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Abstract

Decision tree learning is increasingly being used for pointwise inference. Impor-
tant applications include causal heterogenous treatment effects and dynamic policy
decisions, as well as conditional quantile regression and design of experiments, where
tree estimation and inference is conducted at specific values of the covariates. In this
paper, we call into question the use of decision trees (trained by adaptive recursive
partitioning) for such purposes by demonstrating that they can fail to achieve poly-
nomial rates of convergence in uniform norm with non-vanishing probability, even
with pruning. Instead, the convergence may be arbitrarily slow or, in some important
special cases, such as honest regression trees, fail completely. We show that random
forests can remedy the situation, turning poor performing trees into nearly optimal
procedures, at the cost of losing interpretability and introducing two additional tuning
parameters. The two hallmarks of random forests, subsampling and the random
feature selection mechanism, are seen to each distinctively contribute to achieving
nearly optimal performance for the model class considered.

Keywords: recursive partitioning, decision trees, random forests, pointwise estimation, causal
inference, heterogeneous treatment effects

*cattaneo@princeton.edu
†jason.klusowski@princeton.edu
‡ptian@twosigma.com

1



1 Introduction
As data-driven technologies continue to be adopted and deployed in high-stakes decision-
making environments, the need for fast, interpretable algorithms has never been more
important. As one such candidate, it has become increasingly common to use decision
trees, constructed by adaptive recursive partitioning, for inferential tasks on a predictive
or causal model. These applications are spurred by the appealing connection between
decision trees and rule-based decision-making, particularly in clinical, legal, or business
contexts, as the determination of the output mimics the way a human user may think and
reason [Berk, 2020]. Decision trees are ubiquitous in empirical work not only because they
offer an interpretable decision-making methodology [Murdoch et al., 2019, Rudin, 2019],
but also because their construction relies on data-adaptive implementations that take into
account the specific features of the underlying data generating process. See Hastie et al.
[2009] for a textbook introduction.

While data-adaptive, rule-based tree learning is powerful, it is not without its pitfalls. In
this paper, we provide theoretical evidence of these shortcomings in commonly encoun-
tered data situations. Focusing on the simplest possible data generating process (i.e., a
homoskedastic constant regression/treatment effect model), we show that decision trees
cannot converge faster any polynomial function of the sample size n, uniformly over the
entire support of the covariates, with non-vanishing probability. Furthermore, when adding
honesty to the tree construction, which is often regarded as an improvement over canonical
tree fitting [Athey and Imbens, 2016], we show that the resulting decision trees can be
inconsistent, uniformly over the covariate support, as soon as the depth of the tree is at
least a constant multiple of log log(n) (e.g., log log(n) ≈ 3 for n = 1 billion observations).

Our results paint a rather bleak picture of decision trees, if the goal is to use them for
statistical learning pointwise (or uniformly) over the entire support of the covariates; they
can produce unreliable estimates even in large samples for the simplest possible statistical
model underlying the data generation. Thankfully, in such settings, we are able to show that
random forests are provably superior and exhibit optimal performance when the constituent
trees do not. This improvement comes at the cost of losing interpretability and introducing
two additional tuning parameters (subsample size and number of candidate variables to
consider at each node).

To formalize our results, we consider the canonical regression model where the observed
data {(yi, xT

i ) : i = 1, 2, . . . n} is a random sample satisfying

yi = µ(xi) + εi, E[εi | xi] = 0, E
[
ε2

i | xi
]
= σ2(xi), (1)

with xi = (xi1, xi2, . . . , xip)T a vector of p covariates taking values on some support set
X. The parameter of interest is the conditional mean response function µ(xi) = E[yi | xi],
which may be assumed to belong to some smooth, or otherwise appropriately restricted, set
of functions. The goal is to use the observed data together with an algorithmic procedure
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to learn µ(x) for all values of x ∈ X. While there are many ways to grow a decision tree
(i.e., a partition of X), our focus throughout this paper will be on the CART algorithm
[Breiman et al., 1984], by far the most popular in practice.

A decision tree is a hierarchically organized data structure constructed in a top down,
greedy manner through recursive binary splitting. According to conventional CART
methodology, a parent node t (i.e., a region in X) in the tree is divided into two child nodes,
tL and tR, by minimizing the sum-of-squares error (SSE)∑

xi∈t

(yi − β11(xi j ≤ τ) − β21(xi j > τ))2, (2)

with respect to the child node outputs, split point, and split direction, (β1, β2, τ, j), with 1(·)
denoting the indicator function.

Because the splits occur along values of a single covariate, the induced partition of the
input space X is a collection of hyper-rectangles. The solution of (2) yields estimates
(β̂1, β̂2, τ̂, ȷ̂), and the resulting refinement of t produces child nodes tL = {x ∈ t : x ȷ̂ ≤ τ̂}
and tR = {x ∈ t : x ȷ̂ > τ̂}. The normal equations imply that β̂1 = ytL =

1
#{xi∈tL}

∑
xi∈tL yi and

β̂2 = ytR =
1

#{xi∈tR}

∑
xi∈tR yi, the respective sample means after splitting the parent node at

x ȷ̂ = τ̂, where #A denotes the cardinality of the set A. These child nodes become new
parent nodes at the next level of the tree and can be further refined in the same manner, and
so on and so forth, until a desired depth is reached. To obtain a maximal decision tree TK

of depth K, the procedure is iterated K times until (i) the node contains a single data point
(yi, xT

i ) or (ii) all input values xi and/or all response values yi within the node are the same.

In a conventional regression problem, where the goal is to estimate the conditional mean
response µ(x), the tree output for x ∈ t is the within-node sample mean yt, i.e., if T
is a decision tree, then µ̂(T )(x) = yt =

1
#{xi∈t}

∑
xi∈t yi. However, one can aggregate the

data in the node in a number of ways, depending on the target estimand. For example,
CART methodology is also commonly used for classification tasks (e.g., propensity score
estimation in causal inference settings), in particular, where the outcome variable yi ∈ {0, 1}
takes on binary values. In this case, the classification tree output is the majority vote
of the class instances in the node. Because the canonical splitting criterion for binary
classification, the Gini index, is equivalent to (2), the results presented in this paper
are directly applicable. In addition, decision tree methodology can also be employed
for conditional quantile regression and its various downstream tasks, such as estimating
quantiles, constructing confidence intervals, or performing outlier detection [Meinshausen,
2006, and references therein]. These methods also require high pointwise accuracy of
decision trees, and thus our results will have methodological implications in those settings
as well.

Furthermore, in multi-step semiparametric settings, it is often the case that preliminary
unknown functions (e.g., propensity scores in causal inference settings) are estimated
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using modern machine learning methods such as CART [see, for example, Chernozhukov
et al., 2022, and references therein]. Our results reveal that reliance on fast uniform
convergence rates for decision tree methodology may not be guaranteed, as we show
below that decision trees will have a convergence rate slower than any polynomial-in-n,
over the entire support X. This finding implies that other machine learning procedures
such as neural networks [Farrell et al., 2021, and references therein] may be preferable in
those multi-step semiparametric settings, if such methods could be shown to be uniformly
consistent with sufficiently fast rates of convergence.

From a big picture perspective, our main methodological message is to warn against
mechanical application of flexible, adaptive machine learning methodologies for tasks that
require good quality estimates at specific covariate values of interest. Machine learning
procedures that are currently deployed in practice (for canonical regression problems) are
trained to approximately minimize the empirical mean squared error. As such, they enjoy
good out-of-sample accuracy for an average-case value of the covariates, i.e., if accuracy
is measured via the integrated mean squared error (IMSE). However, if the task requires a
more stringent form of convergence, such as uniform convergence, it is unknown if those
procedures meet such additional demands. Our results are the first to formally show that
this is not the case for decision trees, despite them having small IMSE.

