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Abstract

Random forests are popular methods for regression and classification analysis, and many
different variants have been proposed in recent years. One interesting example is the Mondrian
random forest, in which the underlying constituent trees are constructed via a Mondrian process.
We give precise bias and variance characterizations, along with a Berry—Esseen-type central
limit theorem, for the Mondrian random forest regression estimator. By combining these results
with a carefully crafted debiasing approach and an accurate variance estimator, we present valid
statistical inference methods for the unknown regression function. These methods come with
explicitly characterized error bounds in terms of the sample size, tree complexity parameter,
and number of trees in the forest, and include coverage error rates for feasible confidence
interval estimators. Our novel debiasing procedure for the Mondrian random forest also allows it
to achieve the minimax-optimal point estimation convergence rate in mean squared error for
multivariate S-Holder regression functions, for all 8 > 0, provided that the underlying tuning
parameters are chosen appropriately. Efficient and implementable algorithms are devised for
both batch and online learning settings, and we carefully study the computational complexity
of different Mondrian random forest implementations. Finally, simulations with synthetic data
validate our theory and methodology, demonstrating their excellent finite-sample properties.
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1 Introduction

Random forests, first introduced by Breiman (2001), are a workhorse in modern machine learning
for regression and classification tasks. Their desirable traits include computational efficiency in big
data settings (via parallelization and greedy heuristics), simplicity of configuration and amenability
to tuning parameter selection, ability to adapt to latent structure in high-dimensional data sets, and
flexibility in handling mixed data types, among other virtues. Random forests have also achieved
great empirical successes in many fields of study, including healthcare, finance, online commerce,
causal inference, text analysis, bioinformatics, image classification, and ecology.

Since Breiman introduced random forests over twenty years ago, the study of their statistical
properties remains an active area of research. Many fundamental questions about Breiman’s
random forests remain unanswered, owing in part to the subtle ingredients present in the estimation
procedure which make standard analytical tools ineffective. These technical difficulties stem from
the way the constituent trees greedily partition the covariate space, utilizing both the covariate and
response data. This creates complicated dependencies on the data that are often exceedingly hard
to untangle without overly stringent assumptions, thereby hampering theoretical progress.

To address the aforementioned technical challenges while retaining the phenomenology of
Breiman’s random forests, a variety of stylized versions of random forest procedures have been
proposed and studied in the literature. Early proposals include centered random forests (Biau,
2012; Arnould et al., 2023) and median random forests (Duroux and Scornet, 2018; Arnould et al.,
2023). Each tree in a centered random forest is constructed by first choosing a covariate uniformly
at random and then splitting the cell at the midpoint along the direction of the chosen covariate.
Median random forests operate in a similar way, but involve the covariate data by splitting at the
empirical median along the direction of the randomly chosen covariate. Known as purely random
forests, these procedures simplify Breiman’s original, more data-adaptive version by growing trees
that partition the covariate space in a way that is statistically independent of the response data.

Yet another variant of random forests, Mondrian random forests (Lakshminarayanan et al.,
2014), have received significant attention in the statistics and machine learning communities in
recent years (Ma et al., 2020; Mourtada et al., 2020, 2021; Scillitoe et al., 2021; Vicuna et al., 2021;
Gao et al., 2022; O’Reilly and Tran, 2022; Baptista et al., 2024; O'Reilly, 2024; Zhan et al., 2024).
Like other purely random forest variants, Mondrian random forests offer a simplified modification
of Breiman’s original proposal in which the partition is generated independently of the data and
according to a canonical stochastic process known as the Mondrian process (Roy et al., 2008).
The Mondrian process takes a single tuning parameter A > 0 known as the “lifetime” and enjoys
various mathematical properties. These properties allow Mondrian random forests to be fitted in
an online manner (Lakshminarayanan et al., 2014; Mourtada et al., 2021) and permit a rigorous
statistical analysis, while also retaining some of the appealing features of other random forest
methods. The lifetime parameter A, in analogy with the number of refinements of a data-adaptive
recursive partitioning algorithm, governs the extent to which the response data is smoothed, with a
large A resulting in a more complicated partition and therefore less smoothing. However, unlike a
data-adaptive partition which modulates the smoothing intensity based on local data characteristics,
the Mondrian process applies a uniform smoothing effect globally across all covariates. Thus, one can
draw parallels between (axis-aligned) data-dependent partitioning schemes and more flexible—albeit,
more complicated—versions of the Mondrian process which employ adaptive directional smoothing,
with unique lifetimes \; learned for each covariate, permitting tailored smoothing of the responses.

This paper studies the statistical properties of Mondrian random forests with an emphasis on
inference techniques specific to this model. We focus on this purely random forest variant not
only because of its importance in the development of random forest theory in general, but also



because the Mondrian process is, to date, the only known recursive tree mechanism involving
randomization, pure or data-dependent, for which the resulting random forest is minimax-optimal
for point estimation over a class of smooth multivariate regression functions (Mourtada et al., 2020).
In fact, when the covariate dimension exceeds one, the aforementioned centered and median random
forests are both minimax suboptimal, due to their large biases, over the class of Lipschitz smooth
regression functions (Klusowski, 2021). It is therefore natural to focus our study of inference for
random forests on versions that at the very least exhibit competitive bias and variance, as this will
have important implications for the trade-off between confidence and precision. Moreover, recent
studies of more traditional random forests identify similar fundamental challenges, namely those
of establishing Gaussian approximations with explicit probability guarantees and combining them
with effective data-driven strategies for bias reduction (Shi et al., 2024). Similarly, recent work on
generalized random forests and distributional random forests highlights the empirical importance of
bias reduction for normal approximation-based statistical inference (Naf et al., 2023).

Despite their recent popularity, relatively little is known about the formal statistical properties
of Mondrian random forests. Focusing on nonparametric regression, Mourtada et al. (2020) recently
showed that Mondrian forests containing just a single tree (called a Mondrian tree) can be minimax-
optimal in integrated mean squared error whenever the regression function is S-Holder continuous
for some § € (0,1]. The authors also showed that, when appropriately tuned, large Mondrian
random forests can be similarly minimax-optimal for 8 € (0, 2], while the constituent trees cannot.
See also O’Reilly and Tran (2022) for analogous results on more general Mondrian tree and forest
constructions. These results formally demonstrate the value of ensembling with random forests from
a point estimation perspective. No results are currently available in the literature for statistical
inference using Mondrian random forests.

As already mentioned, a different strand of the literature studies the statistical properties of
Breiman’s random forests which form ensembles of adaptive decision trees. In such models, each
constituent tree is constructed with a greedy algorithm that recursively optimizes a goodness-of-fit
metric (such as mean squared error) using both the covariates and response data; a leading example
in practice is the celebrated Classification and Regression Tree (CART) methodology (Breiman et al.,
1984; Breiman, 2001). The underlying complexity of the resulting procedures make their formal
theoretical analysis quite difficult, and therefore only a more restricted set of results is currently
available in the literature. In terms of estimation theory, Scornet et al. (2015) established consistency
of adaptive random forests for additive models with a fixed number of covariates, and Chi et al.
(2022), Klusowski and Tian (2024), and Cattaneo et al. (2024a) provided rates of convergence for
models with a growing number of covariates, under different assumptions on the statistical and
algorithmic features of the constituent decision trees. In contrast, formal inference theory is far less
developed, since there are arguably no satisfactory theoretical results for fully adaptive decision tree
or random forest methods. For example, Wager and Athey (2018) provide asymptotic estimation and
inference results for adaptive random forests, but they employ sample splitting (i.e., the so-called
“honesty” property where the partitioning and, separately, the output in the terminal cells are formed
using independent subsamples), and make assumptions that rule out procedures commonly used in
practice such as CART; cf., the so-called “a-regularity” condition (Cattaneo et al., 2024b). From a
broad perspective, our paper connects with this distinct thread in the random forest literature by
demonstrating optimal estimation and inference results for non-adaptive Mondrian random forests
with explicit probability deviation guarantees, thereby also laying down the foundations for future
developments of adaptive Mondrian random forest procedures.



1.1 Contributions

Our paper contributes to the literature on the foundational statistical properties of Mondrian
random forest regression estimation with two main results. Firstly, we give a central limit theorem
for the classical Mondrian random forest point estimator under weak conditions, and propose valid
large-sample inference procedures employing a consistent standard error estimator. We establish
these results by deploying a restricted moments version of the Berry—Esseen theorem for independent
but not identically distributed (i.n.i.d.) random variables (Petrov, 1995, Theorem 5.7) because
we need to handle delicate probabilistic features of the Mondrian random forest estimator. In
particular, we deal with the existence of Mondrian cells which are “too small” and lead to a reduced
effective (local) sample size for some trees in the forest. Such pathological cells are in fact typical
in Mondrian random forests and complicate the probability limits of certain sample averages; in
fact, small Mondrian random forests (or indeed single Mondrian trees) remain random even in the
limit due to the lack of ensembling. The presence of such small cells renders inapplicable prior
distributional approximation results for partitioning-based estimators in the literature (Huang,
2003; Cattaneo et al., 2020), since the commonly required quasi-uniformity assumption on the
underlying partitioning scheme (cf., a-regularity in the adaptive random forest literature) is violated
by partitions generated using the Mondrian process. We circumvent this technical challenge by
establishing new theoretical results for Mondrian partitions and their associated Mondrian trees
and forests, which may be of independent interest. Our distributional approximation does not rely
on sample splitting; unlike approaches based on “honest” trees, the estimator is fit using the entire
sample of covariates and responses simultaneously.

The second main contribution of our paper is to propose a debiasing approach for the Mondrian
random forest point estimator. We accomplish this by first precisely characterizing the probability
limit of the large sample conditional bias, and then applying a debiasing procedure based on the
generalized jackknife (Schucany and Sommers, 1977). We thus exhibit a Mondrian random forest
variant which is minimax-optimal in pointwise mean squared error when the regression function
is p-Holder for any 8 > 0. Our method works by generating an ensemble of Mondrian random
forests carefully chosen to have smaller misspecification bias when extra smoothness is available,
resulting in minimax optimality even for § > 2. This result complements Mourtada et al. (2020) by
demonstrating the existence of a class of Mondrian random forests that can efficiently exploit the
additional smoothness of the unknown regression function for minimax-optimal point estimation.
Our proposed debiasing procedure is also useful when conducting statistical inference because
it provides a principled method for ensuring that the bias is negligible relative to the standard
deviation of the estimator. More specifically, we use our debiasing approach to construct valid
confidence intervals based on robust bias correction (Calonico et al., 2018, 2022), and include an
explicit bound on their coverage error probability.

For the purposes of implementation, we propose techniques for tuning parameter selection and
demonstrate the practical applicability and accuracy of our methodology through empirical studies
with simulated data. We also discuss applications to batch and online learning settings, presenting
computationally efficient algorithms along with bounds for their average case time complexity.

1.2 Organization

Section 2 gives the assumptions on the data generating process, using a Holder smoothness condition
on the regression function to control the bias of various estimators. We also introduce the Mondrian
process and use it to define the Mondrian random forest estimator, stating the assumptions on its
lifetime parameter and the number of trees.



Section 3 presents our first set of main results. We begin by precisely characterizing the bias
of the Mondrian random forest estimator in Lemma 1, with the aim of subsequently applying a
debiasing procedure. We similarly analyze the variance of this estimator (Lemma 2), and deduce its
rate of convergence in Theorem 1. Next, we present our Berry—Esseen-type central limit theorem
for the centered Mondrian random forest estimator under weak conditions as Theorem 2, and
discuss implications for lifetime parameter selection. To enable valid feasible statistical inference,
we provide a consistent variance estimator in Lemma 3, and use it to construct confidence intervals
in Theorem 3.

Section 4 gives an overview of our approach to proving the main results of the paper, as well as
summarizing some of our more technical contributions.

Section 5 introduces our proposed debiased Mondrian random forests, a family of estimators
based on linear combinations of Mondrian random forests with varying lifetime parameters. These
parameters are carefully chosen to annihilate leading terms in our bias characterization, yielding an
estimator with superior bias properties (Lemma 4). We also study the variance of this debiased
estimator (Lemma 5), and derive its rate of convergence in Theorem 4. The resulting rate is shown
to be minimax-optimal in mean squared error for each Holder parameter 8 > 0, under regularity
conditions. Furthermore, Theorem 5 verifies that a Berry—FEsseen theorem holds for the debiased
Mondrian random forest. We again discuss the implications for the lifetime parameter, and provide
a consistent variance estimator (Lemma 6) for constructing confidence intervals (Theorem 6).

Section 6 discusses implementation details and empirical results, beginning by presenting a
data-driven approach to selecting the crucial lifetime parameter using polynomial estimation. We
also give advice on choosing the number of trees, as well as other parameters associated with the
debiasing procedure. Empirical simulation results are presented using synthetic data, demonstrating
the practical value of our methods for optimal point estimation and feasible robust bias-corrected
inference.

Section 7 considers the computational aspects of our methodology, presenting algorithmic
procedures with precisely characterized average case time complexity bounds for the batch setting
(Algorithm 1, Lemma 7) and for online learning regimes (Algorithm 2, Lemma 8).

Concluding remarks are given in Section 8, while the appendices contain all the mathematical
proofs of our theoretical results (Appendix A), alongside additional empirical studies (Appendix B).

1.3 Notation

We write || - ||2 for the usual Euclidean ¢2 norm on R%. The natural numbers are N = {0,1,2,...}.
We use a A b for the minimum and a V b for the maximum of two real numbers. For non-negative
sequences a, and by, write a, < by, to indicate that a, /b, is bounded for n > 1. If a,, < b, < ap,
write a, < b,. For random non-negative sequences A, and B, similarly write 4,, <p B, if A, /B,
is bounded in probability. Let ® : R — R be the cumulative distribution function of the standard

normal distribution, and for o € (0, 1), let g, be the normal quantile satisfying ®(q,) = .

2 Setup

When using a Mondrian random forest, there are two sources of randomness. The first is the data,
and here we consider the nonparametric regression setting with d-dimensional covariates. The
second source is injected purposely from a collection of independent trees drawn from a Mondrian
process using a specified lifetime parameter.



2.1 Data generation

We begin with a definition of Holder continuity, which is used to determine a target class of regression
functions, and which participates in controlling the bias of various estimators.

Definition 1 (Holder continuity)

Take 3 > 0 and define B = [B — 1] as the largest integer strictly less than 5. We say a function
g : [0,1]* — R is B-Hélder continuous and write g € HP if g is B times differentiable and
max|,|—g |0V g(x) — 0" g(x')| < Cllz — 2|57 for some constant C > 0 and all z, 2’ € [0,1]%. Here,

v € N? is a multi-index with |v| = Z;l:l vj and 0"g(x) = 8|V‘g(m)/H?:1 ﬁxjy-j.

Throughout this paper, we assume that the data satisfies the following assumption.

Assumption 1 (Data generation)

Fix d > 1 and let (X;,Y;) be independent and identically distributed (i.i.d.) samples from a
distribution on R? x R, writing X = (X1,...,X,) and Y = (Y1,...,Y,). Suppose X; has Lebesque
density function f(x) on [0,1]? which is bounded away from zero and satisfies f € HP for some
Bs > 0. Suppose E[Y? | X;] is bounded, let un(X;) = E[Y; | Xi], and assume u € HP» where B, > 0.
Write e; = Y; — u(X;) and assume o?(X;) = E[e? | X;] is bounded away from zero with o € H5
for some By > 0. Set § =B, N\ (B +1).

Some comments are in order surrounding Assumption 1. The requirement that the covariate
density f(z) should be strictly positive on all of [0,1]¢ may seem restrictive, particularly when d
is moderately large. However, since our theory is presented pointwise in the design point z, it is
sufficient for this condition to hold only on some neighborhood of z. To see this, note that continuity
implies the density is positive on some hypercube containing z. Upon rescaling the covariates,
this hypercube can be mapped onto [0, 1]d. The same argument holds for the Holder smoothness
assumptions, and for the upper and lower bounds on the conditional variance function.

The definition of 3 is motivated as follows: firstly, we must have 8 < /3, in order to compare our
rates of convergence with classical results for S-Holder regression functions. Secondly, due to the
presence of design bias, we require in our analysis that the density function f(z) should also be
smooth (though not necessarily as smooth as x), imposing 8 < ¢ + 1. Our proofs characterize the
roles of each of the smoothness parameters 3,,, 3y and 3, precisely, and our main results depend only
on 3. By allowing for 3; < 1, we strictly generalize the Lipschitz density assumption of Mourtada
et al. (2020, Theorem 3).

2.2 The Mondrian process

The Mondrian process was introduced by Roy et al. (2008) and offers a canonical method for
generating random rectangular partitions, which can be used as the trees for a random forest
(Lakshminarayanan et al., 2014). For the reader’s convenience, we give a brief description of this
process here; see Mourtada et al. (2020, Section 3) for a more complete construction.

For a fixed dimension d and lifetime parameter A > 0, the Mondrian process is a stochastic
process taking values in the set of finite rectangular partitions of [0,1]?. For a rectangle D =
H;'l:ﬂaja b;] C [0,1]¢, we denote the side aligned with dimension j by D; = [aj, b;], write D; =a;
and D;-r = b; for its left and right endpoints respectively, and use |D;| = Dj+ — Dy for its length. The
volume of D is |D| = H?Zl |D;| and its linear dimension (or half-perimeter) is |D|; = Z;l:1 |Djl.

To sample a partition T' from the Mondrian process M([O, 1]d, /\), start at time ¢t = 0 with
the trivial partition of [0,1]% which has no splits. Then repeatedly apply the following procedure



to each cell D in the partition. Let tp be the time at which the cell was formed, and sample
Ep ~ Exp (|D|1), where Exp(a) is the exponential distribution on [0, c0) with Lebesgue density
ae” %, If tp + Ep < A, then split D. This is done by first selecting a split dimension J with
P(J = j) = |D,|/|D|1, and then sampling a split location Sy ~ Unif [D;, D}]. The cell D splits
into the two new cells {z € D : z; < S;} and {x € D : x; > S}, each with formation time tp + Ep.
The output of this sampling procedure is the partition 7" consisting of the cells D which were not
split because tp + Ep > A. The cell in T containing a point x € [0,1]? is written 7'(z). Figure 1
shows typical realizations of T' ~ M([O, 1]4, )\) for d = 2 and with different lifetime parameters .
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Figure 1: The Mondrian process T ~ M([O, 1]4, )\) with d = 2 and lifetime parameters \.

2.3 Mondrian random forests

We define the Mondrian random forest estimator (1) as in Lakshminarayanan et al. (2014) and
Mourtada et al. (2020), and will later extend it to a debiased version in Section 5. For a lifetime
parameter A > 0 and forest size B > 1, let T = (11,...,Tp) be a Mondrian forest where T} ~
M([O, 1]d, /\) are mutually independent Mondrian trees which are independent of the data. For
z € [0, 1], write Ny(z) = Y1 | I{X; € Ty(x)} for the number of samples in T,(x), with I denoting
an indicator function. Then the Mondrian random forest estimator of p(z) is

Zzz IO i)

If there are no samples X; in Ty(z) then Ny(x) = 0, so we define 0/0 = 0 (see Appendix A for
details). To ensure the bias and variance of the Mondrian random forest estimator converge to zero
(see Section 3), and to avoid boundary issues, we impose some basic conditions on x, A\, and B in
Assumption 2.

(1)

Assumption 2 (Mondrian random forest estimator)
Suppose x € (0,1)% is a fived interior point of the support of X;, and also that X > (logn)?,
n/A — oo, and B > (logn)?.

The requirement that n/\? — oo ensures that the number of data points N,(z) falling inside a
typical Mondrian cell Ty(x), and hence the effective sample size of the Mondrian random forest,
diverges in large samples. Assumption 2 also implies that the size of the forest B should grow with
n. While our results place no upper bound on the number of trees, we suggest, for the purpose of
both meeting our statistical assumptions and mitigating the computational burden, that B < \/n
for Mondrian random forests; selecting B for our debiased estimator requires a different set of
conditions (see Sections 5 and 6). Large forests usually do not present significant computational



challenges in practice as the ensemble estimator is easily parallelizable over the trees (see Section 7
for more discussion). We will emphasize explicitly where the “large forest” condition is important
for our theory.

3 Inference with Mondrian random forests

Our analysis begins with a standard conditional bias—variance decomposition for the Mondrian
random forest estimator:

ji(x) — (@) = (fw) — E[a() | X, T]) + () | X, T] — p(x))

B

1= D (X)) = p(e) {XG € Ti(a)}
Z Ny(z)

B
L1 ZZ@ 151}1{)( )eTb( )}_

Our approach to estimation and inference is as follows. Firstly, we precisely characterize the
probability limit of the “bias” term (2), and compute the second conditional moment of the “variance”
term (3). This allows us to understand the bias—variance trade-off, and to derive upper bounds on
the rate of convergence for the Mondrian random forest point estimator.

