for example). In this setting, we have
that φ∞(d) =

√
2 log 2d has a sub-Gaussian slow-growing dependence on the dimension. The

remaining term depends on E[‖Ω‖2] and requires that the matrix Σ be a good approximation
of
∑n

i=1 Vi, while remaining H0-measurable. In some applications (such as factor modeling;
see Section 2.5), it can be shown that the quadratic variation

∑n
i=1 Vi remains random and

H0-measurable even in large samples, giving a natural choice for Σ.
In the next few sections, we continue to refine Proposition 2.1, presenting a sequence

of results with increasingly strict assumptions on the dependence structure of the data Xi.
These allow us to demonstrate the broad applicability of our main results, providing more
explicit bounds in settings which are likely to be of special interest. In particular, we consider
mixingales, martingales, and independent data, comparing our derived results with those in
the existing literature.

2.2. Mixingales In our first refinement, we provide a natural method for bounding the
martingale approximation error term U . Suppose that Xi form an `p-mixingale in L1(P) in
the sense that there exist non-negative c1, . . . , cn and ζ0, . . . , ζn such that for all 1≤ i≤ n and
0≤ r ≤ i,

E
[
‖E [Xi | Hi−r]‖p

]
≤ ciζr,(2)

and for all 1≤ i≤ n and 0≤ r ≤ n− i,

E
[∥∥Xi −E

[
Xi | Hi+r

]∥∥
p

]
≤ ciζr+1.(3)

These conditions are satisfied, for example, if Xi are integrable strongly α-mixing random
variables [40], or if Xi are generated by an auto-regressive or auto-regressive moving aver-
age process (see Section 2.5), among many other possibilities [9]. Then, in the notation of
Theorem 2.1, we have by Markov’s inequality that

P
(
‖U‖p >

η

6

)
≤ 6

η

n∑
i=1

E
[∥∥Xi −E [Xi | Hn]

∥∥
p

+
∥∥E [Xi | H0]

∥∥
p

]
≤ ζ

η
,

with ζ = 6
∑n

i=1 ci(ζi + ζn−i+1). Combining Proposition 2.1 with this martingale error bound
yields the following result for mixingales.

COROLLARY 2.1 (Strong approximation for vector-valued mixingales). Assume the setup
and notation of Theorem 2.1, and suppose that the mixingale conditions (2) and (3) hold. For
each η > 0 and p ∈ [1,∞] there exists a random vector T | H0 ∼N (0,Σ) satisfying

P
(
‖S − T‖p > η

)
≤ 24

(
βp,2φp(d)2

η3

)1/3

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

+
ζ

η
.

If further π3 = 0 then

P
(
‖S − T‖p > η

)
≤ 24

(
βp,3φp(d)3

η4

)1/4

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

+
ζ

η
.

The closest antecedent to Corollary 2.1 is found in Li and Liao [36, Theorem 4], who
also considered Yurinskii’s coupling for mixingales. Our result improves on this work in the
following manner: it removes any requirements on the minimum eigenvalue of the quadratic
variation of the mixingale sequence; it allows for general `p-norms with p ∈ [1,∞]; it estab-
lishes a coupling to a multivariate Gaussian mixture distribution in general; and it permits
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third-order couplings (when π3 = 0). These improvements have important practical impli-
cations as demonstrated in Section 2.5 and Section 4, where significantly better coupling
approximation errors are demonstrated for a variety of statistical applications. On the technical
side, our result is rigorously established using a conditional version of Strassen’s theorem, a
carefully crafted regularization argument, and a third-order Lindeberg method. Furthermore
(Remark 1), we clarify a technical issue in Li and Liao [36] surrounding the derivation of valid
probability bounds for ‖S − T‖p.

Corollary 2.1 focused on mixingales for simplicity, but, as previously discussed, any method
for constructing a martingale approximation X̃i and bounding the resulting error U could be
used instead in Proposition 2.1 to derive a similar result.

2.3. Martingales For our second refinement, suppose that Xi form martingale differences
with respect to Hi. In this case, E[Xi | Hn] = Xi and E[Xi | H0] = 0, so U = 0, and the
martingale approximation error term vanishes. Applying Proposition 2.1 in this setting directly
yields the following result.

COROLLARY 2.2 (Strong approximation for vector-valued martingales). With the setup
and notation of Theorem 2.1, suppose Xi is Hi-measurable with E[Xi | Hi−1] = 0 for 1≤
i≤ n. Then, for each η > 0 and p ∈ [1,∞], there is a random vector T | H0 ∼N (0,Σ) with

P
(
‖S − T‖p > η

)
≤ 24

(
βp,2φp(d)2

η3

)1/3

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

.(4)

If further π3 = 0 then

P
(
‖S − T‖p > η

)
≤ 24

(
βp,3φp(d)3

η4

)1/4

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

.(5)

The closest antecedents to Corollary 2.2 are Belloni and Oliveira [3] and Li and Liao
[36], who also (implicitly or explicitly) considered Yurinskii’s coupling for martingales. More
specifically, Li and Liao [36, Theorem 1] established an explicit `2-norm Yurinskii coupling for
martingales under a strong assumption on the minimum eigenvalue of the martingale quadratic
variation, while Belloni and Oliveira [3, Theorem 2.1] established a central limit theorem for
vector-valued martingale sequences employing the standard second-order Lindeberg method.
As such, their proof could be adapted to deduce a Yurinskii coupling for martingales with the
help of a conditional version of Strassen’s theorem and some additional nontrivial technical
work.

Corollary 2.2 improves over this prior work as follows. With respect to Li and Liao [36], our
result establishes an `p-norm Gaussian mixture Yurinskii coupling for martingales without any
requirements on the minimum eigenvalue of the martingale quadratic variation, and permits
a third-order coupling if π3 = 0. The first probability bound (4) in Corollary 2.2 gives the
same rate of strong approximation as that in Theorem 1 of Li and Liao [36] when p = 2,
with non-random Σ, and when the eigenvalues of a normalized version of Σ are bounded
away from zero. In Section 3.1 we demonstrate the crucial importance of removing this
eigenvalue lower bound restriction in applications involving nonparametric kernel estimators,
while in Section 4.1 we demonstrate how the availability of a third-order coupling (5) can give
improved approximation rates in applications involving nonparametric series estimators with
conditionally symmetrically distributed residual errors. Finally, our technical work improves
on Li and Liao [36] in two respects: (i) we employ a conditional version of Strassen’s theorem
(see Lemma SA.1 in the supplementary material [13]) to appropriately handle the conditioning
arguments; and (ii) we deduce valid probability bounds for ‖S − T‖p, as the following
Remark 1 makes clear.
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REMARK 1 (Yurinskii’s coupling and bounds in probability). Given a sequence of random
vectors Sn, Yurinskii’s method provides a coupling in the following form: for each n and
any η > 0, there exists a random vector Tn with P

(
‖Sn − Tn‖ > η

)
< rn(η), where rn(η)

is the approximation error. Crucially, each coupling variable Tn is a function of the desired
approximation level η and, as such, deducing bounds in probability on ‖Sn − Tn‖ requires
some extra care. One option is to select a sequence Rn→∞ and note that P

(
‖Sn − Tn‖>

r−1n (1/Rn)
)
< 1/Rn→ 0 and hence ‖Sn − Tn‖.P r

−1
n (1/Rn). In this case, Tn depends on

the choice of Rn, which can in turn typically be chosen to diverge slowly enough to cause no
issues in applications.