2 Causal Inference and Policy Decisions
As mentioned earlier, recursive partitioning is now a common tool of choice in the analysis
of heterogeneous causal treatment effects and the design of heterogeneous policy inter-
ventions [Athey and Imbens, 2019, Yao et al., 2021, and references therein]. Here the
observed data is a random sample {(yi, xT

i , di) : i = 1, 2, . . . , n}, where yi is the outcome
of interest, xi is a set of pre-treatment covariates, and di is a binary treatment indicator
variable. Employing standard potential outcomes notation,

yi = yi(1) · di + yi(0) · (1 − di),

where yi(1) is the potential outcome under treatment (di = 1) and yi(0) is the potential
outcome under control (di = 0). This paradigm is fundamental to most applied sciences;
for example, it can be used to model the effectiveness of a drug therapy, behavioral
intervention, marketing campaign, or government program.

In cases where the individual treatment effect yi(1)−yi(0) varies across different subgroups,
a natural goal is to estimate the heterogeneous average treatment effect (ATE) for each
covariate value x ∈ X, namely, θ(x) = E[yi(1) − yi(0) | xi = x]. In recent years, there has
been an explosion of machine learning technologies adapted for heterogeneous causal effect
estimation, thanks to the abundance of data produced from large-scale experiments and
observational studies. Among these machine learning algorithms, recursive partitioning
estimators (specifically, causal decision trees) stand out as natural contenders, as they
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are well-suited for grouping data according to the treatment effect size, conditional on
observable characteristics [e.g., Su et al., 2009, Athey and Imbens, 2016].

We now discuss CART methodology in the context of heterogeneous causal effect estima-
tion, one popular application of decision trees where accurate pointwise estimates over the
entire support X are essential. In experimental settings, where (yi(0), yi(1), xT

i ) y di, the
conditional ATE is identifiable because

θ(xi) = E[yi | xi, di = 1] − E[yi | xi, di = 0]

= E

[
yi

di − ξ

ξ(1 − ξ)
| xi

]
,

where the probability of treatment assignment ξ = P(di = 1) is known by virtue of the
known randomization mechanism. It follows that θ(x), x ∈ X, can be estimated using
decision tree methodology in at least two ways, namely, for a decision tree T ,

θ̂reg(T )(x) =
1

#{xi ∈ t : di = 1}

∑
xi∈t:di=1

yi −
1

#{xi ∈ t : di = 0}

∑
xi∈t:di=0

yi, (3)

or
θ̂ipw(T )(x) =

1
#{xi ∈ t}

∑
xi∈t

yi
di − ξ

ξ(1 − ξ)
, (4)

where recall t denotes the unique (terminal) node containing x ∈ X.

In this spirit, we consider a tree-based approach for analyzing treatment effect heterogeneity
in randomized control trials, which may also be used to design personalized treatment
assignments based on pre-intervention observable characteristics. While our forthcoming
results are stated for the regression problem (1), they are also directly applicable to the
causal decision tree estimators above that involve minimizing the SSE criterion. This is
precisely because θ̂reg(T )(x) and θ̂ipw(T )(x) can be implemented using conventional CART
methodology. That is, we implement θ̂reg(T )(x) following a plug-in approach that estimates
E[yi | xi, di = 1] and E[yi | xi, di = 0] separately with regression trees and conventional
CART methodology. Alternatively, we fit a regression tree with CART methodology
to the transformed outcome yi(di − ξ)/(ξ(1 − ξ)) to implement θ̂ipw(T )(x). Yet another
(more principled) approach [Athey and Imbens, 2016] implements θ̂reg(T )(x) by growing
a decision tree using a slightly modified version of the SSE criterion (2) (referred to as
adjusted expected MSE) that more directly targets the conditional ATE, together with
an honest property, where different samples are used for constructing the partition and
estimating the effects of each subpopulation.

Our theory implies that, for a constant treatment effect model, the aforementioned causal
decision tree estimators cannot converge faster than any polynomial-in-n. Furthermore, in
more interesting cases, shallow (honest) causal decision tree estimators will be shown to
be inconsistent, as a function of the sample size n, for some x ∈ X. Finally, we will also
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show that random forest methodology, while hurting the interpretability and introducing
additional tuning parameters, can overcome the limitations of decision trees by restoring
nearly optimal pointwise (for all x ∈ X) convergence rates.

3 Homoskedastic Constant Regression Model
To formalize the pitfalls of pointwise regression estimation using decision trees, we
consider the simplest possible data generating process.

Assumption 1 (Location Regression Model). The observed data {(yi, xT
i ) : i = 1, 2, . . . , n}

is a random sample satisfying (1) and the following:

1. µ(x) ≡ µ is constant for all x ∈ X ⊆ Rp.

2. xi has a continuous distribution.

3. xi y εi for all i = 1, 2, . . . , n.

4. E
[
ε2

i log log(|εi| + 1)
]
< ∞ and E

[
ε2

i
]
> 0.

Because trees are invariant with respect to monotone transformations of the coordinates of
x, without loss of generality, we assume henceforth that the marginal distributions of the
covariates are uniformly distributed on X = [0, 1]p, i.e., x j ∼ U([0, 1]) for j = 1, 2, . . . , p.

Under Assumption 1, the regression model (1) becomes the standard location (or intercept-
only regression) model with homoskedastic errors:

yi = µ + εi, σ2 = E
[
ε2

i
]
.

In the causal setting, the assumption corresponds to the constant treatment effect model, in
which θ(x) ≡ θ is constant for all pre-treatment covariates x.

This statistical model is perhaps the most canonical member of any interesting set of
data generating processes. In particular, the regression function belongs to all classical
smoothness function classes, as well as to the set of functions with bounded total variation.
See, for example, Györfi et al. [2002] for review and further references. As a consequence,
our results will also shed light in settings where uniformity over any of the aforementioned
classes of functions is of interest, since our lower bounds can be applied directly in those
cases. To be more precise, if µ̂(T )(x) is the output from a decision tree T , then for any
class of data generating processes P containing the model defined by Assumption 1,
supP∈P P(supx∈X |µ̂(T )(x)−µ(x)| > ϵ) ≥ P(supx∈X |µ̂(T )(x)−µ| > ϵ), for any ϵ > 0. Because
P will include the model defined by Assumption 1 in all relevant (both theoretically and
practically) cases, our results also highlight fundamental limitations of CART regression
methods from a uniform (over P) perspective, whenever interest lies on estimation of µ(x)
for all x ∈ X.
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Since the main purpose of this paper is to explore the limits of decision tree methodology,
we do not aim for generality, but rather consider the simplest possible data generating
process (Assumption 1). In the context of causal inference and treatment effects (e.g.,
Section 2), the assumptions correspond to a constant treatment effect model, the most
basic case of practical interest. Importantly, Assumption 1 removes issues related to
smoothing (or misspecification) bias because the regression function µ(x) is constant for
all x ∈ X, which shows that our results will not be driven by standard (boundary or other
smoothing) bias in nonparametrics [Fan and Gijbels, 1996]. Indeed, if the distribution of εi

is symmetric, then we have E[µ̂(T )(x)−µ] = −E[µ̂(T )(x)−µ] =⇒ E[µ̂(T )(x)] = µ, owing
to the fact that the split points τ̂ are symmetric statistics of the εi. Our results will be driven
instead by the fact that decision tree methodology can generate small cells containing only
a handful of observations, thereby making the estimator imprecise in certain regions of X.
In other words, inconsistency is due to a large variance problem, not a large bias problem.