Secondly, we provide a central limit theorem for the “variance” term (3). By ensuring that the
standard deviation dominates the conditional bias, we may conclude that a corresponding central
limit theorem holds for the Mondrian random forest (1). With an appropriate estimator for the
variance, we then establish procedures for valid and feasible statistical inference on the unknown
regression function u(x).

(2)

(3)

3.1 Bias and variance characterizations

We begin with (2), which captures the bias of the Mondrian random forest estimator conditional
on the covariates X and the forest T. The next lemma demonstrates that this conditional bias
converges in L? at a certain rate, and provides a precise characterization of the resulting non-random
limiting bias.

Lemma 1 (Bias)

Suppose Assumptions 1 and 2 hold. For each 1 < r < |(/2] there exists B,(x) € R, which is a
function of the derivatives of f and p at x up to order 2r, with

L6/2] 2 d
. B, (z) 1 1 1A
E (E [:u(x) | X, T} - M(x) - E 2" ) 5 A28 + \2(1AB) B + )\2(1/\5) n’ (4)
r=1

Whenever 8 > 2, the leading bias is the quadratic term

A2 2/\2 Z 833] 8:):

J

If X; ~ Unif ([0, l]d) then f(x) =1, and using multi-index notation we have

B,(
)\27’ )\2r Z 82V

v|=r

U




The bias characterization in Lemma 1 incorporates some high-degree polynomial terms in the
lifetime parameter A which for now may seem ignorable. The magnitude of the bias is determined
by the leading term in (4), typically of order 1/\? whenever 3 > 2. This suffices for ensuring a
negligible contribution from the bias with an appropriate choice of lifetime. However, the advantage
of specifying higher-order terms will become apparent in Section 5, where we construct a debiased
Mondrian random forest estimator, directly targeting and annihilating the higher-order terms in
order to furnish superior estimation and inference properties. We also demonstrate numerically the
detrimental role of bias in estimation and inference in Section 6.

In Lemma 1 we give some explicit examples of calculating the limiting bias when 8 > 2 or X;
are uniformly distributed. The general form of B, (z) is provided in Appendix A but is somewhat
unwieldy except in specific situations. Nonetheless, the most important properties are that B, (x)
are non-random and do not depend on the lifetime A; these are crucial features for our debiasing
procedure given in Section 5. If the forest size B does not diverge to infinity then we suffer the
first-order conditional bias term 1/ ()\M'B \/E) This phenomenon was explained by Mourtada et al.
(2020), who noted that it allows individual Mondrian trees (B = 1) to achieve minimax optimality in
integrated mean squared error only when § € (0, 1]. In contrast, large forests remove this first-order
bias through ensemble averaging and as such are optimal for all g € (0, 2].

We now turn to (3), which captures the stochastic part of the Mondrian random forest. Lemma 2
determines the probability limit of the scaled conditional variance of this term, alongside its L?
convergence rate. First, define

o (x
Var [fi(z) | X, T] and Y(x) = f((a:)> <

~ n

£(z) = 15

4 —4log?2 d
3 :

Lemma 2 (Variance)
Suppose Assumptions 1 and 2 hold. Then

- 9 A1 1
E|(£@) - 2()"] $ T+ 5+ mmge

An upper bound on the L? rate of convergence of the Mondrian random forest estimator can
immediately be deduced from the bias—variance decomposition, Lemma 1 and Lemma 2. This rate
of convergence depends on the sequence of lifetime parameters A; for optimal point estimation,

we may balance the contributions from the bias and from the standard deviation by ensuring
1 2(2AB)—2(1AB)
that 1/A%" +1/(AMMV/B) < /Ad/n, or equivalently if A < n@2@A8 and B Zn 2@ . We

formalize these deductions in Theorem 1 and note that they imply that the Mondrian random forest
is rate-minimax-optimal (Stone, 1982) in pointwise mean squared error for S-Holder functions with
B € (0,2]; a corresponding result for integrated mean squared error was provided by Mourtada et al.
(2020, Theorem 2).

Theorem 1 (Mean squared error)
Suppose Assumptions 1 and 2 hold. Then

A 2] o A 1 1
E [(u(f)ﬁ) - nl@)) } St eew T oeag

1 2(2AB)—2(1NB)
If further A < nd+2@A8) and B 2 n  4+2@A8) | then

R 9 __2(2AB)
E |(ilx) - u(@))*] S0~ T2

9



We take this opportunity to contrast Mondrian random forests with classical nonparametric local
smoothing methods. For example, the lifetime A plays a similar role to the inverse bandwidth for
kernel smoothing as it determines both the effective sample size n/A? and the scale of localization
1/, and thus also the associated rate of convergence. Likewise, 1/ controls the diameter of a typical
cell in Mondrian partition-based smoothing. However, due to the Mondrian process construction,
some cells are typically “too small” (equivalent to an insufficiently large bandwidth) to give an
appropriate effective sample size. In the same manner, classical methods based on non-random
partitioning such as spline estimators typically impose a quasi-uniformity assumption to ensure all
the cells are of comparable size (Huang, 2003; Cattaneo et al., 2020), a property which does not
hold for the Mondrian process (not even with high probability).

3.2 Central limit theorem

Having discussed the point estimation properties of the Mondrian random forest estimator, we
present a central limit theorem which forms the core of our methodology for performing statistical
inference. As well as establishing asymptotic normality of the appropriately centered and scaled
estimator, we also provide a rate of convergence in terms of a Berry—Esseen-style bound on the
Kolmogorov—Smirnov distance from the normal distribution. In addition to precisely quantifying
the quality of the Gaussian distributional approximation, this allows us to obtain explicit bounds
on the coverage error of feasible confidence intervals.

Before stating the theorem, we highlight some of the challenges involved in establishing such a
result. At first glance, the summands in (3) appear independent over 1 < i < n, conditional on the
forest T, depending only on X; and &;. However, the N,(x) appearing in the denominator depends
on all X; simultaneously, violating this independence assumption and rendering classical central
limit theorems inapplicable. A natural preliminary attempt to resolve this issue is to observe that

Ny(z) =Y I{X; € Ty(2)} = nP(X; € Ty(z) | Ty) = nf(x)|Th(z)]
=1

with high probability. One could attempt to use this by approximating the estimator with an
average of i.i.d. random variables, or by employing a central limit theorem conditional on X and
T. However, such an approach fails because E [1/|T},(z)|?] = co; the possible existence of small
cells causes the law of the inverse cell volume to have heavy tails. For similar reasons, attempts to
directly establish a central limit theorem based on 2 4+ § moments, such as the classical Lyapunov
central limit theorem, are ineffective.

We circumvent these problems by directly analyzing I{ Ny(x) > 1}/Np(z). We establish con-
centration properties for this non-linear function of X; via the Efron—Stein inequality (Boucheron
et al., 2013, Section 3.1) along with a sequence of delicate preliminary lemmas regarding in-
verse moments of truncated (conditional) binomial random variables. In particular, we show
that E [I{N,(z) > 1}/Ny(z)] < A/n and E [I[{Ny(z) > 1}/Ny(2)?] < A*¥(logn)?/n?. Asymptotic
normality is then established by a careful application of a Berry—Esseen theorem (Petrov, 1995)
conditional on (X, T). Section 4 gives an overview of our proof strategy in which we further discuss
the underlying challenges, while Appendix A provides all the technical details.

The following theorem gives our Berry—Esseen-type central limit theorem for the centered (zero
mean conditional on the covariates and the trees) “variance” term from (3), scaled and standardized
by its conditional variance X(z). Note that on the event ¥(z) = 0, we also have ji(z) = 0 and
E [i(x) | X, T] = 0, so continue to define 0/0 = 0.
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Theorem 2 (Central limit theorem)
Suppose Assumptions 1 and 2 hold, and E[|Y;|**° | X;] is bounded almost surely with 6 > 0. Then

) ~ B i) | X,T) ) MNE 1
p<\/; g gt) o5 (%) + 5 )

We make some remarks on Theorem 2. Firstly, since n/ A\ is the effective sample size and Y; has
only 2 4 ¢ finite moments, the first term in (5) is likely to be unimprovable (Ibragimov and Linnik,
1975, Theorem 3.4.1). In particular, we attain the classical Berry—Esseen rate when E[|Y;|? | X] is
bounded and B 2 \/n/\.

The condition of B > (logn)? is central to our proof of Theorem 2, ensuring sufficient “mixing”
of different Mondrian cells to escape the heavy-tailed phenomenon detailed in the preceding
discussion. For concreteness, the large forest condition allows us to deal with expressions such as
E [1/(|Ty(@)||Ty (2)])] = E [1/|T(2)[| E[1/|Ty (x)]] & X! < o where b # b/, by independence of the
trees, rather than the “no ensembling” single tree analog E [1/|T}(z)|?] = oco.

Nonetheless, it is not clear whether the 1/B term is strictly necessary in (5) or if it is an artifact
of the proof. When B is bounded, (z) remains random in the limit, and in fact it is not difficult to
show that in this regime we have that E[(i(m))ﬂ > (logn)?, which diverges (cf., Lemma 2). While
these mildly pathological properties may not necessarily render the central limit theorem invalid,
they certainly highlight some issues associated with inference based on a single tree or a small forest.

Theorem 2 applies only to the centered Mondrian random forest estimator; in order for it to be
useful in a feasible inference setting, we must combine it with methods for controlling the conditional
bias (see Lemma 1). In Section 5 we will show how the estimator can be debiased, giving weaker
lifetime conditions for inference, improved rates of convergence, and superior coverage guarantees,
whenever additional smoothness is available.

sup
teR

3.3 Confidence intervals

We demonstrate how to use our previous results to construct valid confidence intervals for the
regression function p(z). To do this, there are two preliminary issues which must be resolved.
Firstly, the Berry—Esseen central limit theorem presented in Theorem 2 is stated for the Mondrian
random forest estimator /i(x) centered at its conditional expectation E [fi(x) | X, T], rather than at
the true value p(z). As such, we use Lemma 1 to ensure that the bias E [fi(x) | X, T] — p(z) is taken
into account when establishing procedures for inference. Specifically, the bias should shrink faster

than the standard deviation; this requires 1/A* +1/(A"y/B) < \/A?/n, which is satisfied by
1 2(2AB)—2(11B)
imposing the restrictions A > n@+22% and B > n 4t2C7%)  on the lifetime \ and forest size B.

The second issue is that the variances ¥(z) and (z) depend on the unknown quantities o2(x)

and f(x). To conduct feasible inference, we must therefore provide a consistent variance estimator.
To this end, define

1 & (Y — ilw)* X, € Ty(x)}
2 Np(z) ’ (6)

. oo (1 G X e Ty@)) )
E(x)=a2(x)ﬁ 4 (BZ{ ]\i(xlg( )}>
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Lemma 3 (Variance estimation)
Suppose Assumptions 1 and 2 hold, and E[|Y;|>* | X;] is bounded almost surely with 6 > 0. Then

1{5<2}

2 1
~ 2-1{6<2} 2-T1{5<2} A\ 27 2% 1 1
(E [‘E(a:)—Z(af)\ 2 D < (n> - \/§+ N

For a confidence level a € (0,1), Theorem 3 shows how to construct an asymptotically valid
100(1 — )% confidence interval for the regression function p(z). The restrictions on the lifetime A
and forest size B are the same as those previously discussed, and an explicit upper bound on the
coverage error rate is provided. Define the interval estimator

A A

Cl(z) = [ﬂ(@ - ;2(90)1/2 d1—a/2> fi(x) — Fi(l‘)l/z qa/2] .

Theorem 3 (Confidence intervals)
Suppose that Assumptions 1 and 2 hold, and E[|Y;|?>T0 | X;] is bounded almost surely with § > 0.
Then

|P(u(z) € Cl(z)) — (1 — o)

1
21{5<2} 5721{3<2]

n o1 PANET 1 1 no 1
< — + (= S —

A4 \2(2AB) B ' )\2(1ABuABrABs) t 2 \20178) B

When coupled with an appropriate lifetime selection method (see Section 6), Theorem 3 gives
a feasible procedure for uncertainty quantification in Mondrian random forests. Our procedure
requires no adjustment of the original Mondrian random forest estimator beyond ensuring that the
bias is negligible, and in particular does not rely on sample splitting. The construction of confidence
intervals is just one corollary of the result given in Theorem 2; other applications include hypothesis
testing based on the value of p(z) at a design point x by inversion of the confidence interval, as
well as specification testing by comparison with a /n-consistent parametric regression estimator.
The construction of simultaneous confidence intervals for finitely many points z1,...,xp can be
accomplished either using standard multiple testing corrections or by first establishing a multivariate
central limit theorem using the Cramér—Wold device and formulating a consistent variance matrix
estimator.

4 Overview of proof strategies

This section provides some insight into the general approach we use to establish the main results in
the preceding sections. We focus on the technical innovations forming the core of our arguments,
and refer the reader to Appendix A for detailed proofs, including those for the debiased estimator
discussed in the upcoming Section 5.

Preliminary technical results

The starting point for our proofs is a result characterizing the exact distribution of the shape of
a Mondrian cell T'(z). This property is a direct consequence of the fact that the restriction of a
Mondrian process to a subcell remains a Mondrian process (Mourtada et al., 2020). We have that

Tyl = (5 na) + (S A=) )
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for all 1 < j < d, recalling that T'(z); is the side of the cell T'(z) aligned with axis j, and where
Ej1 and Ejp are mutually independent Exp(1) random variables. Our assumptions that = € (0,1)
and A — oo mean that the “boundary terms” z; and 1 — z; are eventually ignorable and so
|T(x);| = (Fj1 + Ej2)/ with high probability. Controlling the size of the largest cell in the forest
containing x is now straightforward with a union bound, giving

log B
T .
é%ngélfé‘d’ b(2)5] Sp S

This shows that, up to logarithmic terms, none of the cells in the forest at x are significantly larger
than average, ensuring that the Mondrian random forest estimator is “localized” around x on the
scale of 1/, an important property for our bias characterization.

Having provided upper bounds for the sizes of Mondrian cells, we also must establish some
lower bounds in order to ensure a sufficient effective sample size and to quantify the “small cells”
phenomenon mentioned previously. The first step towards this is to bound the first two moments of
the truncated inverse Mondrian cell volume; we show that

1

)\d
EIN——| x— and E|1A
n[T(z)|]  n

1 ] _ A*(logn)?

n?|T(z)[? n?

These bounds are computed directly using the exact distribution of |T'(z)|. Note that E [1/|T'(z)[?] =
oo because 1/(Ej1 + Ej2) has only 2 — § finite moments, so the truncation is crucial here. Since
we have “almost two” moments, this truncation is at the expense of only a logarithmic term.
Nonetheless, third and higher truncated moments will not enjoy such tight bounds, demonstrating
both the fragility of this result and the inadequacy of tools such as the Lyapunov central limit
theorem which require 2 4+ § marginal moments.

To conclude this investigation into the “small cell” phenomenon, we apply the previous bounds
to ensure that the empirical effective sample sizes Ny(x) = i | I{X; € Ty(x)} are approximately
of the order n/ A4 in an appropriate sense; we demonstrate that

I{Ny(x) > 1}] _ A I{Ny(2) > 1}] _ A*(logn)?
E[ Ny () ]< and E[ Ny (w)? ]< 2

as well as “mixed” bounds E [I{Ny(z) > 1}{Ny(x) > 1}/(Ny(z) Ny (x))] < A2?/n? when b # V,
which arise from covariance terms across multiple trees. The proof of this result is involved and
technical, and proceeds by induction. The idea is to construct a class of subcells by taking all
possible intersections of the cells in T, and T} (we show two trees here for clarity; there may be
more) and noting that each Ny(x) is the sum of the number of points in each such “refined cell”
intersected with Tp(x). We then swap out each refined cell one at a time and replace the number of
data points it contains with its volume multiplied by nf(z), showing that the expectation on the left
hand side does not increase too much using a moment bound for inverse binomial random variables
based on Bernstein’s inequality. By induction and independence of the trees, eventually the problem
is reduced to computing moments of truncated inverse Mondrian cell volumes, as above.

~

)
n

~

Bias characterization

Our first substantial result is the bias characterization given as Lemma 1, in which we precisely
characterize the probability limit of the conditional bias

{X; € Tb(:r)}‘

E @) | X, T) = pule) = 5>, ) (XD = @) =575



The first step in this proof is to pass to the “infinite forest” limit by taking an expectation conditional
on X, or equivalently marginalizing over T, applying the conditional Markov inequality to see

1
\ABuy/B’

While this may seem a crude approximation, it is already known that fixed-size Mondrian forests
have suboptimal bias properties when compared to forests with a diverging number of trees. In fact,
when > 1, the error 1/ (/\1/\5 \/E) exactly accounts for the first-order bias of individual Mondrian
trees (Mourtada et al., 2020).

Next we show that E [i(z) | X] converges in probability to its expectation, using the Efron—Stein
theorem to handle this non-linear function of the i.i.d. variables X;. The important insight here
is that replacing a sample X; with an independent copy X; can change the value of Ny(z) by
at most one. Further, this can happen only on the event {X; € Ty(z)} U {X; € Ty(z)}, which
occurs with probability on the order 1/A¢ (the expected cell volume) for each tree 1 < b < B. The
Holder property of p and the upper bound on the maximum cell size then give |u(X;) — p(z)| <
maxi<j<q |Tp(2);|'"P* <p 1/A% whenever X; € Tj(z), so we combine this with moment bounds
for the denominator Ny(z) to see

|E [A(=) | X, T] — E[f(z) | X]| <p

N N 1 \d
|E[a(z) | X] - Efa(z)]] <p A\

The next step is to approximate the resulting non-random bias E [ji(z)] — pu(x) as a polynomial
in 1/A. To this end, we firstly apply a concentration-type result for the binomial distribution to
deduce that

I{Ny(z) > 1} 1
B [ ?Vb(l‘) ) T] ~ nfTb(x) f(s)ds

in an appropriate sense, and hence, by conditioning on T and X without X,

fT,, — p(x))f(s)ds
fTb () f(s)ds

Next we apply the multivariate version of Taylor’s theorem to the integrands in both the numerator
and the denominator in (8), and then apply the Maclaurin series of 1/(1 + z) and the multinomial
theorem to recover a single polynomial in 1/A. The error term is on the order of 1/A\? and depends
on the smoothness of u and f, and the polynomial coefficients are given by various expectations
involving exponential random variables. The final step is to verify using symmetry of Mondrian
cells that all the odd monomial coefficients are zero, and to calculate some explicit examples of the
form of the limiting bias.

E[(@)] — p(x) = (8)

Central limit theorem

To prove our second main result (Theorem 2), we apply a version of the Berry—Esseen theorem for
in.i.d. random variables, conditional on (X, T), which only requires 2 + ¢ moments. Define the

variables
]I{X S Tb }61
V53 Z
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which are independent and zero-mean given (X, T), and further satisfy

) ~ B ) | X T1) =3 Si60).
=1

Thus by Petrov (1995, Theorem 5.7), conditional on (X, T), taking a marginal expectation,

P i(m)’%zn:Sigt o) SE[LA (S@) T zn:E 151270 x T ) |
GRRPWED 1 | )]

=1

sup
teR

Bounding the right-hand side now reduces to establishing properties of f](:c) and its large-sample
limit 3(z). To this end, we again use the Efron-Stein theorem to bound Var [i(w)] and then apply
a careful sequence of approximations to control E[i(m)] — Y(x). The final task is to calculate the
limiting variance X(x). It is a straightforward but tedious exercise to verify that each denominator
Ny(x) can be replaced by nf(z)|Ty(x)|, yielding

_ @) o L [IT@) N Ty@)]] _ o®(@) (g [(ErA B + (B A BN
0=t i ek () = 7o L sy )

where E1, FEs, E}, and EJ are independent Exp(1), by the cell shape distribution and independence
of the trees. This final expectation is calculated by integration, using various incomplete gamma
function identities.

Confidence intervals

While Theorem 2 gives a distributional approximation for the infeasible t-statistic, in order to
construct confidence intervals we must instead approximate the corresponding feasible ¢-statistic. To
do this, first observe that if 7 and 7 are real-valued random variables and € > 0, then the following
anti-concentration inequality holds:

sup [P(7 < t) — $(t)] < sup[P(r < t) — ()] +ev/2/m + P(1F 7] > ).

We apply this result to

%:\/7<ﬂ(w)—u(w)E[ﬂ(fﬂ)]-ﬂ(ﬂﬁ)) o [mh-Eh@ X
A\ V() V() MO e

bounding P(|# — 7| > ) using our established results on fi(z), > (x) and %(z). Exploiting symmetry
of the resulting confidence interval permits a quadratic dependence of the coverage error on the bias.

