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APPENDIX SA: PROOFS OF MAIN RESULTS

SA.1. Preliminary lemmas We give a sequence of preliminary lemmas which are useful
for establishing our main results. Firstly, we present a conditional version of Strassen’s theorem
for the `p-norm [6, Theorem B.2; 16, Theorem 4], stated for completeness as Lemma SA.1.

LEMMA SA.1 (A conditional Strassen theorem for the `p-norm). Let (Ω,H,P) be a
probability space supporting the Rd-valued random variable X for some d ≥ 1. Let H′
be a countably generated sub-σ-algebra of H and suppose there exists a Unif[0,1] random
variable on (Ω,H,P) which is independent of the σ-algebra generated byX andH′. Consider
a regular conditional distribution F (· | H′) satisfying the following. Firstly, F (A | H′) is an
H′-measurable random variable for all Borel sets A ∈ B(Rd). Secondly, F (· | H′)(ω) is a
Borel probability measure on Rd for all ω ∈Ω. Taking η, ρ > 0 and p ∈ [1,∞], with E∗ the
outer expectation, if

E∗
[

sup
A∈B(Rd)

{
P
(
X ∈A | H′

)
− F

(
Aηp | H′

)}]
≤ ρ,

where Aηp = {x ∈ Rd : ‖x−A‖p ≤ η} and ‖x−A‖p = infx′∈A ‖x− x′‖p, then there exists
an Rd-valued random variable Y with Y | H′ ∼ F (· | H′) and P (‖X − Y ‖p > η)≤ ρ.

PROOF (Lemma SA.1). By Theorem B.2 in Chen and Kato [6], noting that the σ-algebra
generated by Z is countably generated and using the metric induced by the `p-norm. �

Next, we present in Lemma SA.2 an analytic result concerning the smooth approximation
of Borel set indicator functions, similar to that given in Belloni et al. [3, Lemma 39].
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LEMMA SA.2 (Smooth approximation of Borel indicator functions). Let A⊆ Rd be a
Borel set and Z ∼N (0, Id). For σ, η > 0 and p ∈ [1,∞], define

gAη(x) =

(
1− ‖x−A

η‖p
η

)
∨ 0 and fAησ(x) = E

[
gAη(x+ σZ)

]
.

Then f is infinitely differentiable and with ε= P(‖Z‖p > η/σ), for all k ≥ 0, any multi-index
κ= (κ1, . . . , κd) ∈Nd, and all x, y ∈Rd, we have |∂κfAησ(x)| ≤

√
κ!

σ|κ|
and∣∣∣∣∣fAησ(x+ y)−

k∑
|κ|=0

1

κ!
∂κfAησ(x)yκ

∣∣∣∣∣≤ ‖y‖p‖y‖k2σkη
√
k!
,

(1− ε)I
{
x ∈A

}
≤ fAησ(x)≤ ε+ (1− ε)I

{
x ∈A3η

}
.

PROOF (Lemma SA.2). Drop the subscripts on gAη and fAησ . By Taylor’s theorem with
Lagrange remainder, for a t ∈ [0,1],∣∣∣∣∣f(x+ y)−

k∑
|κ|=0

1

κ!
∂κf(x)yκ

∣∣∣∣∣≤
∣∣∣∣∣ ∑
|κ|=k

yκ

κ!

(
∂κf(x+ ty)− ∂κf(x)

)∣∣∣∣∣.
Now with φ(x) = 1√

2π
e−x

2/2,

f(x) = E
[
g(x+ σW )

]
=

∫
Rd
g(x+ σu)

d∏
j=1

φ(uj) du=
1

σd

∫
Rd
g(u)

d∏
j=1

φ

(
uj − xj
σ

)
du

and since the integrand is bounded, we exchange differentiation and integration to compute

∂κf(x) =

(
−1

σ

)|κ| 1

σd

∫
Rd
g(u)

d∏
j=1

∂κjφ

(
uj − xj
σ

)
du

=

(
−1

σ

)|κ|∫
Rd
g(x+ σu)

d∏
j=1

∂κjφ(uj) du

=

(
−1

σ

)|κ|
E

[
g(x+ σZ)

d∏
j=1

∂κjφ(Zj)

φ(Zj)

]
,(1)

where Z ∼N (0, Id). Recalling that |g(x)| ≤ 1 and applying the Cauchy–Schwarz inequality,

|∂κf(x)| ≤ 1

σ|κ|

d∏
j=1

E

[(
∂κjφ(Zj)

φ(Zj)

)2
]1/2
≤ 1

σ|κ|

d∏
j=1

√
κj ! =

√
κ!

σ|κ|
,

as the expected square of the Hermite polynomial of degree κj against the standard Gaussian
measure is κj !. By the reverse triangle inequality, |g(x+ ty)− g(x)| ≤ t‖y‖p/η, so by (1),∣∣∣∣∣∣

∑
|κ|=k

yκ

κ!

(
∂κf(x+ ty)− ∂κf(x)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|κ|=k

yκ

κ!

1

σ|κ|
E

[(
g(x+ ty+ σZ)− g(x+ σZ)

) d∏
j=1

∂κjφ(Zj)

φ(Zj)

]∣∣∣∣∣∣



SUPPLEMENT TO “YURINSKII’S COUPLING FOR MARTINGALES” 3

≤ t‖y‖p
σkη

E

∣∣∣∣∣ ∑
|κ|=k

yκ

κ!

d∏
j=1

∂κjφ(Zj)

φ(Zj)

∣∣∣∣∣
 .

Therefore by the Cauchy–Schwarz inequality,(∑
|κ|=k

yκ

κ!

(
∂κf(x+ ty)− ∂κf(x)

))2

≤
t2‖y‖2p
σ2kη2

E

( ∑
|κ|=k

yκ

κ!

d∏
j=1

∂κjφ(Zj)

φ(Zj)

)2


=
t2‖y‖2p
σ2kη2

∑
|κ|=k

∑
|κ′|=k

yκ+κ
′

κ!κ′!

d∏
j=1

E

[
∂κjφ(Zj)

φ(Zj)

∂κ
′
jφ(Zj)

φ(Zj)

]
.

Orthogonality of Hermite polynomials gives zero if κj 6= κ′j . By the multinomial theorem,∣∣∣∣∣∣f(x+ y)−
k∑
|κ|=0

1

κ!
∂κf(x)yκ

∣∣∣∣∣∣≤ ‖y‖pσkη

(∑
|κ|=k

y2κ

κ!

)1/2

≤ ‖y‖p
σkη
√
k!

(∑
|κ|=k

k!

κ!
y2κ

)1/2

≤ ‖y‖p‖y‖
k
2

σkη
√
k!
.

For the final result, since f(x) = E [g(x+ σZ)] and I
{
x ∈Aη

}
≤ g(x)≤ I

{
x ∈A2η

}
,

f(x)≤ P
(
x+ σZ ∈A2η

)
≤ P

(
‖Z‖p >

η

σ

)
+ I
{
x ∈A3η

}
P
(
‖Z‖p ≤

η

σ

)
= ε+ (1− ε)I

{
x ∈A3η

}
,

f(x)≥ P (x+ σZ ∈Aη)≤ I{x ∈A}P
(
‖Z‖p ≤

η

σ

)
= (1− ε)I{x ∈A} .

�

We provide a useful Gaussian inequality in Lemma SA.3 which helps bound the β∞,k
moment terms appearing in several places throughout the paper.

LEMMA SA.3 (A Gaussian inequality). Let X ∼N (0,Σ) where σ2
j = Σjj ≤ σ2 for all

1≤ j ≤ d. Then

E
[
‖X‖22‖X‖∞

]
≤ 4σ

√
log 2d

d∑
j=1

σ2
j and E

[
‖X‖32‖X‖∞

]
≤ 8σ

√
log 2d

( d∑
j=1

σ2
j

)3/2

.

PROOF (Lemma SA.3). By Cauchy–Schwarz, with k ∈ {2,3}, we have E
[
‖X‖k2‖X‖∞

]
≤

E
[
‖X‖2k2

]1/2E[‖X‖2∞]1/2. For the first term, by Hölder’s inequality and the fourth and sixth
moments of the normal distribution,

E
[
‖X‖42

]
= E

[( d∑
j=1

X2
j

)2
]

=
d∑
j=1

d∑
k=1

E
[
X2
jX

2
k

]
≤
( d∑
j=1

E
[
X4
j

] 1
2

)2

= 3

( d∑
j=1

σ2
j

)2

,

E
[
‖X‖62

]
=

d∑
j=1

d∑
k=1

d∑
l=1

E
[
X2
jX

2
kX

2
l

]
≤
( d∑
j=1

E
[
X6
j

] 1
3

)3

= 15

( d∑
j=1

σ2
j

)3

.
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For the second term, by Jensen’s inequality and the χ2 moment generating function,

E
[
‖X‖2∞

]
= E

[
max
1≤j≤d

X2
j

]
≤ 4σ2 log

d∑
j=1

E
[
eX

2
j /(4σ

2)
]
≤ 4σ2 log

d∑
j=1

√
2≤ 4σ2 log 2d.

�

We provide an `p-norm tail probability bound for Gaussian variables in Lemma SA.4,
motivating the definition of the term φp(d).

LEMMA SA.4 (Gaussian `p-norm bound). Let X ∼N (0,Σ) where Σ ∈Rd×d is positive
semi-definite. Then E [‖X‖p]≤ φp(d) max1≤j≤d

√
Σjj where φp(d) =

√
pd2/p for p ∈ [1,∞)

and φ∞(d) =
√

2 log 2d.

PROOF (Lemma SA.4). For p ∈ [1,∞), as each Xj is Gaussian, we have
(
E
[
|Xj |p

])1/p ≤√
pE[X2

j ] =
√
pΣjj . Therefore

E
[
‖X‖p

]
≤

(
d∑
j=1

E
[
|Xj |p

])1/p

≤

(
d∑
j=1

pp/2Σ
p/2
jj

)1/p

≤
√
pd2/p max

1≤j≤d

√
Σjj

by Jensen’s inequality. For p=∞, with σ2 = maxj Σjj , for t > 0,

E
[
‖X‖∞

]
≤ t log

d∑
j=1

E
[
e|Xj |/t

]
≤ t log

d∑
j=1

E
[
2eXj/t

]
≤ t log

(
2deσ

2/(2t2)
)
≤ t log 2d+

σ2

2t
,

again by Jensen’s inequality. Setting t= σ√
2 log 2d

gives E
[
‖X‖∞

]
≤ σ
√

2 log 2d. �

We give a Gaussian–Gaussian `p-norm approximation as Lemma SA.5, useful for ensuring
approximations remain valid upon substituting an estimator for the true variance matrix.

LEMMA SA.5 (Gaussian–Gaussian approximation in `p-norm). Let Σ1,Σ2 ∈ Rd×d be
positive semi-definite and take Z ∼N (0, Id). For p ∈ [1,∞] we have

P
(∥∥∥(Σ

1/2
1 −Σ

1/2
2

)
Z
∥∥∥
p
> t

)
≤ 2d exp

(
−t2

2d2/p
∥∥Σ

1/2
1 −Σ

1/2
2

∥∥2
2

)
.