The location (or constant treatment effect) model is the simplest instantiation of a regression
model of practical interest because the regression function is supersmooth and the curse
of dimensionality is absent. Furthermore, all smooth regression functions can be seen
as locally constant. Thus, we should expect any competitive nonparametric estimator to
separate a constant signal from noise or, in the language of causal inference, to estimate
accurately (constant) treatment effects when they happen to be homogeneous. Assumption
1 also approximately captures another common modeling situation in machine learning
and data science, in which the marginal distribution yi | xi j is noisy (i.e., the marginal
projections E[yi | xi j] are constant and contain no signal). Because splits in trees are
determined using only marginal information, here the split at the root node would be
essentially fitting the location model.

4 Decision Stumps
For each variable j = 1, 2, . . . , p, the data {xi j : xi ∈ t} is relabeled so that xi j is increasing
in the index i = 1, 2, . . . , n(t), where n(t) = #{xi ∈ t}. Then, minimizing the objective (2)
can be equivalently recast as maximizing the so-called impurity gain:∑

xl∈t

(
yl − yt

)2
−

∑
xl∈t

(
yl − ytL1(xl j ≤ τ) − ytR1(xl j > τ)

)2

=

(
1
√

n(t)

∑i
l=1(yl − µ) − i

n(t)
1
√

n(t)

∑n(t)
l=1(yl − µ)

)2

i(n(t) − i)
,

(5)

with respect to the index i and variable j; see [Breiman et al., 1984]. The maximizers are
denoted by (ı̂, ȷ̂), and the optimal split point τ̂ that minimizes (2) can be expressed as xı̂ ȷ̂.

We start by considering the case when the tree is depth one (K = 1), i.e., a decision stump.
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The tree output can then be written as

µ̂(T1)(x) = β̂11(x ȷ̂ ≤ τ̂) + β̂21(x ȷ̂ > τ̂) =

 1
#{xi:xi ȷ̂≤xı̂ ȷ̂}

∑
xi:xi ȷ̂≤xı̂ ȷ̂ yi, x ȷ̂ ≤ xı̂ ȷ̂

1
#{xi:xi ȷ̂>xı̂ ȷ̂}

∑
xi:xi ȷ̂>xı̂ ȷ̂ yi, x ȷ̂ > xı̂ ȷ̂

, (6)

where x ȷ̂ denotes the value of the ȷ̂-th component of x.

The following theorem formally (and very precisely) characterizes the regions of the
supportXwhere the first CART split index ı̂, at the root node, has non-vanishing probability
of realizing. As a consequence, the theorem also characterizes the effective sample size of
the resulting cells (recall the data is ordered so that τ̂ = xı̂ ȷ̂ and hence ı̂ = #{xi : xi j ≤ τ̂}).

Theorem 4.1. Suppose Assumption 1 holds and p = 1, and let ı̂ be the CART split index at
the root node. For each a, b ∈ (0, 1) with a < b, we have

lim inf
n→∞

P
(
na ≤ ı̂ ≤ nb) = lim inf

n→∞
P
(
n − nb ≤ ı̂ ≤ n − na) ≥ b − a

e
. (7)

Remark 1. We conjecture that limn→∞ P
(
na ≤ ı̂ ≤ nb) = limn→∞ P

(
n − nb ≤ ı̂ ≤ n − na) =

(b − a)/2. Another way of stating this conjecture is that the asymptotic conditional
distribution of log(ı̂)/ log(n) given that ı̂ ≤ n/2 is U([0, 1]). Evidence for this limit will be
given in the proof of Theorem 4.1.

First, Theorem 4.1 shows that with non-vanishing probability, ı̂ will realize near its
extremes, from the beginning of any tree construction. The arbitrarily slow polynomial-
in-n rates do not contradict, but are rather precluded by, existing polynomial convergence
guarantees [e.g., Wager and Athey, 2018], which a priori require that each split generates
two child nodes that contain a constant fraction of the number of observations in the parent
node, i.e., n(tL) ≳ n(t) and n(tR) ≳ n(t). By implication, Theorem 4.1 shows that such
assumptions requiring balanced cells almost surely, which are typically imposed in the
literature, are in general incompatible with standard decision tree constructions employing
conventional CART methodology [e.g., Behr et al., 2022, and references therein]. The
slow convergence rates for the decision stump occur because the optimal split point is
realized near the boundary of the support [Ishwaran, 2015] with non-vanishing probability,
i.e., τ̂ ≈ 0 or τ̂ ≈ 1 with non-vanishing probability, causing the two nodes in the stump
to be imbalanced, with one containing a much smaller number of samples, and therefore
rendering a situation where local averaging is less accurate. To be more precise, after the
first split when n(t) = n, CART will generate two unbalanced cells with non-vanishing
probability; for any a, b ∈ (0, 1) with a < b, either na ≤ n(tL) ≤ nb or na ≤ n(tR) ≤ nb

for large n, where n(tL) + n(tR) = n. It will follow from this result that, on the events
considered in (7), too few observations will be available on one of the cells after the first
split for CART to deliver a polynomial-in-n consistent estimator of µ, thereby making the
decision tree procedure exhibit arbitrarily slow rates, for some x ∈ X.
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4.1 Convergence Rates
Theorem 4.1 appears to be new in the literature. It arises from a careful study of the maxi-
mum of (5) over different ranges of the split index, which turns out to be asymptotically
similar to the suprema of a standardized Brownian bridge over different time intervals.

Once the location of the first CART split point is well-understood, we can study the
resulting CART estimator µ̂(T1)(x) of the unknown regression function. The following
statements hold for the pointwise prediction error of the decision stump.

Theorem 4.2. Suppose Assumption 1 holds and p = 1, and let µ̂(T1)(x) be the CART
estimator of the regression function at the root node. For any a, b ∈ (0, 1) with a < b, we
have

lim inf
n→∞

P

(
sup
x∈X
|µ̂(T1)(x) − µ| ≥ σn−b/2

√
(2 + o(1)) log log(n)

)
≥

2b
e
, (8)

and
lim inf

n→∞
inf
x∈Xn
P
(
|µ̂(T1)(x) − µ| ≥ σn−b/2

√
(2 + o(1)) log log(n)

)
≥

b − a
e
, (9)

where Xn = [0, (1 + o(1))na−1) ∪ (1 − (1 + o(1))na−1, 1].

The theorem above shows that decision stumps can have, at most, nb/2 (suboptimal)
convergence for evaluation points that are within na−1 distance from the boundary of X
(see (9)), for any a, b ∈ (0, 1) with a < b. This happens because the two nodes in the
stump are highly imbalanced with non-trivial probability under Assumption 1, with one
containing a much smaller number of samples—thereby making local estimation difficult.
An immediate implication of Theorem 4.2 in the context of heterogeneous (in x ∈ X)
causal effect estimation is that the CART estimators discussed in Section 2 can have poor
performance in some regions of the covariate support, particularly near the boundaries of
X.