5 Debiased Mondrian random forests

We give our next main contribution: a novel variant of the Mondrian random forest estimator
that corrects for higher-order bias with an approach based on generalized jackknifing (Schucany
and Sommers, 1977). This estimator retains the basic form of a Mondrian random forest in the
sense that it is a linear combination of Mondrian tree estimators, but in this section we allow for
non-identical linear coefficients, some of which may be negative, and for differing lifetime parameters
across the trees. Since the basic Mondrian random forest estimator is a special case of this more
general debiased version, we will discuss only the latter throughout the rest of the paper.
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We use the explicit form of the bias given in Lemma 1 to construct the debiased Mondrian forest
estimator as follows, letting J > 0 be the bias correction order. With J = 0 we preserve the original
Mondrian random forest, with J = 1 we remove second-order bias, and with J = [5/2] we remove
bias terms up to and including order 2|3/2], giving the maximum possible bias reduction achievable
in the Holder class H” (Stone, 1982). As such, only bias terms of order 1/\? will remain.

For 0 <r < J, let fi,(z) be a Mondrian forest estimator based on the trees Tp, ~ M([O, 1]4, )\r)
for 1 < b < B, where A\, = a,\ for some a, > 0 and A > 0. Write T to denote the collection of all
the trees, and suppose they are mutually independent. We find values of a, along with coefficients
wy € R which annihilate the leading J bias terms of the debiased Mondrian random forest estimator

J J
:thar Zwr ZZl 1Y]I{X 6Tb7"< )} (9)
r=0

br ()
This ensemble estimator retains the “forest” structure of the original estimators, but with varying
lifetime parameters A\, and coefficients w,. Thus, referring to (4), we desire

J

J
> (mas) 5 B(j”)) ~ ()
s=1 T

r=0

for all A, or equivalently the system of linear equations ETJZO wr =1 and Z}]:o wra, 2® = 0 for each
1 < s < J. We solve these as follows. Define the (J 4 1) x (J + 1) Vandermonde matrix A,s = a?~2*,
let w = (wo,...,wys)’ € R/*! and take ey = (1,0,...,0)T € R/*L. Then a solution for the debiasing
coefficients is given by w = A~ leg whenever A is non-singular. In practice we can take a, to be a
fixed geometric or arithmetic sequence to ensure this is the case, appealing to the Vandermonde
determinant formula: det A = [y, < (a; 2 —a;?) # 0 whenever a, are distinct. For example,
one could set a, = (1+7)" or a, =1+ 7 for some v > 0. Because we assume 3, and therefore the
choice of J, do not depend on n, there is no need to quantify the invertibility of A by, for example,
bounding its eigenvalues away from zero as a function of J and the choice of a,.

The debiased Mondrian random forest estimator defined in (9) is a linear combination of
standard Mondrian random forests, and as such contains both a sum over 0 < r < J, representing
the debiasing procedure, and a sum over 1 < b < B, representing the forest averaging. We have
been interpreting this estimator as a debiased version of the standard Mondrian random forest
given in (1), but it is equally valid to swap the order of these sums. This gives rise to an alternative
point of view: we replace each Mondrian random tree with a “debiased” version, and then take a
forest of such modified trees. This perspective is perhaps more in line with existing techniques for
constructing randomized ensembles, where the outermost operation represents a B-fold average of
randomized base learners (not necessarily locally constant decision trees), each of which has a small
bias component (Caruana et al., 2004; Zhou and Feng, 2019).

5.1 Bias and variance characterizations

In Lemma 4 we verify that this debiasing procedure does indeed annihilate the desired bias terms;
it is a direct consequence of Lemma 1 and the construction of the debiased Mondrian random forest
estimator fiq(x).
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Lemma 4 (Bias of the debiased estimator)
Suppose Assumptions 1 and 2 hold. Then in the notation of Lemma 1 and with o = Z}]:o wra; 2772

N wB X 2
E <E[ud<x> | X, T — () —{2T +2 < B}A‘;ji§)> ]
1 1 1 )\
N + + —.
2\2((2J+4)AB) \2(1A8) B A2(11B) p

Lemma 4 has the following consequence: the leading bias term is characterized in terms of
Bjyi(x) whenever J < /2 — 1, or equivalently J < |3/2], that is, the debiasing order J does
not exhaust the Holder smoothness §. If this condition does not hold, then the estimator is fully
debiased; the resulting leading bias term is bounded above by 1/A\? up to constants but its form is
left unspecified.

The following lemma controls the variance of the debiased Mondrian random forest estimator.
With ¢, = 2a,(1 — a, log(1 + a,//ay)/a,)/3, define

~ n

() \~ v a
Ya(x) \d Var [fq(z) | X, T] and Ya(x) = Z Z Wrwys (Lppr 4 L)

Lemma 5 (Variance of the debiased estimator)
Supposing Assumptions 1 and 2 hold,
5 A1 1

2
E [(Ed($) — Za(x)) } St BT amaay

5.2 Minimax optimality

Our next main result, Theorem 4, shows that when using an appropriate sequence of lifetime
parameters A, the debiased Mondrian random forest estimator achieves, up to constants, the
minimax-optimal rate of convergence for pointwise mean squared error estimation of a d-dimensional
regression function p € H? (Stone, 1982). This result holds for all d > 1 and all 8 > 0, complementing
a previous result (see Theorem 1) established only for 5 € (0,2] and in integrated mean squared
error by Mourtada et al. (2020).

Theorem 4 (Mean squared error of the debiased estimator)
Suppose Assumptions 1 and 2 hold. Then

) 2] o A? 1 1
E [(ud(w) — u(z)) } S o T e T oeae g
2B—2(1AB)

Thus with J > [5/2], A < N5 and B 2 n 42 we have

E[(fa(x) - p@))’] 075,

The sequence of lifetime parameters A required in Theorem 4 is chosen to balance the bias
and standard deviation bounds implied by Lemmas 4 and 5 respectively, in order to minimize the
pointwise mean squared error. While selecting an optimal debiasing order J needs only knowledge
of an upper bound on the smoothness 3, choosing an optimal sequence of A values does assume that
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(B is known a priori. The problem of adapting to 8 from data is beyond the scope of this paper; we
provide some practical advice for tuning parameter selection in Section 6.

Theorem 4 complements the minimaxity results proven by Mourtada et al. (2020) for Mondrian
trees (with 8 < 1) and for Mondrian random forests (with 5 < 2), with one modification: our version
is stated in pointwise rather than integrated mean squared error. This is because our debiasing
procedure is designed to handle interior smoothing bias and as such does not provide any correction
for boundary bias. We leave the development of such boundary corrections to future work, but
constructions similar to higher-order boundary-correcting kernels should be possible. If the region
of integration is a compact set in the interior of [0,1]¢ then we do obtain an optimal integrated
mean squared error bound: if a € (0,1/2) is fixed then under the same conditions as Theorem 4,
with appropriate tuning of A and B,

N 2 M 1 1 __28_
/ - (fa(x) — p(x))” dx §;+W+m<n .

5.3 Central limit theorem

In Theorem 5, we verify that a central limit theorem holds for the debiased random forest estimator
fq(x). The strategy and challenges associated with proving Theorem 5 are identical to those
discussed earlier surrounding Theorem 2. In fact in Appendix A we provide a direct proof only for
Theorem 5 and deduce Theorem 2 as a special case. Again on the event id(:n) = 0, we also have
fq(xz) =0 and E [q(x) | X, T] = 0, so we take 0/0 = 0.

Theorem 5 (Central limit theorem with debiasing)
Suppose Assumptions 1 and 2 hold, and E[|Y;|**° | X;] is bounded almost surely with 6 > 0. Then

W fae) — Efia(@) | X,T) _ )
(g =) oo

AN |
< | — —
(%) 5
5.4 Confidence intervals

As before, to conduct valid feasible inference we must ensure that the bias (now significantly
reduced due to our debiasing procedure) is negligible when compared to the standard deviation
(which is of the same order as before). We treat here the general “partial debiasing” setting where
either the debiasing order J or the Holder smoothness S may determine the magnitude of the bias,
which is 1/X\2/+2/8 For optimal results, one should take J > [3/2] to ensure total debiasing,
as in Theorem 4. We thus require 1/\2/+2/8 4 1/(A1A5\/§) < /A /n, satisfied by imposing

1 2((2J42)AB)—2(1AB) . . .
A > nd+t2@IH+DAB) and B > n  4+2(@7+2/A8)  on the lifetime parameter A and forest size B.

Once again, we propose a variance estimator and show that it is consistent. With ¢%(z) as in
(6) in Section 3, define

2
Sala) = )15 Y (Zwr > W) - (10)

i=1 \r=0

sup
teR

Lemma 6 (Variance estimation for the debiased estimator)
Suppose Assumptions 1 and 2 hold, and E[|Y;|**? | X;] is bounded almost surely with § > 0. Then

2 )\d 1 I{s<2}
R 2-1{5<2} 3-T{6<2} 2249 1 1
<E [‘Ed(x) - Ed(i)’ : ]) < <n> + VB + AIABLABFABs
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In analogy to Section 3, we now demonstrate the construction of feasible valid confidence
intervals using the debiased Mondrian random forest estimator in Theorem 6. Consider the debiased
100(1 — )% confidence interval estimator

Cla(z) = [ﬂd(ﬂﬁ) - \/fid(%‘)l/2 Qi—aj2, fa(T) — \/fid@:)lm qa/Ql - (11)

Theorem 6 (Confidence intervals with debiasing)
Suppose Assumptions 1 and 2 hold, and E[|Y;|** | X;] is bounded almost surely with 6 > 0. Then

|P(u(z) € Cla(z)) — (1 — )|

n 1 2\ 7] 1 n
oo T\ T B T BB T 20D B

N

One important benefit of our debiasing technique is made clear in Theorem 6: the restrictions
imposed on the lifetime parameter A are substantially relaxed, especially in smooth classes with
large 5. As well as the high-level of benefit of relaxed conditions, this is also useful for practical
selection of appropriate lifetimes for estimation and inference respectively; see Section 6 for more
details. Nonetheless, such improvements do not come without concession. The limiting variance
of the debiased estimator is typically larger than that of the unbiased version in small samples
(the extent of this increase depends on the choice of the debiasing parameters a,), leading to wider
confidence intervals and larger estimation error, despite the theoretical asymptotic improvements.
Nonetheless, the empirical results in Section 6 demonstrate that the debiasing effect can overcome
the increased variance with moderate sample sizes. Because we employ symmetric confidence
intervals, the coverage error depends on the squared bias 1/ N2ZT+2)AB) - whereas the corresponding
Berry-Esseen rate would depend on the (larger) linear bias 1/\(2/+2)/5,

6 Implementation and empirical results

We discuss procedures for selecting the parameters involved in fitting a debiased Mondrian random
forest; namely the base lifetime parameter A, the number of trees in each forest B, the order of the
bias correction J, and the debiasing scale parameters a, for 0 < r < J. We then provide empirical
results with simulated data to demonstrate the effectiveness of our methods.

6.1 Tuning parameter selection

The most important parameter is the base Mondrian lifetime A, which plays the role of a complexity
parameter and thus governs the overall bias—variance trade-off of the estimator. Correct tuning
of A is especially important in two main respects: firstly, in order to use the central limit theorem

I
established in Theorem 5, we must have that the bias converges to zero, requiring A\ > nd+2(@7+2A8)

Secondly, the minimax optimality result of Theorem 4 is valid only in the regime A\ < nﬁ, and
so A requires careful determination in practice. For clarity, in this section we use the notation
fiq(x; A, J) for the debiased Mondrian random forest estimator implemented with lifetime A and
debiasing order .J, as in (9). Similarly write 3q(x; A, J) for the associated variance estimator (10).

1
For minimax-optimal point estimation when ( is known, choose any sequence A =< n+28 and
use fiq(x; A\, J) with J = |8/2], following the theory given in Theorem 4. For an explicit example
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of how to choose the lifetime, one can instead use fiq (x; A J—1,dJ — 1) so that the leading bias is

explicitly characterized by Lemma 4, and with As_1 as defined below. This estimator is however not
minimax-optimal as the debiasing order of J — 1 < J does not satisfy the conditions of Theorem 4.

For performing inference, a more careful procedure is required; we suggest the following, when
B > 2 is known. Set J = |(3/2] as before, and use jiq (I; A1, J) and g (m; N1, J) to construct a
confidence interval (11), so that one selects a lifetime tailored for a more biased estimator than that
which is actually used. This results in an inflated lifetime estimate, guaranteeing the resulting bias
is negligible when it is plugged into the fully debiased estimator. This approach to tuning parameter
selection and debiasing for nonparametric inference corresponds to an application of robust bias
correction (Calonico et al., 2018, 2022), where the point estimator is bias-corrected and the robust
standard error estimator incorporates the additional variability introduced by the correction. This
gives a refined distributional approximation but may not exhaust the underlying smoothness of the
regression function. An alternative approach based on Lepski’s method (Lepski, 1992; Birgé, 2001)
could be developed with the latter goal in mind.

It remains to propose a concrete method for computing A 7 in finite samples; we suggest a
procedure based on minimizing the asymptotic mean squared error (AMSE) using plug-in selection
with polynomial estimation, building on classical ideas from the nonparametric smoothing literature.
Expressions for the AMSE are available as direct consequences of Lemmas 4 and 5, provided that
J < |B8/2] so the Holder smoothness is not fully exhausted.

Selecting the lifetime parameter A\ with polynomial estimation

For implementation, we propose a simple rule-of-thumb approach. Suppose that X; ~ Unif ([0, 1]d)
and that the leading bias of fiq(z) is well approximated by an additively separable function so that,
writing 8J2-J+2u(x) for 8J2J+2u(x)/8ac§‘]+2, the asymptotic bias is

d

o wBji1(x) 1 w 2J+2
ABias(z; A\, J) = T a2 T 12 Zaj p(zx).
j=1

Suppose that the model is homoscedastic so 0%(z) = 02 and the asymptotic variance of fiq is

A Ao? I 4
AV ] )\ J = —) = rWp! ZT‘T’ ET‘/T‘ .
ar(x, > ) n d (:E) n ;:0 1;:0 Wrw ( + )

The asymptotic mean squared error is therefore

2
—9 d J

1 w o2 4
AMSE(z; A, J) = 82J+2,LL(£L’) + Z Z wrwypr (Lppr =+ er’r)d :

= \dJ+4 2 J
A (J +2) = no i

Minimizing over A > 0 yields the AMSE-optimal lifetime parameter

1
4T+4)0? d 2\
S (X5, 02 2u())

A=
J d0'2 27{:0 Z;“]/ZO Wyt (ETT" + Kr/r)d

An estimator of Ay is given by the plug-in procedure

4] 4+4)0? X 2
Wt (1,700
do? Z;{:O Z;ﬂl’:o wywyr (b + fr’r)d

1
1J+4+d

P
<
Il
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for some preliminary estimators 8?‘] +2ﬂ(x) and 62. These can be obtained by fitting a global
polynomial regression to the data (X,Y) of order 2J + 4 without interaction terms. To do this,
define the n x ((2J +4)d + 1) design matrix P with rows given by

7

P(X;) = (1,X¢1,X-21, XY X X XY ,Xid,de,...,deJH) .
Then the derivative estimator is
022 (x) = 9272 P(2) (PTP) T'PTY
-1
= (2] 4+ 2)! (014 - 1)(2/+4)+@J+1)s L 5, 23 /2,00_j)204+4)) (PTP)PTY,

and the variance estimator 2 is the based on the residual sum of squared errors of this model:

6 = ! (
n—2J+4)d-1

Y'Y -YTP(PTP) 'PTY),

Choosing the number B of trees in each forest

The next parameter to choose is the number of trees in each forest. If no debiasing is applied, we
suggest taking B =< /n to ensure the coverage error in Theorem 3 converges to zero. If debiasing is

2J-1
used then we recommend setting B < n 27 , consistent with Theorem 4 and Theorem 6.

Setting the debiasing order J

Deciding how many orders of bias to remove requires knowledge of the Holder smoothness of p and
f, which is in practice very difficult to estimate statistically. As such we recommend removing only
the first one or two bias terms, taking J € {0,1,2} to avoid inflating the variance of the estimator.

Selecting the debiasing scalars a,

As in Section 5, take a fixed geometric or arithmetic sequence. For example, a, = (1 + )" or
ar = 1+ ~yr where v > 0; we suggest a, = (3/2)".

6.2 Empirical results

To demonstrate the empirical properties of our proposed estimation and inference methodology,
we present results with simulated data. Throughout this section we use the data generating
process given by uniform covariates X; ~ Unif[0, 1]% for d € {1,2}, a sinusoidal regression function
u(x) = Z;-lzl sin(7x;), and homoscedastic normal errors &; ~ N'(0,0?) with o = 3/10. We focus
on estimation at the design point z = (1/2,...,1/2) € R and use n = 1000 samples and B = 800
trees in each forest. We demonstrate our procedures both with and without debiasing by setting
J =1 and J = 0 respectively, and when J = 1 we use the debiasing scalars (ai,as) = (1,3/2)
suggested in Section 5, yielding debiasing coefficients of (wg,w;) = (—4/5,9/5). For lifetime selection
(LS), we first show our estimator M based on polynomial regression (Section 6.1), and then present
the infeasible oracle lifetime A; which exactly minimizes the asymptotic mean squared error. To
illustrate robustness with respect to this tuning parameter, we repeat the same experiments but
rescaling Ay by a lifetime multiplier LM € {1 +¢/5:0 < ¢ < 2}. We further exhibit the robust bias
correction (BC) approach discussed in Section 6 by using a debiased estimator (J = 1) with the
AMSE-optimal lifetime parameter Ag.
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For each such estimator, we present the empirical root mean squared error (RMSE), bias,
standard deviation (SD), and absolute bias/SD ratio, based on 3000 repeats. We also show the
estimated standard deviation SD = VAY/n ﬁld(x), as well as the estimated variance of the errors
62(x). Since oracle properties available, we give the asymptotic bias (ABias) and asymptotic
standard deviation (ASD). Finally, we present the empirical coverage rate (CR) of nominal 95%
confidence intervals along with their empirical average widths (CIW).