PROOF (Lemma SA.5). Let Σ ∈ Rd×d be positive semi-definite and write σ2
j = Σjj . For

p ∈ [1,∞) by a union bound and Gaussian tail probabilities,

P
(∥∥Σ1/2Z

∥∥
p
> t
)

= P

(
d∑
j=1

∣∣∣∣(Σ1/2Z
)
j

∣∣∣∣p > tp

)
≤

d∑
j=1

P

(∣∣∣∣(Σ1/2Z
)
j

∣∣∣∣p > tpσpj
‖σ‖pp

)

=

d∑
j=1

P

(
|σjZj |p >

tpσpj
‖σ‖pp

)
=

d∑
j=1

P
(
|Zj |>

t

‖σ‖p

)
≤ 2d exp

(
−t2

2‖σ‖2p

)
.
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The same result holds for p=∞ since

P
(∥∥Σ1/2Z

∥∥
∞ > t

)
= P

(
max
1≤j≤d

∣∣∣∣(Σ1/2Z
)
j

∣∣∣∣> t

)
≤

d∑
j=1

P
(∣∣∣∣(Σ1/2Z

)
j

∣∣∣∣> t

)

=
d∑
j=1

P (|σjZj |> t)≤ 2
d∑
j=1

exp

(
−t2

2σ2
j

)
≤ 2d exp

(
−t2

2‖σ‖2∞

)
.

Now we apply this to the matrix Σ =
(
Σ

1/2
1 −Σ

1/2
2

)2. For p ∈ [1,∞),

‖σ‖pp =
d∑
j=1

(Σjj)
p/2 =

d∑
j=1

((
Σ

1/2
1 −Σ

1/2
2

)2)p/2
jj
≤ d max

1≤j≤d

((
Σ

1/2
1 −Σ

1/2
2

)2)p/2
jj

≤ d
∥∥∥(Σ1/2

1 −Σ
1/2
2

)2∥∥∥p/2
2

= d
∥∥Σ

1/2
1 −Σ

1/2
2

∥∥p
2

Similarly for p=∞ we have

‖σ‖∞ = max
1≤j≤d

(Σjj)
1/2 = max

1≤j≤d

((
Σ

1/2
1 −Σ

1/2
2

)2)1/2
jj
≤
∥∥Σ

1/2
1 −Σ

1/2
2

∥∥
2
.

Thus for all p ∈ [1,∞] we have ‖σ‖p ≤ d1/p
∥∥Σ

1/2
1 −Σ

1/2
2

∥∥
2
, with d1/∞ = 1. Hence

P
(∥∥∥(Σ

1/2
1 −Σ

1/2
2

)
Z
∥∥∥
p
> t

)
≤ 2d exp

(
−t2

2‖σ‖2p

)
≤ 2d exp

(
−t2

2d2/p
∥∥Σ

1/2
1 −Σ

1/2
2

∥∥2
2

)
.

�

We also include, for completeness, a variance bound (Lemma SA.6) and an exponential
concentration inequality (Lemma SA.7) for α-mixing random variables.

LEMMA SA.6 (Variance bounds for α-mixing random variables). Let X1, . . . ,Xn be
real-valued α-mixing random variables with mixing coefficients α(j). Then

(i) If for constants Mi we have |Xi| ≤Mi a.s. then

Var

[
n∑
i=1

Xi

]
≤ 4

∞∑
j=1

α(j)

n∑
i=1

M2
i .

(ii) If α(j)≤ e−2j/Cα then for any r > 2 there is a constant Cr depending only on r such that

Var

[
n∑
i=1

Xi

]
≤CrCα

n∑
i=1

E
[
|Xi|r

]2/r
.

PROOF (Lemma SA.6). Define α−1(t) = inf{j ∈ N : α(j) ≤ t} and Qi(t) = inf{s ∈ R :
P(|Xi|> s)≤ t}. By Corollary 1.1 in Rio [18] and Hölder’s inequality for r > 2,

Var

[
n∑
i=1

Xi

]
≤ 4

n∑
i=1

∫ 1

0

α−1(t)Qi(t)
2 dt

≤ 4
n∑
i=1

(∫ 1

0

α−1(t)
r
r−2 dt

) r−2
r
(∫ 1

0

|Qi(t)|r dt

) 2
r

dt.
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Now note that if U ∼Unif[0,1] then Qi(U) has the same distribution as Xi. Therefore

Var

[
n∑
i=1

Xi

]
≤ 4

(∫ 1

0

α−1(t)
r
r−2 dt

) r−2
r

n∑
i=1

E[|Xi|r]
2
r .

If α(j)≤ e−2j/Cα then α−1(t)≤ −Cα log t
2 so, for some constant Cr depending only on r,

Var

[
n∑
i=1

Xi

]
≤ 2Cα

(∫ 1

0

(− log t)
r
r−2 dt

) r−2
r

n∑
i=1

E[|Xi|r]
2
r ≤CrCα

n∑
i=1

E[|Xi|r]
2
r .

Alternatively, if for constants Mi we have |Xi| ≤Mi a.s. then

Var

[
n∑
i=1

Xi

]
≤ 4

∫ 1

0

α−1(t) dt
n∑
i=1

M2
i ≤ 4

∞∑
j=1

α(j)
n∑
i=1

M2
i .

�

LEMMA SA.7 (Exponential concentration inequalities for α-mixing random variables).
Let X1, . . . ,Xn be zero-mean real-valued variables with α-mixing coefficients α(j) ≤
e−2j/Cα .

(i) Suppose |Xi| ≤M a.s. for each 1≤ i≤ n. Then for all t > 0 there is a constant C1 with

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣>C1M
(√
nt+ (logn)(log logn)t

))
≤C1e

−t.

(ii) Suppose further
∑n

j=1 |Cov[Xi,Xj ]| ≤ σ2. Then for all t > 0 there is a constant C2 with

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣≥C2

(
(σ
√
n+M)

√
t+M(logn)2t

))
≤C2e

−t.

PROOF (Lemma SA.7). We apply results from Merlevède, Peligrad and Rio [15], adjusting
constants where necessary.

(i) By Theorem 1 in Merlevède, Peligrad and Rio [15],

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣> t

)
≤ exp

(
− C1t

2

nM2 +Mt(logn)(log logn)

)
.

Replace t by M
√
nt+M(logn)(log logn)t.

(ii) By Theorem 2 in Merlevède, Peligrad and Rio [15],

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣> t

)
≤ exp

(
− C2t

2

nσ2 +M2 +Mt(logn)2

)
.

Replace t by σ
√
n
√
t+M

√
t+M(logn)2t.

�
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SA.2. Main results To establish Theorem 2.1, we first give the analogous result for
martingales as Lemma SA.8. Our approach is similar to that used in modern versions of
Yurinskii’s coupling for independent data, as in Theorem 1 in Le Cam [13] and Theorem 10
in Chapter 10 of Pollard [17]. The proof of Lemma SA.8 relies on constructing a “modified”
martingale, which is close to the original martingale, but which has anH0-measurable terminal
quadratic variation.

LEMMA SA.8 (Strong approximation for vector-valued martingales). Let X1, . . . ,Xn

be Rd-valued square-integrable random vectors adapted to a countably generated filtration
H0, . . . ,Hn. Suppose that E[Xi | Hi−1] = 0 for all 1 ≤ i ≤ n and define the martingale
S =

∑n
i=1Xi. Let Vi = Var[Xi | Hi−1] and Ω =

∑n
i=1 Vi − Σ where Σ is a positive semi-

definite H0-measurable d× d random matrix. For each η > 0 and p ∈ [1,∞] there is T |
H0 ∼N (0,Σ) with

P
(
‖S − T‖p > 5η

)
≤ inf

t>0

{
2P
(
‖Z‖p > t

)
+ min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}}
+ inf
M�0

{
2γ(M) + δp(M,η) + εp(M,η)

}
,

where the second infimum is over all positive semi-definite d× d non-random matrices, and

βp,k =
n∑
i=1

E
[
‖Xi‖k2‖Xi‖p + ‖V 1/2

i Zi‖k2‖V
1/2
i Zi‖p

]
, γ(M) = P

(
Ω�M

)
,

δp(M,η) = P
(∥∥((Σ +M)1/2 −Σ1/2

)
Z
∥∥
p
≥ η
)
, π3 =

n+m∑
i=1

∑
|κ|=3

E
[∣∣E [Xκ

i | Hi−1]
∣∣],

εp(M,η) = P
(∥∥(M −Ω)1/2Z

∥∥
p
≥ η, Ω�M

)
,

for k ∈ {2,3}, with Z,Z1, . . . ,Zn i.i.d. standard Gaussian on Rd independent of Hn.

PROOF (Lemma SA.8).

Part 1: constructing a modified martingale
Take M � 0 a fixed positive semi-definite d × d matrix. We start by constructing a new
martingale based on S whose quadratic variation is Σ +M . Take m≥ 1 and define

Hk = Σ +M −
k∑
i=1

Vi, τ = sup
{
k ∈ {0,1, . . . , n} :Hk � 0

}
,

X̃i =XiI{i≤ τ}+
1√
m
H1/2
τ ZiI{n+ 1≤ i≤ n+m}, S̃ =

n+m∑
i=1

X̃i,

where Zn+1, . . . ,Zn+m is an i.i.d. sequence of standard Gaussian vectors in Rd independent
of Hn, noting that H0 = Σ +M � 0 a.s. Define the filtration H̃0, . . . , H̃n+m, where H̃i =Hi
for 0≤ i≤ n and is the σ-algebra generated by Hn and Zn+1, . . . ,Zi for n+ 1≤ i≤ n+m.
Observe that τ is a stopping time with respect to H̃i because Hi+1 −Hi =−Vi+1 � 0 almost
surely, so {τ ≤ i} = {Hi+1 � 0} for 0 ≤ i < n. This depends only on V1, . . . , Vi+1 and Σ

which are H̃i-measurable. Similarly, {τ = n}= {Hn � 0} ∈ H̃n−1. Let Ṽi = ViI{i≤ τ} for
1≤ i≤ n and Ṽi =Hτ/m for n+ 1≤ i≤ n+m. Note that X̃i is H̃i-measurable and Ṽi is
H̃i−1-measurable. Further, E

[
X̃i | H̃i−1

]
= 0 and E

[
X̃iX̃

T
i | H̃i−1

]
= Ṽi.
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Part 2: bounding the difference between the original and modified martingales
By the triangle inequality,

‖S − S̃‖p ≤

∥∥∥∥∥
n∑

i=τ+1

Xi

∥∥∥∥∥
p

+

∥∥∥∥∥ 1√
m

m∑
i=n+1

H1/2
τ Zi

∥∥∥∥∥
p

.