Technicalities akin to those outlined in Remark 1 have been both addressed and neglected
alike in the prior literature. Pollard [44, Chapter 10.4, Example 16] apparently misses this
subtlety, providing an inaccurate bound in probability based on the Yurinskii coupling. Li and
Liao [36] seem to make the same mistake in the proof of their Lemma A2, which invalidates
the conclusion of their Theorem 1. In contrast, Belloni et al. [4] and Belloni et al. [5] directly
provide bounds in oP instead of OP, circumventing these issues in a manner similar to our
approach involving a diverging sequence Rn.

To see how this phenomenon applies to our main results, observe that the second-order
martingale coupling given as (4) in Corollary 2.2 implies that for any Rn→∞,

‖S − T‖p .P β
1/3
p,2 φp(d)2/3Rn +E[‖Ω‖2]1/2φp(d)Rn.

This bound is comparable to that obtained by Li and Liao [36, Theorem 1] with p= 2, albeit
with their formulation missing the Rn correction terms. In Section 4.1 we discuss further
their (amended) result, in the setting of nonparametric series estimation. Our approach using
p=∞ obtains superior distributional approximation rates, alongside exhibiting various other
improvements such as the aforementioned third-order coupling.

Turning to the comparison with Belloni and Oliveira [3], our Corollary 2.2 again offers
the same improvements, with the only exception being that the authors did account for the
implications of a possibly vanishing minimum eigenvalue. However, their results exclusively
concern high-dimensional central limit theorems for vector-valued martingales, and there-
fore while their findings could in principle enable the derivation of a result similar to our
Corollary 2.2, this would require additional technical work on their behalf in multiple ways
(see the supplementary material [13]): (i) a correct application of a conditional version of
Strassen’s theorem (Lemma SA.1 in the supplementary material [13]); (ii) the development of
a third-order Borel set smoothing technique and associated `p-norm moment control (Lem-
mas SA.2, SA.3, and SA.4); (iii) a careful truncation scheme to account for Ω� 0; and (iv) a
valid third-order Lindeberg argument (Lemma SA.8); among others.

2.4. Independence As a final refinement, suppose that Xi are independent and zero-mean
conditionally on H0, and take Hi to be the filtration generated by X1, . . . ,Xi and H0 for
1 ≤ i ≤ n. Then, taking Σ =

∑n
i=1 Vi gives Ω = 0, and hence Corollary 2.2 immediately

yields the following result.

COROLLARY 2.3 (Strong approximation for sums of independent vectors). Assume the
setup of Theorem 2.1, and suppose Xi are independent given H0, with E[Xi | H0] = 0. Then,
for each η > 0 and p ∈ [1,∞], with Σ =

∑n
i=1 Vi, there exists T | H0 ∼N (0,Σ) satisfying

P
(
‖S − T‖p > η

)
≤ 24

(
βp,2φp(d)2

η3

)1/3

.(6)
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If further π3 = 0 then

P
(
‖S − T‖p > η

)
≤ 24

(
βp,3φp(d)3

η4

)1/4

.

Taking H0 to be trivial, the first inequality (6) in Corollary 2.3 provides an `p-norm
approximation analogous to that presented in [5]. By further restricting to p= 2, we recover
the original Yurinskii coupling as presented in Le Cam [35, Theorem 1] and Pollard [44,
Theorem 10]. Thus, in the independent data setting, our result improves on prior work as
follows: (i) it establishes a coupling to a multivariate Gaussian mixture distribution; and (ii) it
permits a third-order coupling if π3 = 0.

2.5. Stylized example: factor modeling In this section, we present a simple statistical
example of how our improvements over prior coupling results can have important theoretical
and practical implications. Consider the stylized factor model

Xi = Lfi + εi, 1≤ i≤ n,
with random variables L taking values in Rd×m, fi in Rm, and εi in Rd. We interpret fi as
a latent factor variable and L as a random factor loading, with independent (idiosyncratic)
disturbances (ε1, . . . , εn). See Fan et al. [30], and references therein, for a textbook review of
factor analysis in statistics and econometrics.

We employ the above factor model to give a first illustration of the applicability of our main
result Theorem 2.1, the user-friendly Proposition 2.1, and their specialized Corollaries 2.1–2.3.
We consider three different sets of conditions to demonstrate the applicability of each of
our corollaries for mixingales, martingales, and independent data, respectively. We assume
throughout that each εi is zero-mean and finite variance, and that (ε1, . . . , εn) is independent
of L and (f1, . . . , fn). Let Hi be the σ-algebra generated by L, (f1, . . . , fi) and (ε1, . . . , εi),
with H0 the σ-algebra generated by L alone.

(i) Independent data. Suppose that the factors (f1, . . . , fn) are independent conditional on
L and satisfy E[fi | L] = 0. Then, since Xi are independent conditional on H0 and with
E[Xi | H0] = E[Lfi + εi | L] = 0, we can apply Corollary 2.3 to

∑n
i=1Xi. In general,

we will obtain a coupling variable which has the Gaussian mixture distribution T | H0 ∼
N (0,Σ) where Σ =

∑n
i=1(LVar[fi | L]LT + Var[εi]). In the special case where L is

non-random and H0 is trivial, the coupling is Gaussian. Furthermore, if fi | L and εi
are symmetric about zero and bounded almost surely, then π3 = 0, and the coupling is
improved.

(ii) Martingales. Suppose instead that we assume only a martingale condition on the latent
factor variables so that E [fi | L,f1, . . . , fi−1] = 0. Then E[Xi | Hi−1] = LE [fi | Hi−1] =
0 and Corollary 2.2 is applicable to

∑n
i=1Xi. The preceding comments on Gaussian

mixture distributions and third-order couplings continue to apply.
(iii) Mixingales. Finally, assume that the factors follow the auto-regressive model fi =
Afi−1 +ui where A ∈Rm×m is non-random and (u1, . . . , un) are zero-mean, independent,
and independent of (ε1, . . . , εn). Then E [fi | f0] =Aif0, so taking p ∈ [1,∞] we see that
E
[
‖E[fi | f0]‖p

]
= E

[
‖Aif0‖p

]
≤ ‖A‖ipE[‖f0‖p], and that clearly fi − E[fi | Hn] = 0.

Thus, whenever ‖A‖p < 1, the geometric sum formula implies that the mixingale result
from Corollary 2.1 applies to

∑n
i=1Xi. The conclusions on Gaussian mixture distributions

and third-order couplings parallel the previous cases.

This simple application to factor modeling gives a preliminary illustration of the power of
our main results, encompassing settings which could not be handled by employing Yurinskii
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couplings available in the existing literature. Even with independent data, we offer new
Yurinskii couplings to Gaussian mixture distributions (due to the presence of the common
random factor loading L), which could be further improved whenever the factors and residuals
possess symmetric (conditional) distributions. Furthermore, our results do not impose any
restrictions on the minimum eigenvalue of Σ, thereby allowing for more general factor
structures. These improvements are maintained in the martingale, mixingale, and weakly
dependent stationary data settings.