We now derive the asymptotic oracle properties of our estimators. Firstly, by Lemma 2, the
asymptotic variance of the estimator without debiasing is

N )\d o?(x) (4 —4log?2 o2
AVar = =% 4091
Var - (x) = " ) ( 3 > - 0.409

By Lemma 5, {ypo = % (1 —1log2), o1 = % (1- %log %), lip=1-— %logg, and /11 = 1 —log2, so the
asymptotic variance of its debiased counterpart is

Z Z wrwr TT’ + Er r)

r=0r'=0

)\d )\d 2
AVard — Ed(

)\d 2
~ S (o 64 - 0.4091% — 2.88 - 0.4932¢% + 3.24 - 0. 6137d>

We similarly establish the asymptotic biases. Without debiasing, by Lemma 1,

1 d 1 1 & Pu(x 2 & m2d
ABias = 2 lVZZIGQVM(a:) S Gy = 2)\2; 8/;% ) _ —w;sin(ﬂxj) =~
For the debiased estimator, with w = wy + wlaf4 = —4/9, we recover
) wBsy(x 2, d 1 < 0*u(z) 4mid
ABiasq = = = 9>\4 E:Qa 13 v+l 27\ Jz::l oz, | 2T

Table 1 gives results in the one-dimensional setting (d = 1). Firstly, observe that the polynomial
lifetime estimator appears to be moderately accurate, displaying some oversmoothing when fitting a
polynomial of order 4 (for Ag) and some undersmoothing with a polynomial of order 6 (with A;).
The effects of debiasing on RMSE are clear, with the appropriately tuned debiased Mondrian forest
(J =1, A1) providing the best results (Theorem 4). Likewise, the effect of debiasing is apparent
when using an undersmoothed lifetime (J = 1, Ag), with the bias being significantly reduced (see
Lemma 4) at the expense of a larger standard deviation. The variance estimator performs well, with
SD a good approximation for the finite-sample SD, and &2 similarly sits close to o = 0.09. The
value of robust bias correction (J = 1, \g) for statistical inference is clear, with the coverage rates
clustering around the nominal 95% even with perturbed lifetime values (see Theorem 6). In contrast,
the no-debiasing estimator (J = 0, Ag) fails to attain correct coverage, while its fully debiased
counterpart (J =1, A1) lacks robustness, reaching the nominal level only with larger lifetime values.
Accurate coverage comes at the expense of wider confidence intervals, but the differences are not
large.
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J LS|LM X |RMSE Bias SD  Bias/SD SD 42 |ARMSE ABias ASD | CR CIW
0 Xo|1.0 14.73|0.0351 -0.0250 0.0247 1.0123 |0.0236 0.0931| 0.0369 -0.0270 0.0232|82.5% 0.093

Ao | 1.2 23.10{0.0307 -0.0092 0.0293 0.3130 |0.0292 0.0894 | 0.0306 -0.0092 0.0292|93.6% 0.114
1.1 21.18]0.0300 -0.0109 0.0280 0.3888 |0.0280 0.0897 | 0.0300 -0.0110 0.0279 |93.4% 0.110
1.0 19.25]0.0297 -0.0131 0.0267 0.4909 |0.0267 0.0901 | 0.0298 -0.0133 0.0266 | 92.9% 0.105
0.9 17.33|0.0300 -0.0160 0.0253 0.6326 |0.0254 0.0907 | 0.0301 -0.0164 0.0253|90.7% 0.100
0.8 15.40|0.0312 -0.0201 0.0238 0.8438 |0.0241 0.0916| 0.0316 -0.0208 0.0238 |87.5% 0.095
1 A;|1.0 11.14|0.0301 -0.0031 0.0300 0.1036 |0.0302 0.1002 | 0.0296 -0.0026 0.0287|95.0% 0.119

A1 | 1.2 7.86 |0.0255 -0.0070 0.0246 0.2835 |0.0269 0.1103| 0.0245 -0.0038 0.0242|95.9% 0.106
1.1 7.21 | 0.0255 -0.0095 0.0236 0.4031 |0.0263 0.1147| 0.0238 -0.0053 0.0232|95.2% 0.103
1.0 6.55 | 0.0264 -0.0135 0.0227 0.5950 |0.0256 0.1198| 0.0235 -0.0078 0.0221|94.3% 0.100
0.9 5.90 | 0.0288 -0.0191 0.0216 0.8817 |0.0249 0.1259| 0.0241 -0.0119 0.0210|90.6% 0.097
0.8 5.24 | 0.0343 -0.0274 0.0206 1.3346 |0.0240 0.1329| 0.0275 -0.0191 0.0198 |82.0% 0.094
1 Ao |1.0 14.73|0.0334 -0.0014 0.0333 0.0405 |0.0339 0.0940| 0.0336 -0.0011 0.0330|95.3% 0.133

Ao | 1.2 23.10|0.0420 -0.0004 0.0420 0.0105 |0.0419 0.0898 | 0.0415 -0.0001 0.0415|94.8% 0.164
1.1 21.18|0.0401 -0.0003 0.0401 0.0078 |0.0402 0.0901| 0.0398 -0.0001 0.0398|95.0% 0.158
1.0 19.25|0.0381 -0.0004 0.0381 0.0115 |0.0383 0.0905| 0.0379 -0.0001 0.0379 [94.7% 0.150
0.9 17.33|0.0362 -0.0003 0.0362 0.0084 |0.0365 0.0912| 0.0360 -0.0002 0.0360 |95.0% 0.143
0.8 15.40|0.0341 -0.0005 0.0341 0.0139 |0.0346 0.0922| 0.0339 -0.0003 0.0339 |95.3% 0.136

No debiasing

Debiasing

Robust BC

Table 1: Simulation results with d = 1, n = 1000, and B = 800, over 3000 repeats

Table 2 presents analogous results in the two-dimensional setting (d = 2). The debiased estimator
(J =1, A1) again achieves the best RMSE, and the undersmoothed estimator (J = 1, Ag) similarly
displays the smallest bias/SD ratio. Coverage rates are generally worse than in Table 1, mostly
due to the increased difficulty posed by the curse of dimensionality and a reduced effective sample
size. Nonetheless, inference based on robust bias correction continues to exhibit a pronounced
improvement in coverage when compared to standard non-debiased methods, and again shows a
moderate increase in confidence interval widths.

J LS|LM X |RMSE Bias SD  Bias/SD SD 42 |ARMSE ABias ASD | CR CIW
0 Xo| 1.0 12.35]0.0805 -0.0646 0.0481 1.3432 |0.0481 0.0989| 0.0828 -0.0666 0.0479 [71.1% 0.189

Ao | 1.2 18.39|0.0758 -0.0310 0.0692 0.4481 |0.0627 0.0882| 0.0771 -0.0292 0.0714 |88.2% 0.246
1.1 16.85]0.0735 -0.0361 0.0640 0.5650 |0.0593 0.0898 | 0.0741 -0.0347 0.0654 |87.0% 0.233
1.0 15.32|0.0726 -0.0427 0.0587 0.7280 |0.0558 0.0919| 0.0728 -0.0420 0.0595|84.9% 0.219
0.9 13.79|0.0743 -0.0518 0.0532 0.9740 |0.0520 0.0947 | 0.0746 -0.0519 0.0535 | 80.8% 0.204
0.8 12.26|0.0796 -0.0637 0.0477 1.3346 |0.0478 0.0985| 0.0811 -0.0657 0.0476 |71.6% 0.188
1 A | 1.0 9.20 |0.0726 -0.0144 0.0712 0.2020 |0.0746 0.1277| 0.0723 -0.0086 0.0691 |95.1% 0.292

A1 | 1.2 7.18 |0.0584 -0.0217 0.0542 0.3999 |0.0672 0.1490| 0.0550 -0.0108 0.0540 |96.3% 0.263
1.1 6.58 | 0.0577 -0.0283 0.0503 0.5620 |0.0644 0.1602| 0.0518 -0.0154 0.0495|95.8% 0.252
1.0 5.99 | 0.0596 -0.0381 0.0459 0.8299 |0.0613 0.1733| 0.0503 -0.0225 0.0450|94.0% 0.240
0.9 5.39 | 0.0664 -0.0516 0.0418 1.2332 |0.0578 0.1879| 0.0530 -0.0343 0.0405|90.4% 0.227
0.8 4.79 | 0.0797 -0.0704 0.0373 1.8873 |0.0538 0.2044 | 0.0656 -0.0549 0.0360 |79.6% 0.211
1 Mo |1.0 12.35|0.0839 -0.0053 0.0888 0.0598 |0.0854 0.1047| 0.0928 -0.0014 0.0927 |94.9% 0.335

Ao | 1.2 18.39|0.1208 -0.0032 0.1208 0.0265 |0.0971 0.0925| 0.1381 -0.0003 0.1381|89.4% 0.380
1.1 16.85|0.1135 -0.0040 0.1134 0.0351 |0.0953 0.0941| 0.1266 -0.0004 0.1266|90.8% 0.373
1.0 15.32]0.1056 -0.0039 0.1055 0.0367 |0.0927 0.0964 | 0.1151 -0.0005 0.1151 |92.6% 0.363
0.9 13.79|0.0974 -0.0042 0.0973 0.0427 |0.0893 0.0994| 0.1036 -0.0008 0.1036 |93.8% 0.350
0.8 12.26 | 0.0883 -0.0047 0.0882 0.0532 |0.0853 0.1041| 0.0921 -0.0013 0.0921 |94.9% 0.334

No debiasing

Debiasing

Robust BC

Table 2: Simulation results with d = 2, n = 1000, and B = 800, over 3000 repeats
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7 Computational complexity and application to online learning

We discuss some computational aspects of (debiased) Mondrian random forests. We firstly consider
the batch setting, where all of the data is available simultaneously, and secondly investigate the
online regime, where data arrives sequentially and the model must be incrementally updated
(Lakshminarayanan et al., 2014). Mondrian random forests have several properties that make them
well suited for online learning: (i) in Mourtada et al. (2021) it was shown that some online Mondrian
forest variants maintain statistical consistency, achieving the same asymptotic error rates as their
batch counterparts under certain conditions; (ii) as we will demonstrate (Lemma 8), online Mondrian
forest algorithms exploiting the Markov property of the Mondrian process are computationally
efficient, therefore scaling to large streaming datasets; and (iii) the random nature of splits in
Mondrian trees allows the forest to naturally adapt to changes in the underlying data distribution
over time (concept drift), without requiring explicit drift detection or model reset mechanisms.

Some potential applications of online Mondrian forests with uncertainty quantification include
real-time prediction and monitoring in industrial processes (Gomes et al., 2017), adaptive pricing
and recommendation systems (Krauss et al., 2017; Li et al., 2018), online anomaly detection with
confidence levels (Martindale et al., 2020), and streaming data analysis for the natural sciences
(Abdulsalam et al., 2010).

The inference procedures developed in this paper extend to the online setting, allowing for
uncertainty quantification in streaming data applications. However, care must be taken in situations
where the underlying distribution may change over time, or where validity of the inferential
procedures is required to hold uniformly over the data arrival times. Developing rigorous statistical
inference tools for online Mondrian forests in those more complicated time-dependent regimes is an
interesting direction for future work.

The core of our computational approaches for batch and online learning comprise several main
ideas; these enable substantial improvements over naive algorithms based on the equations presented
in previous sections. The first of these is to keep track of which data points are “local” to the
evaluation point z, according to the forest (Tp,.(z) : 1 < b < B,0 <r < J). Define the union cell
U(x) C[0,1]% and active indices I(x) C {1,...,n} by

d B J
Uz) =T U Tor(2); and Iz)={1<i<n:X;eU(x)} (12)
j=1b=17=0

respectively, noting that any data point contributing to jiq(z) or 34(z) satisfies X; € U(x) and
i € I(x). As the lifetime parameter \ grows, the volume of U(z) and the proportion of contributing
samples |I(z)|/n both converge to zero in expectation, lowering the effective sample size and
significantly decreasing the amount of computation necessary. Further, U(x) can be efficiently
computed with a divide-and-conquer approach whenever multiple parallel processors are available.

The second main idea is to observe that the estimators jiq(x) and 6%(z) can be expressed as
ratios of sums. More precisely, firstly define

Nep(z) = > HXi € Tip(z)},  Sie(z) = > ViI{X; € Tip(2)},

i€l(x) i€l (x)

Vi) = 32 Y2HX; € Ty(a)}, (13)
i€l(x)

which are efficient to update as new samples arrive; furthermore, they can be computed separately
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for each b and r in parallel. Then one can write
J B B
N 1 Sbr(x) ~92 1 %O(I)
ngwr—g and ax:—g . 14
:ud( ) B Nb ) ( ) B i Nb()(x) ( )

The third observation is that the estimators depend on the trees only through the cell Tj,.(x).
Since Mourtada et al. (2020) characterize the exact distribution of this quantity, it can be sampled
without needing to grow an entire Mondrian tree. Further, the memoryless property of the
exponential distribution (and thus also of the Mondrian process) means that in the online setting,
only a small fraction of the cells typically need to be updated.

The fourth and final concept is to avoid fitting the relatively computationally expensive f)d(x)
too often. This estimator does not readily admit a “ratio of sums” formulation, and hence is not
efficient to update incrementally. Our recommendation is to instead only update this term after
K > 1 new data points have arrived on average. Note however that using the active indices I(z)
still permits an improvement over the naive approach, since

2

zGI(

Before discussing the online learning setting in more detail, we present our efficient procedure
for batch estimation and inference in Algorithm 1.

Algorithm 1: Batch learning with Mondrian random forests
Input: Data (X,;,Y;) for 1 <i < n, forest size B > 1, debiasing order J > 0.

1 Select A using one of the methods from Section 6.1.

2 Construct the union cell U(z) and active indices I(z) as in (12).

s Calculate Ny (), Spr(2) and Vi, (2) for each 1 <b < B and 0 <r < J as in (13).
4 Compute fiq(z) and 6%(z) with (14).

s Calculate 3q(x) and Clq(z) using (15) and (11) respectively.

The following lemma bounds the average case time complexity of our batch learning procedure
(Algorithm 1), under the same assumptions made throughout the paper.

Lemma 7 (Computational complexity of batch learning)
Suppose Assumptions 1 and 2 hold. Then the average case time complexity of Algorithm 1 is

nBd(J + 1) log(2B(J + 1))
M '

E[Ty] Sd(J+1)(nd(J+ 1)+ B) +

We now turn to the online learning setting, making the following assumptions. Firstly, suppose
that a (debiased) Mondrian random forest with B trees has already been fitted to a data set with
n samples, using a lifetime of A, and that this original data set is still available. Assume that the
union cell U(x), the index set I(z), and the point estimates jiq(x) and 3q(z) have been computed,
as well as the trees Ty, (z) and the quantities Sy, (z), Np-(z) and Vj,(z) for 1 <b< Band 0 <r < J.
A new data set with k& samples then arrives, where 1 < k < n, and we must produce updated
estimates [1j(x), f]fi(x) and CIj(z) based on all n+ k samples. Our randomized procedure for doing
this is described below, using a star to indicate updated quantities, and summarized in Algorithm 2.
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The new sample size is n* = n+k, so the first step is to update B. As recommended in Section 6,
we take B < n® for some ¢ € (0,1); therefore set B* = | (n+k)*B/n®|. Next, we update the lifetime
parameter . To avoid excessive computation, we suggest the following: with probability 1 A (k/K),
use the methods from Section 6.1 to compute a new lifetime parameter A* > X using all of the data.
Otherwise, note that A < n¢ for some ¢ € (0,1/d) (for example ¢ = 1/(d + 23) under the conditions
of Theorem 4) and set A* = (n+ k)°\/nS. Next, to update the trees Ty (), sample Ep-j1 and Ep,.jo
iid. Exp(1), and set

* — — Ele * EbT 12
Ty (z); = Tor(2); V <:17j ~ —])\> , Tbr(a;);-F = Tbr(w)j A <acj + e _J)\) . (16)

Since B* > B, we also generate new trees Tg‘r(m) for B+1<b<B*and 0<r <J, according to
(7). Computing U*(x) is simple, applying (12) to T}.(x). To update I(x), set

() = {iel(z)U{n+1,...,n+k}: X; € U*(x)} ifU*(x)CU(z), (17)
{1<i<n+k:X;,€eU*(x)} otherwise.
For Ny,.(z), and analogously for S, () and Vj,.(z), apply the following method:
Np(z) = Niw(2) + 3 v (2),imn HXi € Th(2)} i 0 < 5 and Ty, (z) = Ty (2) as)
ier @) HXi € Ty (2)} otherwise.

Finally, 45 (z) and 6%*(z) are computed using (14). With probability 1A (k/K), recalculate ﬁ];‘l(x)
with (15); otherwise set 3% (2) = 3q(z). The confidence interval CTf(z) can then be constructed
with (11). The following algorithm summarizes our online methodology.

Algorithm 2: Online learning with Mondrian random forests
Input: Data (X,,Y;) for 1 <i <mn, forest size B > 1, debiasing order J > 0, lifetime A, forest
exponent £ € (0,1), lifetime exponent ¢ € (0,1/d), active region U(z), active indices I(x),
trees Ty, () and Ny, (), Spr(x), Vpr(z) for 1 <b < B and 0 < r < J, new data (X;,Y;) for
n+1<1i<n+k, recalculation gap K > 1.
1 Get the updated number of trees B* = |(n+ k)*B/nf|.
2 With probability 1 A (k/K), select \* as in Section 6.1; otherwise, set \* = (n + k)S\/n¢.

3 Generate the incrementally updated forest Ty () as in (16).

4 Construct the updated union cell U*(x) and active indices I*(z) as in (17).

s Calculate Ny.(z), S;.(x), and Vi (x) as in (18) and derive ijj(z) and 02*(z) from (13).
¢ With probability 1 A (k/K), recalculate 3% (z) using (15); otherwise, set 3% (z) = S4(x).
7 Compute CT;(z) using (11) with i%(z) and % ().

Lemma 8 bounds the average case time complexity of our online computational procedure
presented in Algorithm 2.

Lemma 8 (Computational complexity of online learning)
Suppose Assumptions 1 and 2 hold. Then the average case time complexity of Algorithm 2 is

knd(J + 1)
K

Emmdum(

+kd + B) L A+ 1)log(2B(J + 1)) < nB> |

\d n+Bkz+?
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Lemma 7 already demonstrated that Algorithm 1 is more efficient than the naive approach
of computing fig(z) and Sq(z) directly with (9) and (10), respectively, which each have a time
complexity of n(J + 1)B. The reason for this is that by first constructing the active indices I(x),
we avoid iterating over the entire sample for each tree in Algorithm 1. Lemma 8 formalizes the
improvement achieved by Algorithm 2 in online settings, relative to the batch estimation approach of
Algorithm 1. Most importantly, the terms involving the product nB are reduced to n+ Bk +nB/K,
offering a substantial speed-up in large forests when the new sample size k is much smaller than
that of the existing data n, and when K is large to avoid regularly estimating the lifetime A and
variance 3q(z).

8 Conclusion

We presented a Berry—Esseen theorem under mild conditions for the Mondrian random forest
estimator, and showed how it can be used to perform statistical inference on an unknown nonpara-
metric regression function. We introduced debiased versions of Mondrian random forests, exploiting
higher-order smoothness, and demonstrated their advantages for statistical inference and their
minimax optimality properties. We discussed tuning parameter selection, enabling fully feasible and
practical estimation and inference procedures, and demonstrated the empirical performance of our
proposed methodology. Finally, we developed efficient algorithms for batch and online settings.

There are several potential avenues for future work on inference with Mondrian random forests.
The development of data-adaptive partitioning schemes is one such important direction, and could be
implemented perhaps by allowing the lifetime parameter A to vary across different covariates, yielding
the d-dimensional parameter (Aj,...,Ag). One approach to designing such methodology might
involve adapting sparse, greedy algorithms for non-parametric regression, similar to those described
by Lafferty and Wasserman (2008), to the context of axis-aligned partitioning estimators. Specifically,
by examining how changes in each A; affect the Mondrian forest estimator, e.g., via an estimate of
%E[ﬂ(m)], these parameters can be dynamically adjusted to more effectively learn low-dimensional
structure in the regression function. Alternatively, one might formulate a Goldenshluger—Lepski-
type procedure (Goldenshluger and Lepski, 2008) for multiple tuning parameter selection. Another
potential line of research would consist of proposing further strategies for debiasing Mondrian random
forests (and related estimators); an approach based on within-cell local polynomial smoothing, for
example, may serve to eliminate both design bias and boundary bias, as well as allowing for less
restrictive conditions on the covariate density function and the regression function.
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A  Proofs and technical results

In this section we present the full proofs of all our results, and also state some useful technical
preliminary and intermediate lemmas. See Section 4 in the main paper for an overview of the main
proof strategies and a discussion of the challenges involved. We use the following simplified notation
for convenience, whenever it is appropriate: write Ij(z) = I{X; € Tp(z)} and Ny(z) = > 1 Lip(x),
as well as Iy (z) = T{Ny(z) > 1}. We use C' to denote a positive constant whose value may change
from line to line, and write a, = O(b,,) for a,, < b,. We begin by giving some preliminary lemmas
in Section A.1, and then present the proofs for Section 3 (including Lemma 1, Lemma 2, Theorem 1,
Theorem 2, Lemma 3, and Theorem 3) in Section A.2; the proofs for Section 5 (including Lemma 4,
Lemma 5, Theorem 4, Theorem 5, Lemma 6, and Theorem 6) in Section A.3; and the proofs for
Section 7 (including Lemma 7 and Lemma 8) in Section A .4.

A.1 Preliminary lemmas

We begin by bounding the maximum size of any cell in a Mondrian forest containing x. This result
is used regularly throughout many of our other proofs, and captures the “localizing” behavior of the
Mondrian random forest estimator, showing that Mondrian cells have side lengths at most on the
order of 1/A.

Lemma 9 (Upper bound on the largest cell in a Mondrian forest)
Let Tv,...,Tg ~ M([0,1]%, X) and take z € (0,1)%. Then for allt >0

t
> — < 7t/2'
P (1I§nba<_XB 11;1;2{(1]%(96)]\ > )\> < 2dBe

Proof (Lemma 9)

We use the explicit distribution of the shape of Mondrian cells given by Mourtada et al. (2020,
Proposition 1). In particular, we have |T,(z);| = (ngl A xj> + (E'/’\jz A(1— x])) where Ey;1 and Ejjo
Ebjll’Eng

are independent Exp(1) random variables for 1 < b < B and 1 < j <d. Thus |Ty(z);| <
and so by a union bound

¢ t
P T i>=) <P Erin N Erio) > —
<1I£I%XB gfgxd‘ b(z)sl = /\> = <1r§nba§XB gfgd( bj1 V Epja) = 2)

t
< 2dBP (Ebﬂ > 2) < 2dBe~ 2.

O]

The next result is another “localization” result, this time showing that the union over the forest
of the cells Ty(x) containing 2 do not contain “too many” samples X;. In other words, the Mondrian
random forest estimator fitted at = should only depend on n/A\? (the effective sample size) data
points up to logarithmic terms.

