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This paper illustrates how one can deduce preference from observed
choices when attention is both limited and random. We introduce a
random attention model where we abstain from any particular atten-
tion formation and instead consider a large class of nonparametric ran-
dom attention rules. Our intuitive condition, monotonic attention,
captures the idea that each consideration set competes for the decision
maker’s attention. We then develop a revealed preference theory and
obtain testable implications. We propose econometric methods for
identification, estimation, and inference for the revealed preferences.
Finally, we provide a general-purpose software implementation of our
estimation and inference results and simulation evidence.
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I. Introduction
Revealed preference theory is not only a cornerstone ofmodern econom-
ics but also the source of important theoretical, methodological, and pol-
icy implications for many social and behavioral sciences. This theory aims
to identify the preferences of a decision maker (e.g., an individual or a
firm) fromher observed choices (e.g., buying a house or hiring a worker).
In its classical formulation, revealed preference theory assumes that the
decision maker selects the best available option after full consideration
of all possible alternatives presented to her. This assumption leads to spe-
cific testable implications based on observed choice patterns, but unfortu-
nately, empirical testing of classical revealed preference theory shows that
it is not always compatible with observed choice behavior (Hauser and
Wernerfelt 1990; Goeree 2008; van Nierop et al. 2010; Honka, Hortaçsu,
and Vitorino 2017). For example, Reutskaja et al. (2011) provide interest-
ing experimental evidence against the full attention assumption using eye
tracking and choice data.
Motivated by these findings and the fact that certain theoretically im-

portant and empirically relevant choice patterns cannot be explained us-
ing classical revealed preference theory based on full attention, scholars
have proposed other economicmodels of choice behavior. An alternative
is the limited attention model (Masatlioglu, Nakajima, and Ozbay 2012;
Dean, Kıbrıs, and Masatlioglu 2017; Lleras et al. 2017), where decision
makers are assumed to select the best available option from a subset of
all possible alternatives, known as the consideration set. This framework
takes the formation of the consideration set—also known as attention
rule or consideration map—as unobservable and hence an intrinsic fea-
ture of the decisionmaker. Nonetheless, it is possible to develop a fruitful
theory of revealed preference within this framework, employing only
mild and intuitive nonparametric restrictions on how the decisionmaker
decides to focus attention on specific subsets of all possible alternatives
presented to her.
Until very recently, limited attention models have been deterministic,

a feature that diminished their empirical applicability: testable implica-
tions via revealed preference have relied on the assumption that the de-
cisionmaker pays attention to the same subset of options every time she is
confronted with the same set of available alternatives. This requires that,
for example, an online shopper always uses the same keyword and the same
search engine (e.g., Google) on the sameplatform (e.g., tablet) to look for
a product. This is obviously restrictive and can lead to predictions that are
inconsistent with observed choice behavior. Aware of this fact, a few schol-
ars have improved deterministic limited attention models by allowing for
stochastic attention (Manzini and Mariotti 2014; Aguiar 2015; Brady and
Rehbeck 2016; Horan 2019), which permits the decision maker to pay
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attention to different subsets with some nonzero probability given the
same set of alternatives to choose from. All available results in this litera-
ture proceed by first parameterizing the attention rule (i.e., committing
to a particular parametric attention rule) and then studying the revealed-
preference implications of these parametric models.
In contrast to earlier approaches, we introduce a random attention

model (RAM) where we abstain from any specific parametric (stochastic)
attention rule and instead consider a large class of nonparametric ran-
dom attention rules. Ourmodel imposes one intuitive condition, termed
“monotonic attention,” which is satisfied by many stochastic attention
rules. Given that consideration sets are unobservable, this feature is cru-
cial for applicability of our revealed preference results, as our findings and
empirical implications are valid undermanydifferent andparticular atten-
tion rules that could be operating in the background. In other words, our
revealed preference results are derived from nonparametric restrictions
on the attention rule andhence aremore robust tomisspecificationbiases.
The RAM is best suited for eliciting information about the preference

ordering of a single decision-making unit when her choices are observed
repeatedly.1 For example, scanner data keep track of the same single con-
sumer’s purchases across repeated visits, where the grocery store adjusts
product varieties and arrangements regularly. Another example is web ad-
vertising on digital platforms, such as search engines or shopping sites,
where not only are abundant records fromeach individual decisionmaker
available but it is also common to seemanipulations or experiments alter-
ing the options offered to them. A third example is given in Kawaguchi,
Uetake, and Watanabe (2016), where large data on each consumer’s
choices from vendingmachines (with varying product availability) are an-
alyzed. In addition, our model can be used empirically with aggregate
data on a group of distinct decision makers, provided that each of them
may differ onwhat they pay attention to but all share the same preference.
Our key identifying assumption—monotonic attention—restricts the

possibly stochastic attention formationprocess in a very intuitive way: each
consideration set competes for the decisionmaker’s attention, and hence
the probability of paying attention to a particular subset is assumed not to
decrease when the total number of possible consideration sets decreases.
We show that this single nonparametric assumption is general enough
to nest most (if not all) previously proposed deterministic and random
1 The finding that individual choices frequently exhibit randomness was first reported
in Tversky (1969) and has now been illustrated by Agranov and Ortoleva (2017) and nu-
merous other studies. Similar to our work, Manzini and Mariotti (2014); Fudenberg,
Iijima, and Strzalecki (2015); and Brady and Rehbeck (2016), among others, have devel-
oped models that allow the analyst to reveal information about the agent’s preferences
from her observed random choices.
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limited attention models. Furthermore, under our proposed monotonic
attention assumption, we are able to develop a theory of revealed prefer-
ence, obtain specific testable implications, and (partially) identify the un-
derlying preferences of the decision maker by investigating her observed
choice probabilities. Our revealed preference results are applicable to a
wide range of attention rules, including the parametric ones currently
available in the literature, which, as we show, satisfy the monotonic atten-
tion assumption.
On the basis of these theoretical findings, we also develop econometric

results for identification, estimation, and inference of the decision mak-
er’s preferences, as well as specification testing of the RAM.We show that
the RAM implies that the set of partially identified preference orderings
containing the decision maker’s true preferences is equivalent to a set of
inequality restrictions on the choice probabilities (one for each prefer-
ence ordering in the identified set). This result allows us to employ the
identifiable/estimable choice probabilities to (i) develop a model speci-
fication test (i.e., test whether there exists a nonempty set of preference
orderings compatible with the RAM), (ii) conduct hypothesis testing on
specific preference orderings (i.e., test whether the inequality constraints
on the choice probabilities are satisfied), and (iii) develop confidence
sets containing the decision maker’s true preferences with prespecified
coverage (i.e., via test inversion). Our econometric methods rely on ideas
and results from the literature on partially identified models and mo-
ment inequality testing: see Canay and Shaikh (2017), Ho and Rosen
(2017), and Molinari (2020) for recent reviews and further references.
The RAM is fully nonparametric and agnostic because it relies on the

monotonic attention assumption only. As a consequence, it may lead to
relatively weak testable implications in some applications—that is, “little”
revelationor a “large” identified set of preferences.However, theRAMalso
provides a basis for incorporating additional (parametric and) nonpara-
metric restrictions that can substantially improve identification power.
In this paper, we illustrate how the RAM can be combined with additional,
mild nonparametric restrictions to tighten identification in nontrivial
ways: in section V.A, we incorporate an additional restriction on attention
rule for binary choice problems and show that this alone leads to impor-
tant revelation improvements within the RAM.We also illustrate this result
numerically in our simulation study.
Finally, we implement our estimation and inference methods in the

general-purpose software package ramchoice for R—see https://cran.r
-project.org/package5ramchoice for details. Our novel identification re-
sults allow us to develop inference methods that avoid optimization over
the possibly high-dimensional space of attention rules, leading tomethods
that are very fast and easy to implement when applied to realistic empirical
problems. See appendix B (available online) for numerical evidence.
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Our work contributes to both economic theory and econometrics. We
describe several examples covered by our model in section II after we in-
troduce our proposed RAM. We also discuss in detail the connections
and distinctions between this paper and the economic theory literature
in section SA-1 of appendix B. In particular, we show how the RAM nests
and/or connects to the recent work by Gul, Natenzon, and Pesendorfer
(2014); Manzini and Mariotti (2014); Fudenberg, Iijima, and Strzalecki
(2015); Aguiar, Boccardi, and Dean (2016); Brady and Rehbeck (2016);
Echenique, Saito, and Tserenjigmid (2018); and Echenique and Saito
(2019), among others.
This paper is also related to a rich econometric literature on nonpara-

metric identification, estimation, and inference both in the specific con-
text of randomutility models andmore generally. SeeMatzkin (2013) for
a review and further references on nonparametric identification, Haus-
man andNewey (2017) for a recent review and further references onnon-
parametric welfare analysis, andBlundell, Kristensen, andMatzkin (2014);
Kawaguchi (2017); Deb et al. (2018); and Kitamura and Stoye (2018) for a
sample of recent contributions and further references. As mentioned
above, a key feature of the RAM is that our proposedmonotonic attention
condition on attention rule nests previousmodels as special cases and also
covers many new models of choice behavior. In particular, the RAM can
accommodate more choice behaviors or patterns than what can be ratio-
nalized by random utility models. This is important because numerous
studies in psychology, finance, and marketing have shown that decision
makers exhibit limited attention when making choices; they compare
(and choose from) only a subset of all available options. Whenever deci-
sion makers do not pay full attention to all options, implications from
revealed preference theory under random utility models no longer hold
in general, implying that empirical testing of substantive hypotheses as well
as policy recommendations based on random utility models will be invalid.
On the other hand, our results may remain valid.
In contemporaneous work, a few scholars have also developed identifi-

cation and inference results under (random) limited attention, trying to
connect behavioral theory and econometric methods, as we do in this pa-
per. Three recent examples of this new research area includeAbaluck and
Adams (2017), Barseghyan et al. (2018), and Dardanoni et al. (2020).
These papers are complementary to ours insofar as different assumptions
on the randomattention rule andpreference(s) are imposed, which leads
to different levels of (partial) identification of preference(s) and (ran-
dom) attention rule(s). For further discussion of the relationship with
these papers, see section SA-1 of appendix B.
The rest of the paper proceeds as follows. Section II presents the basic

setup, where our keymonotonicity assumption on the decisionmaker’s sto-
chastic attention rule is presented later in the section. Section III discusses
This content downloaded from 128.112.070.247 on June 24, 2020 14:47:21 PM
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our RAM in detail, including the main revealed preference results. Sec-
tion IV presents our main econometrics methods, including nonparamet-
ric (partial) identification, estimation, and inference results. In section V.A,
we consider additional restrictions on the attention rule for binary choice
problems, which canhelp improve our identification and inference results
considerably. We also consider random attention filters in section V.B,
which are one of the motivating examples of monotonic attention rules.
In this case, however, there is no additional identification. Section VI sum-
marizes the findings from a simulation study. Finally, section VII concludes
with adiscussionof directions for future research. A companion appendixB
includesmore examples, extensions, othermethodological results, omitted
proofs, and additional simulation evidence.
II. Setup
We designate a finite set X to act as the universal set of all mutually exclu-
sive alternatives. This set is thus viewed as the grand alternative space and
is kept fixed throughout. A typical element of X is denoted by a, and its
cardinality is jX j 5 K . We let X denote the set of all nonempty subsets of
X. Each member of X defines a choice problem.
Definition 1 (Choice rule). A choice rule is a map p : X � X → ½0, 1�

such that for all S ∈ X , pðajSÞ ≥ 0 for all a ∈ S , pðajSÞ 5 0 for all a ∉ S ,
and oa ∈SpðajSÞ 5 1.
Thus, pðajSÞ represents the probability that the decisionmaker chooses

alternative a from the choice problem S. Our formulation allows both sto-
chastic and deterministic choice rules. If pðajSÞ is either zero or one, then
choices are deterministic. For simplicity in the exposition, we assume that
all choice problems are potentially observable throughout themainpaper,
but this assumption is relaxed in section SA-3 of appendix B to account for
cases where only data on a subcollection of choice problems are available.
The key ingredient in our model is probabilistic consideration sets.