3. Strong approximation for martingale empirical processes In this section, we
demonstrate how our main results can be applied to some more substantive problems in
statistics. Having until this point studied only finite-dimensional (albeit potentially high-
dimensional) random vectors, we now turn our attention to infinite-dimensional stochastic
processes. Specifically, we consider empirical processes of the form

S(f) =
n∑
i=1

f(Xi), f ∈ F ,

with F a problem-specific class of real-valued functions, where for each f ∈ F , the variables
f(X1), . . . , f(Xn) form martingale differences with respect to an appropriate filtration. We
construct (conditionally) Gaussian processes T (f) for which upper bounds on the uniform
coupling error supf∈F |S(f)− T (f)| are precisely quantified. We control the complexity of
F using metric entropy under Orlicz norms.

The novel strong approximation results which we present concern the entire martingale
empirical process (S(f) : f ∈ F), as opposed to just the scalar supremum of the empirical pro-
cess, supf∈F |S(f)|. This distinction has been carefully noted by Chernozhukov, Chetverikov
and Kato [18], who studied Gaussian approximation of empirical process suprema in the
independent data setting and wrote (p. 1565): “A related but different problem is that of ap-
proximating whole empirical processes by a sequence of Gaussian processes in the sup-norm.
This problem is more difficult than [approximating the supremum of the empirical process].”
Indeed, the results we establish in this section are for strong approximations of entire empirical
processes by sequences of Gaussian mixture processes in supremum norm, when the data has
a martingale difference structure (cf. Corollary 2.2). Our results can be further generalized
to approximate martingale empirical processes (including mixingale empirical processes;
cf. Corollary 2.1), but to reduce notation and the technical burden we do not consider this
extension.

3.1. Motivating example: kernel density estimation We begin with a brief study of a
canonical example of an empirical process which is non-Donsker (thus precluding the use
of uniform central limit theorems) due to the presence of a function class whose complexity
increases with the sample size: the kernel density estimator with i.i.d. scalar data. We give
an overview of our general strategy for strong approximation of stochastic processes via
discretization, and show explicitly in Lemma 3.1 how it is crucial that we do not impose lower
bounds on the eigenvalues of the discretized covariance matrix. Detailed calculations for this
section are relegated to the supplementary material [13] for conciseness.

Let X1, . . . ,Xn be i.i.d. Unif[0,1], take K(x) = 1√
2π
e−x

2/2 the Gaussian kernel and let
h ∈ (0,1] be a bandwidth. Then, for a ∈ (0,1/4] and x ∈ X = [a,1− a] to avoid boundary
issues, the kernel density estimator of the true density function g(x) = 1 is

ĝ(x) =
1

n

n∑
i=1

Kh(Xi − x), Kh(u) =
1

h
K
(u
h

)
.
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Consider establishing a strong approximation for the process (ĝ(x)−E[ĝ(x)] : x ∈ X ) which
is, upon rescaling, non-Donsker whenever the bandwidth decreases to zero in large samples.
To match notation with the upcoming general result for empirical processes, set fx(u) =
1
n(Kh(u−x)−E[Kh(Xi−x)]) so S(x) := S(fx) = ĝ(x)−E[ĝ(x)]. The next step is standard:
a mesh separates the local oscillations of the processes from the finite-dimensional coupling.
For δ ∈ (0,1/2), set N =

⌊
1 + 1−2a

δ

⌋
and Xδ = (a+ (j − 1)δ : 1≤ j ≤N). Letting T (x) be

the approximating stochastic process to be constructed, consider the following decomposition:

sup
x∈X

∣∣S(x)− T (x)
∣∣≤ sup
|x−x′|≤δ

∣∣S(x)− S(x′)
∣∣+ max

x∈Xδ

∣∣S(x)− T (x)
∣∣+ sup
|x−x′|≤δ

∣∣T (x)− T (x′)
∣∣.

Writing S(Xδ) for
(
S(x) : x ∈ Xδ

)
∈RN , and noting that this is a sum of i.i.d. random vectors,

we apply Corollary 2.3 as maxx∈Xδ |S(x)− T (x)| = ‖S(Xδ)− T (Xδ)‖∞. We thus obtain
that, for each η > 0, there exists a Gaussian vector T (Xδ) with the same covariance matrix as
S(Xδ) satisfying

P (‖S(Xδ)− T (Xδ)‖∞ > η)≤ 31

(
N log 2N

η3n2h2

)1/3

assuming that 1/h≥ log 2N . By the Vorob’ev–Berkes–Philipp theorem [26, Theorem 1.1.10],
T (Xδ) extends to a Gaussian process T (x) defined for all x ∈ X and with the same covariance
structure as S(x).

Next, it is not difficult to show by chaining with the Bernstein–Orlicz and sub-Gaussian
norms respectively [50, Section 2.2] that if log(N/h). logn and nh& logn,

sup
|x−x′|≤δ

∥∥S(x)− S(x′)
∥∥
∞ .P δ

√
logn

nh3
, and sup

|x−x′|≤δ

∥∥T (x)− T (x′)
∥∥
∞ .P δ

√
logn

nh3
.

Finally, for any sequence Rn→∞ (Remark 1), the resulting bound on the coupling error is

sup
x∈X

∣∣S(x)− T (x)
∣∣.P

(
N log 2N

n2h2

)1/3

Rn + δ

√
logn

nh3
,

where the mesh size δ is then optimized to obtain the tightest possible strong approximation.
In particular, since N . 1/δ, setting δ � n−1/8h5/8(logn)−1/8 yields

sup
x∈X

∣∣S(x)− T (x)
∣∣.P

(
(logn)3

n5h7

)1/8

Rn

which, after standardization by
√
nh, vanishes whenever Rn(logn)3/(nh3)→ 0. This is a

more stringent assumption on the bandwidth h than (logn)/(nh)→ 0 imposed by Giné,
Koltchinskii and Sakhanenko [32] and Cattaneo and Yu [14] when employing a Hungar-
ian construction [34], or (logn)6/(nh)→ 0 imposed by Chernozhukov, Chetverikov and
Kato [18] when studying in particular the Kolmogorov–Smirnov distance between the scalar
suprema. The difference in side restrictions is a result of the specific assumptions imposed
and coupling approaches used; see Section 4.2 for related discussion.

The discretization strategy outlined above is at the core of the proof strategy for our
upcoming Proposition 3.1. Since we will consider martingale empirical processes, our proof
will rely on Corollary 2.2, which, unlike the martingale Yurinskii coupling established by
Li and Liao [36], does not require a lower bound on the minimum eigenvalue of Σ. Using
the simple kernel density example just discussed, we now demonstrate precisely the crucial
importance of removing such eigenvalue conditions. The following Lemma 3.1 shows that the
discretized covariance matrix Σ = nhVar[S(Xδ)] has exponentially small eigenvalues, which
in turn will negatively affect the strong approximation bound if the Li and Liao [36] coupling
were to be used instead of the results in this paper.
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LEMMA 3.1 (Minimum eigenvalue of a kernel density estimator covariance matrix). The
minimum eigenvalue of Σ = nhVar[S(Xδ)] ∈RN×N satisfies the upper bound

λmin(Σ)≤ 2e−h
2/δ2 +

h

πaδ
e−a

2/h2 .