4.2 Past Work
Theorem 4.2 contributes to the literature in several ways. Our results indicate that when
the goal is to approximate the unknown conditional expectation pointwise for all x ∈ X, as
it is the case in the analysis of heterogeneity in causal inference settings, decision trees will
exhibit extremely slow convergence rates in some regions of the support, making those
methods suboptimal from an approximation perspective. The phenomenon revealed in
Theorems 4.1 and 4.2 has been observed in various forms since the inception of CART
[Breiman et al., 1984, Section 11]. Historically, the phenomenon characterized in Theorem
4.1 has been called the end-cut preference, where splits along noisy directions tend to
concentrate along the end points of the parent node. More specifically, Breiman et al.
[1984, Theorem 11.1] and Ishwaran [2015, Theorem 4] showed that for each δ ∈ (0, 1),
P(ı̂ ≤ δn or ı̂ ≥ (1 − δ)n) → 1 as n → ∞. However, unlike (9) in Theorem 4.1 which
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characterizes regions of the support where the pointwise rates of estimation are slower
than any polynomial-in-n, their result only implies rates in uniform norm slower than any
constant multiple of the already nearly optimal rate

√
n/ log log(n), i.e., for any C > 0,

lim
n→∞
P
(

sup
x∈X
|µ̂(T1)(x) − µ| ≥ Cσn−1/2

√
log log(n)

)
= 1.

Thus, past theoretical work is not strong enough to illustrate the weaknesses of decision
trees for pointwise estimation (i.e., prior lower bounds in the literature were too loose to
be informative).

In accordance with Theorem 4.2, simulation results from Wager and Athey [2018, Sup-
plement, Section B], and many others, also suggested that adaptive causal trees can have
slow convergence at the boundaries of the support X, but no formal theory supporting
that numerical evidence was available in the literature until now. Tang et al. [2018] give
sufficient theoretical conditions under which non-adaptive random forests (i.e., where the
decision nodes are independent of the data) will be inconsistent, but those conditions do
not apply to commonly used forest implementations nor are they shown to be realized by
the data generating mechanism.

Bühlmann and Yu [2002] and Banerjee and McKeague [2007] showed that the minimizers
(β̂1, β̂2, τ̂) of (2) at the root node converge to the population minimizers (β∗1, β

∗
2, τ
∗) at a

cube-root n1/3 rate when the regression model (1) satisfies specific regularity assumptions.
Because the decision stump (6) can be expressed as µ̂(T1)(x) = β̂11(x ≤ τ̂) + β̂21(x > τ̂),
their results can be used to study the asymptotic properties of µ̂(T1)(x). Among other things,
they posit that the population minimizers (β∗1, β

∗
2, τ
∗) are unique and that the regression

function µ(x) is continuously differentiable and has nonzero derivative at τ∗. Theorem 4.2
shows that the results in Bühlmann and Yu [2002] and Banerjee and McKeague [2007] are
not uniformly valid in the sense that excluding the constant regression function from the
allowed class of data generating processes is necessary for their results to hold for x ∈ X.

4.3 Uniform Minimax Rates
Letting P be any set of data generating processes of interest that includes the location
model in Assumption 1, for any b ∈ (0, 1), we immediately obtain from (8) that

lim inf
n→∞

sup
P∈P

P

(
sup
x∈X
|µ̂(T )(x) − µ| ≥ σn−b/2

√
(2 + o(1)) log log(n)

)
≥ (2/e)b,

where T is any tree constructed using conventional CART methodology with at least one
split. Therefore, decision trees grown with CART methodology cannot converge faster
than any polynomial-in-n, when uniformity over the full support of the data X, and over
possible data generating processes, is of interest.
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4.4 Honest Trees
While Theorem 4.2 deals with depth K = 1 adaptive trees (i.e., the same data is used for
determining the split points and terminal node output), analogous results hold for honest
trees. The honest tree output is

µ̃(T )(x) =
1

#{x̃i ∈ t}

∑
x̃i∈t

ỹi, x ∈ t, (10)

where (ỹi, x̃T
i ), i = 1, 2, . . . , n, are independent samples from those which were used to

construct the decision nodes (i.e., the partition of X), and n(t) = #{x̃i ∈ t} > 0. To simplify
calculations, we define µ̃(T )(x) = µ(x) if n(t) = 0, an event that occurs with vanishingly
small probability.

Conditional on the data used to construct the partition, the honest decision stump µ̃(T1)(x)
at x = 0 is an average of (approximately) ı̂ response values, and so we expect its variance
(equal to mean squared error) to be approximately σ2/ı̂. The problem is that, according
to Theorem 4.1, the split index ı̂ is much smaller than n, with non-vanishing probability.
More rigorously, using a conditioning argument and (7), it follows that µ̃(T1)(x) converges
uniformly no faster than

E

[
sup
x∈X

(
µ̃(T1)(x) − µ

)2
]
≥ σ2E

[
(1 − 2−ı̂)2

ı̂

]
≳
σ2

nb , (11)

for any b ∈ (0, 1), and n large enough.

4.5 Simulation Evidence
We illustrate the implications of Theorems 4.1 and 4.2 numerically with p = 1. In Figure 1a,
we plot the pointwise root mean squared error (RMSE)

√
E[(µ̂(T1)(x) − µ)2], approximated

by 500 replications, when µ = 0, εi ∼ N(0, 1), and n = 1000. In Figure 1b, we consider
the context of the causal model discussed in Section 2, with a constant treatment effect
θ(x) = 1 and E[yi(0)] = 0, di ∼ Bern(0.5), and εi ∼ N(0, 1), again with n = 1000 and 500
replications. We plot the pointwise RMSE for an honest causal decision stump with output
based on the regression estimator θ̂reg(T1)(x) constructed using the adjusted expected MSE
splitting criterion proposed by Athey and Imbens [2016]. The transformed outcome tree,
θ̂ipw(T1)(x), exhibits similar empirical behavior. Both plots corroborate with Theorem 4.2:
the decision stump has smallest pointwise RMSE near the center of the covariate space,
but the performance degrades as the evaluation points move closer to the boundary.

The following section investigates further the role of honesty in the construction of deeper
trees, and shows an even stronger result: honest trees will be inconsistent on some (at least
countably many) regions of X whenever the trees are grown up to depth K ≈ log log(n).
In other words, shallow (honest) regression trees can be uniformly inconsistent, a result
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Figure 1: Pointwise RMSE of decision stumps for location model.

that is intuitively anticipated from Theorems 4.1 and 4.2 because even after one single
split there is non-trivial probability of having small cells with only a few observations, and
repeating this process further down the tree can only exacerbate the issue.

The main results in this section were derived in the simplest possible case (constant
regression model, p = 1, K = 1, etc.), but the main conclusions are applicable more
generally. The key phenomenon captured by Theorems 4.1 and 4.2 are only exacerbated
in multi-dimensional settings (p > 1) or for multi-level decision trees (K > 1). We will
formalize the shortcomings associated with deeper honest trees in the next section.

5 Inconsistency with Deeper Trees
The previous section provides a pessimistic view on depth one (K = 1) decision trees:
decision stumps can have slow convergence for the simplest regression models in some
regions of X. We now discuss formally situations where decision trees can be inconsistent
(i.e., fail to converge) altogether, if grown only to depth K ≈ log log(n). As is customary
in the literature, we will focus on trees that are honest, which are believed to offer better
empirical performance [Athey and Imbens, 2016].

Definition 5.1 (Honest CART (CART+)). At each level of the tree, including the output
in the terminal nodes, generate new response values {ỹi : i = 1, 2, . . . , n}. Each node t
from the parent level is further refined by selecting a split direction and split point that
minimizes the CART squared error criterion (2) with data {(ỹi, xT

i ) : xi ∈ t}. The output of
the tree T at a point x belonging to a terminal node t is µ̃(T )(x) = 1

#{xi∈t}

∑
xi∈t ỹi.