Given a choice problem S, each nonempty subset of S could be a consid-
eration set with certain probability. We impose that each frequency is be-
tween zero and one and that the total frequency adds up to one. Formally:
Definition 2 (Attention rule). An attention rule is a map m :X �

X → ½0, 1�, such that for all S ∈ X , mðT jSÞ ≥ 0 for all T ⊂ S, mðT jSÞ 5 0
for all T ⊄ S , and oT⊂S  mðT jSÞ 5 1.
Thus,mðT jSÞ represents the probability of paying attention to the consid-

eration set T ⊂ S when the choice problem is S. This formulation captures
both deterministic and stochastic attention rules. For example, mðS jSÞ 5 1
represents an agent with full attention. Given our approach, we can always
extract the probability of paying attention to a specific alternative: for a
given a ∈ S , oa ∈T⊂SmðT jSÞ denotes the probability of paying attention to
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a in the choice problem S. The probabilities on consideration sets allow
us to derive the attention probabilities on alternatives uniquely.
We consider a choice model where a decision maker picks the maximal

alternative with respect to her preference among the alternatives she pays
attention to. Our ultimate goal is to elicit her preferences from observed
choice behavior without requiring any information on consideration sets.
Of course, this is impossible without any restrictions on her (possibly ran-
dom) attention rule. For example, a decision maker’s choice can always
be rationalized by assuming that she pays attention only to singleton sets.
Because the consumer never considers two alternatives together, one can-
not infer her preferences at all.
We propose a property (i.e., an identifying restriction) on how stochas-

tic consideration sets change as choice problems change, as opposed to
explicitly modeling how the choice problem determines the consider-
ation set. We argue below that this nonparametric property is indeed sat-
isfied bymany problems of interest andmimics heuristics that people use
in real life (see examples below and in sec. SA-2 of app. B). This approach
makes it possible to apply ourmethod to elicit preference without relying
on a particular formation mechanism of consideration sets.
Assumption 1 (Monotonic attention). For any a ∈ S 2 T , mðT jSÞ ≤

mðT jS 2 aÞ.
Monotonic m captures the idea that each consideration set competes

for consumers’ attention: the probability of a particular consideration
set does not shrink when the number of possible consideration sets de-
creases. Removing an alternative that does not belong to the consider-
ation set T results in less competition for T, and hence the probability
of T being the consideration set in the new choice problem is weakly
higher. Our assumption is similar to the regularity condition proposed
by Suppes and Luce (1965). The key difference is that their regularity
condition is defined on choice probabilities, while our assumption is de-
fined on attention probabilities.
To demonstrate the richness of the framework and motivate the anal-

ysis to follow, we discuss six leading examples of families of monotonic at-
tention rules—that is, attention rules satisfying assumption 1. We offer
several more examples in section SA-2 of appendix B. The first example
is deterministic (i.e., mðT jSÞ is either zero or one), but the others are all
stochastic.
Example 1 (Attention filter). A large class of deterministic attention

rules, leading to consideration sets that do not change if an item not at-
tracting attention is made unavailable (attention filter), was introduced
by Masatlioglu, Nakajima, and Ozbay (2012). A classical example in this
class is when a decision maker considers all the items appearing in the
first page of search results and overlooks the rest. Formally, let G(S) be
the deterministic consideration set when the choice problem is S, and
This content downloaded from 128.112.070.247 on June 24, 2020 14:47:21 PM
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hence GðSÞ ⊂ S . Then, G is an attention filter if when a ∉ GðSÞ then
GðS 2 aÞ 5 GðSÞ. In our framework, this class corresponds to the case
mðT jSÞ 5 1 if T 5 GðSÞ and zero otherwise.
Example 2 (Random attention filters). Consider a decision maker

whose attention is deterministic but utilizes different deterministic atten-
tionfilters on different occasions. For example, it is well known that search
behavior on distinct platforms (mobile, tablet, and desktop) is drastically
different (e.g., the same search engine produces different first-page lists
depending on the platform, or different platforms utilize different search
algorithms). In such cases, while the consideration set comes from a (de-
terministic) attention filter for each platform, the resulting consideration
set is random. Formally, if a decision maker utilizes each attention filter Gj

with probability wj, then the attention rule can be written as

mðT jSÞ 5 o
j

IðGjðSÞ 5 T Þ � wj ,

where I denotes the indicator function. We will pay special attention to
this class of attention rules in section V.B.
Example 3 (Independent consideration). This example is based on

Manzini and Mariotti (2014). Consider a decision maker who pays atten-
tion to each alternative a with a fixed probability gðaÞ ∈ ð0, 1Þ. The pa-
rameter g represents the degree of brand awareness for a product or
the willingness of an agent to seriously evaluate a political candidate.
The frequency of each set being the consideration set can be expressed
as follows: for all T ⊂ S ,

mðT jSÞ 5 1

bS

Y
a ∈T

gðaÞ
Y

a ∈S2T

ð1 2 gðaÞÞ,

where bS 5 1 2
Q

a ∈Sð1 2 gðaÞÞ—which represents the probability that
the decision maker considers no alternative in S—is used to adjust each
probability so that they sum to one.
Example 4 (Logit attention). This example is based on Brady and

Rehbeck (2016). Consider a decisionmaker who assigns a positive weight
for each nonempty subset of X. Psychologically, wT is a strength associated
with the subset T. The probability of consideringT in S can be written as

mðT jSÞ 5 wT

oT 0⊂SwT 0
:

Even though there is no structure on weights in the general version of this
model, there are two interesting special cases where weights depend solely
on the size of the set. These are wT 5 jT j and wT 5 1=jT j, which are
conceptually different. In the latter, the decision maker tends to have
smaller consideration sets, while larger consideration sets are more likely
in the former.
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Example 5 (Dogit attention). This example is a generalization of
logit attention and is based on the idea of the dogit model (Gaundry
and Dagenais 1979). A decision maker is captive to a particular consider-
ation set with certain probability, to the extent that she pays attention to
that consideration set regardless of the weights of other possible consid-
eration sets. Formally, let

mðT jSÞ 5 1

1 1oT 0⊂SvT 0
 

wT

oT 0⊂SwT 0
1

vT

1 1oT 0⊂SvT 0
,

where vT ≥ 0 represents the degree of captivity (impulsivity) of T. The
“captivity parameter” reflects the attachment of a decisionmaker to a cer-
tain consideration set. Since wT values are nonnegative, the second term,
which is independent of wT, is the smallest lower bound for mðT jSÞ. The
larger the vT values, the more likely the decision maker is to be captive to
T and pay attention to it. When vT 5 0 for all T, this model becomes logit
attention. This formulation is able to distinguish between impulsive and
deliberate attention behavior.
Example 6 (Elimination by aspects). Consider a decisionmaker who

intentionally or unintentionally focuses on a certain aspect of alternatives
and then refuses or ignores those alternatives that do not possess that as-
pect. This model is similar in spirit to Tversky (1972). Let f j , k, ‘, : : :g
represent the set of aspects. Let qj represent the probability that aspect
j “draws attention to itself.” It reflects the salience and/or importance
of aspect j. All alternatives without that aspect fail to receive attention.
Let Bj represent the set of alternatives that possess aspect j. We assume
that each alternative must belong to at least one Bj with qj > 0. If aspect
j is the salient aspect, the consideration set is Bj \ S when S represents
the set of feasible alternatives. The total probability ofT being the consid-
eration set is the sum of qj such that T 5 Bj \ S . When there is no alter-
native in S possessing the salient aspect, a new aspect will be drawn. For-
mally, the probability of T being the consideration set under S is given by

mðT jSÞ 5 o
Bj\S5T

qj

oBk\S ≠∅qk

:

These six examples give a sample of different limited attention models of
interest in economics, psychology,marketing, andmanyother disciplines.
While these examples are quite distinct from each other, all of them are
monotonic attention rules.2 As a consequence, our revealed preference
2 To provide an example where assumption 1 might be violated, consider a generaliza-
tion of independent consideration of Manzini and Mariotti (2014). In this generalization,
the degree of brand awareness for a product is not only a function of the product but also a
function of the context—i.e., gS(a). Then, the frequency of each set being the consider-
ation set is calculated as an independent consideration rule. Because of this contextual de-
pendence, further restrictions on gS(a) and gS 2 b(a) are needed to ensure assumption 1.
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characterization will be applicable to a wide range of choice rules without
committing to a particular attention mechanism, which is not observable
in practice andhence untestable. Furthermore, as illustrated by the exam-
ples above (and those in sec. SA-2 of app. B), our upcoming characteriza-
tion, identification, estimation, and inference results nest important pre-
vious contributions in the literature.
III. A Random Attention Model
We are ready to introduce our RAM based on assumption 1. We assume
that the decisionmakerhas a strict preference ordering≻ onX. To be pre-
cise, we assume that the preference ordering is an asymmetric, transitive,
and complete binary relation. A binary relation ≻ on a set X is (i) asym-
metric, if for all x, y ∈ X , x≻y implies that y ⊁x; (ii) transitive, if for all
x, y, z ∈ X , x≻y and y≻z imply that x≻z; and (iii) complete, if for all
x ≠ y ∈ X , either x≻y or y≻x is true. Consequently, the decision maker
always picks the maximal alternative with respect to her preference among
the alternatives she pays attention to. Formally:
Definition 3 (Random attention representation). A choice rule p

has a random attention representation if there exists a preference order-
ing ≻ over X and a monotonic attention rule m (assumption 1) such that

pða
�� SÞ 5 o

T⊂S

Iða is ≻-best in T Þ � mðT SÞj

for all a ∈ S and S ∈X . In this case, we say that p is represented by (≻, m).
We may also say that ≻ represents p, which means that there exists some
monotonic attention rule m such that (≻, m) represents p. We also say that
p is a RAM.
While our framework is designed to model stochastic choices, it cap-

tures deterministic choices as well. In classical choice theory, a decision
maker chooses the best alternative according to her preferences with
probability one, and hence, choice is deterministic. In our framework,
this case is captured by a monotonic attention rule with mðS jSÞ 5 1. Fig-
ure 1 gives a graphical representation of the RAM.
We now derive the implications of our RAM. They can be used to test

the model in terms of observed choice rules or probabilities. In this sec-
tion, we treat the choice rule as known/observed to facilitate the discus-
sion of preference elicitation. In practice, the researchermay observe only
a set of choice problems and choices thereof. We discuss econometric im-
plementation in section IV: even if the choice rule is not directly observed,
it is identified (consistently estimable) from choice data.
In the literature, there is a principle called “regularity” (see Suppes

and Luce 1965), according to which adding a new alternative should only
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decrease the probability of choosing one of the existing alternatives. How-
ever, empirical findings suggest otherwise. Rieskamp, Busemeyer, and
Mellers (2006) provide a detailed review of empirical evidence on viola-
tions of regularity and alternative theories explaining these violations. Im-
portantly, our model allows regularity violations.
The next example illustrates that adding an alternative to the feasible

set can increase the likelihood that an existing alternative is selected. This
cannot be accommodated in the Luce (multinomial logit)model or in any
random utility model. In the RAM, the addition of an alternative changes
the choice set and therefore the decision maker’s attention, which could
increase the probability of an existing alternative being chosen.
Example 7 (Regularity violation). Let X 5 fa, b, cg, and consider

two nested choice problems {a, b, c } and {a, b }. Imagine a decision maker
with a ≻ b ≻ c and the following monotonic attention rule m. Each row
corresponds to a different choice problem, and columns represent pos-
sible consideration sets.