Figure 1 shows how the upper bound in Lemma 3.1 captures the behavior of the simulated
minimum eigenvalue of Σ. In particular, the smallest eigenvalue decays exponentially fast in
the discretization level δ and the bandwidth h. As seen in the calculations above, the coupling
rate depends on δ/h, while the bias will generally depend on h, implying that both δ and
h must converge to zero to ensure valid statistical inference. In general, this will lead to Σ
possessing extremely small eigenvalues, rendering strong approximation approaches such as
that of Li and Liao [36] ineffective in such scenarios.
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(a) Bandwidth h= 0.03
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Fig 1: Upper bounds on the minimum eigenvalue of the discretized covariance matrix in
kernel density estimation, with n= 100 and a= 0.2. Simulated: the kernel density estimator
is simulated, resampling the data 100 times to estimate its covariance. Computing matrix: the
minimum eigenvalue of the limiting covariance matrix Σ is computed explicitly. Upper bound:
the bound derived in Lemma 3.1 is shown.

The discussion in this section focuses on the strong approximation of the centered process
ĝ(x)−E[ĝ(x)]. In practice, the goal is often rather to approximate ĝ(x)−g(x). The difference
between these is captured by the smoothing bias E[ĝ(x)]− g(x), which is straightforward to
control with supx∈X

∣∣E[ĝ(x)]− g(x)
∣∣. h

ae
−a2/(2h2). See Section 4 for further discussion.

3.2. General result for martingale empirical processes We now give our general result on
a strong approximation for martingale empirical processes, obtained by applying the first result
(4) in Corollary 2.2 with p=∞ to a discretization of the empirical process, as in Section 3.1.
We then control the increments in the stochastic processes using chaining with Orlicz norms,
but note that other tools are available, including generalized entropy with bracketing [49] and
sequential symmetrization [45].

A class of functions is said to be pointwise measurable if it contains a countable subclass
which is dense under the pointwise convergence topology. For a finite class F , write F(x) =(
f(x) : f ∈ F

)
. Define the set of Orlicz functions

Ψ =
{
ψ : [0,∞)→ [0,∞) convex increasing, ψ(0) = 0, lim sup

x,y→∞

ψ(x)ψ(y)
ψ(Cxy) <∞ for C > 0

}
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and, for real-valued Y , the Orlicz norm |||Y |||ψ = inf {C > 0 : E [ψ(|Y |/C)≤ 1]} as in van der
Vaart and Wellner [50, Section 2.2].

PROPOSITION 3.1 (Strong approximation for martingale empirical processes). Let Xi be
random variables for 1≤ i≤ n taking values in a measurable space X , and F be a pointwise
measurable class of functions from X to R. Let H0, . . . ,Hn be a filtration such that each Xi

is Hi-measurable, with H0 the trivial σ-algebra, and suppose that E[f(Xi) | Hi−1] = 0 for
all f ∈ F . Define S(f) =

∑n
i=1 f(Xi) for f ∈ F and let Σ :F ×F →R be an almost surely

positive semi-definiteH0-measurable random function. Suppose that for a non-random metric
d on F , constant L and ψ ∈Ψ,

Σ(f, f)− 2Σ(f, f ′) + Σ(f ′, f ′) +
∣∣∣∣∣∣S(f)− S(f ′)

∣∣∣∣∣∣2
ψ
≤ L2d(f, f ′)2 a.s.(7)

Then for each η > 0 there is a process T (f) indexed by f ∈ F which, conditional on H0, is
zero-mean and Gaussian, satisfying E

[
T (f)T (f ′) | H0

]
= Σ(f, f ′) for all f, f ′ ∈ F , and for

all t > 0 has

P

(
sup
f∈F

∣∣S(f)− T (f)
∣∣≥Cψ(t+ η)

)
≤Cψ inf

δ>0
inf
Fδ

{
β
1/3
δ (log 2|Fδ|)1/3

η

+

(√
log 2|Fδ|

√
E [‖Ωδ‖2]

η

)2/3

+ψ

(
t

LJψ(δ)

)−1
+ exp

( −t2
L2J2(δ)2

)}
,

where Fδ is any finite δ-cover of (F , d) and Cψ is a constant depending only on ψ, with

βδ =

n∑
i=1

E
[
‖Fδ(Xi)‖22‖Fδ(Xi)‖∞ + ‖Vi(Fδ)1/2Zi‖22‖Vi(Fδ)1/2Zi‖∞

]
,

Vi(Fδ) = E
[
Fδ(Xi)Fδ(Xi)

T | Hi−1
]
, Ωδ =

n∑
i=1

Vi(Fδ)−Σ(Fδ),

Jψ(δ) =

∫ δ

0

ψ−1
(
Nε

)
dε+ δψ−1

(
N2
δ

)
, J2(δ) =

∫ δ

0

√
logNε dε,

where Nδ = N(δ,F , d) is the δ-covering number of (F , d) and Zi are i.i.d. N
(
0, I|Fδ|

)
independent of Hn. If Fδ is a minimal δ-cover of (F , d), then |Fδ|=Nδ .

Proposition 3.1 is given in a rather general form to accommodate a range of different
settings and applications. In particular, consider the following well-known Orlicz functions.

Polynomial: ψ(x) = xa for a≥ 2 has |||X|||2 ≤ |||X|||ψ and
√

logx≤√aψ−1(x).
Exponential: ψ(x) = exp(xa)− 1 for a ∈ [1,2] has |||X|||2 ≤ 2|||X|||ψ and

√
logx≤ ψ−1(x).

Bernstein: ψ(x) = exp
((√

1+2ax−1
a

)2)
− 1 for a > 0 has |||X|||2 ≤ (1 + a)|||X|||ψ and

√
logx ≤ ψ−1(x).

For these Orlicz functions and when Σ(f, f ′) = Cov[S(f), S(f ′)] is non-random, the terms
involving Σ in (7) can be controlled by the Orlicz ψ-norm term; similarly, J2 is bounded by
Jψ . Further, Cψ can be replaced by a universal constant C which does not depend on the
parameter a. See Section 2.2 in van der Vaart and Wellner [50] for details. If the conditional
third moments of Fδ(Xi) given Hi−1 are all zero (if f and Xi are appropriately symmetric,
for example), then the second inequality in Corollary 2.2 can be applied to obtain a tighter
coupling inequality; the details of this are omitted for brevity, and the proof would proceed in
exactly the same manner.
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In general, however, Proposition 3.1 allows for a random covariance function, yielding
a coupling to a stochastic process that is Gaussian only conditionally. Such a process can
equivalently be formally viewed as a mixture of Gaussian processes, writing T = Σ1/2Z with
an operator square root and where Z is a Gaussian white noise on F independent of H0. This
extension is in contrast with much of the existing strong approximation and empirical process
literature, which tends to focus on couplings and weak convergence results with marginally
Gaussian processes.