The first term on the right vanishes on {τ = n}= {Hn � 0}= {Ω�M}. For the second term,
note that 1√

m

∑m
i=n+1H

1/2
τ Zi is distributed as H1/2

τ Z , where Z is an independent standard

Gaussian. Also P
(
‖H1/2

τ Z‖p > η
)
≤ P

(
‖H1/2

n Z‖p > η, Ω�M) + P
(
Ω�M

)
. Therefore

P
(
‖S − S̃‖p > η

)
≤ 2P

(
Ω�M

)
+ P
(
‖(M −Ω)1/2Z‖p > η, Ω�M

)
= 2γ(M) + εp(M,η).(2)

Part 3: strong approximation of the modified martingale
Let Z̃1, . . . , Z̃n+m be i.i.d. N (0, Id) and independent of H̃n+m. Define X̌i = Ṽ

1/2
i Z̃i and

Š =
∑n+m

i=1 X̌i. Fix a Borel set A⊆Rd and σ, η > 0 and let f = fAησ be the function defined
in Lemma SA.2. By the Lindeberg method, write the telescoping sum

E
[
f
(
S̃
)
− f
(
Š
)
| H0

]
=

n+m∑
i=1

E
[
f
(
Yi + X̃i

)
− f
(
Yi + X̌i

)
| H0

]
where Yi =

∑i−1
j=1 X̃j +

∑n+m
j=i+1 X̌j . By Lemma SA.2 we have for k ≥ 0∣∣∣∣∣E[f(Yi + X̃i)− f(Yi + X̌i) | H0

]
−

k∑
|κ|=0

1

κ!
E
[
∂κf(Yi)

(
X̃κ
i − X̌κ

i

) ∣∣H0

] ∣∣∣∣∣
≤ 1

σkη
√
k!
E
[
‖X̃i‖p‖X̃i‖k2 + ‖X̌i‖p‖X̌i‖k2

∣∣H0

]
.

With k ∈ {2,3}, we bound each summand. With |κ| = 0 we have X̃κ
i = X̌κ

i , so consider
|κ|= 1. Noting that

∑n+m
i=1 Ṽi = Σ +M , define

Ỹi =

i−1∑
j=1

X̃j + Z̃i

(
n+m∑
j=i+1

Ṽj

)1/2

=

i−1∑
j=1

X̃j + Z̃i

(
Σ +M −

i∑
j=1

Ṽj

)1/2

and let Ȟi be the σ-algebra generated by H̃i−1 and Z̃i. Note that Ỹi is Ȟi-measurable and that
Yi and Ỹi have the same distribution conditional on H̃n+m. So∑

|κ|=1

1

κ!
E
[
∂κf(Yi)

(
X̃κ
i − X̌κ

i

) ∣∣H0

]
= E

[
∇f(Yi)

T
(
X̃i − Ṽ 1/2

i Z̃i
) ∣∣H0

]
= E

[
∇f(Ỹi)

TX̃i

∣∣H0

]
−E

[
∇f(Yi)

TṼ
1/2
i Z̃i

∣∣H0

]
= E

[
∇f(Ỹi)

TE
[
X̃i | Ȟi

] ∣∣H0

]
−E

[
Z̃i

]
E
[
∇f(Yi)

TṼ
1/2
i

∣∣H0

]
= E

[
∇f(Ỹi)

TE
[
X̃i | H̃i−1

] ∣∣H0

]
− 0 = 0.

Next, if |κ|= 2 then∑
|κ|=2

1

κ!
E
[
∂κf(Yi)

(
X̃κ
i − X̌κ

i

) ∣∣H0

]
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=
1

2
E
[
X̃T
i ∇2f(Yi)X̃i − Z̃T

i Ṽ
1/2
i ∇2f(Yi)Ṽ

1/2
i Z̃i

∣∣H0

]
=

1

2
E
[
E
[
Tr∇2f(Ỹi)X̃iX̃

T
i

∣∣ Ȟi] ∣∣H0

]
− 1

2
E
[
Tr Ṽ

1/2
i ∇2f(Yi)Ṽ

1/2
i

∣∣H0

]
E
[
Z̃iZ̃

T
i

]
=

1

2
E
[
Tr∇2f(Yi)E

[
X̃iX̃

T
i

∣∣ H̃i−1] ∣∣H0

]
− 1

2
E
[
Tr∇2f(Yi)Ṽi

∣∣H0

]
= 0.

Finally if |κ|= 3, then since X̌i ∼N (0, Ṽi) conditional on H̃n+m, we have by symmetry of
the Gaussian distribution and Lemma SA.2,∣∣∣∣∣∣

∑
|κ|=3

1

κ!
E
[
∂κf(Yi)

(
X̃κ
i − X̌κ

i

) ∣∣H0

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|κ|=3

1

κ!

(
E
[
∂κf(Ỹi)E

[
X̃κ
i | Ȟi

] ∣∣H0

]
−E

[
∂κf(Yi)E

[
X̌κ
i

∣∣ H̃n+m] ∣∣H0

])∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|κ|=3

1

κ!
E
[
∂κf(Yi)E

[
X̃κ
i | H̃i−1

] ∣∣H0

]∣∣∣∣∣∣≤ 1

σ3

∑
|κ|=3

E
[∣∣∣E[X̃κ

i | H̃i−1
]∣∣∣ ∣∣H0

]
.

Combining these and summing over i with k = 2 shows

E
[
f
(
S̃
)
− f
(
Š
) ∣∣H0

]
≤ 1

σ2η
√

2

n+m∑
i=1

E
[
‖X̃i‖p‖X̃i‖22 + ‖X̌i‖p‖X̌i‖22

∣∣H0

]
On the other hand, taking k = 3 gives

E
[
f
(
S̃
)
− f
(
Š
) ∣∣H0

]
≤ 1

σ3η
√

6

n+m∑
i=1

E
[
‖X̃i‖p‖X̃i‖32 + ‖X̌i‖p‖X̌i‖32

∣∣H0

]

+
1

σ3

n+m∑
i=1

∑
|κ|=3

E
[∣∣∣E[X̃κ

i | H̃i−1
]∣∣∣ ∣∣H0

]
.

For 1 ≤ i ≤ n we have ‖X̃i‖ ≤ ‖Xi‖ and ‖X̌i‖ ≤ ‖V 1/2
i Z̃i‖. For n + 1 ≤ i ≤ n + m we

have X̃i = H
1/2
τ Zi/

√
m and X̌i = H

1/2
τ Z̃i/

√
m which are equal in distribution given H0.

Therefore with

β̃p,k =

n∑
i=1

E
[
‖Xi‖p‖Xi‖k2 + ‖V 1/2

i Zi‖p‖V 1/2
i Zi‖k2

∣∣H0

]
,

we have, since k ∈ {2,3},
n+m∑
i=1

E
[
‖X̃i‖p‖X̃i‖k2 + ‖X̌i‖p‖X̌i‖k2

∣∣H0

]
≤ β̃p,k +

2√
m
E
[
‖H1/2

τ Z‖p‖H1/2
τ Z‖k2

∣∣H0

]
.

Since Hi is weakly decreasing under the semi-definite partial order, we have Hτ �H0 = Σ +

M implying that |(Hτ )jj | ≤ ‖Σ +M‖max and E
[
|(H1/2

τ Z)j |3 | H0

]
≤
√

8/π ‖Σ +M‖3/2max.
Hence as p≥ 1 and k ∈ {2,3},

E
[
‖H1/2

τ Z‖p‖H1/2
τ Z‖k2

∣∣H0

]
≤ E

[
‖H1/2

τ Z‖k+1
1

∣∣H0

]
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≤ dk+1 max
1≤j≤d

E
[
|(H1/2

τ Z)j |k+1
∣∣H0

]
≤ 3d4 ‖Σ +M‖(k+1)/2

max ≤ 6d4 ‖Σ‖(k+1)/2
max + 6d4‖M‖.

Assuming some Xi is not identically zero so the result is non-trivial, and supposing that Σ is
bounded a.s. (replacing Σ by Σ · I{‖Σ‖max ≤C} for an appropriately large C if necessary),
take m large enough that

2√
m
E
[
‖H1/2

τ Z‖p‖H1/2
τ Z‖k2

∣∣H0

]
≤ 1

4
βp,k.(3)

Further, if |κ|= 3 then
∣∣E[X̃κ

i | H̃i−1
]∣∣≤ ∣∣E [Xκ

i | Hi−1]
∣∣ for 1≤ i≤ n while by symmetry

of the Gaussian distribution E
[
X̃κ
i | H̃i−1

]
= 0 for n+ 1≤ i≤ n+m. Hence with

π̃3 =
n+m∑
i=1

∑
|κ|=3

E
[∣∣E [Xκ

i | Hi−1]
∣∣ | H0

]
,

we have

E
[
f
(
S̃
)
− f
(
Š
) ∣∣H0

]
≤min

{
3β̃p,2
4σ2η

+
βp,2
4σ2η

,
3β̃p,3
4σ3η

+
βp,3
4σ3η

+
π̃3
σ3

}
.

Along with Lemma SA.2, and with σ = η/t and ε= P(‖Z‖p > t), we conclude that

P(S̃ ∈A | H0) = E
[
I{S̃ ∈A} − f(S̃) | H0

]
+E

[
f(S̃)− f

(
Š
)
| H0

]
+E

[
f
(
Š
)
| H0

]
≤ εP(S̃ ∈A | H0) + min

{
3β̃p,2
4σ2η

+
βp,2
4σ2η

,
3β̃p,3
4σ3η

+
βp,3
4σ3η

+
π̃3
σ3

}
+ ε+ (1− ε)P

(
Š ∈A3η

p | H0

)
≤ P

(
Š ∈A3η

p | H0

)
+ 2P(‖Z‖p > t) + min

{
3β̃p,2t

2

4η3
+
βp,2t

2

4η3
,
3β̃p,3t

3

4η4
+
βp,3t

3

4η4
+
π̃3t

3

η3

}
.

Taking a supremum and an outer expectation yields with βp,k = E
[
β̃p,k

]
and π3 = E[π̃3],

E∗
[

sup
A∈B(Rd)

{
P(S̃ ∈A | H0)− P

(
Š ∈A3η

p | H0

)}]

≤ 2P(‖Z‖p > t) + min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}
.

Finally, since Š =
∑n

i=1 Ṽ
1/2
i Z̃i ∼N (0,Σ +M) conditional on H0, the conditional Strassen

theorem in Lemma SA.1 ensures the existence of S̃ and T̃ | H0 ∼N (0,Σ +M) such that

P
(
‖S̃ − T̃‖p > 3η

)
≤ inf

t>0

{
2P(‖Z‖p > t) + min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}}
,(4)

since the infimum is attained by continuity of ‖Z‖p.
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Part 4: conclusion
We show how to write T̃ = (Σ +M)1/2W where W ∼N (0, Id) and use this representation to
construct T | H0 ∼N (0,Σ). By the spectral theorem, let Σ +M = UΛUT where U is a d×d
orthogonal random matrix and Λ is a diagonal d× d random matrix with diagonal entries
satisfying λ1 ≥ · · · ≥ λr > 0 and λr+1 = · · ·= λd = 0 where r = rank(Σ +M). Let Λ+ be
the Moore–Penrose pseudo-inverse of Λ (obtained by inverting its non-zero elements) and
define W = U(Λ+)1/2UTT̃ +UW̃ , where the first r elements of W̃ are zero and the last d−r
elements are i.i.d. N (0,1) independent from T̃ . Then, it is easy to check that W ∼N (0, Id)
and that T̃ = (Σ +M)1/2W . Now define T = Σ1/2W so

(5) P
(
‖T − T̃‖p > η

)
= P

(∥∥((Σ +M)1/2 −Σ1/2
)
W
∥∥
p
> η
)

= δp(M,η).

Finally (2), (4), (5), the triangle inequality and a union bound conclude the proof since by
taking an infimum over M � 0, and by possibly reducing the constant of 1/4 in (3) to account
for this infimum being potentially unattainable,

P
(
‖S − T‖p > 5η

)
≤ P

(
‖S̃ − T̃‖p > 3η

)
+ P
(
‖S − S̃‖p > η

)
+ P
(
‖T − T̃‖p > η

)
≤ inf

t>0

{
2P
(
‖Z‖p > t

)
+ min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}}
+ inf
M�0

{
2γ(M) + δp(M,η) + εp(M,η)

}
.