m(TFS) T 5 {a, b, c } {a, b } {a, c } {b, c } {a } {b } {c }

S 5 {a, b, c } 2/3 0 0 1/6 0 0 1/6
{a, b } 1/2 0 1/2
{a, c } 1/2 0 1/2
{b, c } 1/2 0 1/2
 use sub
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Then pðajfa, b, cgÞ 5 2=3 > 1=2 5 pðajfa, bgÞ 5 pðajfa, cgÞ.
This example shows that the RAM can explain choice patterns that

cannot be explained by the classical random utility model. Given that
the model allows regularity violations, one might think that the model
has very limited empirical implications—that is, it is too general to have
empirical content. However, it is easy to find a choice rule p that lies out-
side the RAM with only three alternatives. Here we provide an example
where our model makes very sharp predictions.
FIG. 1.—Illustration of a RAM. Observable: choice problem and choice (solid line). Un-
observable: attention rule, consideration set, and preference (dashed line).
:21 PM
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Example 8 (RAM violation). The following choice rule p is not com-
patible with our RAM as long as the decision maker chooses each alter-
native with positive probability from the set {a, b, c }—that is, lalblc > 0.
Each column corresponds to a different choice problem.

p(⋅FS) S 5 {a, b, c } {a, b } {a, c } {b, c }

a la 1 0
b lb 0 1
c lc 1 0
All use subjec

This content
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tions (http://w
We now illustrate that p is not a RAM. Since the choice behavior is sym-
metric among all binary choices, without loss of generality, assume that
a≻b≻c. Given that c is the worst alternative, {c} is the only consideration
set in which c can be chosen. Hence, the decision maker must consider
the consideration set {c} with probability lc (i.e., mðfcgjfa, b, cgÞ5 lc). As-
sumption 1 implies that mðfcgjfb, cgÞ must be greater than lc > 0. This
yields a contradiction sincepðcjfb, cgÞ 5 0. In sum, given the above binary
choices, our model predicts that when the choice set is {a, b, c} the decision
maker must choose at least one alternative with zero probability, which is a
stark prediction in probabilistic choice.
Onemight wonder that themodel makes a strong prediction due to the

cyclical binary choices—that is, pðajfa, bgÞ 5 pðbjfb, cgÞ 5 pðcjfa, cgÞ 5
1. We can generate a similar prediction where the individual is perfectly
rational in the binary choices—that is, pðajfa, bgÞ 5 pðajfa, cgÞ 5
pðbjfb, cgÞ 5 1. In this case, our model predicts that the individual can-
not chose both b and c with strictly positive probability when the choice
problem is {a, b, c }. Therefore, we obtain similar predictions. Given that
the RAM has nontrivial empirical content, it is natural to investigate to
what extent assumption 1 can be used to elicit (unobserved) strict prefer-
ence orderings given (observed) choices of decision makers.
A. Revealed Preference
In general, a choice rule can havemultiple RAM representations with dif-
ferent preference orderings and different attention rules.Whenmultiple
representations are possible, we say that a is revealed to be preferred to b
if and only if a is preferred to b in all possible RAM representations. This
is a very conservative approach, as it ensures that we never make false
claims about the preference of the decision maker.
Definition 4 (Revealed preference). Let fð≻j , mjÞgj51, : : : , J represent

all random attention representations of p. We say that a is revealed to be
preferred to b if a ≻j b for all j.
We now show how revealed preference theory can still be developed

successfully in our RAM framework. If all representations share the same
2020 14:47:21 PM
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preferences ≻ (or if there is a unique representation), then the revealed
preference will be equal to ≻. In general, if one wants to know whether a
is revealed to be preferred to b, it would appear necessary to identify all
possible (≻j, mj) representations. However, this is not practical, especially
when there are many alternatives. Instead, we shall now provide a handy
method to obtain the revealed preference completely.
Our theoretical strategy parallels that of Masatlioglu, Nakajima, and

Ozbay (2012) in their study of a deterministic model of inattention.
Masatlioglu, Nakajima, and Ozbay identify a as revealed to be preferred
to b whenever a is chosen in the presence of b, and removing b causes
a choice reversal. This particular observation, in conjunction with the
structure of attention filters, ensures that the decision maker considers
b while choosing a. Here we show that a is revealed to be preferred to b
if removing b causes a regularity violation—that is, pðajSÞ > pðajS 2 bÞ.
To see this, assume that (≻, m) represents p and pðajSÞ > pðajS 2 bÞ. By
definition, we have

pðajSÞ 5 o
T⊂S ,

a is ≻-best in T

mðT jSÞ

5 o
b ∈ T ⊂S ,

a is ≻-best in T

mðT jSÞ 1 o
b∉T ⊂S ,

a is ≻-best in T

mðT jSÞ

≤ o
b ∈ T ⊂S ,

a is ≻-best in T

mðT jSÞ 1 o
T ⊂S 2 b,

a is ≻-best in T

mðT jS 2 bÞ

5   o
b ∈ T ⊂S ,

a is ≻-best in T

mðT jSÞ 1 pðajS 2 bÞ,

where the second term in the third row follows from assumption 1.
Hence, we have the following inequality:

pða SÞ 2 pðaj jS 2 bÞ ≤ o
b ∈ T ⊂S ,

a is ≻-best in T

mðT jSÞ:

Since pðajSÞ 2 pðajS 2 bÞ > 0, there must exist at least one T such that
(i) b ∈ T , (ii) a is ≻-best in T , and (iii) mðT jSÞ ≠ 0. Therefore, there ex-
ists at least one occasion that the decision maker pays attention to b while
choosing a (revealed preference). The next lemma summarizes this inter-
esting relationship between regularity violations and revealed preferences.
It simply illustrates that the existence of a regularity violation informs us
about the underlying preference.
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Lemma 1. Let p be a RAM. If pðajSÞ > pðajS 2 bÞ, then a is revealed to
be preferred to b.
Lemma 1 allows us to define the following binary relation. For any dis-

tinct a and b, define

aPb if  there exists S ∈ X  including a and b such that pða SÞ >pðaj jS2bÞ:

By lemma 1, if aPb, then a is revealed to be preferred to b. In other words,
this condition is sufficient to reveal preference. In addition, since the un-
derlying preference is transitive, we also conclude that she prefers a to c if
aPb and bPc for some b, even when aPc is not directly revealed from her
choices. Therefore, the transitive closure of P, denoted by PR, must also
be part of her revealed preference. One may wonder whether some re-
vealed preference is overlooked by PR. The following theorem, which is
our first main result, shows that PR includes all preference information
given the observed choice probabilities under only assumption 1.
Theorem 1 (Revealed preference). Let p be a RAM. Then a is re-

vealed to be preferred to b if and only if aPRb.
Proof. The “if ” part follows from lemma 1. To prove the “only if” part,

we show that given any preference ≻ that includes PR, there exists amono-
tonic attention rule m such that (≻, m) represents p. The details of the con-
struction can be found in the proof of theorem 2. QED
Theorem 1 establishes the empirical content of revealed preferences

under monotonic attention only. Our resulting revealed preferences
could be incomplete: it may provide only coarse welfare judgments in
some cases. At one extreme, there is no preference revelation when there
is no regularity violation. This is because the decision maker’s behavior
can be fully attributed to her preference or to her inattention (i.e., never
considering anything other than her actual choice). This highlights the
fact that our revealed preference definition is conservative, which guar-
antees no false claims in terms of revealed preference, especially when
there are alternative explanations for the same choice behavior. The fol-
lowing example illustrates that we might make misleading inferences if
we wrongly believe that the decision maker uses a particular attention
rule.
Example 9 (Avoiding misleading inference). We now describe a typ-

ical online customer’s search behavior. For simplicity, there are three
products a, b, and c. She prefers c over a and a over b (not observable).
She visits two different search engines: G and Y. Eighty-five percent of
her search takes place on engine G across three different platforms: lap-
top (20%), tablet (50%), and smartphone (15%). Engine G always lists b
before a and a before c. Because of screen size, engine G lists up to three,
two, and one pieces of product information on laptops, tablets, and
smartphones, respectively. The rest of her search is on engine Y (15%),
which has a unique platform. In this engine, a is listed first if it is available,
This content downloaded from 128.112.070.247 on June 24, 2020 14:47:21 PM
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and clicking a’s link will provide information about both a and c. If a is not
available, b is listed first. In engine Y, she clicks only one link. (When she
uses engine Y, her consideration set is {a, c } when a and c are both avail-
able, {a } when a is available but not c, and finally {b } when only b and c
are available.) On the basis of her underlying preference, the above con-
sideration set formation leads to stochastic choice, the frequencies of
which are reported in the following table:

p(�FS) S 5 {a, b, c } {a, b } {a, c } {b, c }

a .50 .85 .15
b .15 .15 .30
c .35 .85 .70
3 For exam
wfag 5 0, wfbg
79=510, it is ea
above.

T
 use subject to U
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Assume that we observe the customer’s choice data without any knowl-
edge about her underlying search behavior. First, note that the above
choice data are consistent with the logit attention model of Brady and
Rehbeck (2016).3 In other words, we can apply their revealed preference
result for this choice data. Their model, then, concludes that the unique
revealed preference is a≻b≻c; however, this is not the true one that has
generated the data. Therefore, if we make a mistaken assumption that
the customer’s behavior is in line with the logit model, we will infer that
c is the worst alternative when it is the best product for our customer.
Example 9 is an example where a specific consideration set formation

model leads to wrong conclusions on the revealed preferences. This ex-
ample highlights the importance of knowledge about the underlying
choice procedure when we conduct welfare analysis. In other words, wel-
fare analysis is more delicate a task than it looks. Notice that in the above
example, monotonic attention is satisfied as engines do not change their
presentations of first-page results when an alternative outside of the
first page becomes unavailable. Hence, theorem 1 is applicable. Since
pðajfa, b, cgÞ > pðajfa, cgÞ, our model correctly identifies her true pref-
erence between a and b. However, our model is silent about the relative
ranking of c. Therefore, while our revealed preference is conservative,
it does not make misleading claims.
We now illustrate that theorem 1 could be very useful for understand-

ing the attraction effect phenomena. The attraction effect introduced by
Huber, Payne, and Puto (1982) was the first evidence against the regular-
ity condition. It refers to an inferior product’s ability to increase the
attractiveness of another alternative when this inferior product is added
to a choice set. In a typical attraction effect experiment, we observe
pðajfa, b, cgÞ > pðajfa, bgÞ. Assume that we have no information about
weights be given as
,cg 5 1=10, wfa,b,cg 5
e choice data given
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the alternatives other than the frequency of choices. Then, by simply us-
ing observed choice, theorem 1 informs us that the third product c is in-
deed an inferior alternative compared to a ða≻cÞ. This is exactly how
these alternatives are chosen in these experiments. While alternatives a
and b are not comparable, alternative c, which is also not comparable
to b, is dominated by a. Theorem 1 informs us about the nature of prod-
ucts by observing only choice frequencies.
Our revealed preference result includes the one in Masatlioglu, Naka-