The only difference between conventional CART and CART+ is that the split points at
each level are determined using a new, statistically independent set of response values,
although the input values remain the same. Importantly, the adaptive properties of the tree
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are retained, as the nodes are still refined by minimizing the empirical squared error (2).
For our purposes, problems will arise as soon as the depth K is approximately log log(n)
and so we expect there to be little practical difference between CART+ and the original
CART algorithm when the sample size is large.

CART+ serves as a phenomenological model of conventional CART and allows us to
analyze its pointwise (and uniform in x ∈ X) behavior. Importantly, the formulation of
CART+ and Assumption 1 together ensure that the split points have a desirable Markovian
property: a split point τ̃ ∈ [τ1, τ2] conditioned on its immediate ancestor split points τ̃1 = τ1

and τ̃2 = τ2 is independent of all ancestor split points, including τ̃1 and τ̃2.

Theorem 5.2. Suppose Assumption 1 holds and p = 1. Consider a maximal depth
Kn ≳ log log(n) tree TKn constructed with CART+ methodology. Then, there exists a
positive constant C such that

lim inf
n→∞

P

(
sup
x∈X
|µ̃(TKn)(x) − µ| > C

)
> 0.

This theorem shows that very shallow trees grown with the conventional squared error
criterion can be pointwise (and hence uniform in x ∈ X) inconsistent. To put the iterated
logarithm scaling of the depth K into perspective, if n = 1 billion, then log log(n) ≈ 3, a
typical depth seen in practice.

The pointwise error in Theorem 5.2 should be contrasted with the IMSE. Under Assumption
1, if K ≍ log log(n), then

E

[ ∫
X

(µ̃(TK)(x) − µ)2Px(dx)
]
≤

2K+1σ2

n + 1
= O

(
σ2poly-log(n)

n

)
, (12)

and hence by Markov’s inequality,

lim
n→∞
P

( ∫
X

(µ̃(TK)(x) − µ)2Px(dx) >
σ2/n

poly-log(n)

)
= 0.

Therefore, the IMSE of the pointwise inconsistent depth K ≍ log log(n) decision tree
decays at the optimal

√
n rate, up to poly-logarithmic factors. This shows that the per-

formance of the tree varies widely depending on whether the input x is average or worst
case.

The intuition for Theorem 5.2 is based similarly on Theorem 4.1, but for depth K trees
constructed with CART+ methodology. That is, honest trees of depth only K ≈ log log(n)
will generate cells near the boundaries of the support X containing a finite number of
observations with probability bounded away from zero. The inequality (7) implies that,
with probability bounded away from zero, the number of observations in a child node
t′ of a parent node t (near the boundary of X) satisfies n(t′) ≤ (n(t))b. It turns out that
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the number of times this occurs after K splits is stochastically dominated by a negative
binomial random variable, providing a lower bound on the probability that a maximal depth
K tree will have, at most, n(t) ≤ nbK

observations in terminal nodes near the boundary of
X. Since b ∈ (0, 1), the bound nbK

is a constant whenever K exceeds a constant multiple of
log log(n).

It is important to note that the aforementioned inconsistency of honest regression trees
need not occur at the boundary of the support X. By a symmetry argument, if τ̃ is any
split point that occurs at a fixed depth in the tree, then µ̃(TK)(τ̃) will also fail to converge
to µ if the tree has maximal depth K ≳ log log(n). In other words, after reaching depth
J ≥ 1, inconsistency will occur at any of the (at most) 2J + 1 endpoints associated with the
2J cells, whenever we grow the tree to a total depth of J + K such that K ≳ log log(n) as
n→ ∞.

6 Pruning
Pruning is a well-established strategy for mitigating some of the ill consequences of
working with trees, such as overfitting. In some cases, however, pruning will not help.
Indeed, as the previous section has revealed, depth one trees can have extremely slow
convergence near the boundary of the covariate space. While this phenomenon holds for
location models, it can also manifest with models that have a strong dependence on the
covariates. For example, if the first split at the root node is along a variable x j such that the
marginal projection E[y | x j] is constant—resembling the location model in Assumption 1
marginally—then, according to the previous discussion, the tree will almost always produce
one cell with very few observations, but no amount of pruning at lower depths will help.
The checkerboard model [Bengio et al., 2010] in p = 2 dimensions is an example where y
is marginally independent of both covariates. That is, if yi = sgn(xi1−0.5)sgn(xi2−0.5)+εi,
where xi ∼ U([0, 1]2) and εi ∼ N(0, 1) are independent, then yi given xi j = x j is distributed
as a symmetric two-component Gaussian mixture, free from x j.

To illustrate the point above numerically on a model with a smooth regression function,
suppose yi = (xi1 − 0.5)(xi2 − 0.5) + εi, where xi ∼ U([0, 1]2) and εi ∼ N(0, 1) are
independent. As E[yi | xi j = x j] = 0 for j = 1, 2, the response variable has no marginal
dependence on either covariate. Figure 2a displays the results of a computer experiment
with n = 1000 and 500 replications. The plot shows the pointwise RMSE of a pruned tree
T with output µ̂(T )(x) at x = (0, x2) as x2 ranges from 0 to 1. Similarly, Figure 2b shows
the result of fitting a pruned causal tree T with output θ̂reg(T )(x), constructed using honesty
and the adjusted expected MSE splitting criterion proposed by Athey and Imbens [2016].
The experiment consists of 500 replications from the model yi = di(xi1− 0.5)(xi2− 0.5)+ εi,
where di ∼ Bin(0.5), xi ∼ U([0, 1]2), and εi ∼ N(0, 1) are independent, and n = 1000. We
do not include the transformed outcome tree θ̂ipw(T )(x) as it also produces a similar plot.
In both cases, the numerical evidence indicates that pruning does not mitigate the lack of
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Figure 2: Pointwise RMSE of pruned trees for models where x and y are dependent.

uniform consistency over X and the poor performance near the boundary persists.

7 Random Forests
At this point, the curious reader may wonder whether ensemble learning can address some
of the convergence issues with decision trees. Here we consider honest random forests,
developed by Wager and Athey [2018]. Specifically, for each tree in the ensemble, we
randomly sample a subset S ⊂ {1, 2, . . . , n} of size s and, among the data {(xi, yi)}i∈S , use
half for determining the splits and the other half for estimating the conditional mean in
the terminal nodes (the division of S into two equally sized subsets occurs randomly).
More specifically, for each S ⊂ {1, 2, . . . , n} with |S | = s, let S 0 denote the portion used
for determining the splits and S 1 be the portion used for estimating the conditional mean
in the terminal nodes. The set of all such subsamples is denoted by S = {S = S 1 ∪ S 0 ⊂

{1, 2, . . . , n} : S 0 ∩ S 1 = ∅, |S 0| = |S 1| = s/2}. In addition, at each node, a particular
variable is split if it yields the smallest SSE (2) among a random selection M ⊂ {1, 2, . . . , p}
of m = mtry candidate directions. The set of all candidate variable selections is denoted by
M = {M ⊂ {1, 2, . . . p} : |M| = m}. This idea can be applied to regression trees to obtain
a regression forest, or causal decision tree estimators (3) or (4) to obtain a causal forest,
though, for simplicity, here we only consider the regression setting.