Lemma 10 (Upper bound on the number of active data points)
Suppose that Assumptions 1 and 2 hold and define Ny(z) => " |1 {Xi € Ule Tb(m)}. Then for
t>0 andn >\, with || flle = SUPgeo,1)4 [ (2),

n _
]P’(Nu(x) > thﬁHfHoo) < 4dBe /",
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Proof (Lemma 10)
Note that Ny(xz) ~ Bin (n, foleb(a:) f(s) ds) < Bin( 2d maxi<p<p maxi<;<q |Tp(x ]dHfHoo)
conditionally on T. If N ~ Bin(n,p) then, by Bernstein’s inequality, P (N > (14 t)np) <

t2n2p2/2 3¢2
exp <_W> < exp (— 6+727/f>' Thus for ¢ > 2,

2d4d t pR
P No() > (L =l fll | max, max [T56)| < § ) < exp(~=55" ).

By Lemma 9, P (maXleSB maxi<j<q|Tj(x)| > %) < 2dBe /2. Hence
P (Nufe) > 28 L oo

9dd t
< < -
(o) > 2% e | s o 11001 < §) + P (s, e, 101 > 5 )

2% ~t/2.
< exp \d + 2dBe

Noting the result is trivial for ¢ < 2 and replacing ¢ by ¢/2 gives that for n > A%,
n _
P (Nu(x) > td+1ﬁuf\|oo) < 4dBe /",

O

Next we give a series of results culminating in a generalized moment bound for the denominator
appearing in the Mondrian random forest estimator. We begin by providing a moment bound for the
truncated inverse binomial distribution, which will be useful for controlling N(( )) <1IAg ( ) because

conditional on T}, we have Ny(z) ~ Bin ( fT (I ) Our constants could be suboptimal but

they are sufficient for our applications.

Lemma 11 (An inverse moment bound for the binomial distribution)
Forn > 1 and p € [0,1], let N ~ Bin(n,p). Take ay,...,ar > 0 and ly,...,l; > 1. Then with

LZZ?:llj’
k L k L.
1 J 1 J
E || 1 < L2L|| 1 .
j:1< AN—HL;’) =60 j:1< An;D—Htj)

Proof (Lemma 11) .
By Bernstein’s inequality, P (N < np —t) < exp (_Tlﬂlt—il/)il-w> < exp (—%). Therefore we
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have P (N < np/4) < exp < %) e~9/40  Partitioning by this event gives

:?r

E ﬁ At —9np/4oH
. N—i—aj

j=1 -1 1\/(1 j=1 np +CL])
k k
1 1
S]i[ on lj+H1\/(@_|_a.)lj
=11V (ﬁ + aj) =1 R
k k
1 (40k1;/9)
<2]] <2 e
j=1 j=1

9 (np+a
1v (40% +a]) p+a;)”

lj
2L
(oL) H (anw) .

O

Our next result is probablgz the most technically involved in the paper, allowing one to bound
moments of (products of) by the corresponding moments of (products of) n\Tb(w)|’ again

based on the heuristic that Nb( ) is conditionally binomial so concentrates around its conditional
expectation n fTb () f(x)ds < n|Ty(z)|. By independence of the trees, the latter expected products
then factorize since the dependence on the data X; has been eliminated. The proof is complicated,
and relies on the following induction procedure. First we consider the common refinement consisting
of the subcells R generated by all possible intersections of Tj(z) over the selected trees (say
Ty(x), Ty (x), Ty (x) though there could be arbitrarily many). Note that Ny(x) is the sum of the
number of samples X; in each such subcell in R. We then apply Lemma 11 repeatedly to each subcell
in R in turn, replacing the number of samples X; in that subcell with its volume multiplied by the
sample size n, and controlling the error incurred at each step. We record the subcells which have
been “checked” in this manner using the class D C R and proceed by finite induction, beginning
with D = () and ending at D = R.

Lemma 12 (Generalized moment bound for Mondrian random forest denominators)
Suppose Assumptions 1 and 2 hold. Let T}, ~ M([O, 1]4, )\) be independent and ky > 1 for 1 < b < By.

Then with k = 25:01 ky, for sufficiently large n,

P I(x) 36k 5, 1
E o(@) | 36k E {1 A } .
11 M(m)%] (mfxe[o,ud f<:c>> LB |17 G
Proof (Lemma 12)
Define the common refinement of {T(z) : 1 < b < By} as the class of sets

By By
R = {ﬂ Dy : Dy € {Tb(x),Tb(;c)C}} \ {@7 ﬂ Tb(x)c}
b=1

b=1

where Ty(z)¢ = [0,1]¢ \ Ty(x), and let D C R. We will proceed by induction on the elements of
D, which represents the subcells we have checked, starting from D = () and finishing at D = R.
For D € R let A(D) ={1<b< By:D CTy(z)} be the indices of the trees which are active on
subcell D, and for 1 < b < By let A(b) ={D € R: D C Ty(z)} be the subcells which are contained
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in Ty(z), so that b € A(D) <= D € A(b). For a subcell D € R, write Ny(D) = > | I{X; € D}
so that Ny(x) = >~ peap) No(D). Note that for any D € R\ D,

By
1
E

kp
b=11V (ZD’GA(b)\D No(D') + 13 pre gy \D/’)

1

| b2AD) 1V <ZD’€A(b)\D No(D') +n 3 preawynp |D'|)

=FE

ky

<E| ] ! ‘ T, Ny(D') : D' € R\(DU{D})

ky
beAD) 1V (ZD’EA(b)\D No(D') +n 3 preamynp |D")

Now the inner conditional expectation is over Ny(D) only. Since f is bounded away from zero,

Ny(D) ~ Bin (n — Z Ny(D') Jp f(s)ds )

DIeRNDU(DY) L= Jumopn f(s)ds
> Bin [ n — > N(D'), [D| inf @)
D'eR\(DU{D}) =€01]

conditional on T and N,(D') : D’ € R\ (DU {D}). Further, by Lemma 10 with n > \%,

n n _
Bl Y M) >t Sl | <P (Nu(@) > #4155 fllc ) < 4dBoe /%
D'eR\(DU{D})

Thus Ny(D) > Bin(n/2,|D|inf, f(z)) conditional on {T, N,(D’) : D' € R\ (DU{D})} with prob-
_/x
ability at least 1 — 4dBge?l/Te . So by Lemma 11,

1

E
ky
beA(D) 1V (Z preawnn No(D') + 13 preawynp |D’|)

T,Ny(D'): D' € R\ (DU {D})

1
. kb
bEA(D) 1 V (ZD'EA(Z))\('DU{D}) Nb(D/) + n]D| 1nf$ f(ﬂf)/2 +n ZD’GA(I))(TD |D,‘)
VX

18\ 1
beA(D) 1V (ZD’EA(b)\(Du{D}) No(D') + 13 pre amnougpy) 1P \)

< (9k)**E

-V

+ 4dBye7 s .
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Therefore plugging this back into the marginal expectation yields

Bo 1

b=11V (ZD,GA(,,)\D No(D') + 13- preawyrnm |Dl\)

- ( 18k >2’“E ﬁ 1
~ \infy f(z) bl 1V No(D') + o)™
2 preamn\u(p}) No(D') + 13- prcawynouioy) L]

E

ky

—Vx
+ 4dBye®TiTes .

Now we apply induction, starting with D = () and adding D € R\ D to D until D = R. This takes
at most |R| < 2" steps and yields

Bo 1

E =E

Bo By
Iy(x) 1
11 Nbuw] <E [szm

b=1 b=1

ky

s ) (T ! ks
< (mfxf(l')> (H [ [1 v (n|Tb(m)|)’%] + 4dBy2%e f|oo> 7

b=1

where the expectation factorizes due to independence of Ty(z). The last step is to remove the
trailing exponential term. To do this, note that by Jensen’s inequality,

RSN E
L= vem@ns | = LHEpv@n@pe) = Lo ="

while the assumption of A > (logn)? implies A > (logn)3/C? eventually for some C' > 0, giving

—(log n)3/2

—vX
4dBo2kesufn§o < 4dBy2%e 501l < 4dBy2ke klogn—log(4dBo2") — p,—k

for sufficiently large n because By, d, and k are fixed. O

Now that moments of (products of) ]E;’b(é )) have been bounded by moments of (products of)

m, we establish further explicit bounds for these in the next result. Note that the problem has

been reduced to determining properties of Mondrian cells, so once again we return to the exact cell
shape distribution given by Mourtada et al. (2020), and evaluate the appropriate expectations by
integration. Note that the truncation by taking the minimum with one inside the expectation is
essential here, as otherwise second moment of the inverse Mondrian cell volume is not even finite.
As such, there is a “penalty” of (logn)? when bounding truncated second moments, and the upper
bound for the kth moment is significantly larger than the naive assumption of (A?/n)¥ whenever
k > 2. This “small cell” phenomenon in which the inverse volumes of Mondrian cells have heavy
tails is a recurring challenge in our analysis.

Lemma 13 (Inverse moments of the volume of a Mondrian cell)
Suppose Assumption 2 holds and let T ~ ./\/l([(), 1]4, )\). Then with k > 1, for sufficiently large n,

E|1n

9 Adk>ﬂ{k<2} <3)\2d(logn)d>ﬂ{k22} d 1
n

1
(n\T(w)l)k] : (2 —k nk 2 i vl =)
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Proof (Lemma 13)

By Mourtada et al. (2020, Proposition 1), we have |T'(z)| = H?Zl ((3Ej) Azj+ (3Ej2) A (1 —a5))
where Ej; and Ejy are mutually independent Exp(1) random variables. Thus for any 0 <t < 1,
using the fact that Fj; + Ejs ~ Gamma(2, 1),

1 1 ]I{mm(E1 + EQ) > t} .
El—— | < =FE I J P Eii+E») <t
[1 v (n!T(m)!)’“] ~ b [ T ()|F P min (B + Ej2)
{Ej1 + Ejp > 1}
(XEn Aaj+ 3Ep A (1 - )
Adk 1

+d]P)(Ejl < t)

IN
i‘ —_
A:&

=

k

AT E |:]I{Ej1 + Ejp > t}
Tonh (=) L(Bj+ Ej)t Al

1 e o)
< — ds + / se ds> + dt
nk J=1 zj(1— ;) </t sh1 1

} +d(1—e)

P 1 L
< % /8_ dS—l—l)-i—dt
n zj(1—z;) \Js
PP s S 145 -2 if1<k<2
- +nk. xj(l—xj)x 1—logt if k=2.
7j=1

If £ > 2 we simply use

1 1 . o .
T @) < VRT@? Now if 1 <k < 2 we let t — 0, giving

1[«:[ 1 } 2 AL
1V (n|T(x))k] = 2—k nk et zj(1—x;)’

and if k = 2 then we set ¢t = 1/n? so that for sufficiently large n,

1 d A(1+20ogn)) & 1 INM(logn)d & 1
1V (n|T(z)]) n n i zj(1 — ) n i xj(1 — )

Lower bounds which match up to constants for 1 < k& < 2 are easily obtained by noting

k
E [1 A m} >E [1 A m} by Jensen’s inequality and

1 1 1 A
n|T(x)] 1+ nE[|T(x)]] = 14+29n/A n

1A

To obtain a lower bound when k& = 2, note that

1 ] PR 1 A
- | >

d
1
E|l—— | >E|[1AN— —E
[w(nmxm? = w2 W v B2 | = [<E1+E2>2vn1/d]

J=1 (

SE ! [ L oMY
“n2\J, & s ) = nze - S %) = n2e\2q ") -

36



The ongoing endeavor to bound moments of (products of) % is concluded with the next
result, chaining together the previous two lemmas to provide an explicit bound with no expectations

on the right-hand side.

Lemma 14 (Simplified generalized moment bound for Mondrian random forest denominators)
Grant Assumptions 1 and 2. Let T}, ~ M([O, l]d,)\) and ky, > 1 for 1 < b < By. Then with

k=32 ky, for sufficiently large n,

Be (x
E [H Nbb((l‘))kb]

b=1
22k Bo
o ) (et ) TG (2enty ™
B infme[o,ud f(z) i} zj(1 — x)) P 2 — ky nko n2
Proof (Lemma 14)
This follows directly from Lemmas 12 and 13. 0

Our final preliminary lemma is concerned with further properties of the inverse truncated

binomial distribution, again with the aim of analyzing ]]i;’b((zz)). This time, instead of merely upper
bounding the moments, we aim to give convergence results for those moments, again in terms of
moments of m This time we only need to handle the first and second moment, so this result

does not strictly generalize Lemma 11 except in simple cases. The proof is by Taylor’s theorem and
the Cauchy—Schwarz inequality, using explicit expressions for moments of the binomial distribution
and bounds from Lemma 11.

Lemma 15 (Expectation inequalities for the binomial distribution)
Let N ~ Bin(n,p) and take a,b > 1. Then

o<p| L ]t . 219
~ |[N+a| np+a” (np+a)?
1 1 227 1 1
O<E - < + :
(N +a)(N +0) (np+a)(np+0b) — (np+a)inp+b) \np+a np+b

Proof (Lemma 15)
For the first result, Taylor’s theorem with Lagrange remainder applied to N +— ﬁ around np gives

2 |5ral == o o

for some £ between np and N. The second term on the right-hand side is zero-mean, clearly showing
the non-negativity part of the result, and applying the Cauchy—Schwarz inequality to the remaining
term gives

fr] - ]

E[(N —np)?] 1
§0m+®3+v%KN_nmﬂELN+aW}
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Now we use E[(N — np)4] < np(1 + 3np) and apply Lemma 11 to see that

6 19
IE[ 1 } 1 - np \/54 np(1 4+ 3np) < 2

N+a| npta~ (np+a) (np + a)b (np+a)?’

For the second result, Taylor’s theorem applied to N — WM around np gives

[ 1 (N—np)(2np—|—a+b)]
(np + a)(np + b) (np + a)?(np + b)?

E [(N+a)(N+b)]

+E[ (N — np)? ( 1 N 1 N 1 )]
(E+a)E+0) \(E+a)*  ((+a)(f+D)  (£+D)°
for some £ between np and N. The second term on the right-hand side is zero-mean, clearly showing

the non-negativity part of the result, and applying the Cauchy—Schwarz inequality to the remaining
term gives

E [(N+a)1(N+b)] - npl—l—a =E [(]\?(—lj—va)_(]?zfpfb) ((N—il—a)2 * (Nib)2>]

{m;(iva)_(z?j b) <<np+a>2 i <npib>2>]

1 1
< \/4E[(an)4]E [(N+a)6(N+b)2 + (N+b)6(N—|—a)2]
, 2E[W p)]( 1 1 )

(np+a)(np+b) \(np+a)® ~ (np+b)?

Now we use IE[(N — np)4] < np(1 + 3np) and apply Lemma 11 to see that

1 Anp(1 + 3np) - 728 1 1
8 [(N+a)(N+b)] np+a ~ \/(np+a)2(np+b)2 <(np+a)4 " (np+b)4>

2np 1 1
" (np + a)(np + b) ((np+ a)? " (np + 6)2)

227 < 1 1 >
< + )
~ (np+a)(np+d) \np+a np+b

A.2 Proofs for Section 3

We give rigorous proofs of the bias and variance characterizations, rate of convergence, central limit
theorem, variance estimation, and confidence interval validity results for the Mondrian random
forest estimator. See Section 4 in the main paper for an overview of our approaches.

Proof (Lemma 1)
Part 1: Removing the dependence on the trees
By measurability and with p(X;) = E[Y; | X;] almost surely,

Iip ()
Ny(z)

B n
E (o) | X, T~ plw) = £ 53 (u(X0) — ()

b=1 i=1
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Now conditional on X, the terms in the outer sum depend only on T} so are i.i.d. Since u € HP,

2
) 1 “ Lip ()
Var [E[jiz) | X, T] ~ u(x) | X] < £E (; (u(X;) — u(a:))]\;;(x)> ‘ X

— n 2

1 A ]17, T

< EE 1rélax { in(x HX - H;(l BH)} <; Nl;((x))> ‘X]

d 2(1NB, 1

Eg [T@iP] £ g

where we used the law of T'(z); from Mourtada et al. (2020, Proposition 1). Hence

E[(E[ix) | X, T] - Eli(z) | X])°] < ﬁ

Part 2: Showing the conditional bias converges
Now E [i(z) | X] is a non-linear function of the i.i.d. random variables X;, so we use the Efron—Stein

inequality (Efron and Stein, 1981) to bound its variance. Let XU =X;ifi#j and be an independent
copy of X, denoted X], if i = j. Write X (le, e an) and similarly ]Ing = ]I{Xl] € Ty(x )}

and ij( )— Zz: ]Iljb( )

E
- 2; | \i=1 Ny(x) P
[ ~ 2
1 n n B ]Izb(:I:) B ~ ol Jb(x)
- 2;E (zl <(H(XZ) H ))Nb(l’) (H(XU) l )> Nyb(x)>> ]
2
- o ]Izb(flf) _ sz(az)
< ]zlE 2 ((X3) — p()) ( Ny() ij(x)>
F2Y B | (u0) ~ ) 2. )
j=1

For the first term in (19) to be non-zero, we must have |Ny(x) — Njp(x)| = 1. Writing N_j(z) =
> iz Lip(z), we may assume by symmetry that Nj,(z) = N_j(z) and Ny(z) = N_jp(z) + 1, and
also that I;,(x) = 1. Hence since f is bounded and pu € HP, writing 1_j,(x) = I{N_j(z) > 1}, by
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the Holder inequality, Lemma 9 and Lemma 14,

2
; A Lip(z)  Tip(2)

;E {(; ((Xi) — p(z)) (Nb(x) ij(a:)>) ]
<31 g e (Zgelts )

N_jp(2)(N_jp(x) + 1)

1/3 2/3 d

< E | max | Ty ()]0 ) E Iy () < _ 1 A
1<i<d 22(

Ny()3/2 2(1ABu) n

2

max |Tp(z

I
<E [max Ty (2 )”2(1Aﬁﬂ)ﬂ
1<i<d

~ T I<i<d Ny(z)

2

For the second term in (19) we again use yu € HP to see

n o ( T d
2" () = ) S0 | S B | o 2000 | € o

in the same manner. Hence

Var

. ‘ Lip(x) o 1M
3 (X)) — pla) E [ k) XH S
and so by the above and the previous part,

1 1\
NrBIB T 2AE) 1

E|(E i) | X, T] - Ela(2))*] <

Part 3: Computing the limiting bias
It remains to compute the limiting value of E [fi(z)] — pu(z). Let X_; = (X1,..., Xi—1, Xit1,- -, Xn)
and N_g(z) = 35 I{j # i}I{X; € Ty(z)}. Then

> (u(Xy) — plx)) f\;;((?)] =2 E [E [(M(X]i@f u(x)+) fz’b(ﬁf) T, X_”

i=1

i [fTb@ (u(s) — () £(s) ds] |

N—ib(«r) +1
By Lemma 15, as N_;(x) ~ Bin (n -1, fTb(I) f(s) ds> given T and f is bounded away from zero,

1

E[Nu :

T] < 1 1
+1 fT(:p s)ds+1

NS ——3AN1

n? (fTb(z) f(s) d5>2 = 2T ()f?

and also

1 1
(n=1) Jrym () ds+1 n [ 0 f(s)ds
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So by Lemma 9 and Lemma 13, since € H% and f is bounded below, using the Hélder inequality,

o u( >>f<s> ds]
fT,,
o [”fTb(x) lp(s) — p(x)| f(s

n?|Ty(z)[* Vv 1

N

< | | MaXi<i<d | Ty ()| *Pw
~ n|Ty(x)| V1
1

3(178,) 1/3 2/3 1 )\
< 4 < M.
£ [1H<11a<}il ITo(@)il l ] E [n3/2\Tb(x)|3/2 vV J ~AINBL T

Next set A = m fTb(x)(f(s) — f(z))ds > inf (g 1)a ;((2
of —— up to order § — 1 to see IJ%A = Z’g;é(—l)kAk + O (A#). Hence

1+z
- [ (105) = (@) £(5) ds ] [fTb(m)(M(s)— ) f(s)ds 1
=E
| 1+ A

fTb f(s)ds

—1. Use the Maclaurin series

T

X

()
()
— u(z)) f(s)ds (B2

k=0

Note that since p € HP+ and f € HP, by integrating the tail probability given in Lemma 9, the
Maclaurin remainder term is bounded by

S,y 11(8) = ()] f(s) ds

B
T semer
[ 005 @) £(s)ds [ g
“ET Twmo) S 16— @ as

B
< E T 1/\,3M T, 1/\ﬁf
SE | o ol | g, ol

[ d [ 1
< 1/\/3u+/3(1/\,3f) < Bl < 2 =B qr <

where we used that 1 A 5, + B(1 A ) > . Hence to summarize the progress so far, we have

@_l fTb () (1(s) — p(x)) f(s)ds k
o { / <w>’““|Tb(x>r’f+l </Tb(x)(f <5>f<x>)ds> ]

k:()
d
~ AABL p \B

We continue to evaluate this expectation. First, by Taylor’s theorem and with v a multi-index, since
fens,

k @f k
0" f(x) ,
</Tb(x)(f(8) - f(:c))d3> B (Z vl /Tb(x)(s - ds) e (’Tb(x)\ filaéfi\Tb( l!ﬁf> .

lv|=1
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Next, by the multinomial theorem with a multi-index u indexed by v with |v| > 1,
k

ST o) = 2 () (T o)

lv[=1

where (ﬁ) is a multinomial coefficient. By Taylor’s theorem with € H?* and f € H?, and using
/Bu/\(l/\ﬂ,u‘i‘ﬁf) 257

/ (u(s) — () £(5) ds
Ty (x )

0 pla) 0 1 (2) "
Y [ e s 0 (110 D)

[v/|=1|v""|=0

Now by integrating the tail probabilities in Lemma 9, E [maxlglgd Ty, (x),|? ] < iﬂ Therefore by
Lemma 13, writing Ty(z)" for fT (s — )" ds,

E g [ ) — @) 1) s *
P 0 f(z )k+1|Tb($)|k+1 </Tb(w)(f(8) f(x))ds>
= S S0 S AT )+

= (-V'E PP > (o) (55 mer) [ +0 ()

8 By  B-1 . ! v u u
_ i: zf: Z 9" p(z) 0" f(x) (3 f($)> <i“|> (=)l E +O<1>
- ] T | ul+1 B8
e U 78! v! w ) f(z) A
Now we show this is a polynomial in A\. For 1 < j < d, define the independent variables Fy, ~
Exp(1) A (Ax;) and Eyj, ~ Exp(1) A (M1 — ;) so Ty(x) = [T1_y[2j — E1js/\, 2 + Eaju/A]. Then

d .’Ej+E2j*/)\ E2*
Tb(a:)”:/T( )(s—x)”ds:H/ (s —xj)" ds—H/ (s/A)"1/\ds
b(T T

j=17@i—Eijs /A Enj«

Ty(2)” +" (T (2)")"
Ty @)+

o O 0 Ot

_ d—|v| v _ d—|v| 25 Lj*
=\~ H/ s ds =AM ——

El]* ] 1

So by independence over j,

Tb<x>"’+””<Tb<x>v>“]
| T () |lul+1

Vv +1 Vi 41 (vt it
— )\ [V |— "= |v]-u ﬁ E EQ;* + ( 1)1/ v El;* (E2j* + (_1)VJE1;'* )
W +v) + 1) (Boj + Erje) (v + 1)4(Egju + Enjs)l!