jima, and Ozbay (2012) for attention filters (i.e., nonrandom monotonic
attention rules). In their model, a is revealed to be preferred to b if there
is a choice problem such that a is chosen and b is available, but it is no lon-
ger chosen when b is removed from the choice problem. This means that
we have 1 5 pðajSÞ > pðajS 2 bÞ 5 0. Given theorem 1, this reveals that
a is better than b. On the other hand, generalizing this result to non-
deterministic attention rules allows for a broader class of empirical and
theoretical settings to be analyzed; hence, our revealed preference result
(theorem 1) is strictly richer than those obtained in previous work. For ex-
ample, in a deterministic world with three alternatives, there are no data
revealing the entire preference. On the other hand, we illustrate that it
is possible to reveal the entire preference in the RAMwith only three alter-
natives. This discussionmakes clear the connection between deterministic
and probabilistic choice in terms of revealed preference.
Example 10 (Full revelation). Consider the following stochastic choice

with three alternatives:

p(�FS) S 5 {a, b, c } {a, b } {a, c } {b, c }

a l 1 2 lb la

b 1 2 l lb 1 2 lc

c 0 1 2 la lc
All use subjec
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If 1 2 lb > l > la , lc , then we can verify that p has a random attention
representation (see theorem 2). Now we show that in all possible represen-
tations of p, a≻b≻c must hold. By lemma 1, pðajfa, b, cgÞ >pðajfa, cgÞ
implies that a is revealed to be preferred to b. Similarly, pðbjfa, b, cgÞ >
pðbjfa, bgÞ implies that b is revealed to be preferred to c. Hence, prefer-
ence is uniquely identified.
Example 10 also illustrates that one can achieve unique identification

of preferences by utilizing assumption 1 even when observed choices
cannot be explained by well-known models, such as the logit attention
model of Brady and Rehbeck (2016) and the independent attention
model of Manzini and Mariotti (2014). To see this point, assume that
maxf1 2 la , lcg > 0. One can show that neither Brady and Rehbeck
(2016) nor Manzini and Mariotti (2014) can explain observed choices in
this example. First, notice that since both models satisfy assumption 1
and the preference is uniquely revealed as a ≻b ≻c under assumption 1,
if the observed choice data can be explained by either model, then their
, 2020 14:47:21 PM
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revealed preference must also be a ≻ b ≻ c. That is, c must be the worst al-
ternative. On the other hand, c is chosen with zero probability in {a, b, c }.
These models then imply that c must also be chosen with zero prob-
ability in {a, c } and {b, c }. This contradicts our assumption that
maxf1 2 la , lcg > 0.
B. A Characterization
Theorem1 characterizes the revealed preference in ourmodel. However,
it is not applicable unless the observed choice behavior has a random at-
tention representation, which motivates the following question: How
can we test whether a choice rule is consistent with the RAM? It turns
out that the RAM can be simply characterized by only one behavioral pos-
tulate of choice: acyclicity. Our characterization is based on an idea sim-
ilar to Houthakker (1950). Choices reveal information about preferences.
If these revelations are consistent in the sense that there is no cyclical
preference revelation, the choice behavior has a RAM representation.
Theorem 2 (Characterization). A choice rule p has a random atten-

tion representation if and only if P has no cycle.
Recall that example 8 is outside of our model. Theorem 2 implies

that PR must have a cycle. Indeed, we have aPb because of the regularity
violation pðajfa, b, cgÞ 5 la > 0 5 pðajfa, cgÞ. Similarly, we have bPc by
pðbjfa, b, cgÞ 5 lb > 0 5 pðbjfa, bgÞ and cPa by pðcjfa, b, cgÞ 5 lc >
0 5 pðcjfb, cgÞ. Since P has a cycle, example 8 must be outside of our
model. Therefore, theorem 2 provides a very simple test of the RAM.
Our characterization result also helps us to understand the relation be-

tween our model and random utility models. It is well known in the liter-
ature that any choice rule that has a random utility model representation
satisfies regularity. On the other hand, for any choice rule that satisfies
regularity, P will trivially have no cycle. Hence, any choice rule that has
a random utility model representation also has a RAM representation.
However, in terms of modeling purposes, the RAM assumes random at-
tention with a deterministic preference, whereas the randomutility model
assumes random preference and deterministic (full) attention.
Before closing this section, we sketch the proof of theorem 2 and pro-

vide a corollary that is used in the next section for developing econo-
metric methods. The “only if” part of theorem 2 follows directly from
lemma 1. For the “if” part, we need to construct a preference and amono-
tonic attention rule representing the choice rule. Given that P has no cycle,
there exists a preference relation ≻ including PR. Indeed, we illustrate
that any such completion of PR represents p by an appropriately chosen
m. The construction of m depends on a particular completion of PR and
is not unique in general. We then illustrate that the constructed m satis-
fies assumption 1. At the last step, we show that (≻, m) represents p. In
This content downloaded from 128.112.070.247 on June 24, 2020 14:47:21 PM
 use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



a random attention model 2813
corollary 1, we provide one specific construction of the attention rule.
We first make a definition.
Definition 5 (Lower contour set; triangular attention rule). Given a

preference ordering ≻ of the alternatives in X—a1,≻≻a2,≻≻ : : :≻aK ,≻—a
lower contour set is defined as Lk,≻ 5 faj,≻ : j ≥ kg 5 fa ∈ X : a ≼ ak,≻g.
A triangular attention rule is an attention rule that puts weights only
on lower contour sets. That is, mðT jSÞ > 0 implies that T 5 Lk,≻ \ S for
some k such that ak,≻ ∈ S .
Corollary 1 (Monotonic triangular attention rule representation).

Assume that (≻, m) is a representation of p, with m satisfying assumption 1.
Then there is a unique triangular attention rule ~m corresponding to ≻,
which also satisfies assumption 1, such that (≻, ~m) is a representation of p.
IV. Econometric Methods
Theorem 1 shows that if the choice probability p is a RAM, then prefer-
ence revelation is possible. Theorem 2 gives a falsification result, which
can be used to design a specification test. The challenge for econometric
implementation, however, is that our main assumption—monotonic at-
tention—is imposed on the attention rule and that the attention rule is
not identified from typical choice data and has amuch higher dimension
than the identified (consistently estimable) choice rule. To circumvent
this difficulty, we rely on corollary 1, which states that if p has a random
attention representation (≻, m), then there exists a uniquemonotonic tri-
angular attention rule ~m such that (≻, ~m) is also a representation ofp. This
latter result turns out to be useful for our proposed identification, estima-
tion, and inference methods, as it allows us to construct (for each given
preference ordering) a mapping from the identified choice rule to a tri-
angular attention rule, for which we can test whether assumption 1 holds.
This test turns out to be a test on moment inequalities.
A. Nonparametric Identification
We first define the set of partially identified preferences, which mirrors
definition 3, with the only difference being that now we fix the choice
rule to be identified/estimated from data. More precisely, let p represent
the underlying choice rule/data generating process. Then a preference ≻
is compatible with p, denoted by ≻ ∈ Vp,4 if there exists some monotonic
attention rule m such that (p, ≻, m) is a RAM.
When p is known, it is possible to employ theorem 1 directly to con-

struct Vp. For example, consider the specific preference ordering a ≻b,
4 Vp is not the same as PR (defined in sec. III.A): PR contains all revealed preferences,
while Vp is the set of preferences compatible with the choice probability (i.e., all possible

This content downloaded from 128.112.070.247 on June 24, 2020 14:47:21 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



2814 journal of political economy

All
which can be checked by the following procedure. First, check whether
pðbjSÞ ≤ pðbjS 2 aÞ is violated for some S. If so, then we know that the
preference ordering is not compatible with the RAM and hence does not
belong to Vp (lemma 1). On the other hand, if the preference ordering is
not rejected in the first step, we need to check along “longer chains” (theo-
rem 1)—that is, whether pðbjSÞ ≤ pðbjS 2 cÞ and pðcjT Þ ≤ pðcjT 2 aÞ
are simultaneously violated for some S, T, and c. If so, the preference order-
ing is rejected (i.e., incompatible with theRAM), while if not, then a chain
of length three needs to be considered. This process goes on for longer
chains until either at some step we are able to reject the preference order-
ing or all possibilities are exhausted. In practice, additional comparisons
are needed since it is rarely the case that only a specific pair of alternatives
is of interest. This algorithm, albeit feasible, can be hard to implement
in practice, even when the choice probabilities are known. The fact that
p has to be estimated makes the problem even more complicated, since it
becomes a sequential multiple-hypothesis testing problem.
Another possibility is to employ the J -test approach, which stems from

the idea that, given the choice rule, compatibility of a preference is equiv-
alent to the existence of an attention rule satisfying monotonicity. To im-
plement the J -test, one fixes the choice rule (identified/estimated from
the data) and the preference ordering (the null hypothesis to be tested),
searches the space of all monotonic attention rules, and checks whether
definition 3 applies. The J -test procedure can be quite computationally
demanding because the space of attention rules has high dimension.
We further discuss the J -test approach in section SA.4.3 of appendix B,
as well as how it is related to our proposed procedure.
One of the main purposes of this section is to provide an equivalent

formof identification that (i) is simple to implement and (ii) remains sta-
tistically valid even when applied using estimated choice rules. For ease of
exposition, we rewrite the choice rulep as a long vectorp, whose elements
are simply the probability of each alternative a ∈ X being chosen from a
choice problem S ∈ X . For example, one can label the choice problems
as S1, S2, . . . and the alternatives as a1, a2, . . . , aK, and then the vector p
simply consists of pða1jS1Þ, pða2jS1Þ, . . . , pðaK jS1Þ, pða1jS2Þ, pða2jS2Þ, and
so on. See example 11 for a concrete illustration.
Theorem 3 (Nonparametric identification). Given any preference ≻,

there exists a unique matrix R≻ such that ≻ ∈ Vp if and only if R≻p ≤ 0.
Proof. Recall that (p, ≻) has a RAM representation if and only if there

exists a monotonic and triangular attention rule m such that p is induced
completions of PR). For example, when there is no preference revelation, Vp contains all
preference orderings and PR will be empty. For the other extreme—that the choice prob-
ability is not compatible with our RAM—Vp will be empty and PR will involve cycles.