To get a sense of the improvement that forests offer over trees, we specialize to the
case where the constituent trees in the forest are honest decision stumps (i.e., hon-
est trees (10) with depth K = 1). The decision stump output µ̂(T1)(x) constructed
in this way is denoted by µ̂(T (M, S ))(x) and the (regression) random forest output is
µ̂B(x) = B−1 ∑B

b=1 µ̂(T (Mb, S b))(x), where (M1, S 1), (M2, S 2), . . . , (MB, S B) are indepen-
dent copies of (M, S ). When the number of trees B is large, the honest random forest can
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(a) Pointwise RMSE of random forest
with s = 100 and m = 1.
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with s = 100 and m = 1.

Figure 3: Pointwise RMSE of random forests for location model.

be approximated by

µ̂(x) =
1(

n
s

)(
s

s/2

)(
p
m

) ∑
S∈S

∑
M∈M

µ̂(T (M, S ))(x).

The next theorem provides an upper bound on its pointwise error.

Theorem 7.1. Suppose Assumption 1 holds, and, additionally, that xi1, xi2, . . . , xip are
independent. If n→ ∞, p→ ∞, s = o(n1/3), and m = o(p/s), then for all x ∈ X,

E
[
(µ̂(x) − µ)2] ≤ (σ2/n)(1 + (s/2)(m/p) + o(1)).

This theorem showcases explicitly the effect of both subsampling and the random variable
selection mechanism—each is important for reducing variance. According to past work
that utilizes the Hoeffding-Serfling variance inequality for U-statistics [Wager and Athey,
2018, Bühlmann and Yu, 2002], subsampling allows us to achieve a pointwise error

E
[
(µ̂(x) − µ)2] ≲ σ2s/n,

which is significantly better than the arbitrarily slow polynomial-in-n rates for individual
trees (see Theorem 4.2), but still suboptimal since s is typically chosen to grow with the
sample size to reduce bias when it exists. The result becomes more interesting when we
account for the random variable selection mechanism, because it further reduces the error
by decorrelating the constituent trees. Therefore, if the dimensionality p is large relative
to s and m = o(p/s), then it is possible to achieve the exact optimal

√
n rate—a vast

improvement over the nb/2 rate for individual trees. The price paid for such improvement
is the inclusion of two additional tuning parameters for implementation (s and m), and the
loss of interpretability for the resulting estimates.
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In Figure 3, we plot the pointwise RMSE of a regression forest and causal forest for the
respective models in Section 4.5, each time using B = 2000 trees and the same sample
sizes and number of replications as before. Compared to Figure 1a and Figure 1b, we
see that random forests have considerably better performance than a single tree near the
boundary.

When p = 1, Banerjee and McKeague [2007] and Bühlmann and Yu [2002] investigated
the properties of decision trees under assumptions that rule out the location model in
Assumption 1. They also showed that subsampling can reduce variance, similar to our result
in Theorem 7.1. However, because the decision stump exhibits large bias in their setting,
one cannot deduce from their results how random forests would improve the pointwise
mean square error, which accounts for both bias and variance. Additionally, unlike
Theorem 7.1, the random variable selection mechanism was not explored by Banerjee
and McKeague [2007] and Bühlmann and Yu [2002] because their results are limited to
the one-dimensional setting p = 1. As a consequence, Theorem 7.1 complements prior
literature by studying the pointwise mean squared error performance of random forest
under the the location model with p ≥ 1, and thus formalizes a beneficial aspect of random
feature selection for decision tree ensembles.

Finally, while Theorem 7.1 concerns a depth one (K = 1) random forest construction, it is
possible to explore multi-level honest tree ensembles. Theorem 5.2 showed that shallow
honest trees constructed with the CART+ procedure can produce pointwise inconsistent
estimates of the regression function µ. In contrast, using the Hoeffding-Serfling variance
inequality for U-statistics, it can be shown that an ensemble of depth K ≍ log log(n) trees
constructed with CART+ methodology on subsampled data will have pointwise error√
E[(µ̂(x) − µ)2] = O(σ

√
s/n), for all x ∈ X. This result provides a concrete example

where an ensemble of shallow inconsistent decision trees can be consistent with nearly
optimal convergence rates, and is, to the best of our knowledge, the first time that such a
result has been shown in the literature for practical trees based on CART methodology.

8 Conclusion
This article studied the delicate pointwise properties of axis-aligned recursive partitioning,
focusing on heterogeneous causal effect estimation, where accurate pointwise estimates
over the entire support of the covariates are essential for valid statistical learning (e.g., point
estimation, testing hypotheses, confidence interval construction). Specifically, we called
into question the use of causal decision trees for such purposes by demonstrating that, for a
standard location model, depth one decision trees (e.g., decision stumps) constructed using
CART methodology exhibit pointwise convergence rates slower than any polynomial-
in-n in boundary regions of the support of the covariates. Even more dramatic, honest
shallow decision trees were shown to be inconsistent even in large samples. Pruning
was unable to overcome these limitations, but ensemble learning with both subsampling
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and random feature selection was successful at restoring near-optimal convergence rates
for pointwise estimation for the specific simple class of data generating processes that
we considered. While our emphasis was on direct use of decision trees for causal effect
estimation, the methodological implications are similar for multi-step semi-parametric
settings, where preliminary unknown functions (e.g., propensity scores) are estimated with
machine learning tools, as well as conditional quantile regression, both of which require
estimators with high pointwise accuracy.

In conclusion, our results have important implications for heterogeneous prediction and
causal inference learning tasks employing decision trees. Whenever the goal is to pro-
duce accurate pointwise regression estimates over the entire support of the conditioning
variables, even shallow decision trees trained with a large number of samples can exhibit
poor performance. Consequently, adaptive recursive partitioning should be used with cau-
tion for heterogeneous prediction or causal inference purposes, especially in high-stakes
environments where high pointwise accuracy is crucial.
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A Proofs
In this appendix, we include proofs of the formal statements in the main text. Throughout
the proofs below, because the quantities of interest are location invariant and homogeneous
with respect to scale, by working with the standardized response variable (yi − µ)/σ, we
can assume without loss of generality that µ = 0 and σ2 = 1.

A.1 Decision Stumps
In this section, we prove (7) in Theorem 4.1; (8) and (9) in Theorem 4.2; and (11) and
(12). Throughout this section, we denote the partial sum by S k = y1 + · · · + yk, for k ≥ 1.

Proof of (7) in Theorem 4.1. Fix a, b ∈ (0, 1) with a < b. According to (5), the desired
probability is

P
(
na ≤ ı̂ ≤ nb)
= P

(
max
1≤k<n

(
1
√

nS k −
k
n

1
√

nS n

)2

(k/n)(1 − k/n)
> max

1≤k<na, nb<k<n

(
1
√

nS k −
k
n

1
√

nS n

)2

(k/n)(1 − k/n)

)
.

(13)

By Csörgö and Horváth [1997, Equation A.4.37], we can define a sequence of Brownian
bridges {Bn(t) : 0 ≤ t ≤ 1} on a suitable probability space such that∣∣∣∣∣∣ max

1≤k<n

∣∣∣∣ 1
√

nS k −
k
n

1
√

nS n

∣∣∣∣
√

(k/n)(1 − k/n)
− sup

1/n≤t≤1−1/n

|Bn(t)|
√

t(1 − t)

∣∣∣∣∣∣ = ϵn, (14)

where ϵn = oP
(
(log log(n))−1/2). We note that while Csörgö and Horváth [1997, Equation

A.4.37] bounds the approximation error of the maximum over the full range 1 ≤ k < n as
in (14), its proof, which relies on invariance principles for partial sums of i.i.d. random
variables, can be generalized to bound the approximation error over 1 ≤ k < na, nb < k < n.
Thus, ∣∣∣∣∣∣ max

1≤k<na, nb<k<n

∣∣∣∣ 1
√

nS k −
k
n

1
√

nS n

∣∣∣∣
√

(k/n)(1 − k/n)
− sup

1/n≤t<na−1, nb−1<t≤1−1/n

|Bn(t)|
√

t(1 − t)

∣∣∣∣∣∣ = ϵn. (15)
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Combining the approximations (14) and (15), the probability (13) can thus be lower
bounded by

P

(
sup

1/n≤t≤1−1/n

|Bn(t)|
√

t(1 − t)
> sup

1/n≤t<na−1, nb−1<t≤1−1/n

|Bn(t)|
√

t(1 − t)
+ 2ϵn

)
.