�

Applying Lemma SA.8 and the martingale approximation immediately yields Theorem 2.1.

PROOF (Theorem 2.1). Apply Lemma SA.8 to the martingale
∑n

i=1 X̃i, noting that S −∑n
i=1 X̃i = U . �

Bounding the quantities in Theorem 2.1 gives a user-friendly version as Proposition 2.1.

PROOF (Proposition 2.1). We set M = ν2Id and bound each term appearing on the right-
hand side of the main inequality in Proposition 2.1

Part 1: bounding P(‖Z‖p > t)
By Markov’s inequality and Lemma SA.4, we have P(‖Z‖p > t)≤ E[‖Z‖p]/t≤ φp(d)/t.

Part 2: bounding γ(M)

With M = ν2Id and by Markov, γ(M) = P
(
Ω�M

)
= P

(
‖Ω‖2 > ν2

)
≤ ν−2E[‖Ω‖2].

Part 3: bounding δ(M,η)
By Markov’s inequality and Lemma SA.4, using maxj |Mjj | ≤ ‖M‖2 for M � 0,

δp(M,η) = P
(∥∥((Σ +M)1/2 −Σ1/2

)
Z
∥∥
p
≥ η
)
≤ φp(d)

η
E
[∥∥(Σ +M)1/2 −Σ1/2

∥∥
2

]
.

For semi-definite matrices the eigenvalue operator commutes with smooth matrix functions so

‖(Σ +M)1/2 −Σ1/2‖2 = max
1≤j≤d

∣∣∣∣√λj(Σ) + ν2 −
√
λj(Σ)

∣∣∣∣≤ ν
and hence δp(M,η)≤ φp(d)ν/η.
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Part 4: bounding ε(M,η)

Note that (M −Ω)1/2Z is a centered Gaussian conditional on Hn, on the event {Ω�M}.
We thus have by Markov’s inequality, Lemma SA.4 and Jensen’s inequality that

εp(M,η) = P
(∥∥(M −Ω)1/2Z

∥∥
p
≥ η, Ω�M

)
≤ 1

η
E
[
I{Ω�M}E

[∥∥(M −Ω)1/2Z
∥∥
p
| Hn

]]
≤ φp(d)

η
E
[
I{Ω�M} max

1≤j≤d

√
(M −Ω)jj

]
≤ φp(d)

η
E
[√
‖M −Ω‖2

]
≤ φp(d)

η
E
[√
‖Ω‖2 + ν

]
≤ φp(d)

η

(√
E[‖Ω‖2] + ν

)
.

Thus by Theorem 2.1 and the previous parts,

P
(
‖S − T‖p > 6η

)
≤ inf

t>0

{
2P
(
‖Z‖p > t

)
+ min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}}
+ inf
M�0

{
2γ(M) + δp(M,η) + εp(M,η)

}
+ P
(
‖U‖p > η

)
≤ inf

t>0

{
2φp(d)

t
+ min

{
βp,2t

2

η3
,
βp,3t

3

η4
+
π3t

3

η3

}}
+ inf
ν>0

{
2E [‖Ω‖2]

ν2
+

2φp(d)ν

η

}
+
φp(d)

√
E [‖Ω‖2]
η

+ P
(
‖U‖p > η

)
.

In general, set t= 21/3φp(d)1/3β
−1/3
p,2 η and ν = E[‖Ω‖2]1/3φp(d)−1/3η1/3, replacing η with

η/6 to see

P
(
‖S − T‖p > 6η

)
≤ 24

(
βp,2φp(d)2

η3

)1/3

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

+ P
(
‖U‖p >

η

6

)
.

Whenever π3 = 0 we can set t= 21/4φp(d)1/4β
−1/4
p,3 η, and with ν as above we obtain

P
(
‖S − T‖p > η

)
≤ 24

(
βp,3φp(d)3

η4

)1/4

+ 17

(
E [‖Ω‖2]φp(d)2

η2

)1/3

+ P
(
‖U‖p >

η

6

)
.

�

After establishing Proposition 2.1, Corollaries 2.1, 2.2 and 2.3 follow as in the main text.

PROOF (Corollary 2.1). Proposition 2.1 with P(‖U‖p > η
6 )≤ 6

η

∑n
i=1 ci(ζi + ζn−i+1). �

PROOF (Corollary 2.2). By Proposition 2.1 with U = 0 a.s. �

PROOF (Corollary 2.3). By Corollary 2.2 with Ω = 0 a.s. �

We conclude this section with a discussion expanding on the comments made in Remark 1
on deriving bounds in probability from Yurinskii’s coupling. Consider for illustration the
independent data second-order result given in Corollary 2.3: for each η > 0, there exists
Tn | H0 ∼N (0,Σ) satisfying

P
(
‖Sn − Tn‖p > η

)
≤ 24

(
βp,2φp(d)2

η3

)1/3

,
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where here we make explicit the dependence on the sample size n for clarity. The naive
approach to converting this into a probability bound for ‖Sn − Tn‖p is to select η to ensure
the right-hand side is of order 1, arguing that the probability can then be made arbitrarily
small by taking, in this case, η to be a large enough multiple of β1/3

p,2 φp(d)2/3. However, the
somewhat subtle mistake is in neglecting the fact that the realization of the coupling variable
Tn will in general depend on η, rendering the resulting bound invalid. As an explicit example
of this phenomenon, take η > 1 and suppose ‖Sn − Tn(η)‖= η with probability 1− 1/η and
‖Sn − Tn(η)‖= n with probability 1/η. Then P

(
‖Sn − Tn(η)‖> η

)
= 1/η but it is not true

for any η that ‖Sn − Tn(η)‖.P 1.
We propose in Remark 1 the following fix. Instead of selecting η to ensure the right-hand

side is of order 1, we instead choose it so the bound converges (slowly) to zero. This is easily
achieved by taking the naive and incorrect bound and multiplying by some divergent sequence
Rn. The resulting inequality reads, in the case of Corollary 2.3 with η = β

1/3
p,2 φp(d)2/3Rn,

P
(
‖Sn − Tn‖p > β

1/3
p,2 φp(d)2/3Rn

)
≤ 24

Rn
→ 0.

We thus recover, for the price of a rate which is slower by an arbitrarily small amount, a valid
upper bound in probability, as we can immediately conclude that

‖Sn − Tn‖p .P β
1/3
p,2 φp(d)2/3Rn.

SA.3. Strong approximation for martingale empirical processes We begin by pre-
senting some calculations omitted from the main text relating to the motivating example of
kernel density estimation with i.i.d. data. First, the bias of this estimator is bounded as∣∣E[ĝ(x)

]
− g(x)

∣∣= ∣∣∣∣∣
∫ 1−x

h

−x
h

K(ξ) dξ − 1

∣∣∣∣∣≤ 2

∫ ∞
a
h

1√
2π
e−

ξ2

2 dξ ≤ h

a

√
2

π
e−

a2

2h2 .

Next, we do the calculations necessary to apply Corollary 2.3. Define kij = 1
nhK

(
Xi−xj
h

)
and ki = (kij : 1≤ j ≤N). Then ‖ki‖∞ ≤ 1

nh
√
2π

a.s. and E[‖ki‖22]≤ N
n2h

∫∞
−∞K(ξ)2 dξ ≤

N
2n2h

√
π

. Let V = Var[ki] ∈RN×N , so assuming that 1/h≥ log 2N , by Lemma SA.3,

β∞,2 = nE
[
‖ki‖22‖ki‖∞

]
+ nE

[
‖V 1/2Z‖22‖V 1/2Z‖∞

]
≤ N√

8n2h2π
+

4N
√

log 2N√
8n2h3/2π3/4

≤ N

n2h2
.

Finally, we verify the stochastic continuity bounds. By the Lipschitz property of K , it is
easy to show that for x,x′ ∈ X we have

∣∣∣ 1hK (Xi−xh

)
− 1

hK
(
Xi−x′
h

)∣∣∣. |x−x′|h2 almost surely,

and also that E
[ ∣∣∣ 1hK (Xi−xh

)
− 1

hK
(
Xi−x′
h

)∣∣∣2 ]. |x−x′|2h3 . By chaining with the Bernstein–
Orlicz norm and polynomial covering numbers,

sup
|x−x′|≤δ

∥∥S(x)− S(x′)
∥∥
∞ .P δ

√
logn

nh3

whenever log(N/h). logn and nh& logn. By a Gaussian process maximal inequality [20,
Corollary 2.2.8] the same bound holds for T (x) with

sup
|x−x′|≤δ

∥∥T (x)− T (x′)
∥∥
∞ .P δ

√
logn

nh3
.
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PROOF (Lemma 3.1). For x,x′ ∈ [a,1− a], the scaled covariance function of this nonpara-
metric estimator is

nhCov
[
ĝ(x), ĝ(x′)

]
=

1

h
E
[
K

(
Xi − x
h

)
K

(
Xi − x′

h

)]
− 1

h
E
[
K

(
Xi − x
h

)]
E
[
K

(
Xi − x′

h

)]

=
1

2π

∫ 1−x
h

−x
h

exp

(
− t

2

2

)
exp

(
−1

2

(
t+

x− x′

h

)2
)

dt− hI(x)I(x′)

where I(x) = 1√
2π

∫ (1−x)/h
−x/h e−t

2/2 dt. Completing the square and a substitution gives

nhCov
[
ĝ(x), ĝ(x′)

]
=

1

2π
exp

(
−1

4

(
x− x′

h

)2
)∫ 2−x−x′

2h

−x−x′
2h

exp
(
−t2
)

dt− hI(x)I(x′).

Now we show that since x,x′ are not too close to the boundary of [0,1], the limits in the above
integral can be replaced by ±∞. Note that −x−x

′

2h ≤ −ah and 2−x−x′
2h ≥ a

h so∫ ∞
−∞

exp
(
−t2
)

dt−
∫ 2−x−x′

2h

−x−x′
2h

exp
(
−t2
)

dt≤ 2

∫ ∞
a/h

exp
(
−t2
)

dt≤ h

a
exp

(
−a

2

h2

)
.

Therefore since
∫∞
−∞ e

−t2 dt=
√
π,∣∣∣∣∣nhCov

[
ĝ(x), ĝ(x′)

]
− 1

2
√
π

exp

(
−1

4

(
x− x′

h

)2
)

+ hI(x)I(x′)

∣∣∣∣∣≤ h

2πa
exp

(
−a

2

h2

)
.

Define the N ×N matrix Σ̃ij = 1
2
√
π

exp

(
−1

4

(
xi−xj
h

)2)
. By Baxter [1, Proposition 2.4,

Proposition 2.5 and Equation 2.10], with Bk =
{
b ∈RZ :

∑
i∈Z I{bi 6= 0} ≤ k

}
,

inf
k∈N

inf
b∈Rk

∑k
i=1

∑k
j=1 bibj e

−λ(i−j)2∑k
i=1 b

2
i

=

√
π

λ

∞∑
i=−∞

exp

(
−(πe+ 2πi)2

4λ

)
.