A similar approach was taken by Berthet and Mason [6], who used a Gaussian coupling
due to Zaitsev [54, 55] along with a discretization method to obtain strong approximations
for empirical processes with independent data. They handled fluctuations in the stochastic
processes with uniform L2 covering numbers and bracketing numbers where we opt instead for
chaining with Orlicz norms. Our version using the (martingale) Yurinskii coupling can improve
upon theirs in approximation rate even for independent data under certain circumstances, as
follows. Suppose the setup of Proposition 1 in Berthet and Mason [6]; that is, X1, . . . ,Xn are
i.i.d. and supF ‖f‖∞ ≤M , with the VC-type assumption supQN(ε,F , dQ)≤ c0ε−ν0 where
dQ(f, f ′)2 = EQ

[
(f − f ′)2

]
for a measure Q on X and M,c0, ν0 are constants. Then, using

uniform L2 covering numbers rather than Orlicz norm chaining in our Proposition 3.1 gives
the following. Firstly as Xi are i.i.d. we take Σ(f, f ′) = Cov[S(f), S(f ′)] so Ωδ = 0. Let Fδ
be a minimal δ-cover of (F , dP) with cardinality Nδ . δ−ν0 where δ→ 0. It is not difficult to
show that βδ . nδ−ν0

√
log(1/δ). Theorem 2.2.8 and Theorem 2.14.1 in van der Vaart and

Wellner [50] give

E

[
sup

dP(f,f ′)≤δ

(
|S(f)− S(f ′)|+ |T (f)− T (f ′)|

)]
. sup

Q

∫ δ

0

√
n logN(ε,F , dQ) dε

. δ
√
n log(1/δ),

where we used the VC-type property to bound the entropy integral. So by our Proposition 3.1,
for any sequence Rn→∞ (see Remark 1),

sup
f∈F

∣∣S(f)− T (f)
∣∣.P n

1/3δ−ν0/3
√

log(1/δ)Rn + δ
√
n log(1/δ).P n

2+ν0
6+2ν0

√
lognRn,

where we minimized over δ in the last step. Berthet and Mason [6, Proposition 1] achieved

sup
f∈F

∣∣S(f)− T (f)
∣∣.P n

5ν0
4+10ν0 (logn)

4+5ν0
4+10ν0 ,

showing that our approach achieves a better approximation rate whenever ν0 > 4/3. In
particular, our method is superior in richer function classes with larger VC-type dimension.
For example, if F is smoothly parametrized by θ ∈Θ⊆Rd where Θ contains an open set, then
ν0 > 4/3 corresponds to d≥ 2 and our rate is better as soon as the parameter space is more
than one-dimensional. The difference in approximation rate is due to Zaitsev’s coupling having
better dependence on the sample size but worse dependence on the dimension. In particular,
Zaitsev’s coupling is stated only in `2-norm and hence Berthet and Mason [6, Equation 5.3]
are compelled to use the inequality ‖ · ‖∞ ≤ ‖ · ‖2 in the coupling step, a bound which is loose
when the dimension of the vectors (here on the order of δ−ν0) is even moderately large. We
use the fact that our version of Yurinskii’s coupling applies directly to the supremum norm,
giving sharper dependence on the dimension.

In Section 4.2 we apply Proposition 3.1 to obtain strong approximations for local polynomial
estimators in the nonparametric regression setting. In contrast with the series estimators of
the upcoming Section 4.1, local polynomial estimators are not linearly separable and hence
cannot be analyzed directly using the finite-dimensional Corollary 2.2.
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4. Applications to nonparametric regression We illustrate the applicability of our pre-
vious strong approximation results with two substantial and classical examples in nonparamet-
ric regression estimation. Firstly, we present an analysis of partitioning-based series estimators,
in which we can apply the finite-dimensional result of Corollary 2.2 directly due to an intrinsic
linear separability property. Secondly, we consider local polynomial estimators, this time using
the stochastic process formulation in Proposition 3.1 due to the presence of a non-linearly
separable martingale empirical process.

4.1. Partitioning-based series estimators Partitioning-based least squares methods are
essential tools for estimation and inference in nonparametric regression, encompassing splines,
piecewise polynomials, compactly supported wavelets and decision trees as special cases. See
Cattaneo, Farrell and Feng [11] for further details and references throughout this section. We
illustrate the usefulness of Corollary 2.2 by deriving a Gaussian strong approximation for
partitioning series estimators based on multivariate martingale data. Proposition 4.1 shows
how we achieve the best known rate of strong approximation for independent data by imposing
an additional mild α-mixing condition to control the time series dependence of the regressors.

Consider the nonparametric regression setup with martingale difference residuals defined
by Yi = µ(Wi) + εi for 1≤ i≤ n where the regressors Wi have compact connected support
W ⊆ Rm, Hi is the σ-algebra generated by (W1, . . . ,Wi+1, ε1, . . . , εi), E[εi | Hi−1] = 0
and µ :W → R is the estimand. Let p(w) be a k-dimensional vector of bounded basis
functions onW which are locally supported on a quasi-uniform partition [11, Assumption 2].
Under minimal regularity conditions, the least-squares partitioning-based series estimator is
µ̂(w) = p(w)TĤ−1

∑n
i=1 p(Wi)Yi with Ĥ =

∑n
i=1 p(Wi)p(Wi)

T. The approximation power
of the estimator µ̂(w) derives from letting k→∞ as n→∞. The assumptions made on p(w)
are mild enough to accommodate splines, wavelets, piecewise polynomials, and certain types
of decision trees. For such a tree, p(w) is comprised of indicator functions over k axis-aligned
rectangles forming a partition ofW (a Haar basis), provided that the partitions are constructed
using independent data (e.g., with sample splitting).

Our goal is to approximate the law of the stochastic process (µ̂(w)−µ(w) :w ∈W), which
upon rescaling is typically not asymptotically tight as k→∞ and thus does not converge
weakly. Nevertheless, exploiting the intrinsic linearity of the estimator µ̂(w), we can apply
Corollary 2.2 directly to construct a Gaussian strong approximation. Specifically, we write

µ̂(w)− µ(w) = p(w)TH−1S + p(w)T
(
Ĥ−1 −H−1

)
S + Bias(w),

where H =
∑n

i=1E
[
p(Wi)p(Wi)

T
]

is the expected outer product matrix, S =
∑n

i=1 p(Wi)εi
is the score vector, and Bias(w) = p(w)TĤ−1

∑n
i=1 p(Wi)µ(Wi)− µ(w). Imposing some

mild time series restrictions and assuming stationarity for simplicity, it is not difficult to show
(see the supplementary material [13]) that ‖Ĥ−H‖1 .P

√
nk and supw∈W |Bias(w)|.P k

−γ

for some γ > 0, depending on the specific structure of the basis functions, the dimension m
of the regressors, and the smoothness of the regression function µ. Thus, it remains to study
the k-dimensional zero-mean martingale S by applying Corollary 2.2 with Xi = p(Wi)εi.
Controlling the convergence of the quadratic variation term E[‖Ω‖2] also requires some
time series dependence assumptions; we impose an α-mixing condition on (W1, . . . ,Wn) for
illustration [9].

PROPOSITION 4.1 (Strong approximation for partitioning series estimators). Consider
the nonparametric regression setup described above and further assume the following:

(i) (Wi, εi)1≤i≤n is strictly stationary.
(ii) W1, . . . ,Wn is α-mixing with mixing coefficients satisfying

∑∞
j=1α(j)<∞.
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(iii) Wi has a Lebesgue density onW which is bounded above and away from zero.
(iv) E

[
|εi|3

]
<∞ and E

[
ε2i | Hi−1

]
= σ2(Wi) is bounded away from zero.