This content downloaded from 128.112.070.247 on June 24, 2020 14:47:21 PM
 use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



a random attention model 2815
by m and ≻ (corollary 1). With this fact, we are able to construct the con-
straint matrix R≻ explicitly and write it as a product, RC≻. The first ma-
trix,R, consists of constraints on the attention rules, and the secondma-
trix, C≻, maps the choice rule back to a triangular attention rule.
First consider R. The only restrictions imposed on attention rules are

from the monotonicity assumption (assumption 1). Again, we represent
a generic attention rule m as a long vector m. Then each row of R will con-
sist of one 11, one 21, and zero otherwise. The product Rm then corre-
sponds to mðT jSÞ 2 mðT jS 2 aÞ for all S, T ⊂ S , and a ∈ S 2 T . That is,
we use Rm ≤ 0 to represent assumption 1. Note that R does not depend
on any preference.
Next consider C≻. Given some preference ≻ and the choice rule p, the

only possible triangular attention rule that can be constructed is

mðT jSÞ 5 o
k : ak,≻∈S

IðT 5 S \ Lk,≻Þ � pðak,≻jSÞ

(see corollary 1 and the proof of theorem 2 in app. A), where
{Lk,≻ : 1 ≤ k ≤ K } are the lower contour sets corresponding to the prefer-
ence ordering ≻ (definition 5). The above defines themappingC≻ and rep-
resents the triangular attention rule as a linear combination of the choice
probabilities. This mapping depends on the preference/hypothesis be-
cause the triangular attention ruledepends on thepreference/hypothesis.
Along the construction, both R and C≻ are unique, hence showing that

R≻ is uniquely determined by the preference ≻. QED
This theorem states that to decide whether a preference ≻ is compati-

ble with the (identifiable) choice rulep, it suffices to check a collection of
inequality constraints. In particular, it is no longer necessary to consider
the sequential andmultiple testing problemsmentioned earlier or numer-
ically searching in the high-dimensional space of attention rules. More-
over, as we discuss below, given the large econometric literatureonmoment
inequality testing, many techniques can be adapted when theorem 3 is ap-
plied to estimated choice rules. An algorithmic construction of the con-
straint matrix R≻ is given in algorithm 1.
Algorithm 1 (Construction of R≻). Require: Set a preference ≻.
R≻ ← empty matrix
for S in X do
for a in S do

for b ≺ a in S do
R≻ ← add row corresponding to pðbjSÞ 2 pðbjS 2 aÞ ≤ 0.

end for
end for

end for
As can be seen, the only input needed is the preference ≻, which we are

interested in testing against. Each row of R≻ consists of one 11, one 21,
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and zero otherwise. The constraintmatrixR≻ is nonrandom and does not
depend on the estimated choice probabilities but rather is determined
by the collection of (fixed, known to the researcher) restrictions on the
estimable choice probabilities. Next, we compute the number of con-
straints (i.e., rows) in R≻ for the complete data case (i.e., when all choice
problems are observed):

#rowðR≻Þ 5 o
S∈X
o
a,b∈S

Iðb ≺ aÞ 5 o
S∈X , Sj j≥2

Sj j
2

� �
5 o

K

k52

K

k

� �
k

2

� �
,

whereK 5 jX j denotes the number of alternatives in the grand setX. Not
surprisingly, the number of constraints increases very fast with the size of
the grand set. However, once the matrix R≻ has been constructed for one
preference ≻, the constraint matrices for other preference orderings can
be obtained by column permutations ofR≻. This is particularly useful and
saves computation if there are multiple hypotheses to be tested, as the
above algorithm needs to be implemented only once.
Finally, we illustrate that in simple examples, the constraint matrix R≻

can be constructed intuitively.
Example 11 (R≻ with three alternatives). Assume that there are three

alternatives—a, b, and c—in X; then the choice rule is represented by a
vector in R9:

p 5 ½pð�j a, b, cf gÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
∈R3

, pð�j a, bf gÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
∈R2

, pð�j a, cf gÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
∈R2

, pð�j b, cf gÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
∈R2

�0,

where, for ease of presentation, trivial cases such as pðajfb, cgÞ 5 0 and
pðbjfbgÞ 5 1 are ignored. Now consider the preference/hypothesis
b≻a ≻c. From lemma 1, we can reject b ≻a if pðajfa, b, cgÞ > pðajfa, cgÞ.
Therefore, we need the reverse inequality in Rb≻a≻c , given by a row:

1 0 0 0 0 21 0 0 0½ � :
Similarly, we will be able to reject a ≻c if pðcjfa, b, cgÞ > pðcjfb, cgÞ, which
implies the following row in the matrix Rb≻a≻c :

0 0 1 0 0 0 0 0 21½ �:
The row corresponding to b ≻ c is

0 0 1 0 0 0 21 0 0½ �:
Therefore, for this simple problem with three alternatives, we have the
following constraint matrix:

Rb≻a≻c 5

1 0 0 0 0 21 0 0 0

0 0 1 0 0 0 0 0 21

0 0 1 0 0 0 21 0 0

2664
3775:

Note that for problems with more than three alternatives, the above
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reasoning does not work if implemented naïvely. Consider the case X 5
fa, b, c, dg. Then b ≻a can be rejected by pðajfa, b, c, dgÞ > pðajfa, c, dgÞ,
pðajfa, b, dgÞ > pðajfa, dgÞ, or pðajfa, b, cgÞ > pðajfa, cgÞ, which corre-
spond to three rows in the constraint matrix. Again we emphasize that
to construct R≻, one does not need to know the numerical value of the
choice rule p. The matrix R≻ contains restrictions jointly imposed by
the monotonicity assumption and the preference ≻ that is to be tested.
B. Hypothesis Testing
Given the identification result in theorem 3, we can replace the identifi-
able choice rule with its estimate to conduct estimation and inference of
the (partially identifiable) preferences. We can also conduct specifica-
tion testing by evaluating whether the identified set Vp is empty. To pro-
ceed, we assume the following data structure.
Assumption 2 (Data generating process). The data are a random

sample of choice problems Yi and corresponding choices yi, {ðyi, YiÞ :
yi ∈ Yi, 1 ≤ i ≤ N }, generated by the underlying choice rule P½yi 5 ajYi 5
S � 5 pðajSÞ, with P½Yi 5 S � ≥ p > 0 for all S ∈ X .
We assume only that the data are generated from some choice rule p.

We allow for the possibility that it is not a RAM, since our identification
result permits falsifying the RAM representation: p has a RAM represen-
tation if and only if Vp is not empty according to theorem 3. In addition,
we assume only that the choice problem Yi and the corresponding selec-
tion yi ∈ Yi are observed for each unit, while the underlying (possibly ran-
dom) consideration set for the decision maker remains unobserved (i.e.,
the set T in definition 2 and fig. 1). For simplicity, we discuss the case of
“complete data,” where all choice problems are potentially observable,
but in sections SA.3 and SA.4.4 of appendix B we extend our work to
the case of incomplete data.
The estimated choice rule is denoted by p̂,

p̂ðajSÞ 5 o1≤i≤N Iðyi 5 a, Yi 5 SÞ
o1≤i≤N IðYi 5 SÞ ,  a ∈ S , S ∈ X :

For convenience, we represent p̂ð�jSÞ by the vector p̂S and its population
counterpart by pS. The choice rules are stacked into a long vector, denoted
by p̂ with the population counterpart p.
We consider Studentized test statistics, and hence we introduce some

additional notation. Let jp,≻ denote the standard deviation of R≻p̂ and ĵ≻

denote its plug-in estimate. That is,
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jp,≻ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðR≻ QpR

0
≻Þ

q
 and ĵ≻ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðR≻

bQR0
≻Þ

q
,

where diag(�) denotes the operator that extracts the diagonal elements of
a square matrix or constructs a diagonal matrix when applied to a vector.
Here Qp is block diagonal, with blocks given by f1=½PðYi 5 SÞ�gQp,S and
Qp,S 5 diagðpSÞ 2  pSp

0
S . The estimator Q̂ is constructed simply by plug-

ging in the estimated choice rule.
Consider the null hypothesis H0 :≻ ∈Vp. This null hypothesis is useful

if the researcher believes that a certain preference represents the under-
lying data generating process. It also serves as the basis for constructing
confidence sets or for ranking preferences according to their (im)plausi-
bility in repeated sampling (e.g., via employing associated p-values). Given
a specificpreference, the test statistic is constructed as themaximumof the
Studentized, restricted sample choice probabilities:

T ð≻Þ 5
ffiffiffiffiffi
N

p
� max ðR≻p̂Þ⊘ ĵ≻, 0f g,

where⊘ denotes elementwise division (i.e., Hadamard division) for con-
formable matrices. The test statistic is the largest element of the vectorffiffiffiffiffi
N

p
ðR≻p̂Þ⊘ ĵ≻ if it is positive or zero otherwise. The reasoning behind

such construction is straightforward: if the preference is compatible with
the underlying choice rule, then in the population we have R≻p ≤ 0,
meaning that the test statistic, T ð≻Þ, should not be too large.
Other test statistics have been proposed for testing moment inequali-

ties, and usually the specific choice depends on the context. When many
moment inequalities can be potentially violated simultaneously, it is usu-
ally preferred to use a statistic based on the truncated Euclidean norm. In
our problem, however, we expect only a few moment inequalities to be
violated, and therefore we prefer to employ T ð≻Þ. Having said this, the
large-sample approximation results given in theorem 4 can be adapted
to handle other test statistics commonly encountered in the literature
on moment inequalities.
The null hypothesis is rejected whenever the test statistic is too large or,

more precisely, when it exceeds a critical value, which is chosen to guar-
antee uniform size control in large samples. We describe how this critical
value leading to uniformly valid testing procedures is constructed based
on simulating from multivariate normal distributions. Our construction
employs the generalized moment selection approach of Andrews and
Soares (2010); see also Canay (2010) and Bugni (2016) for closely related
methods. The literature on moment inequalities testing includes several
alternative approaches, some of which we discuss briefly in section SA.4.5
of appendix B.
To illustrate the intuition behind the construction, first rewrite the test

statistic T ð≻Þ as
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T ð≻Þ 5 max ðR≻

ffiffiffiffiffi
N

p
ðp̂ 2 pÞ 1

ffiffiffiffiffi
N

p
R≻pÞ⊘ ĵ≻, 0

n o
:

By the central limit theorem, the first component
ffiffiffiffiffi
N

p
ðp̂ 2 pÞ is approx-

imately distributed as Nð0, QpÞ. The second component, R≻p, although
unknown, is bounded above by zero under the null hypothesis. Motivated
by these observations, we approximate the distribution of T ð≻Þ by simu-
lation as

T *ð≻Þ 5
ffiffiffiffiffi
N

p
� max ðR≻z*Þ⊘ ĵ≻ 1 wN ðR≻p̂, ĵ≻Þ, 0f g:

Here z* is a random vector simulated from the distribution Nð0, bQ=N Þ,
and

ffiffiffiffiffi
N

p
wN ðR≻p̂, ĵ≻Þ is used to replace the unknown moment conditions

ð
ffiffiffiffiffi
N

p
R≻p̂Þ⊘ ĵ≻. Several choices of wN have been proposed. One extreme

choice is wN ð�Þ 5 0, so that the upper bound zero is used to replace the
unknown R≻p. Such a choice also delivers uniformly valid inference in
large samples and is usually referred to as “critical value based on the least
favorable model.” However, for practical purposes it is better to be less
conservative. In our implementation, we employ

wN ðR≻p̂, ĵ≻Þ 5
1

kN
ðR≻p̂⊘ ĵ≻Þ2,

where ðaÞ2 5 a⊙ Iða ≤ 0Þ, with ⊙ denoting the Hadamard product, the
indicator function Ið�Þ operating elementwise on the vector a, and kN di-
verging slowly. That is, the function wN(�) retains the nonpositive ele-
ments of ðR≻p̂⊘ ĵ≻Þ=kN , since under the null hypothesis all moment con-
ditions are nonpositive. We use kN 5

ffiffiffiffiffiffiffiffiffiffi
lnN

p
, which turns out to work well

in the simulations described in section VI. For other choices of wN(�), see
Andrews and Soares (2010).
In practice,M simulations are conducted to obtain the simulated statis-

tics {T *
mð≻Þ : 1 ≤ m ≤ M }. Then, given some a ∈ ð0, 1Þ, the critical value is

constructed as

cað≻Þ 5 inf t :
1

M o
M

m51

IðT *
mð≻Þ ≤ tÞ ≥ 1 2 a

� �
,

and the null hypothesis H0 :≻ ∈Vp is rejected if and only if T ð≻Þ > cað≻Þ.
Alternatively, one can compute the p-value as

pð≻Þ 5 1

M o
M

m51

IðT *
mð≻Þ > T ð≻ÞÞ:

To justify the proposed critical values, it is important to address unifor-
mity issues. A testing procedure is (asymptotically) uniform among a class
of data generating processes if the asymptotic size does not exceed the
nominal level across this class. Testing procedures that are valid only
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pointwise but not uniformly may yield bad approximations to the finite
sample distribution, because in finite samples the moment inequalities
could be close to binding. The following theorem shows that conducting
inference using the critical values above is uniformly valid.
Theorem 4 (Uniformly valid testing). Assume that assumption 2

holds. Let P represent a class of choice rules and ≻ a preference, such
that (i) for each p ∈ P, ≻ ∈ Vp, and (ii) infp∈P minðjp,≻Þ > 0. Then,

lim sup
N →∞

sup
p∈P

P T ð≻Þ > cað≻Þ½ � ≤ a :