(20)

The final step is to replace E1j, by Ey1; ~ Exp(1) and similarly for Esj,. Note that for a positive
constant C,

d

U ({Elj* =+ Elj} U {Ezj* #* Egj}) < 2dP <Exp(1) >\ lrgnjigd(xj VAN (1 — IL’]))> < QdQ*C)\‘
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Further, the quantity inside the expectation in (20) is bounded almost surely by one and so the
error incurred by replacing 1. and Eaj, by Eq; and Es; in (20) is at most 2de=“* < A8, Thus
the limiting bias is

. e f@) (7 f@N" (Tl DM -
E [ji(z) Z Z Z V” y”!()< V!( )> <‘u|>f((x)|l+1)\ V' |=|v" = v

[v/|=1[v"'|=0 u[=0

(21)
+//+1 V V +//+1 41 . +1 u
By (—) R <E2V§ + (1) Ey] ) 0< 1 M 1>

d
X E —a — t =
j];[l (VJ/ + VJ/»/ + 1)(E23 + Elj) (I/j + 1)“(E2j + E'lj)‘u| AABu AP

recalling that v is a multi-index which is indexed by the multi-index v. This is a polynomial in
X of degree at most 3, since higher-order terms can be absorbed into O(1/A?), which has finite
coefficients depending only on the derivatives up to order 8 < 3, and 8 —1 < B, of p and f
respectively at x. Now we show that the odd-degree terms in this polynomial are all zero. Note
that a term is of odd degree if and only if |/| 4+ |[v”| + |v| - w is odd. This implies that there exists
1 < j < d such that exactly one of either v; + v} is odd or Zﬁ‘;ll viu, is odd.

If v; + v} is odd, then E‘ 1 Vjty I8 even, SO {v : vju, is odd}| is even. Consider the effect of

swappmg Elj and E»j, an operation which by independence preserves their joint law, in each of

v +V"+1 v +1/”+1

B s B
E2j+E]_j

(22)

and
i v u
(257 + o)

(Eaj + Eyj)ll - |Vl_:[1
Vjuy even

(s o) o
(Egj + Eqj)ww Vi1 (Eoj + Eqj)w
vju, odd

Clearly v + v being odd inverts the sign of (22). For (23), each term in the first product has either
v; even or Uy even so its sign is preserved. Every term in the second product of (23) has its sign
inverted due to both v; and w, being odd, but there are an even number of terms, preserving the
overall sign. Therefore the expected product of (22) and (23) is zero by symmetry.

If however v} + v} is even, then Z‘ =1 Vit is odd so {v : vju, is odd}| is odd. Clearly the sign
of (22) is preserved. Again the sign of the first product in (23) is preserved, and the sign of every
term in (23) is inverted. However there are now an odd number of terms in the second product, so
its overall sign is inverted. Therefore the expected product of (22) and (23) is again zero.

Part 4: Calculating the second-order bias

Next we calculate some special cases, beginning with the form of the leading second-order bias,
where the exponent in A is [/| + || + u - |v| = 2, proceeding by cases on the values of |/|, ||
and [ul. Firstly, if [/| = 2 then [v”| = |u| = 0. Note that if any v/ = 1 then the expectation in (21)
is zero. Hence we can assume v} € {0, 2}, yielding

AQZ

2

Eg + E3, d 1
’ Z 1:2 § El] + E2J Ele?j] = 222
: J:

Egj + Elj

J
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where we used that E1; and Es; are independent Exp(1). Next we consider [/| =1 and |[v"| =1, so
|u| = 0. Note that if v; = v, = 1 with j # j" then the expectation in (21) is zero. So we need only
consider v} = v/ = 1, giving

J
1 1 GKople)of(z) 1 11 Kol af(x)
)@f(m); dxj Ox; gE _)ﬁf(x)]; dx; Oxj

Finally we have the case where [/| = 1, [v"| = 0 and |u| = 1. Then u, = 1 for some |v| = 1 and
zero otherwise. Note that if v/} = v = 1 with j # j’ then the expectation is zero. So we need only
consider v; = v; = 1, giving

E3; + E};
Esj + Eqj

)1

Z (E22] - E%j)Q
f ax] 8:5J 4

(E2j + Erj)?

= E} + E2 —2E,;Fy;| =
4)\2 Z 83:] 830] [ + R 17 23] 2)\2 Z 83:] Bacj
Hence the second-order bias term is
d d
LSNPl 1L N 0u() 0
A2 = o’ 2X2 f(x) = dx; Oz

Part 5: Calculating the bias if the data is uniformly distributed
If X; ~ Unif ([0,1]¢) then f(z) =1 and the bias expansion from (21) becomes

1/;.—4—1 +( ) EVJ+1

Z)‘ |,,|8 M )ﬁE Eyj
1 (V]/ + 1)(Ej + Elj)

V=1 J=

Note that this is zero if any 1/;- is odd. Therefore we can group these terms based on the exponent
of A\ to see

21/J+1 21/J+1

Ey7 T+ By

EQJ + Elj

B.(x) 1 a?v d
A2 Z 1;[ 2uj + 1

lv|=r

Since [;° = ¢"I'(0,a) and [;°sT(0,a)ds = < with T(0,a) = faoo%dt the upper

a+t a+1’
incomplete gamma function, the expectation is easily calculated as
2v;+1 2v;+1
E J + E J ) oot 0 Q0 )
= 2/ 52”]'+16_s/ ° _dtds= 2/ s2iTIP(0, 5) ds = Gy + D! ,
E21+E13 0 o s+t 0 vj+1

SO
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Proof (Lemma 2)
Follows from the debiased version; see Lemma 5 and set J =0, ag = 1, and wy = 1. ]

Proof (Theorem 1)
Follows from the minimaxity result for the debiased Mondrian random forest; see Theorem 4 and

set J =0,a9=1, and wy = 1. ]
Proof (Theorem 2)

Follows from the debiased version; see Theorem 5 and set J =0, ag = 1, and wy = 1. ]
Proof (Lemma 3)

Follows from the debiased version; see Lemma 6 and set J =0, ag = 1, and wy = 1. ]

Proof (Theorem 3)
This follows from the debiased version; see Theorem 6 and set J = 0, ag = 1, and wy = 1, and
replace 8 by 2 A 5. O

A.3 Proofs for Section 5

We give rigorous proofs of the bias and variance characterizations, minimax optimality, central limit
theorem, variance estimation, and confidence interval validity results for the debiased Mondrian
random forest estimator.

The bias characterization of Lemma 4 with debiasing is a purely algebraic consequence of
the original bias characterization and the construction of the debiased Mondrian random forest
estimator.

Proof (Lemma 4)
By the definition of the debiased estimator and Lemma 1, since J and a, are fixed,

J 1572 (z) 2
: <E (@) 1%, = (u<m>+ S a?:w»

=0 r=1
J 18/2] 2
B, (x)
=E|(Yw ) | X, T — o) — Y 2>>
( =0 ( — Y A
J 18/2] d
. B, (x) 1 1 1 A
5 ZE (E [.ul('f) |X’ T] —,u(x) - Z (1127")\27“) fs )\25 + )\2(1/\B)B + )\2(1/\13)?'
=0 r=1
2—2s

It remains to evaluate the resulting bias. Recalling that A,; = a;,_1° and Aw = eg, we have

J 18/2]

B, (z)
Zwl p(zx) + Z v Zw + Z )\27» ﬁ
= = 1=0 !
18/2]nJT 18/2] y
B Br T w
= pu(z)(Aw)1 + Z /\gr z) (Aw)pq1 + Z /\gr) Z aTlr
=t r=(18/2]AT)+1 el

J 1
( )+H{Lﬁ/2J > J+1} ;\]2—’:]1452) a;jl+2 +O<)\2J+4>
=0 "1

<>+H{2J+2<5}J+l”+o<1).

)\2J+2 )\2J+4
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Proof (Lemma 5)
Firstly, note that with o2 = ¢%(X;) for brevity,

Zwr ZZY]I{X eTbT )} ’XT

Sl Var
b=1 i=1
1 szr( zb’ ’ 0'12
AdZZZwT“’T’BQZZ Niw(2) Ny (2)
i=1 r=01'=0 b=1b=1 r(
Part 1: bounding the variance of ¥q(x)
n J J B B
n 1 ]Izbr( )sz"r”(l')o'z
\ [2 ] Var | — o i
R E ) N TR e
n? 1 " S L () Ly ()02
< 77\/’ 07T 17
~ ed ga VAT ZZ Ny (2) Ny ()
i=1 b=1b'=1
n? 1 " - i (@) Ly ()0
E [V : L1 X
R N PR O e e
n? 1 " e i (@) Ly ()0
+ Var |E - X 24
e 22 2 N (o) 2
For the first term in (24),
n B B ]Ib ( b’ ’ 2 n m B B B B
R [ % 3% ) 5
i=1 b=1b'=1 i= 1b=1b'=1}=1 /=1

E

15
NB (w) NB’ ,(.’1}') NBT(I‘) NB/,,./ (.r)
Since Ty, is independent of Ty, given X, the summands are zero whenever |{b, ¥, b, b'}| = 4. Further,
by the Cauchy—Schwarz inequality and Lemma 14,

1j=
Lipr(z) Ly () Lipr(z) Ly (z
oto} (e M {wa(a:) el

n? 1 & . ]Iibr(“r) I; ’r’(‘r) i n” 1 5 & Hbr(x) I ’r’(x)
S e 22 E (; Ny () Nl;'r/(ﬂf) < el g 2D E |:Nbr(x) ]\?b’r’(x):|
B

A(log n)d> 1 N (logn)® _ 1

For the second term in (24), the random variable inside the variance is a nonlinear function of the
i.i.d. variables X;, so we apply the Efron-Stein inequality (Efron and Stein, 1981). Let X;; = X;
if i # j and be an independent copy of X;, denoted X}, if i = j, and define J?j = Jz(Xij). Write
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Lijpr () = ]I{X,J € Tpr(2)} and Lipr () = I{ X; € Tyo(2)}, and also Njp(z) = S0, Lijpr(x), We use
the leave—one out notation N_jp.(z) = Z#] L () and also write N_jpraprr = 32,2 Live (@) Ly ().

n? Va zn:i i szr l‘ Ly, /({L’) 2| x V zn: Hibr(-r) Lipr s (.CI}) 2 ‘ X
T o —— var o,
e B4 i=1 b=1b'=1 Nir(x) Ny (z) & >‘2d i=1 Nor () Ny ()
_ . . ) 2
ZE [ Tier ()L ()02 Lijor () Lijerre (2) 55
s )\2d pot Nbr )Ny (@) Nijor () Ny (@)
2
1
N ]E — — ]I b b r /
)\Qd Z ‘ Nb’ ’ ijr( )N]b’ ’ ; o Z
R . o\ 2
Z Lipr (@)L (@) L (2)Lipyr (2)57,
)\2d Ny (2) Ny () Njp (2)Njprr ()
SR o FCA ) B E— oL @) | (o)
~ \2d = AU Nbr(.ﬂf)Nb/r!(l’) ijr(SU)ij’r'(ﬂ?) Nbr($)2Nb’W($)2

For the first term in (25), note that since |Np.(x) — ijw(xﬂ < Lipr(z) + ﬁjbr(:r) and similarly
[ Nyyr () = Njorpr ()| < Ljprrr () + Ly (),

1 1
Nop(2) Ny (2) Ny () Ny (2)
1 1 1 1 1 1
< _— +— -~
NbT(x) Nb/ /(.’L’) ijl,r./(x) ij/ /(:L') Nbr(x) ijr(m)

- N—Jb’“(”)N*Jb/r/(x)Q N_jrr '( )N—Jbr(fv)

Therefore by Lemma 14,

b [B[5 55 st o
2\2d g4
A= B i Ny () Ny (
2 & [ (@)L (2) ] _ 02 Iy () Ty () ¥
<LZE gbr \Z ) Lbrb n br () Ly (2 oA M
~ )\2d = Nbr($)2Nb’r’($) ~ )\2d Nbr(ZL‘)3/2Nb/T/(l‘)3/2 ~A 2 nd ~ n '

We deduce that

} 1 )\d

Var [id(x) S 5 + —

Part 2: controlling the expectation of ¥4(z)

~ N — T 1 5 Z ibr ib'r! o Xi
E [Ed(m)] = ﬁzzzwrwﬂ 2 ZZ]E[ it Ny ( b)]\sb/i/(x() )

i=1 r=07r'=0 b=1bv'=1




Firstly, by Lemma 14, the diagonal terms in the forest are

0T 0T )0-2(X7/)
/\dzzzwerBQZ [ bNbr b)Nbr( ) ]

i=1 r=0r’'=0

so it suffices to take b # b since

B [Sate)] =

Next, note that

Lipr (2) Ly (2)02(X3) ] 5 Lty () Liprpr () Lipr (2) Ly (2) (02(X3) — 0%(x))
B [ Npr-(2) Ny (2) ] = @)k [Nbr(x)Nb’r’(x)] e [ Npr-(2) Ny (2) ] '

:J %

5 Yo e [ o (),

Since 02 € HP, we have by Lemma 9 and Lemma 14 that

n72E Hibr(x)]lib// ‘U )—0'2(1')‘ n 1 []Ib/rl(a:)man ’Tb,«(x)j‘:| < 1
A4 Nbr( )Nb’ ’( )

Therefore

e[t - e 0 (we)

Next, by conditioning on Ty, Ty, N_jp(x), and N_zp(x),

E []WW(%)} - fTbr(l)mew (z) F(€)dg
Nbr(x)Nb’r’ (x) (N—ibr(x) + 1)(N—ib’r’(m) + 1)

| fTbT(x)me,r,(g;)(f(g) f(z))d¢
z) +1)

)
( (N_ipr(z) + D) (N_jprpr (z) + 1)
T () N Ty ()]

[(N_m( O ey J o (23»15)

by an argument based on Lemma 9, the Holder property of f(z), and the proof of Lemma 14. Hence
2

n® [T (2) Ly ()0 (X3) ] n” | Tor () N Ty (2)|
AdE{ Now () Ny () ]‘”W(”C)ME[(Nibr<x>+1><N_iW<x>+1>]

1
+0 ()\lAﬁfAB(,) :

Apply Lemma 15 to approximate the expectation with N_jy,\p(7) = E#i H{X; € Ty () \Tyr(x) }:

| Tor(z) N Ty (
(N_ipr- () + 1) (N_iprp

~ f@)E| 5]

= f(2)E

E [ [Ty () N Ty ()] ]
(N—ibr(x) + 1)(N—ib’r’(a7) + 1)
o [ Tor () N Ty ()| 1 o o
- e [ | T Y e K]
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Now conditional on T, N_g/pape (), and N_gpppp (2),

@\ T () S (6) A€
N_jprrnpr () ~ Bin (n —1— N_p(z), leb _(f)\Tr o )
T (

We bound these parameters above and below. Firstly, by applying Lemma 10 with B = 1, we have
P <N—ibr( ) > it = ) < dde~t/ @ flee (1 /ar)) < ~t/C
Ad

for some C' > 0 and sufficiently large ¢. Next, note if f is Bp-Holder with constant L, by Lemma 9,

1y o0\ 13, ) (6) A€
1=y, o J@) €

fTb,T/ (2)\Tpr (2) |f(€) — f(z)]dE
1— fTbr(JC) f(f) dg

: 1
’ (1 o F€E 2) =F ( /T @ 2)

1
<? (1t > gz ) <7 (s ot >

1<5<d 2|1 f oo
—t/C _ ,—\/C

P — f(@)| Ty () \ Ty ()| > 2L [Typr () \ Top( |Z\Tb,, |

IN

P

> 2L ’Tb’ ’ \Tbr ‘ Z |Tb’ ’ |1/\Bf

IN

) < 2de~MUITl=) < o-NC.
increasing C' as necessary. Thus with probability at least 1 —e

Ny (@) < Bin (n |Tw<x>\Tbr<x>r<f< +2LZ!TW Wf))
7j=1
$d+1

) 1 1AB
N_ipnpr(z) = Bin (n <1 Y n) o Ty (@) \ Tor (2) ( - 2LZ | T ()] f))

So by Lemma 15 conditionally on T, N_jyprpr(7), and N_gp\pr (2), taklng t = 4Clogn and
recalling A > (logn)3, with probability at least 1 — n=3,
1
d
N—ib’r’ﬁbr(x) + Nfib/r’\br(x) +1
_ 1 ‘ 1+ 1| Ty ()" | Ty () \ Tor ()]
N_ivrnor () + nf (@) Ty () \ Tor ()] + 11~ (N_irgrer () + 0| Torps (2) \ Tor()| + 1)°
Therefore by the same approach as the proof of Lemma 12,
’E |: ‘Tbr(w) N Tb’r’ (I‘)’ _ |Tb7«($) N Tb/,,,/(.%')‘ :| ‘
(N (@) + DOV (2) 4 1) (N (@) - DOV _syrrun (@) + 12 (@) Ty @)\ Ty (@] + 1)

‘ T, N_iprrr (), N_jpr\ oy (x)}

<E [Ty (z) N Ty ()] 14 n‘Tb’r’(x)j’Mﬂf Tyyr () \ Ty ()] ] +n3
ST @ 4T (N (@) £ 0T () \ T ()] 1 1)

< g [[Tor(@) O T (@)] 1+ 0l Ty ()1 T () \ Tbr(x)@ 43

~ [Ty (z)] + 1 (n| Ty ()] + 1)

<g|l 1 1| Ty (JU)J‘\IW] 43

~ 7 n (0| Tor(2)| + 1) (0| Ty ()| +1) - non| Ty (2)] + 1

<)\2d 1 Ad<)\d<>\d 1>

~ n3 n)\l/\,Bf n ~ n2 )\1/\ﬁf
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Now apply the same argument to the other term in the expectation, to see that

1
E ‘T,N,' //x’N_.,, T
’ |:N—ibrﬂb’r’ (1') + Nfibr\b’r/ (m) +1 ibrnb'r ( ) ib'r \br( ):|

1
" Nt (@) + 1 @[Ty (@) \ T (@] + 1

1+ n|Tbr($)j|1/\ﬂf T () \ Thrr ()] .
(N-irowrr () + 1| Tor () \ Ty ()| + 1)2

‘5

A/C

with probability at least 1 —n ™3 — e ¢ and so likewise again with ¢t = 4Clog n,

n? Pﬂd@ﬂﬂwwﬂ 1 ]
)\d N,ibr(a;) +1 N—ib’r’ﬂbr(x) + nf(a:)|Tb/T/ (x) \Tbr(a:)] +1

_E[ [ Tor () O Ty ()] 1 ]