(v) p(w) forms a basis with k features satisfying Assumptions 2 and 3 in Cattaneo, Farrell
and Feng [11].

Then, for any sequence Rn→∞, there is a zero-mean Gaussian process G(w) indexed onW
with Var[G(w)]� k

n satisfying Cov[G(w),G(w′)] = Cov[p(w)TH−1S, p(w′)TH−1S] and

sup
w∈W
|µ̂(w)− µ(w)−G(w)|.P

√
k

n

(
k3(logk)3

n

)1/6

Rn + sup
w∈W
|Bias(w)|

assuming the number of basis functions satisfies k3/n→ 0. If further E
[
ε3i | Hi−1

]
= 0 then

sup
w∈W
|µ̂(w)− µ(w)−G(w)|.P

√
k

n

(
k3(logk)2

n

)1/4

Rn + sup
w∈W
|Bias(w)|.

The core of the proof of Proposition 4.1 involves applying Corollary 2.2 with S =∑n
i=1 p(Wi)εi and p =∞ to construct T ∼ N

(
0,Var[S]

)
such that ‖S − T‖∞ is small,

and then setting G(w) = p(w)TH−1T . So long as the bias can be appropriately controlled,
this result allows for uniform inference procedures such as uniform confidence bands or shape
specification testing. The condition k3/n→ 0 is the same (up to logs) as that imposed by Cat-
taneo, Farrell and Feng [11] for i.i.d. data, which gives the best known strong approximation
rate for this problem. Thus, Proposition 4.1 gives the same best approximation rate, without
requiring any extra restrictions, for α-mixing time series data.

Our results improve substantially on Li and Liao [36, Theorem 1]: using the notation of
our Corollary 2.2, and with any sequence Rn→∞, a valid (see Remark 1) version of their
martingale Yurinskii coupling is

‖S − T‖2 .P d
1/2r1/2n + (Bnd)1/3Rn,

where Bn =
∑n

i=1E[‖Xi‖32] and rn is a term controlling the convergence of the quadratic
variation, playing a similar role to our term E[‖Ω‖2]. Under the assumptions of our
Proposition 4.1, applying this result with S =

∑n
i=1 p(Wi)εi yields a rate no better than

‖S − T‖2 .P (nk)1/3Rn. As such, they attain a rate of strong approximation no faster than

sup
w∈W
|µ̂(w)− µ(w)−G(w)|.P

√
k

n

(
k5

n

)1/6

Rn + sup
w∈W
|Bias(w)|.

Hence, for this approach to yield a valid strong approximation, the number of basis functions
must satisfy k5/n→ 0, a more restrictive assumption than our k3/n→ 0 (up to logs). This
difference is due to Li and Liao [36] using the `2-norm version of Yurinskii’s coupling rather
than the more recently established `∞-norm version. Further, our approach allows for an
improved rate of distributional approximation whenever the residuals have zero conditional
third moment.

To illustrate the statistical applicability of Proposition 4.1, consider constructing a feasible
uniform confidence band for the regression function µ, using standardization and Studenti-
zation for statistical power improvements. We assume throughout that the bias is negligible.
Proposition 4.1 and anti-concentration for Gaussian suprema [19, Corollary 2.1] yield a
distributional approximation for the supremum statistic whenever k3(logn)6/n→ 0, giving

sup
t∈R

∣∣∣∣∣P
(

sup
w∈W

∣∣∣∣∣ µ̂(w)− µ(w)√
ρ(w,w)

∣∣∣∣∣≤ t
)
− P

(
sup
w∈W

∣∣∣∣∣ G(w)√
ρ(w,w)

∣∣∣∣∣≤ t
)∣∣∣∣∣→ 0,
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where ρ(w,w′) = E[G(w)G(w′)]. Furthermore, using a Gaussian–Gaussian comparison result
[17, Lemma 3.1] and anti-concentration again, it is not difficult to show (see the proof of
Proposition 4.1) that with W = (W1, . . . ,Wn) and Y = (Y1, . . . , Yn),

sup
t∈R

∣∣∣∣∣P
(

sup
w∈W

∣∣∣∣∣ µ̂(w)− µ(w)√
ρ̂(w,w)

∣∣∣∣∣≤ t
)
− P

(
sup
w∈W

∣∣∣∣∣ Ĝ(w)√
ρ̂(w,w)

∣∣∣∣∣≤ t
∣∣∣∣W,Y

)∣∣∣∣∣→P 0,

where Ĝ(w) is a zero-mean Gaussian process conditional on W and Y with conditional
covariance function ρ̂(w,w′) = E

[
Ĝ(w)Ĝ(w′) |W,Y

]
= p(w)TĤ−1V̂ar[S]Ĥ−1p(w′) for

some estimator V̂ar[S] satisfying k(logn)2

n

∥∥V̂ar[S] − Var[S]
∥∥
2
→P 0. For example, one

could use the plug-in estimator V̂ar[S] =
∑n

i=1 p(Wi)p(Wi)
Tσ̂2(Wi) where σ̂2(w) satisfies

(logn)2 supw∈W |σ̂2(w)− σ2(w)| →P 0. This leads to the following feasible and asymptot-
ically valid 100(1− τ)% uniform confidence band for partitioning-based series estimators
based on martingale data.

PROPOSITION 4.2 (Feasible uniform confidence bands for partitioning series estimators).
Assume the setup as described above. Then

P
(
µ(w) ∈

[
µ̂(w)± q̂(τ)

√
ρ̂(w,w)

]
for all w ∈W

)
→ 1− τ,

where

q̂(τ) = inf

{
t ∈R : P

(
sup
w∈W

∣∣∣∣∣ Ĝ(w)√
ρ̂(w,w)

∣∣∣∣∣≤ t ∣∣∣W,Y

)
≥ τ
}

is the conditional quantile of the supremum of the Studentized Gaussian process. This can be
estimated by resampling the conditional law of Ĝ(w) |W,Y with a discretization of w ∈W .

4.2. Local polynomial estimators As a second example application we consider nonpara-
metric regression estimation with martingale data employing local polynomial methods [29].
In contrast with the partitioning-based series methods of Section 4.1, local polynomials induce
stochastic processes which are not linearly separable, allowing us to showcase the empirical
process result given in Proposition 3.1.

As before, suppose that Yi = µ(Wi) + εi for 1 ≤ i ≤ n where Wi has compact con-
nected support W ⊆ Rm, Hi is the σ-algebra generated by (W1, . . . ,Wi+1, ε1, . . . , εi),
E[εi | Hi−1] = 0, and µ :W → R is the estimand. Let K be a kernel function on Rm and
Kh(w) = h−mK(w/h) for some bandwidth h > 0. Take γ ≥ 0 and let k = (m+ γ)!/(m!γ!)
be the number of monomials up to order γ. Using multi-index notation, let p(w) be the k-
dimensional vector collecting the monomials wκ/κ! for 0≤ |κ| ≤ γ, and set ph(w) = p(w/h).
The local polynomial regression estimator of µ(w) is, with e1 = (1,0, . . . ,0)T ∈Rk,

µ̂(w) = eT1 β̂(w) where β̂(w) = arg min
β∈Rk

n∑
i=1

(
Yi − ph(Wi −w)Tβ

)2
Kh(Wi −w).