We use Riemann sums, noting that πe+ 2πx= 0 at x=−e/2≈−1.359. Consider the sub-
stitutions Z∩ (−∞,−3] 7→ (−∞,−2], {−2,−1} 7→ {−2,−1} and Z∩ [0,∞) 7→ [−1,∞).∑

i∈Z
e−(πe+2πi)2/4λ ≤

∫ −2
−∞

e−(πe+2πx)2/4λ dx+ e−(πe−4π)
2/4λ

+ e−(πe−2π)
2/4λ +

∫ ∞
−1

e−(πe+2πx)2/4λ dx.

Now use the substitution t= πe+2πx
2
√
λ

and suppose λ < 1, yielding

∑
i∈Z

e−(πe+2πi)2/4λ ≤
√
λ

π

∫ πe−4π

2
√
λ

−∞
e−t

2

dt+ e−(πe−4π)
2/4λ

+ e−(πe−2π)
2/4λ +

√
λ

π

∫ ∞
πe−2π

2
√
λ

e−t
2

dt
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≤
(

1 +
1

π

λ

4π− πe

)
e−(πe−4π)

2/4λ +

(
1 +

1

π

λ

πe− 2π

)
e−(πe−2π)

2/4λ

≤ 13

12
e−(πe−4π)

2/4λ +
8

7
e−(πe−2π)

2/4λ ≤ 9

4
exp

(
− 5

4λ

)
.

Therefore

inf
k∈N

inf
b∈Bk

∑
i∈Z
∑

j∈Z bibj e
−λ(i−j)2∑

i∈Z b
2
i

<
4√
λ

exp

(
− 5

4λ

)
< 4e−1/λ.

From this and since Σ̃ij = 1
2
√
π
e−λ(i−j)

2
with λ= 1

4(N−1)2h2 ≤
δ2

h2 , for each h and some δ ≤ h,

λmin(Σ̃)≤ 2e−h
2/δ2 .

Recall that ∣∣∣Σij − Σ̃ij + hI(xi)I(xj)
∣∣∣≤ h

2πa
exp

(
−a

2

h2

)
.

Now for any positive semi-definite N ×N matrices A and B and vector v we have λmin(A−
vvT)≤ λmin(A) and λmin(B)≤ λmin(A) + ‖B −A‖2 ≤ λmin(A) +N‖B −A‖max. Hence
with Ii = I(xi),

λmin(Σ)≤ λmin(Σ̃− hIIT) +
Nh

2πa
exp

(
−a

2

h2

)
≤ 2e−h

2/δ2 +
h

πaδ
e−a

2/h2 .

�

PROOF (Proposition 3.1). Let Fδ be a δ-cover of (F , d). Using a union bound, we can write

P

(
sup
f∈F

∣∣S(f)− T (f)
∣∣≥ 2t+ η

)
≤ P

(
sup
f∈Fδ

∣∣S(f)− T (f)
∣∣≥ η)

+ P

(
sup

d(f,f ′)≤δ

∣∣S(f)− S(f ′)
∣∣≥ t)+ P

(
sup

d(f,f ′)≤δ

∣∣T (f)− T (f ′)
∣∣≥ t) .

Part 1: bounding the difference on Fδ
We apply Corollary 2.2 with p=∞ to the martingale difference sequence Fδ(Xi) =

(
f(Xi) :

f ∈ Fδ
)

which takes values in R|Fδ|. Square integrability can be assumed otherwise βδ =∞.
Note

∑n
i=1Fδ(Xi) = S(Fδ) and φ∞(Fδ)≤

√
2 log 2|Fδ|. Therefore there exists a condition-

ally Gaussian vector T (Fδ) with the same covariance structure as S(Fδ) conditional on H0

satisfying

P

(
sup
f∈Fδ

∣∣S(f)− T (f)
∣∣≥ η)≤ 24β

1
3

δ (2 log 2|Fδ|)
1
3

η
+ 17

(√
2 log 2|Fδ|

√
E [‖Ωδ‖2]

η

) 2
3

.

Part 2: bounding the fluctuations in S(f)

Since
∣∣∣∣∣∣S(f)− S(f ′)

∣∣∣∣∣∣
ψ
≤ Ld(f, f ′), by Theorem 2.2.4 in van der Vaart and Wellner [20]∣∣∣∣∣∣∣∣∣∣∣∣ sup

d(f,f ′)≤δ

∣∣S(f)− S(f ′)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ

≤CψL
(∫ δ

0

ψ−1(Nε) dε+ δψ−1(N2
δ )

)
=CψLJψ(δ).

Then, by Markov’s inequality and the definition of the Orlicz norm,

P

(
sup

d(f,f ′)≤δ

∣∣S(f)− S(f ′)
∣∣≥ t)≤ ψ( t

CψLJψ(δ)

)−1
.



16

Part 3: bounding the fluctuations in T (f)
By the Vorob’ev–Berkes–Philipp theorem [10], T (Fδ) extends to a conditionally Gaussian
process T (f). Firstly since

∣∣∣∣∣∣T (f)− T (f ′)
∣∣∣∣∣∣
2
≤ Ld(f, f ′) conditionally on H0, and T (f) is

a conditional Gaussian process, we have
∣∣∣∣∣∣T (f)− T (f ′)

∣∣∣∣∣∣
ψ2
≤ 2Ld(f, f ′) conditional on H0

by van der Vaart and Wellner [20, Chapter 2.2, Complement 1], where ψ2(x) = exp(x2)− 1.
Thus again by Theorem 2.2.4 in van der Vaart and Wellner [20], again conditioning on H0,∣∣∣∣∣∣∣∣∣∣∣∣ sup

d(f,f ′)≤δ

∣∣T (f)− T (f ′)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ2

≤C1L

∫ δ

0

√
logNε dε=C1LJ2(δ)

for some universal constant C1 > 0, where we used ψ−12 (x) =
√

log(1 + x) and monotonicity
of covering numbers. Then by Markov’s inequality and the definition of the Orlicz norm,

P

(
sup

d(f,f ′)≤δ

∣∣T (f)− T (f ′)
∣∣≥ t)≤(exp

(
t2

C2
1L

2J2(δ)2

)
− 1

)−1
∨ 1

≤ 2 exp

(
−t2

C2
1L

2J2(δ)2

)
.

Part 4: conclusion
The result follows by scaling t and η and enlarging constants if necessary. �

SA.4. Applications to nonparametric regression

PROOF (Proposition 4.1). We proceed according to the decomposition given in Section 4.1.
By stationarity and Lemma SA-2.1 in Cattaneo, Farrell and Feng [5], we have supw ‖p(w)‖1 .
1 and also ‖H‖1 . n/k and ‖H−1‖1 . k/n.

Part 1: bounding β∞,2 and β∞,3
Set Xi = p(Wi)εi so S =

∑n
i=1Xi and set σ2

i = σ2(Wi) and Vi = Var[Xi | Hi−1] =
σ2
i p(Wi)p(Wi)

T. Recall from Corollary 2.2 that for r ∈ {2,3},

β∞,r =

n∑
i=1

E
[
‖Xi‖r2‖Xi‖∞ + ‖V 1/2

i Zi‖r2‖V
1/2
i Zi‖∞

]
with Zi ∼N (0,1) i.i.d. and independent of Vi. For the first term, we use supw ‖p(w)‖2 . 1
and bounded third moments of εi:

E [‖Xi‖r2‖Xi‖∞]≤ E
[
|εi|3‖p(Wi)‖r+1

2

]
. 1.

For the second term, apply Lemma SA.3 conditionally on Hn with supw ‖p(w)‖2 . 1 to see

E
[
‖V 1/2

i Zi‖r2‖V
1/2
i Zi‖∞

]
.
√

log 2k E

max
1≤j≤k

(Vi)
1/2
jj

( k∑
j=1

(Vi)jj

)r/2
.
√

log 2k E

σr+1
i max

1≤j≤k
p(Wi)j

( k∑
j=1

p(Wi)
2
j

)r/2
.
√

log 2k E
[
σr+1
i

]
.
√

log 2k.

Putting these together yields β∞,2 . n
√

log 2k and β∞,3 . n
√

log 2k.
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Part 2: bounding Ω

Set Ω =
∑n

i=1

(
Vi −E[Vi]

)
as in Lemma SA.8 so

Ω =
n∑
i=1

(
σ2
i p(Wi)p(Wi)

T −E
[
σ2
i p(Wi)p(Wi)

T
] )
.

Observe that Ωjl is the sum of a zero-mean strictly stationary α-mixing sequence and so
E[Ω2

jl]. n by Lemma SA.6(i). Since the basis functions satisfy Assumption 3 in Cattaneo,
Farrell and Feng [5], Ω has a bounded number of non-zero entries in each row, and so by
Jensen’s inequality

E [‖Ω‖2]≤ E [‖Ω‖F]≤

 k∑
j=1

k∑
l=1

E
[
Ω2
jl

]1/2

.
√
nk.

Part 3: strong approximation
By Corollary 2.2 and the previous parts, with any sequence Rn→∞,

‖S − T‖∞ .P β
1/3
∞,2(log 2k)1/3Rn +

√
log 2k

√
E[‖Ω‖2]Rn

.P n
1/3
√

log 2kRn + (nk)1/4
√

log 2kRn.

If further E
[
ε3i | Hi−1

]
= 0 then the third-order version of Corollary 2.2 applies since

π3 =

n∑
i=1

∑
|κ|=3

E
[∣∣E[Xκ

i | Hi−1]
∣∣]=

n∑
i=1

∑
|κ|=3

E
[∣∣p(Wi)

κE[ε3i | Hi−1]
∣∣]= 0,

giving

‖S − T‖∞ .P β
1/4
∞,3(log 2k)3/8Rn +

√
log 2k

√
E[‖Ω‖2]Rn .P (nk)1/4

√
log 2kRn.

By Hölder’s inequality and with ‖H−1‖1 . k/n we have

sup
w∈W

∣∣p(w)TH−1S − p(w)TH−1T
∣∣≤ sup

w∈W
‖p(w)‖1‖H−1‖1‖S − T‖∞ . n−1k‖S − T‖∞.

Part 4: convergence of Ĥ
We have Ĥ −H =

∑n
i=1

(
p(Wi)p(Wi)

T − E
[
p(Wi)p(Wi)

T
] )

. Observe that (Ĥ −H)jl is
the sum of a zero-mean strictly stationary α-mixing sequence and so E[(Ĥ − H)2jl] . n
by Lemma SA.6(i). Since the basis functions satisfy Assumption 3 in Cattaneo, Farrell and
Feng [5], Ĥ −H has a bounded number of non-zero entries in each row and so by Jensen’s
inequality

E
[
‖Ĥ −H‖1

]
= E

max
1≤i≤k

k∑
j=1

∣∣(Ĥ −H)ij
∣∣≤ E

 ∑
1≤i≤k

(
k∑
j=1

|(Ĥ −H)ij |

)2
 1

2

.
√
nk.

Part 5: bounding the matrix term
Note ‖Ĥ−1‖1 ≤ ‖H−1‖1 + ‖Ĥ−1‖1‖Ĥ −H‖1‖H−1‖1 so by the previous part, we deduce

‖Ĥ−1‖1 ≤
‖H−1‖1

1− ‖Ĥ −H‖1‖H−1‖1
.P

k/n

1−
√
nk k/n

.P
k

n
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as k3/n→ 0. Also, note that by the martingale structure, since p(Wi) is bounded and supported
on a region with volume at most of the order 1/k, and as Wi has a Lebesgue density,

Var[Tj ] = Var[Sj ] = Var

[
n∑
i=1

εip(Wi)j

]
=

n∑
i=1

E
[
σ2
i p(Wi)

2
j

]
.
n

k
.