N_iprrprr () + 1 f ()| Tor (2) \ Tyrpr ()] 4+ 1 N_gyyprmpe () + nf (@) Typr (2) \ T ()| + 1
<" [ L+ 0| T ()| T (2) \ Ty ()] [T (x) N Ty ()] }
~ N (N—ibrﬂb’r’ (m) + n]TbT(x) \Tb/r/(ﬁ)‘ + 1)2 N—ib’r’ﬁbr(x) + nf(x)‘Tb’r’ ('7;) \TbT(xN +1
n? _3 2\ 1
Ui S -t N

Thus far we have proven that

n? [ Tipe (2) Ly () 0% (X5) — o2 )
o N ) =@

< F |: ‘TbT(J}) N Tb/TI(:L')\ 1
Nfibrﬂb’r’(x) + ’I?,f(.ilf)|Tbr(£L‘) \Tb’r/(-r” +1 Nfib’T"ﬁbT‘(x) + nf(x)‘Tb’r’(x) \Tbr(x)‘ +1

1 A
+0 ()\lAﬁf/\ﬂg + n) :

Next we remove the N_;p.qp. (z) terms. As before, with probability at least 1 — et/
conditional on T,

C _gMC,

d
N_iprrwrr ($) < Bin (na |Tbr(l') N Tb’r’(x)| (f(l’) +2L Z |Tbr(x)j’1/\ﬂf) ) )
j=1

td-‘rl 1

d
N_iprapr () > Bin (n (1 T n) o T () N Ty ()| (f(l’) — QLZ ’Tbr($)j‘1/\5f> ) .
j=1

So by Lemma 15 conditionally on T, with ¢ = 4C'logn and with probability at least 1 — n =3,

1 1
’E [N—ibmb'r'(l’) +nf(x)| Ty (2) \ Ty ()] + 1 N_iprpropr () + 1 f ()| Ty () \ Tor ()| + 1 ‘ T}
1 1
Cnf ()| Tor ()| + 1 nf ()| Ty ()] + 1’
< 1+ n‘Tbr(x)j‘lABf‘Tbr(w) N Ty ()] ( 1 + 1 >
~ o (T (2)| + D (n|Tyw ()| + 1) \n|Thr(2)|+1  n|Tye(2)[+1)
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Now by Lemma 13,

n’ B [ | Tor () N Ty ()| 1 }
Ad N_iprewrr () + 0 f (2) [Ty (2) \ T (@) + 1 N_jpronpr (@) + nf (2) [Ty (2) \ Tor(@)] + 1
B [Tbr($) N Ty ()] 1 } )
nf(z)| T (z)] + L nf(z)| Ty (z)| + 1
" [1 + 1| Ty ()% | Ty () N Ty ()] <\Tbr(fv) Ny (x)| | |Tor(2) ﬂwa(x)\ﬂ 4 A
~ Al (n|Tor ()| + 1) (n| Ty ()] + 1) n| Ty (z)| +1 n| Ty (z)] +1 nA?
cnlg [1 + 7| Ty ()% Ty (2) 0 Ty (2 >q 1
~ )\d n3 ‘Tbr( )HTb’r’ l’ n)\d

)|
1A8 d
< 1 E 1 ]TbT \ ¥ 1 < )\7+ 1 ‘
A | Ty ()| Ty ( | T ( nAd ™~ n o \IAG

This allows us to deduce that

Lo (@)l (@)02(XD)] 5, o0 2 Ti () N Ty (2)]
AdE[ N () Ny (2) }“’(x)f(”“’)AdEL <>|Tbr<x>|+1><nf<x>|ber/<x>|+1>]

1 A
+0 <)\1A6f/\ﬁg + n> ’

J J
Y ()] = o2(2) Flz)— Wrlp Tin(z) 0 Ty ()
E[Za(@)] = o%(@)f@) 55 Y D wr TE[(nf(x)\Tbr(a:)]—i—l)(nf(ﬂf)’Tb’r’(ﬁf)""l)]

" 1 A1
—‘l_ W—i_;"’_g .

Part 3: calculating the limiting variance ¥q(x)

Now that we have reduced the variance to an expression only involving the sizes of Mondrian cells,
we can exploit their exact distribution to compute this expectation. Recall from Mourtada et al.
(2020, Proposition 1) that we can write

d d
_ L Laj E3J 4 By
|Tbr(m)|—j1:[1<aT)\ij+ar}\/\(l—wj) . Ty 1;[ Naj+ =S A-ag)),
d
Ey;  E3j Eoj By ,
| Ty () N Ty (2 U( 3o N T)\/\arl/\/\(l )

where Ey;, Eoj, E3;, and Eyj are independent and Exp(1). Define their non-truncated versions as

d d
| Tor(2)| = a, A ][ (B1; + Bay) [Ty ()] = ap A [ [ (s + Eyj)
j=1 j=1
d
5 . B Ey; Es;i Fai FEu;
T T =)\¢ St VANt VI R\
Tor (@) OV Ty ()] = A Jl;[1<ar /\ar/+ ar /\a,«, ’
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and note that

P <(Tb7«($), Tb/r/(l’), Tbr (33) N Tb/r/(l‘)) #+ (Tbr(l‘), Tblrl(m), Tbr(az) N Tyw(m)))
d
< (]P)(Elj > aT/\xj) + P(Egj > arz)\acj) + P(Egj > aTA(l — l'j)) + P(E4j > ar/)\<1 — 33])))

for some C' > 0 and sufficiently large A\. Hence by the Cauchy—Schwarz inequality and Lemma 13,

j E |:|Tb7"(‘7:) N Ty ($)| 1 ] . |Tbr(x) n Tb’r’(x)| 1

A nf (@) |Tor ()] + 10 f ()| Ty (2)] 41 nf (@) Tor ()] + L (2)| Ty (2)] + 1
< n? o ON < 1
~ ¢ ~ nid

as A > (logn)3. Therefore
L (i (@)02(XD)] o, 2 [y (2) O Ty ()]
e = ) [mf(xm(m)r )@ T @]+ 1)

1 A
+0 (Al/\ﬁfw(, T n) :

Now we remove the superfluous units in the denominators. Firstly, by independence of the trees,

3

&2 [ _ |Tbr( )ﬁ b'r’ ( )~| _E [ ~‘Tbr(x) me’W(w” _ ] |
N 7 [0 @) T @) [+ D0 @) Ty @)+ D] [0 @[T ()] + D0f ) Ty ()]}
Tﬁ |Tbr($) ﬁTb’r"(£)| 1 1 1 1 )‘7d
SN T @) n2|m<x>|2] S o | B ] 5 7

Secondly, we have in exactly the same manner that

. [ [Ty (2) O Ty ()] ] .
(nf ()

n2

d
n M
2\d

~

12 f (2)?| Ty (2)|| Ty ()|

] ] [Ty (2) N Ty ()| ]
2)|Tyr(@)] + V(0 f ()| Ty (w)])

Therefore

Lipy (2) Lty (2)0*(Xi) ] 0®(x) 1
AdE|: Nbr(m)Nb’r’(:E) :| B f(l‘) AdE

|Tbr($) N Tb’r’ (:L‘)| ( 1 )\d>
T (2)||T +O0 (gt )
‘Tbr(x)”Tb’r’(m)’ )\1/\/81‘/\50 n
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It remains to compute this integral. By independence over 1 < j <d
[ Tor () N Ty ()]
ITbr(w)Hbe ()|

i (Bvj + Ebj) (E3j + Euj)

— 9dgd )\dHE{ (E1j/ar) A (ESj/ar’):|

(Erj + Eoj) (B35 + Euj)

AdH//‘// (tr/a) A (ts/ar)

—thi—ta—ta—ta Q. Aty dts dt
(ty + t2) (t3 + t4) 1ER2 s B

=2daf«‘affkd£[1 [ e ntsammerte ([7 5 an) (75

dty ) dt; dt
t + to ts + 14 4) 1Es

d oo o0
:2dafaf/)\dn /0 /0 ((t/ar) A (s/am))T(0,£)T(0, s) dt ds,

where we used [ £ ~dt = e°T(0, a) with T'(0, a) = [ e
Now

_aa/AdHE (Evj/ar) A (ESj/aw)+(E2jar)A(E4j/ar')}

" dt the upper incomplete gamma function

// (t/ar) A (s/aw))T(0, DT(0, 5) dt ds

1 art/ar ¢ 00
= / I(0,t) / 2sT°(0,s)ds + —
0 arr Jo

ay

2I'(0,s)ds | dt
at/ar
o0 t aT/ 1 aTl 1
/ T (0, t)( e - e 1

’ F(O,a’"'t>> dt
ar " az a,
/teaHTOtdt—/ arFOtdt

+ - / (0,t)dt — —2 t2F (0, Tt) 1'(0,t)dt,

a; Jo Ay

since [ 2t0(0,t)dt = a’T'(0,a) —ae™® — e *+ 1 and [°T(0,t)dt = e=® — al'(0,a). Next, we
use [(ST(0,6)dt = 1, [7e *T(0,t)dt = (

log(1+a : fooo te‘“tF(O,t) dt = log(al2+a) .
2 420(0,8)0(0, at) dt = —28+at2

1
atarn and
2(a 3+1)log(a+1) 21
3aZ(at1) T $4 to see
o oo
2/ / ((t/ar) A (s/ay))T(0, )T (0, 5) dt ds
o Jo
_aplog(l+a,/ay) B ar/a. _ar log(1+ a,/ay) 1
azl ar + Qpr af, Qe
2a% + ara + 20 2(ad + ad)log(a, /a, + 1) n 2a, log(a, /a,)
3ara.(ay + az) 3a2a?

v 3a?
2 / 2 /
= l—a—rlog a—r—kl + 1—a—Tlog a—r—f-l .
3a, ay, ap 3a a

r! T
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Finally we conclude this part by giving the limiting variance.

E [id(a;)}

02(33 zJ:zJ: (2% (1—W10g<+1>>+2aT <1—arlog(ar/+1>>>d
f(x) v ay ap 3 Q. a
1 DU |

1 A1

It follows from this and the previous part that

E|(S sa@)?] <MLy L
|(Sa(e) = Ba@)?) 5+ 5+ ammm
Part 4: a lower bound for the second moment with a single tree

We finally show here that if B = 1 (a forest with a single tree), then ¥4(z) has a divergent second
moment. We take J = 0 for brevity (no debiasing), and recall that o?(z) and f(x) are bounded
below. Further, since AT'(z); < I'(2,1), we have by Jensen’s inequality that

~ nn]IXZ- T(x)}Yo?(X; 2 n? 1 " 2
E [Sae)?] =E (Adz{ GNEJ/‘;E ( )) 2 I W(ZH{&-ET(@})

_ ”leE [H{X €T(z )}} _ A;dE [H{Xi €Tz )}] > ”E[ | T(x)] }

N(z)? (Noi() +1)3 |~ X4 B [(Noi(z) + 1) | T

o [arop 2 e [ 2 e [

—s8 1 d
z / S%ds > / }ds > (logn)?.
1/n S 1/n S

Proof (Theorem 4)
The bias—variance decomposition with Lemma 4 and the proof of Theorem 5 with J = |3/2] give

O

E|(fta(@) - #(@))°"] =E[(ta(@) ~ Elia(@) | X, T])°] + E | (Elaa(2) | X, T] - a(x))?]

A 1
SIP U TRy}
1 28—2(1AB)
As A xnd+28 and B2 n d4+28 we have

E [(fa(2) - pla)*] 0775,

o4



Proof (Theorem 5)
Define S;(z) = v/n/A 37 —oWrg Lsb }i};(z which are independent and zero mean conditional
(X,T) and satisfy

(el - B lale) | X)) ZS

Therefore by Petrov (1995, Theorem 5.7) conditional on (X, T), with ( =J A 1,

P (zd 1/225 <t ‘ X T) B(t) < 1A (id(x)_l_C/QiE [\siy2+< | XTD .

i=1 i=1

sup
teR

It immediately follows that

sup [P id(m)_l/QZSigt —®(t)| =sup |E |P | Zq(z 1/225’ <t’XT — (1)
teR P teR —
<E supP(Ed 1/225 <t’XT> o(1)
| teR —
SE|1A (idml“zZE ISP+ X, TD
L =1

To bound this quantity, we first partition by the event that ¥q(z) is bounded away from zero:

A (im)—l—é‘ﬂim (Bl X,TD SE[Sa@)] Y E [15i17+¢]
d =1

=1

E(1

+P (‘id(g:) —E[id(x)]’ > E[Z;(x)]> . (26)

The first term in (26) is bounded as follows. We already have from the proof of Lemma 5 that
eventually E[Ed ] > ¥q4(z)/2 2 1. Since E[e Z2+5 | X] is bounded, by Jensen’s inequality,

DI

b=1

14¢/2 ¢ J 5 2 (1 &N Ly () e
< (/\d) (J+1) ;]wr! E Z(BZNbr(x)>

i=1

(M 14+¢/2 " 1 & Lipr () e
<o) E X (EX M

i=1

2+C

ZE [E2 |2+<] ZE

We now proceed by cases. If ¢ = 1, note that by Lemma 14 and with B > (logn)?,

" 1 B ibr(‘r) ’ . zbr SU zb’ / :1:) ]Iib"r”(x)
S (i) | e T m s r s e e et

1=1 b=1 i=1 b=1b'=10"= 1

=

B B
1 Hbr(:ﬂ) ]Ib/r/(ﬂ’j) )\2d 1 )\2d(10g ’I’L)d )\2d
< = E A - 10 A N
- Z Z |:NbT(LL“) Nb/rl (,CC) N n2 + B n2 ~ n?
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Alternatively, if ¢ € (0,1), by Jensen’s inequality and Lemma 14,

24¢ -
Z Z zbr ac <E i (Hibr( 2+C zbr I’ ]Ibr(x) >1+C
Nbr $ - i1 Nbr( Nbr $ Nbr(x)
i 14+¢
<E (Hbr(x)> §<A)
i Ny () n
Both cases lead to the conclusion that

E[id( -1- g/gZE[’S |2+C] ()\d)1+c/2 <):>1+c: <);j)</2,

For the second term in (26), Chebyshev’s inequality along with the proof of Lemma 5 give

P (‘f}d(a:) . E[id(x)]‘ > w) < Var [id(x)} <Ll X

2

Therefore

sup
teR
O
Proof (Lemma 6)
Part 1: consistency of 5%(z)
Recall that
B n
1 Y2 Iy ()
~2 i b o ()2
- Zi it . 2
0 =523 et i (21)

b=1 i=1

The first term in (27) is simply a Mondrian forest estimator of E[Y? | X; = 2] = o%(z) + u(x)?,
which is bounded and in #P+"\8s. Therefore, by Lemma 1, its conditional bias is

B n 2
. (1 Sy (P +u<Xi>2];b02<x> — u()?) nﬁ,(a:))

b=1 i=1 .’E)

1 1 1 A\
< + + p
~ A\2(2ABNBs) M\2(1ABABs) B \2(1ABABs) n,

We handle the stochastic part with a truncation argument. Let S; = Y2 — o(X;) — p(X;)? and
Si = Sil{|S;| < M} —E[S;I{|S;| < M} | X;] where M > 0 is to be determined. We bound

B n &
S ]Izb .%’ 1 (Sz - Sl) sz(l‘)
= —_ 28
LI R DI I e
The first term in (28) is controlled with a variance bound, noting S; < 2M almost surely.

DHETEID W

b=1 i=1

Var

57 Lin() 2 b(7) A
Ny(e)? ] =4 ZE[M( | =
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For the second term in (28), note that S; — S; = S; 1{|S;| > M} — E[S; I{|S;| > M} | X;] because
E[S; | X;] = 0. Since E [|Y;|**? | X;] is bounded, so is E [|S;|'+%/2 | X;]. Thus

3 = 8i) I x - b\ L ~
;;EW] gZE D\i(:U)E“SZ-SA ’XZH
<QZE[

() 1+46/2 b
<
2o Se [ afsror 1)) <

Consistency of the second term in (27) follows directly from Lemma 1 and Theorem 5 with the
same bias and variance bounds. Therefore

1 1 1 [ \d /
2 2
6%(x) —o (x)H S A\2/A\BABs + MABABs /B + AABABs +M M5/2

< 1 1 A\ T35
~ \2ABABo - MABABs /B + (n> ’

E[lSi11si > M} | X

E

1
pX 2+6
n

where we set M = . Note that if § > 2 then the variance argument applies directly,

without the need for truncation, yielding

1 1 4

~2 2 2
o (x) — 0 (-%')‘ } S \2(27ABABs) + N2(IABABs) B T Z

E|

Part 2: consistency of the sum

Note that
n — b ]I{X ETbT( )} ’ n 1l o L b sza: zb”m)
W3 (Do ) - R Y Y3 et

This is exactly the same as ¥q(z), if we were to take ¢%(z) = 1. Thus by Lemma 5, we obtain

B B 2
ibr ,u) Ya(z) PUA 1
2| (i S-S el B} L

2
i=1 =0 r'=0 b=1b'=1 N () Ny (z)  0*(2)

Part 3: conclusion
By the previous parts and the Cauchy—Schwarz inequality,

) 1/2 2 - )\d 1+25 1 1
B |[Sa) - 2@ | 5 ()" + 75+ o

If 6 > 2 then we obtain

E Hf]d(a:) - Ed(ﬂﬁ)H S \/f‘F \/1§ + )\1/\,6u}\ﬁfwo‘
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Combining these yields

1 I{6<2}

2
2-I{6<2} | 2—I{s<2} )\d 2 275 1 1
& 2
Zale) ~ Za(@) ] : <n> VB T A

Proof (Theorem 6)
Let 7 and 7 be real-valued random variables. Then for any & > 0,

sup [P(7 < 1) = 8(1)] < sup [P(r < 1) = B(1)| +ev/2/m + (17 — 7] > ).

Defining a/0 = 0 for all a € R to accommodate the event f]d(x) = 0, we apply this result to

. \/7 (%(w)u(m)_l@md@)}u(z)) od e \fudm E [jia(«) | X, T]
M V) VZa(z) A V()

é

1AS
respectively, noting that sup;cg |P(7 < t) — ®(t)| < ()‘—d> 4 % by Theorem 5. With

n

v — E[Md
RS \/ )\1/\5u )\B

by the proof of Lemma 1, and by Taylor’s theorem, for some s, s’ € R, we have
IP(u(z) € Cly(z)) — (1 — o)
n fia(e) — p(e) u( ) )
=P gaj2 < <Gap | —1-a)
( A VEa(x
=P (qaj2 —v <7 < iy —v) —(1—a)
< }]P) (7 < Q—a/2 — v) — D(q1—a/2 — U)‘ + ’]P) (7 < Qo2 — v) — D(qa/2 — U)l
+ “I’<Q1fa/2 —v) = (I —a/2) = ®(qay2 —v) + 0‘/2‘

B

d\ "2
S (2) + 1 +e+P(Jr—71|>¢)+ |—v<]5(1 —a/2) + 2P/ (5)/2 + vp(a)2) — 2 (5

A\ 21 n 1 .
S}(n> +§+5+ﬁw+ﬂp(‘7’—7”>€)
It remains to bound P (|7 — 7| > €). Observe that

|7 — 7| < Ry + Ry + Ra,

B = [ 2liate) $>‘|¢ild )—@t
Ry =\ /15 [E () | X, T] - \‘m = ﬁld
o[ [Ela(e) | X, T) - Efjia(a)]|

3 )\d ,72(1(3:) .

o8

)/2]



We begin with R;. Take a > 1 and b*/3 = $4(x)/2, so by the proof of Lemma 5,
n 1 1 1

IP’(R1>6)§IP’< ,ad(;v)—u(x)’>a6>+IP’< S - — >)
V! V@) VEi@)|

< B (@) — pl@)?] + P (Sa(@) < 0°) + P (Sa(2) < 0°°)
+P <‘f}d(m) - id(.@) > 2)

S o <And + Tiﬁ + M) + Var |Sq(@)] + P ([Sa(@) — Ta(@)| > Sa(2)/2)
+P <‘id(:v) . zd(x)) > 21) 4P Qid(x) . Zd(:v)‘ > Qba>

11\ M1 1 . b
<« t 1 oA A 1 1 ’ B ‘ IAY
~ a2e2 + B + n ta <n + B + Az(mgyma) +P ( Ya(r) — Xq(x)| > 2a>

If 6 < 2 then the proof of Lemma 6 along with Markov’s inequality gives

¥ (lid(l’) - Zq(a)| > 2ba> S VaE Uid@;) - Ed(x)‘l/Q]

[
AN FE ] 1
< .
S <n> t giA T @B A2 |
and whenever this converges to zero, minimizing over a yields

< _ .
P(Ry >¢) S 222 + I + o ++Va + Bl/4 T AAABLABFABs) /2

o 1 A\ T ] 1
Soan |\ 1 BB T 2B A

If § > 2 however then we instead obtain

P [Sq(z) — Sa(x) >£ SaE |[24(z) — Sa(2)|| Sa Ld"‘ ; + IABH}\B NBo |
2a n B A i

and again if this converges to zero then minimizing over a gives

B T B T AR

_ L (AN 1
S\ ) T BT 20 |

For R, note that the same arguments used for R; apply again, yielding a bound no worse than
that for R;. Finally, for R3, we have by Lemma 4 that
1

P(Rs > ¢) < 6%1}3 [R2] < ?%E [(E [ia(z) | X, T] — E [ ()] )2}

1 1\ ¢ 1 1
P(R1>€)§a282++n+a< )

c1n 1 1\ 1 /n 1 1
S 2\ g T o )~ 2 \ N g T e )
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So far we have shown that if € — 0, then for § < 2,

1NS

A\ 21 n 1 X
‘P(M(x) € CId(‘r)) - (1_0‘)‘ g (n> +§+€+ﬁ)\?ﬁ +]P)(’7__7" > 5)

< n 1 1 A T0+55 1 1 n\1/5 1
~et s T as| t BB T 2B B (ﬁ) N(RB) 5 B/

5 1/7
n 1 PUANCET I | 1 n 1
S——=+ (= + =+ +—

B )2(ABuABrABs) — 2\d )\2(1A8) B ’
while for § > 2,

d
|P(u(x) € Cla(z)) — (1 — )| S (A

NS
2] n 1 )
n> +E+€+ﬁw+}?(|7’—7‘|>€)

_ ., n 1 1 AN 1 n1/3 1
~etyamtan\\n ) T s T etmsae s T <ﬁ) \2(17B,)/3 B1/3

_ A 1 no1 1/5
S 3B T\ T B T etrgAgAs) T N 2(A8) B ’

where in both displays we minimized over £ > 0. O

A.4 Proofs for Section 7

Proof (Lemma 7)

All complexities in this proof are understood to be upper bounds up to constants. The first step is
to select A\ using polynomial fitting as in Section 6.1. Constructing the design matrix P requires
raising a number to a power of at most J + 1 a total of nd(J + 1) times, giving a complexity of
nd(J 4 1)2. Multiplying the design matrix to obtain PTP is nd?(J + 1)2, and inverting this is
d3(J +1)? <nd?(J + 1)2, giving an overall complexity of nd?(J + 1)? for selecting the lifetime.