Our goal is again to approximate the distribution of the entire stochastic process, (µ̂(w)−
µ(w) :w ∈W), which upon rescaling is non-Donsker if h→ 0, and decomposes as follows:

µ̂(w)− µ(w) = eT1H(w)−1S(w) + eT1
(
Ĥ(w)−1 −H(w)−1

)
S(w) + Bias(w)

where Ĥ(w) =
∑n

i=1Kh(Wi − w)ph(Wi − w)ph(Wi − w)T, H(w) = E
[
Ĥ(w)

]
, S(w) =∑n

i=1Kh(Wi − w)ph(Wi − w)εi and Bias(w) = eT1 Ĥ(w)−1
∑n

i=1Kh(Wi − w)ph(Wi −
w)µ(Wi)− µ(w). A key distinctive feature of local polynomial regression is that both Ĥ(w)
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and S(w) are functions of the evaluation point w ∈W ; contrast this with the partitioning-
based series estimator discussed in Section 4.1, for which neither Ĥ nor S depend on w.
Therefore we use Proposition 3.1 to obtain a Gaussian strong approximation for the martingale
empirical process directly.

Under some mild regularity conditions, including stationarity for simplicity and an α-
mixing assumption on the time-dependence of the data, we first show supw∈W ‖Ĥ(w) −
H(w)‖2 .P

√
nh−2m logn. Further, supw∈W |Bias(w)|.P h

γ provided that the regression
function is sufficiently smooth. Thus it remains to analyze the martingale empirical process(
eT1H(w)−1S(w) :w ∈W

)
via Proposition 3.1 by setting

F =
{

(Wi, εi) 7→ eT1H(w)−1Kh(Wi −w)ph(Wi −w)εi :w ∈W
}
.

With this approach, we obtain the following result.

PROPOSITION 4.3 (Strong approximation for local polynomial estimators). Under the
nonparametric regression setup described above, assume further that

(i) (Wi, εi)1≤i≤n is strictly stationary.
(ii) (Wi, εi)1≤i≤n is α-mixing with mixing coefficients α(j)≤ e−2j/Cα for some Cα > 0.
(iii) Wi has a Lebesgue density onW which is bounded above and away from zero.
(iv) E

[
e|εi|/Cε

]
<∞ for Cε > 0 and E

[
ε2i | Hi−1

]
= σ2(Wi) is bounded away from zero.

(v) K is a non-negative Lipschitz compactly supported kernel with
∫
K(w) dw <∞.

Then for any Rn→∞, there is a zero-mean Gaussian process T (w) onW with Var[T (w)]�
1

nhm satisfying Cov[T (w), T (w′)] = Cov[eT1H(w)−1S(w), eT1H(w′)−1S(w′)] and

sup
w∈W
|µ̂(w)− µ(w)− T (w)|.P

Rn√
nhm

(
(logn)m+4

nh3m

) 1
2m+6

+ sup
w∈W
|Bias(w)|,

provided that the bandwidth sequence satisfies nh3m→∞.

If the residuals further satisfy E
[
ε3i | Hi−1

]
= 0, then a third-order Yurinskii coupling

delivers an improved rate of strong approximation for Proposition 4.3; this is omitted here for
brevity. For completeness, the proof of Proposition 4.3 verifies that if the regression function
µ(w) is γ times continuously differentiable onW then supw |Bias(w)|.P h

γ . Further, the
assumption that p(w) is a vector of monomials is unnecessary in general; any collection of
bounded linearly independent functions which exhibit appropriate approximation power will
suffice [28]. As such, we can encompass local splines and wavelets, as well as polynomials,
and also choose whether or not to include interactions between the regressor variables. The
bandwidth restriction of nh3m →∞ is analogous to that imposed in Proposition 4.1 for
partitioning-based series estimators, and as far as we know, has not been improved upon for
non-i.i.d. data.

Applying an anti-concentration result for Gaussian process suprema, such as Corollary 2.1
in Chernozhukov, Chetverikov and Kato [19], allows one to write a Kolmogorov–Smirnov
bound comparing the law of supw∈W |µ̂(w) − µ(w)| to that of supw∈W |T (w)|. With an
appropriate covariance estimator, we can further replace T (w) by a feasible version T̂ (w)
or its Studentized counterpart, enabling procedures for uniform inference analogous to the
confidence bands constructed in Section 4.1. We omit the details of this to conserve space but
note that our assumptions on Wi and εi ensure that Studentization is possible even when the
discretized covariance matrix has small eigenvalues (Section 3.1), as we normalize only by
the diagonal entries.
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In this setting of kernel-based local empirical processes, it is essential that our initial strong
approximation result (Corollary 2.2) does not impose a lower bound on the eigenvalues of the
variance matrix Σ. This effect was demonstrated by Lemma 3.1 and its surrounding discussion
in Section 3.1, and as such, the result of Li and Liao [36] is unsuited for this application
due to its strong minimum eigenvalue assumption. Finally, for the special case of i.i.d. data,
Chernozhukov, Chetverikov and Kato [18, Remark 3.1] achieve better rates for approximating
the scalar supremum of the t-process in Kolmogorov–Smirnov distance by bypassing the step
where we first approximate the entire stochastic process (see Section 3 for a discussion), while
Cattaneo and Yu [14] obtain better strong approximations for the entire stochastic process
under additional assumptions via a generalization of the celebrated Hungarian construction
[34, 47].

5. Conclusion In this paper we introduced as our main result a new version of Yurinskii’s
coupling which strictly generalizes all previously known forms of the result. Our formulation
gave a Gaussian mixture coupling for approximate martingale vectors in `p-norm where
1≤ p≤∞, with no restrictions on the minimum eigenvalues of the associated covariance
matrices. We further showed how to obtain an improved approximation whenever third
moments of the data are negligible. We demonstrated the applicability of this main result
by first deriving a user-friendly version, and then specializing it to mixingales, martingales,
and independent data, illustrating the benefits with a collection of simple factor models. We
then considered the problem of constructing uniform strong approximations for martingale
empirical processes, demonstrating how our new Yurinskii coupling can be employed in
a stochastic process setting. As substantive illustrative applications of our theory to some
well established problems in statistical methodology, we showed how to use our coupling
results for both vector-valued and empirical process-valued martingales in developing uniform
inference procedures for partitioning-based series estimators and local polynomial models in
nonparametric regression. At each stage we addressed issues of feasibility, compared our work
with the existing literature, and provided implementable statistical inference procedures.

APPENDIX A: HIGH-DIMENSIONAL CENTRAL LIMIT THEOREMS FOR
MARTINGALES

We present an application of our main results to central limit theorems for high-dimensional
martingale vectors. Our main contribution in this section is found in the generality of our
results, which are broadly applicable to martingale data and impose minimal extra assumptions.
In exchange for the scope and breadth of our results, we naturally do not necessarily achieve
state-of-the-art distributional approximation errors in certain special cases, such as with
independent data or when restricting the class of sets over which the central limit theorem
must hold. Extensions of our results to mixingales and other approximate martingales, along
with third-order refinements and Gaussian mixture coupling distributions, are possible through
methods akin to those used to establish our main results in Section 2, but we omit these for
succinctness.