So by the Gaussian maximal inequality in Lemma SA.4, ‖T‖∞ .P

√
n log 2k

k . Since k3/n→ 0,

sup
w∈W

∣∣∣p(w)T(Ĥ−1 −H−1)S
∣∣∣≤ sup

w∈W
‖p(w)T‖1‖Ĥ−1‖1‖Ĥ −H‖1‖H−1‖1‖S − T‖∞

+ sup
w∈W
‖p(w)T‖1‖Ĥ−1‖1‖Ĥ −H‖1‖H−1‖1‖T‖∞

.P
k

n

√
nk
k

n

(
n1/3

√
log 2k+ (nk)1/4

√
log 2k

)
+
k

n

√
nk
k

n

√
n log 2k

k
.P

k2

n

√
log 2k.

Part 6: conclusion of the main result
By the previous parts, with G(w) = p(w)TH−1T ,

sup
w∈W

∣∣µ̂(w)− µ(w)− p(w)TH−1T
∣∣

= sup
w∈W

∣∣∣p(w)TH−1(S − T ) + p(w)T(Ĥ−1 −H−1)S + Bias(w)
∣∣∣

.P
k

n
‖S − T‖∞ +

k2

n

√
log 2k+ sup

w∈W
|Bias(w)|

.P
k

n

(
n1/3

√
log 2k+ (nk)1/4

√
log 2k

)
Rn +

k2

n

√
log 2k+ sup

w∈W
|Bias(w)|

.P n
−2/3k

√
log 2kRn + n−3/4k5/4

√
log 2kRn +

k2

n

√
log 2k+ sup

w∈W
|Bias(w)|

.P n
−2/3k

√
log 2kRn + sup

w∈W
|Bias(w)|

since k3/n→ 0. If further E
[
ε3i | Hi−1

]
= 0 then

sup
w∈W

∣∣µ̂(w)− µ(w)− p(w)TH−1T
∣∣.P

k

n
‖S − T‖∞ +

k2

n

√
log 2k+ sup

w∈W
|Bias(w)|

.P n
−3/4k5/4

√
log 2kRn + sup

w∈W
|Bias(w)|.

Finally, we verify the variance bounds for the Gaussian process. Since σ2(w) is bounded,

Var[G(w)] = p(w)TH−1 Var

[
n∑
i=1

p(Wi)εi

]
H−1p(w)

= p(w)TH−1E

[
n∑
i=1

p(Wi)p(Wi)
Tσ2(Wi)

]
H−1p(w)

. ‖p(w)‖22‖H−1‖22‖H‖2 . k/n.
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Similarly, since σ2(w) is bounded away from zero,

Var[G(w)]& ‖p(w)‖22‖H−1‖22‖H−1‖−12 & k/n.

Part 7: bounding the bias
We delegate the task of deriving bounds on the bias to Cattaneo, Farrell and Feng [5], who
provide a high-level assumption on the approximation error in Assumption 4 and then use it
to derive bias bounds in Section 3 of the form supw∈W |Bias(w)|.P k

−γ . This assumption is
verified for B-splines, wavelets and piecewise polynomials in their supplemental appendix. �

PROOF (Proposition 4.2).

Part 1: infeasible supremum approximation
Provided that the bias is negligible, for all s > 0 we have

sup
t∈R

∣∣∣∣∣P
(

sup
w∈W

∣∣∣∣∣ µ̂(w)− µ(w)√
ρ(w,w)

∣∣∣∣∣≤ t
)
− P

(
sup
w∈W

∣∣∣∣∣ G(w)√
ρ(w,w)

∣∣∣∣∣≤ t
)∣∣∣∣∣

≤ sup
t∈R
P

(
t≤ sup

w∈W

∣∣∣∣∣ G(w)√
ρ(w,w)

∣∣∣∣∣≤ t+ s

)
+ P

(
sup
w∈W

∣∣∣∣∣ µ̂(w)− µ(w)−G(w)√
ρ(w,w)

∣∣∣∣∣> s

)
.

By the Gaussian anti-concentration result given as Corollary 2.1 in Chernozhukov, Chetverikov
and Kato [8] applied to a discretization ofW , the first term is at most s

√
logn up to a constant

factor, and the second term converges to zero whenever 1
s

(
k3(logk)3

n

)1/6
→ 0. Thus a suitable

value of s exists whenever k3(logn)6

n → 0.

Part 2: feasible supremum approximation
By Chernozhukov, Chetverikov and Kato [7, Lemma 3.1], with ρ(w,w′) = E[ρ̂(w,w′)],

sup
t∈R

∣∣∣∣∣P
(

sup
w∈W

∣∣∣∣∣ Ĝ(w)√
ρ̂(w,w)

∣∣∣∣∣≤ t
∣∣∣∣W,Y

)
− P

(∣∣∣∣∣ G(w)√
ρ(w,w)

∣∣∣∣∣≤ t
)∣∣∣∣∣

.P sup
w,w′∈W

∣∣∣∣∣ ρ̂(w,w′)√
ρ̂(w,w)ρ̂(w′,w′)

− ρ(w,w′)√
ρ(w,w)ρ(w′,w′)

∣∣∣∣∣
1/3

(logn)2/3

.P

(n
k

)1/3
sup

w,w′∈W
|ρ̂(w,w′)− ρ(w,w′)|1/3(logn)2/3

.P

(
n(logn)2

k

)1/3

sup
w,w′∈W

∣∣∣p(w)TĤ−1
(

V̂ar[S]−Var[S]
)
Ĥ−1p(w′)

∣∣∣1/3
.P

(
k(logn)2

n

)1/3 ∥∥∥V̂ar[S]−Var[S]
∥∥∥1/3
2
,

and vanishes in probability when k(logn)2

n

∥∥V̂ar[S]−Var[S]
∥∥
2
→P 0. For the plug-in estimator,∥∥∥V̂ar[S]−Var[S]

∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

p(Wi)p(W
T
i )σ̂2(Wi)− nE

[
p(Wi)p(W

T
i )σ2(Wi)

]∥∥∥∥∥
2

.P sup
w∈W
|σ̂2(w)− σ2(w)|

∥∥Ĥ∥∥
2

+

∥∥∥∥∥
n∑
i=1

p(Wi)p(W
T
i )σ2(Wi)− nE

[
p(Wi)p(W

T
i )σ2(Wi)

]∥∥∥∥∥
2
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.P
n

k
sup
w∈W
|σ̂2(w)− σ2(w)|+

√
nk,

where the second term is bounded by the same argument used to bound ‖Ĥ −H‖1. Thus,
the feasible approximation is valid whenever (logn)2 supw∈W |σ̂2(w)− σ2(w)| →P 0 and
k3(logn)4

n → 0. The validity of the uniform confidence band follows immediately. �

PROOF (Proposition 4.3). We apply Proposition 3.1 with the metric d(fw, fw′) = ‖w−w′‖2
and the function class

F =
{

(Wi, εi) 7→ eT1H(w)−1Kh(Wi −w)ph(Wi −w)εi : w ∈W
}
,

with ψ chosen as a suitable Bernstein–Orlicz function.

Part 1: bounding H(w)−1

Recall that H(w) =
∑n

i=1E[Kh(Wi −w)ph(Wi −w)ph(Wi −w)T] and let a(w) ∈Rk with
‖a(w)‖2 = 1. Since the density of Wi is bounded away from zero onW ,

a(w)TH(w)a(w) = nE
[(
a(w)Tph(Wi −w)

)2
Kh(Wi −w)

]
& n

∫
W

(
a(w)Tph(u−w)

)2
Kh(u−w) du

& n
∫
W−w
h

(
a(w)Tp(u)

)2
K(u) du.

This is continuous in a(w) on the compact set ‖a(w)‖2 = 1 and p(u) forms a polynomial
basis so a(w)Tp(u) has finitely many zeroes. Since K(u) is compactly supported and h→ 0,
the above integral is eventually strictly positive for all x ∈W , and hence is bounded below
uniformly in w ∈W by a positive constant. Therefore supw∈W ‖H(w)−1‖2 . 1/n.

Part 2: bounding βδ
Let Fδ be a δ-cover of (F , d) with cardinality |Fδ| � δ−m and let Fδ(Wi, εi) =

(
f(Wi, εi) :

f ∈ Fδ
)
. Define the truncated errors ε̃i = εiI{−a logn ≤ εi ≤ b logn} and note that

E
[
e|εi|/Cε

]
<∞ implies that P(∃i : ε̃i 6= εi) . n1−(a∨b)/Cε . Hence, by choosing a and b

large enough, with high probability, we can replace all εi by ε̃i. Further, it is always possible
to increase either a or b along with some randomization to ensure that E[ε̃i] = 0. Since K is
bounded and compactly supported, Wi has a bounded density and |ε̃i|. logn,∣∣∣∣∣∣f(Wi, ε̃i)

∣∣∣∣∣∣
2

= E
[∣∣eT1H(w)−1Kh(Wi −w)ph(Wi −w)ε̃i

∣∣2]1/2
≤ E

[
‖H(w)−1‖22Kh(Wi −w)2‖ph(Wi −w)‖22σ2(Wi)

]1/2
. n−1E

[
Kh(Wi −w)2

]1/2
. n−1h−m/2,∣∣∣∣∣∣f(Wi, ε̃i)

∣∣∣∣∣∣
∞ ≤

∣∣∣∣∣∣‖H(w)−1‖2Kh(Wi −w)‖ph(Wi −w)‖2|ε̃i|
∣∣∣∣∣∣
∞

. n−1
∣∣∣∣∣∣Kh(Wi −w)

∣∣∣∣∣∣
∞ logn. n−1h−m logn.

Therefore

E
[
‖Fδ(Wi, ε̃i)‖22‖Fδ(Wi, ε̃i)‖∞

]
≤
∑
f∈Fδ

∣∣∣∣∣∣f(Wi, ε̃i)
∣∣∣∣∣∣2
2

max
f∈Fδ

∣∣∣∣∣∣f(Wi, ε̃i)
∣∣∣∣∣∣
∞

. n−3δ−mh−2m logn.
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Let Vi(Fδ) = E
[
Fδ(Wi, ε̃i)Fδ(Wi, ε̃i)

T | Hi−1
]

and Zi ∼ N (0, Id) be i.i.d. and inde-
pendent of Hn. Note that Vi(f, f) = E[f(Wi, ε̃i)

2 | Wi] . n−2h−2m and E[Vi(f, f)] =
E[f(Wi, ε̃i)

2]. n−2h−m. Thus by Lemma SA.3,

E
[∥∥Vi(Fδ)1/2Zi∥∥22∥∥Vi(Fδ)1/2Zi∥∥∞]= E

[
E
[∥∥Vi(Fδ)1/2Zi∥∥22∥∥Vi(Fδ)1/2Zi∥∥∞ | Hn]]

≤ 4
√

log 2|Fδ|E

[
max
f∈Fδ

√
Vi(f, f)

∑
f∈Fδ

Vi(f, f)

]

. n−3h−2mδ−m
√

log(1/δ).

Thus since log(1/δ)� log(1/h)� logn,

βδ =
n∑
i=1

E
[
‖Fδ(Wi, ε̃i)‖22‖Fδ(Wi, ε̃i)‖∞ +

∥∥Vi(Fδ)1/2Zi∥∥22∥∥Vi(Fδ)1/2Zi∥∥∞]
.

logn

n2h2mδm
.