Next, we note that the standardized Brownian bridge
{
Bn(t)/

√
t(1 − t) : 0 < t < 1

}
is distributionally equivalent to a time-transformed Ornstein-Uhlenbeck (O-U) process{
U(log(t/(1 − t))) : 0 < t < 1

}
, where

{
U(t) : t ∈ R

}
is a zero-mean O-U process [Csörgö

and Révész, 1981, Section 1.9], and thus

P

(
sup

1/n≤t≤1−1/n

|Bn(t)|
√

t(1 − t)
> sup

1/n≤t<na−1, nb−1<t≤1−1/n

|Bn(t)|
√

t(1 − t)
+ 2ϵn

)
= P

(
sup

− log(n−1)≤t≤log(n−1)
|U(t)| > sup

− log(n−1)≤t<log(na−1/(1−na−1)), log(nb−1/(1−nb−1))<t≤log(n−1)
|U(t)| + 2ϵn

)
= P

(
sup

0≤t≤2 log(n−1)
|U(t)| > sup

0≤t<log(na−1(n−1)/(1−na−1)), log(nb−1(n−1)/(1−nb−1))<t≤2 log(n−1)
|U(t)| + 2ϵn

)
= P

(
sup

0≤t≤2 log(n−1)
|U(t)| > sup

0≤t≤log((n−1)2na−b(1−nb−1)/(1−na−1))
|U(t)| + 2ϵn

)
,

(16)
where the last two equalities result from, respectively, stationarity and the Markov property
of the process |U(t)|, the square of which is a Cox-Ingersoll-Ross (CIR) process [Göing-
Jaeschke and Yor, 2003].

By the Darling-Erdős Limit Theorem for the O-U process [Csörgö and Horváth, 1997,
Theorem A.3.1] and [Eicker, 1979, Theorem 2.2], for all c > 0 and z ∈ R, we have

lim
n→∞
P

(
sup

0≤t≤(c+o(1)) log(n)
|U(t)| <

2 log log(n) + (1/2) log log log(n) + z − (1/2) log(π)√
2 log log(n)

)
= e−e−(z−2 log(c))

.
(17)

Let z∗ maximize z 7→ e−e−(z−2 log(2−(b−a)))
− e−e−(z−2 log(2))

. Simple calculus yields

z∗ = log
(

v(4 − v)
log(4/(2 − v)2)

)
, v = b − a.

Define
un =

2 log log(n) + (1/2) log log log(n) + z∗ − (1/2) log(π)√
2 log log(n)

.

Continuing from (16), using (17) twice with c = 2 and c = 2 − (b − a) and the fact that
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ϵn = oP
(
(log log(n))−1/2), we obtain

lim inf
n→∞

P

(
sup

0≤t≤2 log(n−1)
|U(t)| > sup

0≤t≤log((n−1)2na−b(1−nb−1)/(1−na−1))
|U(t)| + 2ϵn

)
≥ lim inf

n→∞
P

(
sup

0≤t≤2 log(n−1)
|U(t)| ≥ un, sup

0≤t≤log((n−1)2na−b(1−nb−1)/(1−na−1))
|U(t)| < un − 2ϵn

)
≥ lim

n→∞
P

(
sup

0≤t≤log((n−1)2na−b(1−nb−1)/(1−na−1))
|U(t)| < un − 2ϵn

)
− lim

n→∞
P

(
sup

0≤t≤2 log(n−1)
|U(t)| < un

)
= lim

n→∞

(
e−e−(z∗+o(1)−2 log(2−(b−a)))

+ o(1)
)
− e−e−(z∗−2 log(2))

= e−e−(z∗−2 log(2−(b−a)))
− e−e−(z∗−2 log(2))

= v
(4 − v)(1 − v/2)8/(v(4−v))

(2 − v)2

≥ v · lim
u↓0

(4 − u)(1 − u/2)8/(u(4−u))

(2 − u)2

= (b − a)/e.

We have thus shown that lim infn→∞ P(na ≤ ı̂ ≤ nb) ≥ (b − a)/e. By symmetry, we obtain
lim infn→∞ P(n− nb ≤ ı̂ ≤ n− na) ≥ (b− a)/e, and by disjointness of the events na ≤ ı̂ ≤ nb

and n − nb ≤ ı̂ ≤ n − na when n > 21/(1−b), we also have

lim inf
n→∞

P(na ≤ ı̂ ≤ nb or n − nb ≤ ı̂ ≤ n − na) ≥ (2/e)(b − a). □

Remark 2. Alternatively, for any 0 ≤ A < B, we have

P

(
sup

0≤t≤B
|U(t)| > sup

0≤t≤A
|U(t)|

)
=

B − A
B
. (18)

This can readily be shown using the fact that the absolute value of a zero-mean O-U process
is stationary, Markov, and has continuous paths. Consequently, ignoring the stochastic
error ϵn from approximating the impurity gain (5) by the square of a standardized Brownian
bridge (not yet justified), using (18), we can approximate the probability (13) by

P

(
sup

0≤t≤2 log(n−1)
|U(t)| > sup

0≤t≤log((n−1)2na−b(1−nb−1)/(1−na−1))
|U(t)|

)
=

2 log(n − 1) − log((n − 1)2na−b(1 − nb−1)/(1 − na−1))
2 log(n − 1)

→
b − a

2
, n→ ∞.

We are therefore led to conjecture that

lim
n→∞
P(na ≤ ı̂ ≤ nb) =

b − a
2
.
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Proof of (8) and (9) in Theorem 4.2. By Csörgö and Horváth [1997, Theorem A.4.1] and
Donsker’s Theorem which says that maxn/2<k<n |S k|/

√
k and max1≤k≤n/2 |S n − S k|/

√
n − k

converge in distribution to sup0≤t≤log(2) |U(t)|, we have

max1≤k<n
|S k |√

k√
2 log log(n)

= 1 + oP(1),
maxn/2<k<n

|S k |√
k
+max1≤k≤n/2

|S n−S k |√
n−k√

2 log log(n)
= oP(1). (19)

To prove (8), we note that, on the event ı̂ ≤ nb or ı̂ ≥ n − nb which occurs with asymptotic
probability at least 2b/e, we have

sup
x∈X
|µ̂(T1)(x)|2 ≥

S 2
ı̂

ı̂2
1(ı̂ ≤ n/2) +

(S n − S ı̂)2

(n − ı̂)2 1(ı̂ > n/2)

≥
1

min{ı̂, n − ı̂}

(
S 2
ı̂

ı̂
+

(S n − S ı̂)2

n − ı̂
−

(
S 2
ı̂

ı̂
1(ı̂ > n/2) +

(S n − S ı̂)2

n − ı̂
1(ı̂ ≤ n/2)

))

≥
1

min{ı̂, n − ı̂}

(
max
1≤k<n

(
S 2

k

k
+

(S n − S k)2

n − k

)
− max

n/2<k<n

S 2
k

k
− max

1≤k≤n/2

(S n − S k)2

n − k

)

≥
(2 + oP(1)) log log(n)

min{ı̂, n − ı̂}

≥
(2 + oP(1)) log log(n)

nb .