The proof is given in section B of appendix A. The only requirement is
that each moment condition is nondegenerate so that the normalized
statistics are well defined in large samples but no restrictions on correla-
tions among moment conditions are imposed.
C. Extensions and Discussion
We discuss some extensions based on theorem 4, including how to con-
struct uniformly valid confidence sets via test inversion and how to con-
duct uniformly valid specification testing, both based on testing individ-
ual preferences.
1. Confidence Set
Given the uniformly valid hypothesis testing procedure already devel-
oped in theorem 4, we can obtain a uniformly valid confidence set for
the (partially) identified preferences by test inversion:

CðaÞ 5 ≻ : T ð≻Þ ≤ cað≻Þf g :

The resulting confidence set CðaÞ exhibits an asymptotic uniform cover-
age rate of at least 1 2 a:

lim inf
N →∞

inf
p∈P

min
≻∈Vp

P½≻ ∈ CðaÞ� ≥ 1 2 a :

This inference method offers a uniformly valid confidence set for each
member of the partially identified set with prespecified coverage proba-
bility, which is a popular approach in the partial identification literature
(Imbens and Manski 2004).
2. Testing Model Compatibility: H0 :P \ Vp ≠ ∅
Given a collection of preferences, an empirically relevant question is
whether any of them is compatible with the data generating process—a
basic model specification question. That is, the question is whether the
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null hypothesisH0 :P \ Vp ≠ ∅ should be rejected. If the null hypothesis
is rejected, then certain features shared by the collection of preferences
are incompatible with the underlying decision theory (up to type I error).
See Bugni, Canay, and Shi (2015) and Kaido, Molinari, and Stoye (2019)
and references therein for further discussion of this idea and related
methods.
For a concrete example, consider the question of whether a ≻ b is com-

patible with the data generating process. As long as there are more than
two alternatives in the grand set, a question like this can be accommodated
by setting P 5 f≻ : a ≻ bg. Rejection of this null hypothesis provides evi-
dence in favor of b being preferred to a (up to type I error). Of course, with
more preferences included in the collection, it becomes more difficult to
reject the null hypothesis.
The test is based on whether the confidence set intersects with P:

H0 is rejected if  and only if CðaÞ \ P 5 ∅ :

We note that since CðaÞ covers elements in the identified set asymptot-
ically and uniformly with probability 1 2 a, the above testing proce-
dure will have uniform size control. Indeed, if P \  Vp ≠ ∅, there exists
some ≻ ∈ P \  Vp, which will be included in CðaÞ with at least 1 2 a

probability asymptotically.
One important application of this idea is to setP as the collection of all

possible preferences, which leads to a specification testing. Then the null
hypothesis becomes H0 :Vp ≠ ∅ and is rejected on the basis of the follow-
ing rule:

H0 is rejected if  and only if CðaÞ 5 ∅ :

Rejection in this case implies that at least one of the underlying assump-
tions is violated, and the data generating process cannot be represented
by a RAM (up to type I error).
V. Incorporating Additional Restrictions
Our identification and inference results so far are obtained using the
RAMonly; that is, all empirical content of our revealed preference theory
comes from the weak nonparametric assumption 1. As mentioned be-
fore, our model provides a minimum benchmark for preference revela-
tion, which sometimes may not deliver enough empirical content. How-
ever, it is easy to incorporate additional (nonparametric) assumptions in
specific settings. In this section, we first illustrate one such possibility,
where additional restrictions on the attentional rule are imposed for bi-
nary choice problems. This will improve our identification and inference
results considerably. We then consider random attention filters, which
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are one of the motivating examples of monotonic attention rules, and
show that in this case there is no identification improvement relative to
the baseline RAM.
A. Attentive at Binaries
To motivate our approach, a policy maker may want to conclude that a is
revealed to be preferred to b if the decision maker chooses a over b fre-
quently enough in binary choice problems. “Frequently enough” is mea-
sured by a constant f ≥ 1=2.5 For example, when f 5 2=3, it means that
choosing a twice as often as choosing b implies that a is better than b. The
parameter f represents how cautious the policy maker is. Denote by

aPfb if  and only if pðaj a, bf gÞ > f :

To justify Pf as preference revelation, the policy maker inherently as-
sumes that the decision maker pays attention to the entire set frequently
enough. This is captured by the following assumption on the attention
rule.
Assumption 3 (f-attentive at binaries). For all a, b ∈ X and f ≥ 1=2,

mð a, bf gj a, bf gÞ ≥ 1 2 f

f
max mð af g a, bf gÞ, mð bf gj j a, bf gÞf g :

The quantity ð1 2 fÞ=f is a measure of full attention at binaries. When
ð1 2 fÞ=f 5 0 (or f 5 1), there is no constraint on mðfa, bgjfa, bgÞ. In
this case, it is possible that the decision maker considers only singleton
consideration sets. When ð1 2 fÞ=f gets larger (or f gets smaller), the
probability of being fully attentive is strictly positive, which creates room
for preference revelation. An alternative way to understand assump-
tion 3 is as follows. Take f 5 maxfpðajfa, bgÞ, pðbjfa, bgÞg; then ½ð1 2
fÞ=f�maxfmðfagjfa, bgÞ, mðfbgjfa, bgÞg is a strict lower bound on the
amount of attention that the decision maker has to pay to both op-
tions for revelation to occur.
We now illustrate that, under assumption 3, if pðajfa, bgÞ > f, then a

is revealed to be preferred to b. Let (≻, m) be a RAM representation of
p where m satisfies assumption 3. First, assumption 3 necessitates that
mðfagjfa, bgÞ cannot be higher than f. (To see this, assume that
mðfagjfa, bgÞ > f. By assumption 3, we must have mðfa, bgjfa, bgÞ >
5 Even when the policy maker is least cautious, we need pðajfa, bgÞ > pðbjfa, bgÞ to con-
clude that a is strictly better than b. This implies that pðajfa, bgÞ > 1=2. Hence, f must be
greater than 1/2.
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1 2 f, which is a contradiction.) Then pðajfa, bgÞ > f indicates that a
is chosen over b whenever the decision maker pays attention to {a, b} (re-
vealed preference). Therefore, a ≻ b.
Example 12 (Preference revelation without regularity violation). To

illustrate the extra identification power of assumption 3, consider the
following stochastic choice with three alternatives and take f 5 1=2.

p(�FS) S 5 {a, b, c } {a, b } {a, c } {b, c }

a 1/3 2/3 1/2
b 1/3 1/3 2/3
c 1/3 1/2 1/3
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Note that p satisfies the regularity condition, meaning that there is no
preference revelation if only monotonicity (assumption 1) is imposed on
the attention rule. That is, P 5 PR 5 ∅ (sec. III.A). On the other hand,
by utilizing assumption 3, we can infer the preference completely. Since
pðajfa, bgÞ > 1=2 and pðbjfb, cgÞ > 1=2, we must have aPfb and bPfc. No-
tice that pðajfa, cgÞ 5 1=2, and hence we cannot directly deduce aPfc.
Since the underlying preference is transitive, we can conclude that the
decision maker prefers a to c as aPfb and bPfc, even when aPfc is not di-
rectly revealed from her choices. Therefore, the transitive closure of
Pf, denoted by Pf

R , must also be part of the revealed preference. In this
example, note that the same conclusion can be drawn as long as the pol-
icy maker assumes that f < 2=3.
To accommodate the revealed preference defined in the originalmodel

(i.e., to combine assumptions 1 and 3), we now define the following binary
relation:

aðPf [ PÞb if  and only if  

 either ðiÞ for some S ∈ S, pða SÞ > pðaj jS 2 bÞ, or ðiiÞ pða a, bf gÞ > f:j

The relation Pf [ P includes our original binary relation P, defined un-
der the monotonic attention restriction (assumption 1), as well as Pf,
characterized by the new attentive-at-binary assumption. Therefore, we
can infer more.
The next theorem shows that acyclicity of Pf [ P or its transitive clo-

sure ðPf [ PÞR provides a simple characterization of the model we con-
sider in this subsection.
Theorem 5 (Characterization). For a given f ≥ 1/2, a choice rule p

has a random attention representation (≻, m) where m satisfies assump-
tions 1 and 3 if and only if Pf [ P has no cycle.
For f < 1, the model characterized by theorem 5 has a higher predic-

tive power (i.e., empirical content) comparedwith themodel characterized
by theorem 2. Hence, the model will fail to retain some of its explanatory
, 2020 14:47:21 PM
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power. For example, example 10 with la, lb , lc < 1 2 f is outside of the
model given here.
Under the assumption f 5 1=2 and pðajfa, bgÞ ≠ 1=2 for all a, b, the-

orem 5 yields that our framework reveals a unique preference while it
allows regularity violation.
Remark 1 (Acyclic stochastic transitivity). We highlight a close con-

nection between acyclicity of Pf [ P and the acyclic stochastic transitivity
(AST) introduced by Fishburn (1973). The model characterized by theo-
rem 5 satisfies a weaker version of AST:

pða1 a1, a2f gÞ > f, :::, pðak21j j ak21, akf gÞ > f
 implies that pða1 a1, akf gÞ ≤ f :j

We call this condition f-acyclic stochastic transitivity (f-AST). Note that
1/2-AST is equivalent to AST. If we consider only binary choice probabil-
ities, acyclicity of Pf [ P becomes equivalent to f-AST. Otherwise, our
condition is stronger than f-AST.
Nowwediscuss the econometric implementation.Recall from section IV

that to test whether a specific preference ordering is compatible with the
observed (identifiable) choice rule and the monotonicity assumption,
we first construct a triangular attention rule and then test whether the tri-
angular attention rule satisfies assumption 1. This is formally justified in
the proof of theorem 3.
This line of reasoning can be naturally extended to accommodate as-

sumption 3 in our econometric implementation. Again, the researcher
constructs a triangular attention rule based on a specific preference or-
dering and the identifiable choice rule. She then tests whether the trian-
gular attention rule satisfies assumptions 1 and 3. This is formally justified
in the proof of theorem 5. For testing, only minor changes have to be
made when constructing thematrixR≻. The precise construction is given
in algorithm 2.
Algorithm 2 (Construction of R≻). Require: Set a preference ≻.
R≻ ← empty matrix
for S in X do
for a in S do

for b ≺ a in S do
R≻ ← add row corresponding to pðbjSÞ 2 pðbjS 2 aÞ ≤ 0.

end for
end for
if S 5 fa, bg is binary and b ≺ a then

R≻ ← add row corresponding to ½ð1 2 fÞ=f�pðbjSÞ2pðajSÞ ≤ 0
end if

end for
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Wenow revisit example 11 to illustrate what additional (identifying) re-
strictions are imposed by assumption 3.
Example 13 (Example 11 continued). Recall that thereare threealter-

natives—a, b, and c—in X, and the choice rule is represented by a vector in
R9. For the preference b ≻ a ≻ c, the matrix Rb≻a≻c contains three restric-
tions if only assumption 1 is imposed. With our new restriction on the at-
tention rule for binary choice problems, Rb≻a≻c is further augmented:

Rb≻a≻c 5

1 0 0 0 0 21 0 0 0

0 0 1 0 0 0 0 0 21

0 0 1 0 0 0 21 0 0

0 0 0
1 2 f

f
21 0 0 0 0

0 0 0 0 0 21
1 2 f

f
0 0

0 0 0 0 0 0 0 21
1 2 f

f

266666666666666664

377777777777777775
,

where the first three rows correspond to restrictions imposed by assump-
tion 1 and the last three rows capture our new assumption 3.
Assumption 3 considerably improves the empirical content of our

benchmark RAM (assumption 1). However, this assumption is just one
of many possible assumptions that could be used in addition to our gen-
eral RAM. The main takeaway is that our proposed RAM offers a baseline
for specific, empirically relevant models of choice under random limited
attention. In section VI, using simulations we compare the empirical con-
tent of our benchmark RAM, which employs only assumption 1, and the
model that incorporates assumption 3 as well.
B. Random Attention Filter
We now consider random attention filters, which are one of the motivat-
ing examples of monotonic attention rules. Recall from section II that an
attention filter is a deterministic attention rule that satisfies assumption 1
and a random attention filter is a convex combination of attention filters,
and hence a random attention filter will also satisfy assumption 1. For ex-
ample, the same individual might be utilizing different platforms during
her internet search. Each platform yields a different attention filter, and
the usage frequency of each platform is equal to the weight of that atten-
tion filter. Random attention filters also give a different interpretation of
our model.
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The set of all random attention filters is a strict subset of monotonic
attention rules. This is not surprising given that the class of monotonic
attention rules is very large. What is (arguably) surprising is the following
fact that we are able to show: if (p, ≻, m) is a RAMwith m being amonotonic
attention rule, there exists a randomattentionfilter m0 such that (p,≻, m0) is
still a RAM (see remark 2). Before presenting this result, however, we ob-
serve thatm andm0 neednot be the same, whichmeans that there aremono-
tonic attention rules that cannot be written as a convex combination of
attention filters.
Example 14. LetX 5 fa1, a 2, a 3, a 4g. Consider amonotonic attention

rule m such that (i) mðT jSÞ is either 0 or 0.5, (ii) mðT jSÞ 5 0 if jT j > 1, and
(iii) if mðfa jgjSÞ 5 0 and k < j , then mðfakgjSÞ 5 0. Then we must have
mðfa 3gjfa1, a 2, a 3, a 4gÞ 5 mðfa 4gjfa1, a 2, a 3, a 4gÞ 5 0:5. We now show
that m is not a random attention filter.
Suppose that m can be written as a linear combination of attention fil-

ters. Then mðfa 3gjfa1, a 2, a 3, a 4gÞ 5 mðfa 4gjfa1, a 2, a 3, a 4gÞ 5 0:5 im-
plies that only attention filters for which Gðfa1, a 2, a 3, a 4gÞ 5 fa 3g or
Gðfa1, a 2, a 3, a 4gÞ 5 fa 4g must be assigned positive probability. On the
other hand, mðfa 2gjfa1, a 2, a 3gÞ 5 0:5 and mðfa 2gjfa1, a 2, a 4gÞ 5 0:5 im-
ply that for all G that are assigned positive probability Gðfa1, a 2, a 3gÞ 5
fa 2g whenever Gðfa1, a 2, a 3, a 4gÞ 5 fa 4g and Gðfa1, a 2, a 4gÞ 5 fa 2g
whenever Gðfa1, a 2, a 3, a 4gÞ 5 fa 3g. To see this, notice that the at-
tention filter property implies that Gðfa1, a 2, a 3gÞ 5 fa 3g for all G

with Gðfa1, a 2, a 3, a 4gÞ 5 fa 3g and that Gðfa1, a 2, a 4gÞ 5 fa 4g for all
G with Gðfa1, a 2, a 3, a 4gÞ 5 fa 4g. However, it must then be the case that
Gðfa1, a 2gÞ 5 fa 2g for all G that are assigned positive probability or that
mðfa 2gjfa1, a 2gÞ 5 1, which is a contradiction.
We now show that if we restrict our attention to a certain type of mono-

tonic attention rules, then we can show that within that class every atten-
tion rule is a random attention filter (i.e., convex combination of deter-
ministic attention filters). Let MT ð≻Þ denote the set of all attention
rules that are both monotonic (assumption 1) and triangular with re-
spect to ≻ (definition 5), and let AFð≻Þ denote all attention filters that
are triangular with respect to ≻. We are now ready to state the main result
of this section.
Theorem 6 (Random attention filter). For any m ∈ MT ð≻Þ, there

exists a probability law w on AFð≻Þ such that for any S ∈ X and T ⊂ S ,

mðT jSÞ 5 o
G∈AFð≻Þ

IðGðSÞ 5 T Þ � wðGÞ:

Remark 2 (Triangular randomattention filter representation). Com-
bining this theorem and corollary 1 in appendix A, we easily reach the fol-
lowing conclusion: if p has a random attention representation (≻, m),
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then there exists a triangular random attention filter m0 such that (≻, m0)
also represents p.
The proof of theorem 6 is long and hence left to section D of appen-

dix A, but here we provide a sketch of it. First, MT ð≻Þ is a compact
and convex set, and thus the above theorem can alternatively be stated
as follows: the set of extreme points of MT ð≻Þ is AFð≻Þ. (An atten-
tion rule m ∈ MT ð≻Þ is an extreme point ofMT ð≻Þ if it cannot be writ-
ten as a nondegenerate convex combination of any m0, m00 ∈ MT ð≻Þ.)
Minkowski’s theorem then guarantees that every element ofMT ð≻Þ lies
in the convex hull of AFð≻Þ.
Obviously, every element ofAFð≻Þ is an extreme point ofMT ð≻Þ. We

then show that nondeterministic triangular attention rules cannot be ex-
treme points; that is, given any m ∈MT ð≻Þ 2 AFð≻Þ, we can construct
m0, m00 ∈MT ð≻Þ, such that m 5 ð1=2Þm0 1 ð1=2Þm00. The key step is to show
that both the m0 and the m00 that we construct are monotonic. After this
step, we have shown that no m ∈MT ð≻Þ 2 AFð≻Þ can be an extreme
point, thus concluding the proof.
VI. Simulation Evidence
This section gives a summary of a simulation study conducted to assess
the finite sample properties of our proposed econometric methods. We
consider a class of logit attention rules indexed by ς:

mςðT jSÞ  5 wT ,ς

oT 0⊂SwT 0,ς

,  wT ,ς 5 jT jς,

where FT F is the cardinality of T. Thus, the decision maker pays more at-
tention to larger sets if ς > 0 and pays more attention to smaller sets if ς <
0. When ς is very small (negative and large in absolute magnitude), the
decision maker almost always pays attention to singleton sets, and hence
nothing will be learned about the underlying preference from the choice
data.
Other details on the data generating process used in the simulation

study are as follows. First, the grand set X consists of five alternatives,
a1, a 2, a 3, a 4, and a 5. Without loss of generality, assume that the underly-
ing preference is a1 ≻ a 2 ≻ a 3 ≻ a 4 ≻ a 5. Second, the data consist of
choice problems of size two, three, four, and five. That is, there are 26
choice problems in total. Third, given a specific realization of Yi, a consid-
eration set is generated from the logit attention model with ς 5 2, after
which the choice yi is determined by the aforementioned preference. We
also report simulation evidence for ς ∈ f0, 1g in appendix B. Finally,
the observed data are a random sample {ðyi , YiÞ : 1 ≤ i ≤ N }, where the
effective sample size can be 50, 100, 200, 300, and 400. (Effective sample
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size refers to the number of observations for each choice problem. Be-
cause there are 26 choice problems, the overall sample size is N ∈
f1,300, 2,600, 5,200, 7,800, 10,400g.)
For inference, we employ the procedure introduced in section IV and

test whether a specific preference ordering is compatible with the basic
RAM (assumption 1). We also incorporate the attentive-at-binaries as-
sumption introduced in section V.A. Recall from assumption 3 that
ð1 2 fÞ=f is ameasure of full attention at binaries, and specifying a larger
value (i.e., a smaller value of f) implies that the researcher ismore willing
to draw information from binary comparisons. Note that with f 5 1, im-
posing assumption 3 does not bring any additional identification power.
Before proceeding, we list five hypotheses (preference orderings) and
indicate whether they are compatible with our RAM and specific val-
ues of f.

f

1 .95 .90 .85 .80 .75 .70 .65 .60 .55 .50

H0,1 : a1 ≻ a 2 ≻ a 3 ≻ a 4 ≻ a 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
H0,2 : a 2 ≻ a 3 ≻ a 4 ≻ a 5 ≻ a1 ✓ ✓ ✓ ✓ � � � � � � �
H0,3 : a 3 ≻ a 4 ≻ a 5 ≻ a 2 ≻ a1 � � � � � � � � � � �
H0,4 : a 4 ≻ a 5 ≻ a 3 ≻ a 2 ≻ a1 � � � � � � � � � � �
H0,5 : a 5 ≻ a4 ≻ a 3 ≻ a 2 ≻ a1 � � � � � � � � � � �
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As can be seen, H0,1 always belongs to the identified set of preferences,
as it is the preference ordering used in the underlying data generating
process. The hypothesis H0,2, however, may ormay not belong to the iden-
tified set depending on the value of f: with f close to 0.5, the researcher
is confident enough using information from binary comparisons, and she
will be able to reject this hypothesis; for f close to one, assumption 3 no
longer brings toomuch additional identification power beyond themono-
tonic attention assumption, and monotonic attention alone is not strong
enough to reject this hypothesis. Indeed, with f 5 1 (i.e., assumption 1
alone), the set of identified preferences is {≻ : a 2 ≻ a 3 ≻ a 4 ≻ a 5}, which
contains H0,2. The other three hypotheses, H0,3, H0,4, and H0,5, do not be-
long to the identified set even with f 5 1.
Overall, our simulation has 5 (different N ) � 5 (different preference

orderings) � 11 (different f)5 275 designs. For each design, 5,000 sim-
ulation repetitions are used, and the five null hypotheses are tested using
our proposed method at the 5% nominal level. Simulation results are
summarized in figure 2.
We first focus on H0,1 (fig. 2A). As this preference ordering is compat-

ible with our RAM, one should expect the rejection probability to be lower
than the nominal level. Indeed, the rejection probability is far below .05:
this illustrates a generic feature of any (reasonable) procedure for testing
go.edu/t-and-c).



a random attention model 2829
moment inequalities—to maintain uniform asymptotic size control, em-
pirical rejectionprobability is below thenominal level when the inequalities
are far from binding. Next consider H0,2 (fig. 2B). For f larger than 0.85,
the rejection probability is below the nominal size, which is compatible
FIG. 2.—Empirical rejection probabilities. Shown in the figure are empirical rejection
probabilities testing the five null hypotheses through 5,000 simulations, with nominal size
0.05. Logit attention rule with ς 5 2 is used, as described in the main text. For each sim-
ulation repetition, five effective sample sizes are considered: 50, 100, 200, 300, and 400.
A color version of this figure is available online.
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with our theory, because this preference belongs to the identified set
when only assumption 1 is imposed. With smaller f, the researcher relies
more heavily on information from binary comparisons/choice problems,
and she is able to reject this hypothesis much more frequently. This dem-
onstrates how additional restrictions on the attention rule can be easily
accommodated by our basic RAM, which in turn can bring additional
identification power. The other three hypotheses (fig. 2C–2E ) are not
compatible with our RAM, and we do see that the rejection probability
is much larger than the nominal size even for f 5 1, showing that even
our basic RAM has nontrivial empirical content in this case.
VII. Conclusion
We introduced a limited attention model allowing for a general class of
monotonic (and possibly stochastic) attention rules, which we called a
random attentionmodel (RAM).We showed that thismodel nests several
important recent contributions in both economic theory and economet-
rics, in addition to other classical results from decision theory. Using our
RAM, we obtained a testable theory of revealed preferences and devel-
oped partial identification results for the decision maker’s unobserved
strict preference ordering. Our results included a precise constructive
characterization of the identified set for preferences, as well as uniformly
valid inferencemethods based on that characterization. Furthermore, we
showed how additional nonparametric restriction can be easily incorpo-
rated into the RAM to obtain tighter empirical implications and more
powerful accompanying econometric procedures. We found good finite
sample performance of our econometric methods in a simulation exper-
iment. Last but not least, we provide the general-purpose R software pack-
age ramchoice, which allows other researchers to easily employ our econo-
metric methods in empirical applications.