Part 3: bounding Ωδ

Let CK > 0 be the radius of a `2-ball containing the support of K and note that

|Vi(f, f ′)|=
∣∣∣E[eT1H(w)−1ph(Wi −w)eT1H(w′)−1ph(Wi −w′)

×Kh(Wi −w)Kh(Wi −w′)ε̃2i
∣∣∣Hi−1]∣∣∣

. n−2Kh(Wi −w)Kh(Wi −w′)

. n−2h−mKh(Wi −w)I{‖w−w′‖2 ≤ 2CKh}.

Since Wi are α-mixing with α(j)< e−2j/Cα , Lemma SA.6(ii) with r = 3 gives

Var

[
n∑
i=1

Vi(f, f
′)

]

.
n∑
i=1

E
[
|Vi(f, f ′)|3

]2/3
. n−3h−2mE

[
Kh(Wi −w)3

]2/3 I{‖w−w′‖2 ≤ 2CKh}

. n−3h−2m(h−2m)2/3I{‖w−w′‖2 ≤ 2CKh}

. n−3h−10m/3I{‖w−w′‖2 ≤ 2CKh}.

Therefore, by Jensen’s inequality,

E
[
‖Ωδ‖2

]
≤ E

[
‖Ωδ‖F

]
≤ E

[ ∑
f,f ′∈Fδ

(Ωδ)
2
f,f ′

]1/2
≤

( ∑
f,f ′∈Fδ

Var

[
n∑
i=1

Vi(f, f
′)

])1/2

. n−3/2h−5m/3
( ∑
f,f ′∈Fδ

I{‖w−w′‖2 ≤ 2CKh}

)1/2

. n−3/2h−5m/3
(
hmδ−2m

)1/2
. n−3/2h−7m/6δ−m.

Note that we could have used ‖ · ‖1 rather than ‖ · ‖F, but this term is negligible either way.
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Part 4: regularity of the stochastic processes
For each f, f ′ ∈ F , define the zero-mean and α-mixing random variables

ui(f, f
′) = eT1

(
H(w)−1Kh(Wi −w)ph(Wi −w)−H(w′)−1Kh(Wi −w′)ph(Wi −w′)

)
ε̃i.

To bound this we use that for all 1 ≤ j ≤ k, by the Lipschitz property of the kernel and
monomials,

|Kh(Wi −w)−Kh(Wi −w′)|

. h−m−1‖w−w′‖2
(
I{‖Wi −w‖ ≤CKh}+ I{‖Wi −w′‖ ≤CKh}

)
,

|ph(Wi −w)j − ph(Wi −w′)j |. h−1‖w−w′‖2,

to deduce that for any 1≤ j, l≤ k,∣∣H(w)jl −H(w′)jl
∣∣= ∣∣nE[Kh(Wi −w)ph(Wi −w)jph(Wi −w)l

−Kh(Wi −w′)ph(Wi −w′)jph(Wi −w′)l
]∣∣

≤ nE [|Kh(Wi −w)−Kh(Wi −w′)| |ph(Wi −w)jph(Wi −w)l|]

+ nE [|ph(Wi −w)j − ph(Wi −w′)j | |Kh(Wi −w′)ph(Wi −w)l|]

+ nE [|ph(Wi −w)l − ph(Wi −w′)l| |Kh(Wi −w′)ph(Wi −w′)j |]

. nh−1‖w−w′‖2.

Therefore as the dimension of the matrix H(w) is fixed,∥∥H(w)−1 −H(w′)−1
∥∥
2
≤
∥∥H(w)−1

∥∥
2

∥∥H(w′)−1
∥∥
2

∥∥H(w)−H(w′)
∥∥
2
.
‖w−w′‖2

nh
.

Hence∣∣ui(f, f ′)∣∣≤ ∥∥H(w)−1Kh(Wi −w)ph(Wi −w)−H(w′)−1Kh(Wi −w′)ph(Wi −w′)ε̃i
∥∥
2

≤
∥∥H(w)−1 −H(w′)−1

∥∥
2

∥∥Kh(Wi −w)ph(Wi −w)ε̃i
∥∥
2

+
∣∣Kh(Wi −w)−Kh(Wi −w′)

∣∣∥∥H(w′)−1ph(Wi −w)ε̃i
∥∥
2

+
∥∥ph(Wi −w)− ph(Wi −w′)

∥∥
2

∥∥H(w′)−1Kh(Wi −w′)ε̃i
∥∥
2

.
‖w−w′‖2

nh

∣∣Kh(Wi −w)ε̃i
∣∣+ 1

n

∣∣Kh(Wi −w)−Kh(Wi −w′)
∣∣ |ε̃i|

.
‖w−w′‖2 logn

nhm+1
,

and from the penultimate line, we also deduce that

Var[ui(f, f
′)].

‖w−w′‖22
n2h2

E
[
Kh(Wi −w)2σ2(Xi)

]
+

1

n2
E
[(
Kh(Wi −w)−Kh(Wi −w′)

)2
σ2(Xi)

]
.
‖w−w′‖22
n2hm+2

.

Further, E[ui(f, f
′)uj(f, f

′)] = 0 for i 6= j so by Lemma SA.7(ii), for a constant C1 > 0,

P

(∣∣∣ n∑
i=1

ui(f, f
′)
∣∣∣≥ C1‖w−w′‖2√

nhm/2+1

(
√
t+

√
(logn)2

nhm

√
t+

√
(logn)6

nhm
t

))
≤C1e

−t.
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Therefore, adjusting the constant if necessary and since nhm & (logn)7,

P

(∣∣∣ n∑
i=1

ui(f, f
′)
∣∣∣≥ C1‖w−w′‖2√

nhm/2+1

(√
t+

t√
logn

))
≤C1e

−t.

By Lemma 2 in van de Geer and Lederer [19] with ψ(x) = exp
((√

1 + 2x/
√

logn −

1
)2

logn
)
− 1,

∣∣∣∣∣∣∣∣∣ n∑
i=1

ui(f, f
′)
∣∣∣∣∣∣∣∣∣
ψ
.
‖w−w′‖2√
nhm/2+1

so we take L= 1√
nhm/2+1 . Noting ψ−1(t) =

√
log(1 + t) + log(1+t)

2
√
logn

and Nδ . δ−m,

Jψ(δ) =

∫ δ

0

ψ−1
(
Nε

)
dε+ δψ−1

(
Nδ

)
.
δ log(1/δ)√

logn
+ δ
√

log(1/δ). δ
√

logn,

J2(δ) =

∫ δ

0

√
logNε dε. δ

√
log(1/δ). δ

√
logn.

Part 5: strong approximation
Recalling that ε̃i = εi for all i with high probability, by Proposition 3.1, for all t, η > 0 there
exists a zero-mean Gaussian process T (w) satisfying

E

[(
n∑
i=1

fw(Wi, εi)

)(
n∑
i=1

fw′(Wi, εi)

)]
= E

[
T (w)T (w′)

]
for all w,w′ ∈W and

P

(
sup
w∈W

∣∣∣∣∣
n∑
i=1

fw(Wi, εi)− T (w)

∣∣∣∣∣≥Cψ(t+ η)

)

≤Cψ inf
δ>0

inf
Fδ

{
β
1/3
δ (log 2|Fδ|)1/3

η
+

(√
log 2|Fδ|

√
E [‖Ωδ‖2]

η

)2/3

+ψ

(
t

LJψ(δ)

)−1
+ exp

(
−t2

L2J2(δ)2

)}

≤Cψ

{( logn
n2h2mδm

)1/3
(logn)1/3

η
+

(√
logn

√
n−3/2h−7m/6δ−m

η

)2/3

+ψ

(
t

1√
nhm/2+1Jψ(δ)

)−1
+ exp

 −t2(
1√

nhm/2+1

)2
J2(δ)2

}

≤Cψ

{
(logn)2/3

n2/3h2m/3δm/3η
+

(
n−3/4h−7m/12δ−m/2

√
logn

η

)2/3

+ψ

(
t
√
nhm/2+1

δ
√

logn

)−1
+ exp

(
−t2nhm+2

δ2 logn

)}
.
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Noting ψ(x)≥ ex2/4 for x≤ 4
√

logn, any Rn→∞ gives the probability bound

sup
w∈W

∣∣∣∣∣
n∑
i=1

fw(Wi, εi)− T (w)

∣∣∣∣∣.P
(logn)2/3

n2/3h2m/3δm/3
Rn +

√
logn

n3/4h7m/12δm/2
Rn +

δ
√

logn√
nhm/2+1

.

Optimizing over δ gives δ �
(

logn
nhm−6

) 1
2m+6

= h
(

logn
nh3m

) 1
2m+6 and so

sup
w∈W

∣∣∣∣∣
n∑
i=1

fw(Wi, εi)− T (w)

∣∣∣∣∣.P

(
(logn)m+4

nm+4hm(m+6)

) 1
2m+6

Rn.

Part 6: convergence of Ĥ(w)
For 1≤ j, l≤ k define the zero-mean random variables

uijl(w) =Kh(Wi −w)ph(Wi −w)jph(Wi −w)l

−E
[
Kh(Wi −w)ph(Wi −w)jph(Wi −w)l

]
and note that |uijl(w)|. h−m. By Lemma SA.7(i) for a constant C2 > 0 and all t > 0,

P

(∣∣∣∣∣
n∑
i=1

uijl(w)

∣∣∣∣∣>C2h
−m(√nt+ (logn)(log logn)t

))
≤C2e

−t.

Further, note that by Lipschitz properties,∣∣∣∣∣
n∑
i=1

uijl(w)−
n∑
i=1

uijl(w
′)

∣∣∣∣∣. h−m−1‖w−w′‖2
so there is a δ-cover of (W,‖ · ‖2) with size at most naδ−a for some a > 0. Adjusting C2,

P

(
sup
w∈W

∣∣∣∣∣
n∑
i=1

uijl(w)

∣∣∣∣∣>C2h
−m(√nt+ (logn)(log logn)t

)
+C2h

−m−1δ

)
≤C2n

aδ−ae−t

and hence

sup
w∈W

∣∣∣∣∣
n∑
i=1

uijl(w)

∣∣∣∣∣.P h
−m
√
n logn+ h−m(logn)3 .P

√
n logn

h2m
.

Therefore

sup
w∈W
‖Ĥ(w)−H(w)‖2 .P

√
n logn

h2m
.

Part 7: bounding the matrix term

Firstly note that, since
√

logn
nh2m → 0, we have that uniformly in w ∈W

‖Ĥ(w)−1‖2 ≤
‖H(w)−1‖2

1− ‖Ĥ(w)−H(w)‖2‖H(w)−1‖2
.P

1/n

1−
√

n logn
h2m

1
n

.P
1

n
.