Calculating the debiasing coefficients w, as in Section 5 involves inverting a (J 4+ 1) x (J + 1)
matrix, so is (J+1)% < n(J+1)2 Next, constructing U(z) as in (12) requires Bd(J+1) comparisons,
and forming I(x) then needs nd comparisons.

Once I(z) is available, Calculating Ny, (x), Spr(x) and Vi, (z) as in (13) each take Bd(J +1)|I(z)]
operations, and from these we compute ji(z) and 62(z) in (J + 1)B using (14). Constructing 3q(x)
as in (15) is Bd(J + 1)|I(z)|, and calculating CI4(z) with (11) has complexity 1.

Thus the overall complexity of Algorithm 1 is nd?(J + 1)? + Bd(J + 1) + Bd(J + 1)|I(x)|. To
obtain the average case behavior we present a bound for E [|I(z)|]. Firstly, since f(z) is bounded
and by the distribution of Mondrian cells,

E[[I(x)]] = [ZH{X cU(x ZE (Xi € Ul@) | U(2))] SnE[U@)]] S nE[U(@);]".

=1

Next, by Lemma 9, we have that

P <|U($)J| > 4t + 4log(2B(J + 1))) < P(max max_|Th(x);] > 2t + 2log(2B(J + 1))> <ot

A 0<r<J 1<b<B A
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and integrating the tail probability yields

log(2B(J + 1))

EU@ll s ——— so that E[|I(z)] < nlog(2B(J + 1))d'

)\d

O]

Proof (Lemma 8)

As in the proof of Lemma 7, the complexity of selecting the lifetime is (n + k)d?(J + 1)2. Since this

occurs with probability at most k/K, and k < n, the average case time complexity is M
To update the trees, we sample and perform comparisons with at most B*d(J + 1) < Bd(J +1)

exponential random variables. We verify here that the resulting trees have the correct distribution,

since by Mourtada et al. (2020, Proposition 1) and the memoryless property of the exponential

distribution, with Ej, ., and Ej ;, ii.d. copies of Epj1,

Ebr i1 El/)r'l Ebr'l
Tbr() —Tbr() \/<xj—)\*_])\>:0\/(xj— /\] V $j_A*—]A

B Epji By
:1‘j-(.’L‘j/\ )\J /\)\*_‘7/\ =x;— | x; A\ )\*‘7 ,

as required. The same argument applies to TI:;«(:U);F' We also bound the expected number of trees
which have changed. By a union bound and with F; and Es i.i.d. Exp(1),

[zzmr ) £ Ty ()}

r=0 b=1

= B(J + 1) B(T},(2) # Ty ()

Ey E, X=X _ B(J+1)k
<2dB HP <2dB 1 <
<B4 )P (0 < 52 ) <2m0+ )Y SR g R
since /\*; A — ("T““)C 1< WC < ni Constructing U(x) requires Bd(J + 1) comparisons, and since
for b < B we have Ty (z) C Ty, (x),

(2) £ U(w) < dP (U*(2)] < U(@); ) +dP (U*(@)f > U(@)])

< 2dP max  max Tp (x )Jr > max max Ty (z )Jr
B+1<b<B* 0<r<J 1<b<BO0<r<J

< * * +
<25 - B+ )P (T3 (o)) > s, mox T3] )
_ (B = B)d(J +1) _ kd(J +1)

~ B ~ n Y

since B*T_B < ("—#‘:)S —-1< % The average case complexity of calculating I*(z) is therefore

E[d|I(z)| + dk + dnI{U*(z) € U(x)}]
ndlog(2B(J +1))4

< dE[|I(x)]] + dk + dn P (U*(z) ¢ U(x) i

+ kd*(J +1).
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A similar calculation shows the cost of calculating all of Ny (x), S;.(x), and V;' () is at most

B J
>3 B[S+ A @I ) £ T )]+ S S EEr@

b=1 r=0 b=B+1r=0

B J

<E B(le)dku*( W+ dlI (@) D> YTy (x) # Tp(2)} + d(B* — B)(J + 1)|I*(2)]
b=1 r=0

_ Bkd(J +1)log(2B(J + 1))

~ 24 )

where we used that the bounds for |I(x)| and ZT 0 Zf I{ T} (2) # Ty (x) } hold also in L? and
applied the Cauchny§hwarz inequality.
Finally, updating ¥q(z) takes Bd(J + 1)|I(z)| computations, which is done with probability at

(J+1)log(2B(J+1))¢
KX

most k/K, yielding a time complexity of nBd on average. The overall average case

time complexity is therefore bounded by

d(J+1) (kmci(}f(ﬂLl)MdJrB) N d(J+1)log}E§B(J+1))d (

nB
Bk+ — ).
n—+ —i—K)

B Additional empirical results

Tables 3, 4, 5 and 6 present some additional empirical results not given in the main paper. The
data generating process is identical to that in Section 6, and we demonstrate here the effect of a
smaller forest size B, taking B = 1 in Tables 3 and 4, and B = 10 in Tables 5 and 6. Note that
the bias in Table 3 is not significantly larger than that in Table 1, even though Lemma 1 suggests
that the bias should be much greater. This is because Lemma 1 is stated for the conditional bias.
In fact, the repeated experiments (we use 3000 independent trials) have the same effect as using a
large forest in reducing the apparent bias of the estimator. As such, the error incurred appears in
the standard deviation column instead; indeed the standard deviations in Table 3 are substantially
higher than those in Table 1.
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Bias/SD | SD

2

ASD | CR CIW

J LS|LM A |RMSE Bias SD 62 | ARMSE ABias

Mo | 1.0 14.72|0.0606 -0.0235 0.0558 0.4211 |0.0322 0.0907 | 0.0358 -0.0259 0.0232|77.1% 0.126
2] o] 12 2310[0.0526 -0.0093 0.0518 0.1792 |0.0397 0.0883| 0.0306 -0.0092 0.0292 |88.9% 0.156
é 1.1 21.18{0.0565 -0.0102 0.0555 0.1828 |0.0381 0.0886 | 0.0300 -0.0110 0.0279 |87.2% 0.149
3 1.0 19.25|0.0551 -0.0150 0.0530 0.2834 |0.0361 0.0890 | 0.0298 -0.0133 0.0266 |84.9% 0.142
2 0.9 17.33|0.0504 -0.0157 0.0479 0.3268 |0.0345 0.0895| 0.0301 -0.0164 0.0253|83.3% 0.135
0.8 15.400.0568 -0.0202 0.0530 0.3814 [0.0323 0.0902| 0.0316 -0.0208 0.0238 |79.2% 0.127
A1 | 1.0 11.20|0.1150 -0.0058 0.1149 0.0508 |0.0633 0.1184| 0.0302 -0.0031 0.0287|83.0% 0.248
| A1[12 7.86 01274 -0.0046 0.1274 0.0362 |0.0568 0.1389| 0.0245 -0.0038 0.0242 |71.7% 0.223
'z 1.1 7.21 | 0.1360 -0.0097 0.1357 0.0719 |0.0546 0.1471| 0.0238 -0.0053 0.0232 |66.1% 0.214
2 1.0 6.55 | 0.1465 -0.0147 0.1457 0.1008 |0.0531 0.1551| 0.0235 -0.0078 0.0221 |63.5% 0.208
a 0.9 5.90 |0.1595 -0.0150 0.1587 0.0946 |0.0543 0.1692| 0.0241 -0.0119 0.0210{60.1% 0.213
0.8 5.24 |0.1799 -0.0256 0.1781 0.1439 |0.0531 0.1862| 0.0275 -0.0191 0.0198|54.0% 0.208
Mo | 1.0 14.72|0.1156 -0.0004 0.1156 0.0036 |0.0702 0.1111| 0.0332 -0.0006 0.0330{90.1% 0.275
2| Ao |12 23.10|0.1187 -0.0042 0.1186 0.0353 |0.0855 0.1044| 0.0415 -0.0001 0.0415|96.2% 0.335
2 1.1 21.18{0.1093 -0.0011 0.1093 0.0101 |0.0842 0.1025| 0.0398 -0.0001 0.0398 |95.5% 0.330
% 1.0 19.25|0.1006 -0.0026 0.1005 0.0259 |0.0808 0.1020| 0.0379 -0.0001 0.0379 |94.4% 0.317
A 0.9 17.33|0.0873 0.0007 0.0873 0.0077 |0.0751 0.1012| 0.0360 -0.0002 0.0360 | 93.4% 0.294
0.8 15.40|0.1032 -0.0018 0.1032 0.0174 |0.0710 0.1050 | 0.0339 -0.0003 0.0339 |92.3% 0.278

Table 3: Simulation results with d = 1, n = 1000, and B = 1, over 3000 repeats
J LS|LM X |RMSE Bias SD Bias/SD| SD 62 |ARMSE ABias ASD | CR CIW
Mo | 1.0 12.320.3192 -0.1082 0.3003 0.3603 |0.0709 0.0846 | 0.0831 -0.0670 0.0478|64.2% 0.278
2| 0|12 18.39]0.5522 -0.1706 0.5252 0.3248 |0.0788 0.0658 | 0.0771 -0.0292 0.0714 |67.1% 0.309
é 1.1 16.85|0.4737 -0.1344 0.4542 0.2960 |0.0780 0.0707 | 0.0741 -0.0347 0.0654 | 70.3% 0.306
5 1.0 15.32{0.4220 -0.1178 0.4052 0.2908 |0.0764 0.0743| 0.0728 -0.0420 0.0595 |69.6% 0.299
z 0.9 13.79|0.3473 -0.1027 0.3318 0.3096 |0.0746 0.0796 | 0.0746 -0.0519 0.0535|70.4% 0.293
0.8 12.26|0.3137 -0.1021 0.2966 0.3442 |0.0702 0.0835| 0.0811 -0.0657 0.0476|65.5% 0.275
A1 [ 1.0 9.22 [0.7451 -0.1351 0.7328 0.1843 |0.2742 0.6519 | 0.0731 -0.0093 0.0692 |85.5% 1.075
@ A1|12 7.18|05078 -0.0781 0.5018 0.1556 [0.2272 0.4124| 0.0550 -0.0108 0.0540 |81.7% 0.891
g 1.1 6.58 | 0.4920 -0.0686 0.4872 0.1408 |0.2227 0.4197 | 0.0518 -0.0154 0.0495 |79.7% 0.873
3 1.0 5.99 | 0.4391 -0.0700 0.4335 0.1616 |0.2083 0.3817 | 0.0503 -0.0225 0.0450 | 74.9% 0.816
a 0.9 5.39 |0.4185 -0.0725 0.4121 0.1759 |0.1954 0.3862| 0.0530 -0.0343 0.0405|72.5% 0.766
0.8 4.79 |0.3645 -0.0789 0.3559 0.2217 |0.1766 0.3631| 0.0656 -0.0549 0.0360 |68.5% 0.692
Mo | 1.0 123209612 -0.1957 0.9411 0.2079 |0.3495 0.9536 | 0.0926 -0.0014 0.0926 | 88.3% 1.370
Q| o|12 18.39|1.3984 -0.4142 1.3357 0.3101 |0.5041 1.8378| 0.1381 -0.0003 0.1381|80.1% 1.976
2 1.1 16.85(1.2900 -0.3571 1.2396 0.2881 |0.4627 1.5834| 0.1266 -0.0004 0.1266 |83.3% 1.814
% 1.0 15.32]1.1782 -0.3052 1.1379 0.2682 |0.4299 1.3422| 0.1151 -0.0005 0.1151 |85.4% 1.685
e 0.9 13.79|1.0995 -0.2733 1.0650 0.2567 |0.3901 1.2125| 0.1036 -0.0008 0.1036|87.7% 1.529
0.8 12.26|0.9288 -0.1874 0.9097 0.2060 |0.3361 0.8958 | 0.0921 -0.0013 0.0921|89.3% 1.318

Table 4: Simulation results with d = 2, n = 1000, and B = 1, over
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3000 repeats




J LS|LM A |RMSE Bias SD Bias/SD| SD 62 |ARMSE ABias ASD | CR CIW
Mo | 1.0 14.720.0376 -0.0241 0.0289 0.8324 |0.0250 0.0931| 0.0363 -0.0263 0.0232|79.9% 0.098
2] o] 12 2310[0.0325 -0.0089 0.0313 0.2837 |0.0310 0.0895| 0.0306 -0.0092 0.0292 |93.8% 0.122
é 1.1 21.18{0.0317 -0.0104 0.0300 0.3462 |0.0296 0.0898 | 0.0300 -0.0110 0.0279 |92.6% 0.116
5 1.0 19.25(0.0320 -0.0126 0.0293 0.4306 |0.0285 0.0903 | 0.0298 -0.0133 0.0266 |91.5% 0.112
2 0.9 17.33|0.0324 -0.0153 0.0286 0.5368 |0.0270 0.0907 | 0.0301 -0.0164 0.0253|89.0% 0.106
0.8 15.40|0.0334 -0.0200 0.0268 0.7464 |0.0255 0.0917 | 0.0316 -0.0208 0.0238|85.6% 0.100
A1 | 1.0 11.05|0.0434 -0.0029 0.0433 0.0678 |0.0350 0.1023| 0.0297 -0.0027 0.0285|89.0% 0.137
| A1[12 7.86 00458 -0.0062 0.0454 0.1376 |0.0316 0.1138| 0.0245 -0.0038 0.0242 |82.0% 0.124
'z 1.1 7.21 | 0.0484 -0.0088 0.0476 0.1843 |0.0307 0.1181| 0.0238 -0.0053 0.0232 |78.2% 0.120
2 1.0 6.55 | 0.0511 -0.0119 0.0497 0.2404 |0.0301 0.1239| 0.0235 -0.0078 0.0221 |75.3% 0.118
a 0.9 5.90 |0.0572 -0.0187 0.0541 0.3466 |0.0291 0.1299 | 0.0241 -0.0119 0.0210 |68.5% 0.114
0.8 5.24 |0.0641 -0.0249 0.0591 0.4209 |0.0284 0.1389| 0.0275 -0.0191 0.0198 |63.0% 0.111
Mo | 1.0 14.72|0.0419 -0.0010 0.0419 0.0229 |0.0393 0.0951 | 0.0334 -0.0009 0.0330|93.7% 0.154
2| Ao |12 23.10{0.0500 -0.0001 0.0500 0.0014 |0.0483 0.0910| 0.0415 -0.0001 0.0415|95.4% 0.189
2 1.1 21.18{0.0483 0.0009 0.0483 0.0193 |0.0468 0.0912| 0.0398 -0.0001 0.0398 |95.4% 0.183
% 1.0 19.25|0.0460 0.0008 0.0460 0.0164 |0.0445 0.0917| 0.0379 -0.0001 0.0379 |95.2% 0.174
A 0.9 17.33|0.0439 0.0006 0.0439 0.0134 |0.0424 0.0923 | 0.0360 -0.0002 0.0360 | 94.7% 0.166
0.8 15.40|0.0424 0.0004 0.0424 0.0084 |0.0400 0.0932| 0.0339 -0.0003 0.0339|93.9% 0.157

Table 5: Simulation results with d = 1, n = 1000, and B = 10, over 3000 repeats
J LS|LM X |RMSE Bias SD Bias/SD| SD 62 |ARMSE ABias ASD | CR CIW
Mo | 1.0 12.270.0893 -0.0648 0.0614 1.0566 |0.0551 0.0979 | 0.0836 -0.0678 0.0476|72.7% 0.216
2| Ao| 12 18.39]0.0857 -0.0310 0.0799 0.3884 |0.0707 0.0866| 0.0771 -0.0292 0.0714 |87.7% 0.277
é 1.1 16.85|0.0826 -0.0346 0.0750 0.4619 |0.0675 0.0881| 0.0741 -0.0347 0.0654 |87.9% 0.265
5 1.0 15.32{0.0819 -0.0435 0.0694 0.6267 |0.0635 0.0906 | 0.0728 -0.0420 0.0595 |85.2% 0.249
z 0.9 13.79|0.0815 -0.0505 0.0640 0.7891 |0.0595 0.0934 | 0.0746 -0.0519 0.0535|81.4% 0.233
0.8 12.26|0.0863 -0.0626 0.0593 1.0557 |0.0553 0.0972| 0.0811 -0.0657 0.0476|75.0% 0.217
A1 1.0 9.24 [0.1034 -0.0138 0.1024 0.1348 |0.1017 0.1356 | 0.0723 -0.0082 0.0694 |92.4% 0.399
| A1 12 7.18]00959 -0.0221 0.0933 0.2368 |0.0925 0.1577| 0.0550 -0.0108 0.0540 |88.8% 0.363
g 1.1 6.58 | 0.0964 -0.0284 0.0921 0.3082 |0.0901 0.1698 | 0.0518 -0.0154 0.0495 |87.1% 0.353
2 1.0 5.99 | 0.1007 -0.0378 0.0934 0.4046 |0.0855 0.1831| 0.0503 -0.0225 0.0450 |83.3% 0.335
a 0.9 5.39 |0.1079 -0.0503 0.0955 0.5269 |0.0814 0.2002| 0.0530 -0.0343 0.0405|77.4% 0.319
0.8 4.79 |0.1208 -0.0748 0.0949 0.7879 |0.0740 0.2138| 0.0656 -0.0549 0.0360 |68.3% 0.290
Mo | 1.0 12.270.1231 -0.0049 0.1230 0.0399 |0.1182 0.1146 | 0.0923 -0.0015 0.0922|95.1% 0.463
Q| o|12 1839|0577 -0.0036 0.1576 0.0226 |0.1361 0.1058 | 0.1381 -0.0003 0.1381|92.7% 0.534
2 1.1 16.85|0.1491 -0.0021 0.1491 0.0139 |0.1338 0.1065| 0.1266 -0.0004 0.1266 |93.4% 0.525
% 1.0 15.32{0.1404 -0.0012 0.1404 0.0088 |0.1287 0.1071| 0.1151 -0.0005 0.1151 |94.3% 0.504
~ 0.9 13.79|0.1294 -0.0018 0.1294 0.0138 |0.1231 0.1093 | 0.1036 -0.0008 0.1036|95.3% 0.482
0.8 12.26|0.1179 -0.0028 0.1178 0.0240 |0.1172 0.1130| 0.0921 -0.0013 0.0921|95.6% 0.459

Table 6: Simulation results with d = 2, n = 1000, and B = 10, over 3000 repeats
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