Appendix A

Omitted Proofs

This appendix collects proofs that are omitted from themain text to improve the
exposition.

A. Proof of Theorem 2

Suppose that p has a random attention representation (≻, m). Then lemma 1 im-
plies that ≻ must include P so P must be acyclic.

For the other direction, suppose that P has no cycle. Pick any preference ≻ that
includes PR and enumerate all alternatives with respect to ≻: a1,≻ ≻ a2,≻ ≻ : : :≻ aK ,≻.
Let {Lk,≻ : 1 ≤ k ≤ K } be the corresponding lower contour sets (definition 5). Then
we specify ~m as
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~mðT jSÞ  5
pðak,≻jSÞ if  ak,≻ ∈ S  and T 5 Lk,≻ \ S ,

0 otherwise:

(
It is trivial to verify that (≻, ~m) represents p, since (≻, ~m) induces the following
choice rule:

o
T⊂S

I½a is ≻-best in T �~mðT jSÞ 5 o
ak,≻∈S

I½a is ≻-best in Lk, ≻ \ S �~mðLk, ≻ \ S jSÞ

5 o
ak,≻∈S

I½a is ≻-best in Lk, ≻ \ S �pðak, ≻jSÞ

5 o
ak,≻∈S

I½a 5 ak, ≻�pðak, ≻jSÞ

5 pðajSÞ,

which is the same as p. For the first equality, we use the definition that a triangular
attention rule puts weights only on lower contour sets; for the second equality,
we apply the definition/construction of ~m; the third equality follows from the def-
inition of lower contour sets.

Now we verify that ~m satisfies assumption 1. Assume that this is not the case;
then it means that there exist some S, ak,≻, a‘,≻ ∈ S , such that (i) Lk,≻ \ S 5
Lk,≻ \ ðS 2 a‘,≻Þ and (ii) ~mðLk,≻ \ S jSÞ > ~mðLk,≻ \ ðS 2 a‘,≻ÞjS 2 a‘,≻Þ. By the def-
inition of lower contour sets, statement i implies that a‘,≻≻ak,≻. Then statement ii
implies that

~mðLk,≻ \ S SÞ 5 pðak≻j jSÞ > ~mðLk,≻ \ ðS 2 a‘,≻Þ S 2 a‘,≻Þ 5 pðak,≻j jS 2 a‘,≻Þ:

The above, however, implies that ak,≻Pa‘,≻, which contradicts the implication of
statement i that a‘,≻≻ak,≻. This closes the proof.

Remark A1. The previous proof has a nice implication that a choice rule
can be represented by a monotonic attention rule if and only if it can also be rep-
resented by a monotonic triangular attention rule. Formally, if p has a random
attention representation, (≻, m), then (≻, ~m) also represents p where ~m is mono-
tonic and triangular with respect to ≻. Hence, we can focus on monotonic trian-
gular attention rules without loss of generality. This is formally summarized in
corollary 1.

B. Proof of Theorem 4

See section SA.4.1 of appendix B.

C. Proof of Theorem 5

The “only if” part is trivial and is omitted. We illustrate the “if” part. Assume that
Pf [ P has no cycle (or equivalently, that its transitive closure ðPf [ PÞR has
no cycle); then there exists some preference ordering that embeds Pf [ P. Fix
one such preference ≻. With the same argument used in the proof of theorem 2,
we can construct a triangular attention rule mðT jSÞ and show that it satisfies
assumption 1.
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We then show that mðT jSÞ satisfies assumption 3. Take binary S 5 fa, bg and as-
sume without loss of generality that a ≻ b. Then mðfa, bgjfa, bgÞ 5 pðajSÞ and
mðfbgjfa, bgÞ 5 pðbjSÞ. Violation of assumption 3 implies that pðajfa, bgÞ <
½ð1 2 fÞ=f�pðbjfa, bgÞ and equivalently that pðbjfa, bgÞ > f. This means that bPfa,
which violates our definition of ≻.

D. Proof of Theorem 6

We show that the set of extreme points of MT ð≻Þ is AFð≻Þ. Clearly, any G ∈
AFð≻Þ is an extreme point. Pick a nondeterministic attention rule m ∈ MT ð≻Þ.
We show that m cannot be an extreme point. Let X m ⊂ X stand for all sets S ∈ X
for which mðT jSÞ 5 1 for no T ⊂ S . We start by choosing ε > 0 small enough so
that none of the nonbinding constraints are affected whenever ε is added to or sub-
tracted from mðT jSÞ for all T ⊂ S and S ∈ X . Let km 5 minS∈X m

jS j. Since m is not de-
terministic, such km exists.

We begin with the following simple observation that given S with jS j 5 km, we
can have at most two subsets of S with mðT jSÞ ∈ ð0, 1Þ. Moreover, it must be the
case that mðS jSÞ ∈ ð0, 1Þ.

Lemma D1. Let S with jS j 5 km be given. Then there exist at most two T ⊂ S ,
such that mðT jSÞ ∈ ð0, 1Þ. Furthermore, mðS jSÞ ∈ ð0, 1Þ.

Proof. Suppose that there exist three such subsets: T1, T2, and T3. Since m is tri-
angular, the subsets that are considered with positive probability can be ordered
by set inclusion. Hence, we can assume that T1 ⊂ T2 ⊂ T3 without loss of gener-
ality. But then since m is monotonic and T1 ⊂ T2 ⊂ S , it must be that mðT1jT2Þ ∈
ð0, 1Þ and mðT2jT2Þ ∈ ð0, 1Þ. This contradicts the definition of km. Hence, there can
be at most two subsets T1 and T2 with positive probability. The same contradiction
appears as long as T2 ⊊ S . Hence, T2 5 S . QED

Now for all sets S ∈ X m with jS j 5 km, we define m0 and m00 as follows:

m0ðT SÞ 5 mðTj jSÞ 1 ε,

m0ðS SÞ 5 mðSj jSÞ 2 ε,

and

m00ðT SÞ 5 mðTj jSÞ 2 ε,

m00ðS SÞ 5 mðSj jSÞ 1 ε,

where T ⊊ S with mðT jSÞ ∈ ð0, 1Þ.
Suppose that we have defined m0 and m00 for all sets with jS j ≤ l , and let S with

jS j 5 l 1 1 be given. If there exist no T ⊂ S and ST ⊂ S such that m0ðT jST Þ ≠
m00ðT jST Þ and mðT jSÞ 5 mðT jST Þ, then we set mðT jSÞ 5 m0ðT jSÞ 5 m00ðT jSÞ for
all T ⊂ S . Otherwise, pick the smallest T for which such ST exists. If m0ðT jST Þ >
m00ðT jST Þ, then let m0ðT jSÞ 5 mðT jSÞ 1 ε and m00ðT jSÞ 5 mðT jSÞ 2 ε, and if
m0ðT jST Þ < m00ðT jST Þ, then let m0ðT jSÞ 5 mðT jSÞ 2 ε and m00ðT jSÞ 5mðT jSÞ 1 ε. If
T is the only set for which such ST exists, then let T 0 be the largest set for which
mðT 0jSÞ ∈ ð0, 1Þ. Otherwise, T 0 denotes the other set for which ST 0 satisfying the
description exists. If m0ðT jST Þ > m00ðT jST Þ, then let m0ðT 0jSÞ 5mðT 0jSÞ 2 ε and
m00ðT 0jSÞ 5 mðT 0jSÞ 1 ε, and if m0ðT jST Þ < m00ðT jST Þ, then let m0ðT 0jSÞ 5
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mðT 0jSÞ 1 ε and m00ðT 0jSÞ 5 mðT 0jSÞ 2 ε. For all other subsets m, m0, and m00 agree.
We proceed iteratively.

Lemma D2. Suppose that there exist T ⊂ S and ST ⊂ S such that m0ðT jST Þ ≠
m00ðT jST Þ and mðT jSÞ 5 mðT jST Þ. Then either T is the smallest set in S satisfying
the description or we can set ST 5 T .

Proof. The claim follows from lemma D1 when jS j 5 km 1 1. Suppose that the
claim holds whenever jS j ≤ l . We show that the claim holds when jS j 5 l 1 1. Let
T ⊂ S and ST ⊂ S satisfy the description, and suppose that T is not the smallest
set in S satisfying the description. Since m0ðT jST Þ ≠ m00ðT jST Þ, by construction, ei-
ther T is the largest set satisfying mðT jST Þ ∈ ð0, 1Þ or there exists SST ⊂ ST such
that m0ðT jSST Þ ≠ m00ðT jSST Þ and mðT jST Þ 5 mðT jSST Þ. If the first case is true, then
since m is monotonic, it must be the case that mðT 0jT Þ 5 mðT 0jST Þ for all
T 0 ⊂ T , and hence we are done. In the second case, the claim follows from in-
duction. QED

Lemma D3. For any S, there exist either zero or two subsets satisfying
m0ðT jSÞ ≠ m00ðT jSÞ. Moreover, if there are two sets satisfying the description, then
m0ðT1jSÞ > m00ðT1jSÞ if and only if m0ðT2jSÞ < m00ðT2jSÞ.

Proof. The claim is trivial when jS j 5 km. Suppose that the claim is true for all
S with jS j ≤ l and let S with jS j 5 l 1 1 be given. If there is no T that satisfies
the description in the construction, then no subset will be affected. Suppose that
there exists only one such T. We show that there exists T 0 ⊃ T such that
mðT 0jSÞ ∈ ð0, 1Þ. To see this, notice that by monotonicity property mðT 00jSÞ ≤
mðT 00jST Þ for all T 00 ⊂ T . Since by induction there are two subsets of ST for
which m0ðT jST Þ ≠ m00ðT jST Þ, either mðT 00jSÞ < mðT 00jST Þ for some T 00 ⊂ T or there
exists T 000 ⊃ T such that mðT 000jST Þ ∈ ð0, 1Þ. In both cases, oT 00⊂TmðT 00jSÞ < 1 follows.
Hence, there is T 0 ⊃ T such that mðT 0jSÞ ∈ ð0, 1Þ. The construction then guaran-
tees that m0ðT 0jSÞ ≠ m00ðT 0jSÞ for some T 0 ⊃ T . Now suppose that there are three
subsets, T1, T2, and T3, satisfying the description. Since m is triangular, we can as-
sume that T1 ⊂ T2 ⊂ T3 without loss of generality. By the previous lemma, we can
assume that ST2

5 T2 and ST3
5 T3 without loss of generality. But then since m is

monotonic, three subsets of ST3
must satisfy the description, which is a contradic-

tion to induction hypothesis.
To prove the second part of the claim, notice that the claim follows from con-

struction if jS j 5 km. Suppose that the claim holds whenever jS j ≤ l , and let
jS j 5 l 1 1 be given. If T2 5 S , then the claim follows from construction. If
T2 ⊊ S , then the claim follows from induction and construction by considering
the set T2. QED

It is clear that m 5 ð1=2Þm0 1 ð1=2Þm00. The previous lemmas also show that both
m0 and m00 are monotonic. Hence, no m ∈ MT ð≻Þ 2 AFð≻Þ can be an extreme
point. This concludes the proof of theorem 6.
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