Therefore

sup
w∈W

∣∣eT1 (Ĥ(w)−1 −H(w)−1
)
S(w)

∣∣≤ sup
w∈W

∥∥Ĥ(w)−1 −H(w)−1
∥∥
2
‖S(w)‖2

≤ sup
w∈W

∥∥Ĥ(w)−1
∥∥
2

∥∥H(w)−1
∥∥
2

∥∥Ĥ(w)−H(w)
∥∥
2
‖S(w)‖2 .P

√
logn

n3h2m
sup
w∈W
‖S(w)‖2.
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Now for 1≤ j ≤ k write uij(w) =Kh(Wi−w)ph(Wi−w)j ε̃i so that S(w)j =
∑n

i=1 uij(w)
with high probability. Note that uij(w) are zero-mean with Cov[uij(w), ui′j(w)] = 0 for
i 6= i′. Also |uij(w)| . h−m logn and Var[uij(w)] . h−m. Thus by Lemma SA.7(ii) for a
constant C3 > 0,

P

(∣∣∣ n∑
i=1

uij(w)
∣∣∣≥C3

(
(h−m/2

√
n+ h−m logn)

√
t+ h−m(logn)3t

))
≤C3e

−t,

P

(∣∣∣ n∑
i=1

uij(w)
∣∣∣>C3

(√
tn

hm
+
t(logn)3

hm

))
≤C3e

−t,

where we used nhm & (logn)2 and adjusted the constant if necessary. As before, uij(w) is
Lipschitz in w with a constant which is at most polynomial in n, so for some a > 0

P

(
sup
w∈W

∣∣∣ n∑
i=1

uij(w)
∣∣∣>C3

(√
tn

hm
+
t(logn)3

hm

))
≤C3n

ae−t,

sup
w∈W
‖S(w)‖2 .P

√
n logn

hm
+

(logn)4

hm
.P

√
n logn

hm

as nhm & (logn)7. Finally

sup
w∈W

∣∣eT1 (Ĥ(w)−1 −H(w)−1
)
S(w)

∣∣.P

√
logn

n3h2m

√
n logn

hm
.P

logn√
n2h3m

.

Part 8: bounding the bias
Since µ ∈ Cγ , we have, by the multivariate version of Taylor’s theorem,

µ(Wi) =

γ−1∑
|κ|=0

1

κ!
∂κµ(w)(Wi −w)κ +

∑
|κ|=γ

1

κ!
∂κµ(w′)(Wi −w)κ

for some w′ on the line segment connecting w and Wi. Now since ph(Wi −w)1 = 1,

eT1 Ĥ(w)−1
n∑
i=1

Kh(Wi −w)ph(Wi −w)µ(w)

= eT1 Ĥ(w)−1
n∑
i=1

Kh(Wi −w)ph(Wi −w)ph(Wi −w)Te1µ(w) = eT1 e1µ(w) = µ(w).

Therefore

Bias(w) = eT1 Ĥ(w)−1
n∑
i=1

Kh(Wi −w)ph(Wi −w)µ(Wi)− µ(w)

= eT1 Ĥ(w)−1
n∑
i=1

Kh(Wi −w)ph(Wi −w)

×

(
γ−1∑
|κ|=0

1

κ!
∂κµ(w)(Wi −w)κ +

∑
|κ|=γ

1

κ!
∂κµ(w′)(Wi −w)κ − µ(w)

)

=

γ−1∑
|κ|=1

1

κ!
∂κµ(w)eT1 Ĥ(w)−1

n∑
i=1

Kh(Wi −w)ph(Wi −w)(Wi −w)κ
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+
∑
|κ|=γ

1

κ!
∂κµ(w′)eT1 Ĥ(w)−1

n∑
i=1

Kh(Wi −w)ph(Wi −w)(Wi −w)κ

=
∑
|κ|=γ

1

κ!
∂κµ(w′)eT1 Ĥ(w)−1

n∑
i=1

Kh(Wi −w)ph(Wi −w)(Wi −w)κ,

where we used that ph(Wi −w) is a vector containing monomials in Wi −w of order up to γ,
so eT1 Ĥ(w)−1

∑n
i=1Kh(Wi −w)ph(Wi −w)(Wi −w)κ = 0 whenever 1≤ |κ| ≤ γ. Finally

sup
w∈W
|Bias(w)|

= sup
w∈W

∣∣∣∣∣∣
∑
|κ|=γ

1

κ!
∂κµ(w′)eT1 Ĥ(w)−1

n∑
i=1

Kh(Wi −w)ph(Wi −w)(Wi −w)κ

∣∣∣∣∣∣
.P sup

w∈W
max
|κ|=γ
|∂κµ(w′)| ‖Ĥ(w)−1‖2

∥∥∥∥∥
n∑
i=1

Kh(Wi −w)ph(Wi −w)

∥∥∥∥∥
2

hγ

.P
hγ

n
sup
w∈W

∥∥∥∥∥
n∑
i=1

Kh(Wi −w)ph(Wi −w)

∥∥∥∥∥
2

.

Now write ũij(w) =Kh(Wi−w)ph(Wi−w)j and note that |ũij(w)|. h−m and E[ũij(w)].
1. By Lemma SA.7(i), for a constant C4,

P

(∣∣∣∣∣
n∑
i=1

ũij(w)−E

[
n∑
i=1

ũij(w)

]∣∣∣∣∣>C4h
−m(√nt+ (logn)(log logn)t

))
≤C4e

−t.

As in previous parts, by Lipschitz properties, this implies

sup
w∈W

∣∣∣∣∣
n∑
i=1

ũij(w)

∣∣∣∣∣.P n

(
1 +

√
logn

nh2m

)
.P n.

Therefore supw∈W |Bias(w)|.P nh
γ/n.P h

γ .

Part 9: conclusion
By the previous parts,

sup
w∈W
|µ̂(w)− µ(w)− T (w)| ≤ sup

w∈W

∣∣eT1H(w)−1S(w)− T (w)
∣∣

+ sup
w∈W

∣∣∣eT1 (Ĥ(w)−1 −H(w)−1
)
S(w)

∣∣∣+ sup
w∈W
|Bias(w)|

.P

(
(logn)m+4

nm+4hm(m+6)

) 1
2m+6

Rn +
logn√
n2h3m

+ hγ

.P
Rn√
nhm

(
(logn)m+4

nh3m

) 1
2m+6

+ hγ ,

where the last inequality follows because nh3m→∞ and 1
2m+6 ≤

1
2 . Finally, we verify the

upper and lower bounds on the variance of the Gaussian process. Since the spectrum of
H(w)−1 is bounded above and below by 1/n,

Var[T (w)] = Var

[
eT1H(w)−1

n∑
i=1

Kh(Wi −w)ph(Wi −w)εi

]
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= eT1H(w)−1 Var

[
n∑
i=1

Kh(Wi −w)ph(Wi −w)εi

]
H(w)−1eT1

. ‖H(w)−1‖22 max
1≤j≤k

n∑
i=1

Var
[
Kh(Wi −w)ph(Wi −w)jσ(Wi)

]
.

1

n2
n

1

hm
.

1

nhm
.

Var[T (w)]& 1
nhm by the same argument given to bound the eigenvalues of H(w)−1. �

APPENDIX SB: DISTRIBUTIONAL APPROXIMATION OF MARTINGALE `p-NORMS

We present some applications of the results derived in Appendix A. In certain empirical set-
tings, including nonparametric significance tests [14] and nearest neighbor search procedures
[4], an estimator or test statistic can be expressed under the null hypothesis as the `p-norm of
a zero-mean (possibly high-dimensional) martingale for some p ∈ [1,∞]. In the notation of
Corollary 2.2, it is therefore of interest to bound Kolmogorov–Smirnov quantities of the form

sup
t≥0

∣∣P(‖S‖p ≤ t)− P(‖T‖p ≤ t)
∣∣.

Let Bp be the class of closed `p-balls in Rd centered at the origin and set

∆p(η) := ∆p(Bp, η) = sup
t≥0
P(t < ‖T‖p ≤ t+ η).

PROPOSITION SB.1 (Distributional approximation of martingale `p-norms). Assume the
setup of Corollary 2.2, with Σ non-random. Then for T ∼N (0,Σ),

(6) sup
t≥0

∣∣P(‖S‖p ≤ t)− P (‖T‖p ≤ t)
∣∣≤ inf

η>0

{
Γp(η) + ∆p(η)

}
.

PROOF (Proposition SB.1). Applying Proposition A.1 with A= Bp gives

sup
t≥0

∣∣P(‖S‖p ≤ t)− P (‖T‖p ≤ t)
∣∣= sup

A∈Bp

∣∣P(S ∈A)− P(T ∈A)
∣∣

≤ inf
η>0

{
Γp(η) + ∆p(Bp, η)

}
≤ inf

η>0

{
Γp(η) + ∆p(η)

}
.

�

The right-hand side of (6) can be controlled in various ways. In the case of p =∞,
note that `∞-balls are rectangles so B∞ ⊆ R, giving ∆∞(η) ≤ η(

√
2 logd + 2)/σmin

whenever minj Σjj ≥ σ2
min. Alternatively, Giessing [11, Theorem 1] provides ∆∞(η) .

η/
√

Var[‖T‖∞] + η2. In fact, by Hölder duality of `p-norms, we can write ‖T‖p =
sup‖u‖q≤1 u

TT where 1/p+ 1/q = 1. Then, applying the Gaussian process anti-concentration
result of Giessing [11, Theorem 2] yields the more general ∆p(η) . η/

√
Var[‖T‖p] + η2.

Thus, the problem can be reduced to that of obtaining lower bounds for Var [‖T‖p], with
techniques for doing so discussed, for example, in Giessing [11, Section 4]. Note that along-
side the `p-norms, other functionals can be analyzed in this manner, including the maximum
statistic and other order statistics [12, 11].

To conduct inference in this situation, we need to feasibly approximate the quantiles of
‖T‖p. To that end, take a significance level τ ∈ (0,1) and define

q̂p(τ) = inf
{
t ∈R : P(‖T̂‖p ≤ t |X)≥ τ} where T̂ |X∼N (0, Σ̂),
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with Σ̂ any X-measurable positive semi-definite estimator of Σ. Note that for the canonical
estimator Σ̂ =

∑n
i=1XiX

T
i we can write T̂ =

∑n
i=1XiZi with Z1, . . . ,Zn i.i.d. standard

Gaussian independent of X, yielding the Gaussian multiplier bootstrap. Now assuming the
law of ‖T̂‖p |X has no atoms, we can apply Proposition A.2 to see

sup
τ∈(0,1)

∣∣P (‖S‖p ≤ q̂p(τ))− τ
∣∣≤ E[sup

t≥0

∣∣P(‖S‖p ≤ t)− P(‖T̂‖p ≤ t |X)
∣∣]

≤ inf
η>0

{
Γp(η) + 2∆p(η) + 2dE

[
exp

(
−η2

2d2/p
∥∥Σ̂1/2 −Σ1/2

∥∥2
2

)]}

and hence the bootstrap is valid whenever ‖Σ̂1/2 − Σ1/2
∥∥2
2

is sufficiently small. See the
discussion in Appendix A regarding methods for bounding this object.

REMARK 1 (One-dimensional distributional approximations). In our application to distri-
butional approximation of `p-norms, the object of interest ‖S‖p is a one-dimensional functional
of the high-dimensional martingale; contrast this with the more general Proposition A.1 which
directly considers the d-dimensional random vector S. As such, our coupling-based approach
may be improved in certain settings by applying a more carefully tailored smoothing argument.
For example, Belloni and Oliveira [2] employ a “log sum exponential” bound [see also 7] for
the maximum statistic max1≤j≤d Sj , along with a coupling due to Chernozhukov, Chetverikov
and Kato [9], to attain an improved dependence on the dimension. Naturally their approach
does not permit the formulation of high-dimensional central limit theorems over arbitrary
classes of Borel sets as in our Proposition A.1.
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