Our approach to deriving a high-dimensional martingale central limit theorem proceeds as
follows. Firstly, the upcoming Proposition A.1 uses our main result on martingale coupling
(Corollary 2.2) to reduce the problem to that of providing anti-concentration results for high-
dimensional Gaussian vectors. We then demonstrate the utility of this reduction by employing
a few such anti-concentration methods from the existing literature. Proposition A.2 gives a
feasible implementation via the Gaussian multiplier bootstrap, enabling valid resampling-
based inference using the resulting conditional Gaussian distribution. In the supplementary
material [13] we provide an example application: distributional approximation for `p-norms
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of high-dimensional martingale vectors in Kolmogorov–Smirnov distance, relying on some
recent results concerning Gaussian perimetric inequalities [see 42, 31, and references therein].

We begin with some notation. Assume the setup of Corollary 2.2 and suppose Σ is non-
random. Let A be a class of measurable subsets of Rd and take T ∼N (0,Σ). For η > 0 and
p ∈ [1,∞], define the Gaussian perimetric (anti-concentration) quantity

∆p(A, η) = sup
A∈A

{
P(T ∈Aηp \A)∨ P(T ∈A \A−ηp )

}
,

withAηp = {x ∈Rd : ‖x−A‖p ≤ η},A−ηp =Rd\(Rd\A)ηp and ‖x−A‖p = infx′∈A ‖x−x′‖p.
This perimetric term allows one to convert coupling results to central limit theorems as follows.
Denote by Γp(η) the rate of strong approximation attained in Corollary 2.2:

Γp(η) = 24

(
βp,2φp(d)2

η3

)1/3

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

.

PROPOSITION A.1 (High-dimensional central limit theorem for martingales). Assume the
setup of Corollary 2.2, with Σ non-random. For a class A of measurable subsets of Rd,

(8) sup
A∈A

∣∣P(S ∈A)− P(T ∈A)
∣∣≤ inf

p∈[1,∞]
inf
η>0

{
Γp(η) + ∆p(A, η)

}
.

PROOF (Proposition A.1). This follows directly from Strassen’s theorem; see Lemma SA.1
in the supplementary materials [13]. �

The term ∆p(A, η) in (8) depends on the law of S only through the covariance matrix Σ,
and can be bounded using a selection of different results from the literature. For instance, with
A= C = {A⊆Rd is convex}, Nazarov [42] showed

(9) ∆2(C, η)� η
√
‖Σ−1‖F,

if Σ is invertible. Then Proposition A.1 with p= 2 combined with (9) yields for convex sets

sup
A∈C

∣∣P(S ∈A)− P(T ∈A)
∣∣. inf

η>0

{(
βp,2d

η3

)1/3

+

(
E[‖Ω‖2]d

η2

)1/3

+ η
√
‖Σ−1‖F

}
.

Alternatively, with A=R, the set of axis-aligned rectangles in Rd, Nazarov [42, 20] gives

∆∞(R, η)≤ η(
√

2 logd+ 2)

σmin
(10)

whenever minj Σjj ≥ σ2
min > 0. Proposition A.1 with p=∞ and (10) then yields

sup
A∈R

∣∣P(S ∈A)− P(T ∈A)
∣∣

. inf
η>0

{(
β∞,2 log 2d

η3

)1/3

+

(
E[‖Ω‖2] log 2d

η2

)1/3

+
η
√

log 2d

σmin

}
.

In situations where lim infnminj Σjj = 0, it may be possible in certain cases to regularize
the minimum variance away from zero and then apply a Gaussian–Gaussian rectangular
approximation result such as Lemma 2.1 from Chernozhukov, Chetverikov and Koike [21];
we delegate this to future work.

REMARK 2 (Comparisons with the literature). The literature on high-dimensional central
limit theorems has developed rapidly in recent years [see 10, 38, 21, 33, and references therein],
particularly for the special case of sums of independent random vectors on rectangular sets
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R. As a consequence, the results in this appendix are weaker in terms of dependence on
the dimension than those available in the literature. This is an inherent issue due to our
approach of first considering the class of all Borel sets and only afterwards specializing to
the smaller class R. In contrast, sharper results in the literature, for example, directly target
the Kolmogorov–Smirnov distance via Stein’s method and Slepian interpolation. The main
contribution of this section is therefore to obtain Gaussian distributional approximations for
high-dimensional martingale vectors, a setting in which alternative proof strategies are not
available.

As our final main result, we present a version of Proposition A.1 in which the covariance
matrix Σ is replaced by an estimator Σ̂. This ensures that the associated conditionally Gaussian
vector is feasible and can be resampled, allowing Monte Carlo quantile estimation via a
Gaussian multiplier bootstrap.

PROPOSITION A.2 (Bootstrap central limit theorem for martingales). Assume the setup
of Corollary 2.2, with Σ non-random, and let Σ̂ be an X-measurable random d× d positive
semi-definite matrix, where X = (X1, . . . ,Xn). For a class A of measurable subsets of Rd,

sup
A∈A

∣∣∣P(S ∈A)− P(Σ̂1/2Z ∈A
∣∣X)∣∣∣

≤ inf
p∈[1,∞]

inf
η>0

{
Γp(η) + 2∆p(A, η) + 2d exp

(
−η2

2d2/p
∥∥Σ̂1/2 −Σ1/2

∥∥2
2

)}
,

where Z ∼N (0, Id) is independent of X.

PROOF (Proposition A.2). Since Σ1/2Z is independent of X, we have
∣∣P(S ∈ A) −

P
(
Σ̂1/2Z ∈A

∣∣X)∣∣≤ ∣∣P(S ∈A)−P
(
Σ1/2Z ∈A

)∣∣+∣∣P(Σ1/2Z ∈A
)
−P
(
Σ̂1/2Z ∈A

∣∣X)∣∣.
The first term is bounded by Proposition A.1; the second by Lemma SA.5 in [13] conditional
on X. Taking a supremum over A and infima over p and η yields the result. �

A natural choice for Σ̂ in certain situations is the sample covariance matrix
∑n

i=1XiX
T
i , or

a correlation-corrected variant thereof. In general, whenever Σ̂ does not depend on unknown
quantities, one can sample from the law of T̂ = Σ̂1/2Z conditional on X to approximate the
distribution of S. Proposition A.2 verifies that this Gaussian multiplier bootstrap approach
is valid whenever Σ̂ and Σ are sufficiently close. To this end, Theorem X.1.1 in Bhatia [7]
gives

∥∥Σ̂1/2−Σ1/2
∥∥
2
≤
∥∥Σ̂−Σ

∥∥1/2
2

and Problem X.5.5 in the same gives
∥∥Σ̂1/2−Σ1/2

∥∥
2
≤∥∥Σ−1/2

∥∥
2

∥∥Σ̂− Σ
∥∥
2

when Σ is invertible. The latter often gives a tighter bound when the
minimum eigenvalue of Σ can be bounded away from zero, and consistency of Σ̂ can typically
be established using a range of matrix concentration inequalities.

In the supplementary material [13] we apply Proposition A.1 to the special case of approxi-
mating the distribution of the `p-norm of a high-dimensional martingale. Proposition A.2 is
then used to ensure that feasible distributional approximations are also available.
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SUPPLEMENTARY MATERIAL

Proofs of main results and additional technical material
The supplementary material [13] contains detailed proofs, along with results on martingale
`p-norm approximations and technical lemmas which may be of independent interest.
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