Here we have used the fact that ı̂ equivalently maximizes k 7→ S 2
k/k + (S n − S k)2/(n − k) =∑n

i=1(yi − µ)2 −
∑n

i=1(yi − (S k/k)1(i ≤ k) − ((S n − S k)/(n − k))1(i > k))2 over 1 ≤ k < n.

The other result (9) follows again from (19) and from the fact that x(na)/na−1 = 1 + oP(1)
and x(n−na)/(1 − na−1) = 1 + oP(1). Thus, on the event na ≤ ı̂ ≤ nb which occurs with
asymptotic probability at least (b − a)/e, if xn ≤ (1 + oP(1))na−1 = x(na) ≤ x(ı̂) = τ̂, we have

|µ̂(T1)(xn)|2 =
S 2
ı̂

ı̂2
=

1
ı̂

(
S 2
ı̂

ı̂
+

(S n − S ı̂)2

n − ı̂
−

(S n − S ı̂)2

n − ı̂

)
≥

1
ı̂

(
max
1≤k<n

(
S 2

k

k
+

(S n − S k)2

n − k

)
− max

1≤k≤nb

(S n − S k)2

n − k

)
=

(2 + oP(1)) log log(n)
ı̂

≥
(2 + oP(1)) log log(n)

nb .

By symmetry, on the event n − nb ≤ ı̂ ≤ n − na, the same lower bound holds for xn >
1 − (1 + oP(1))na−1. □

22



Proof of (11). We first observe that

E
[

sup
x∈X

(µ̃(T1)(x))2
]
≥ Var(µ̃(T1)(0))

= E

[(
1(#{x̃i ≤ x(ı̂)} > 0)

#{x̃i ≤ x(ı̂)}

n∑
i=1

ỹi1(x̃i ≤ x(ı̂))
)2]

= E

[
1(#{x̃i ≤ x(ı̂)} > 0)

#{x̃i ≤ x(ı̂)}

]
,

where we used the independence between ỹi and x̃i and xi, per the honest construction and
Assumption 1. By the Cauchy-Schwarz inequality, we have

E

[
1(#{x̃i ≤ x(ı̂)} > 0)

#{x̃i ≤ x(ı̂)}

]
≥ E

[
(P(#{x̃i ≤ x(ı̂)} > 0 | ı̂))2

E[#{x̃i ≤ x(ı̂)} | ı̂]

]
. (20)

Again, by the honest construction and Assumption 1, we note that x̃i, xi, and ı̂ are mutually
independent. In particular, x(ı̂) given ı̂ = i is distributed Beta(i, n − i + 1), allowing us to
compute

P
(
#{x̃i ≤ x(ı̂)} > 0 | ı̂

)
= 1 − E[(1 − x(ı̂))n | ı̂]

= 1 −
(
2n − ı̂

n

)
/

(
2n
n

)
= 1 −

ı̂∏
i=1

n − i + 1
2n − i + 1

≥ 1 − 2−ı̂,

and
E[#{x̃i ≤ x(ı̂)} | ı̂] =

n
n + 1

ı̂.

We may thus lower bound (20) via

E

[(1 − (
2n−ı̂

n

)
/
(

2n
n

))2

nı̂/(n + 1)

]
≥ E

[
(1 − 2−ı̂)2

ı̂

]
.

The fact that E
[

(1−2−ı̂)2

ı̂

]
≳ n−b follows directly from (7). □

A.2 Inconsistency with Deeper Trees
In this section, we prove Theorem 5.2. First, we define some notation related to the tree
construction which will be used in the proofs. Let ñk be the number of observations in
the left-most cell (i.e., the node containing x = 0) at depth k and ı̃k be the CART split
index of this node, with ñ0 = n and ı̃0 = ı̂ (recall that ı̂ is the split index for the decision
stump (6)). Then, the left-most cell at the k-th level can be expressed as [0, x(ı̃k−1)] and
ñk = ı̃k−1 = #{xi ≤ x(ı̃k−1)}.
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Lemma A.1. There exist δ ∈ (0, 1), c > 1, and a positive integer M such that for any depth
k ≥ 1 and m ≥ M, we have P(ñk ≤ m) ≥ (1 − δ) · P(ñk−1 ≤ m) + δ · P(ñk−1 ≤ mc).

Proof. Observe that if m is a positive integer, then ı̃k−1 | ñk−1 = m has the same distribution
as ı̃0 | ñ0 = m, because of the honest tree construction and Assumption 1. Therefore, we
can apply (7) to obtain

P
(
ma ≤ ı̃k−1 ≤ mb | ñk−1 = m

)
≥ δ > 0, (21)

for some δ > 0 and sufficiently large m. Hence, by (21), we have for m sufficiently large,

P
(
ñk ≤ m | m < ñk−1 ≤ m1/b)
≥ min

m<i≤m1/b
P
(
ia ≤ ı̃k−1 ≤ ib | ñk−1 = i

)
P
(
ñk ≤ m | ia ≤ ı̃k−1 ≤ ib)

≥ δ min
m<i≤m1/b

P
(
ñk ≤ m | ia ≤ ı̃k−1 ≤ ib)

≥ δ min
ma<i≤m

P
(
ñk ≤ ı̃k−1 | ı̃k−1 = i

)
= δ.

(22)

Now, taking c = 1/b, note that (22) implies Lemma A.1 since, for m sufficiently large, we
have

P(ñk ≤ m) = P(ñk ≤ m, ñk−1 > mc) + P(ñk ≤ m, ñk−1 ≤ mc)
≥ P(ñk ≤ m, ñk−1 ≤ mc)
= P(ñk ≤ m, ñk−1 ≤ m) + P(ñk ≤ m, m < ñk−1 ≤ mc)
≥ P(ñk−1 ≤ m) + δ · P(m < ñk−1 ≤ mc)
= (1 − δ) · P(ñk−1 ≤ m) + δ · P(ñk−1 ≤ mc). □

Next, we use Lemma A.1 to finish the proof of Theorem 5.2. The main idea is to establish
that the terminal nodes in a shallow tree will be small with constant probability.

Proof of Theorem 5.2. Define nℓ = n(1/c)ℓ . We will show by induction that for any k ≥ 0
and ℓ ≥ 1 such that nℓ ≥ M,

P(ñk ≤ nℓ) ≥
k∑

k′=ℓ

(
k′ − 1
ℓ − 1

)
(1 − δ)k′−ℓδℓ. (23)

The base case of k = 0 is trivial since ñ0 = n. Now, assume that for some fixed k ≥ 1 and
any ℓ′ ≥ 1 such that nℓ′ ≥ M, we have

P(ñk−1 ≤ nℓ′) ≥
k−1∑

k′=ℓ′

(
k′ − 1
ℓ′ − 1

)
(1 − δ)k′−ℓ′δℓ

′

. (24)
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If ℓ ≥ 2, then substituting our induction hypothesis (24) with ℓ′ = ℓ and ℓ′ = ℓ − 1 into
Lemma A.1, we get that

P(ñk ≤ nℓ) ≥ (1 − δ)
k−1∑
k′=ℓ

(
k′ − 1
ℓ − 1

)
(1 − δ)k′−ℓδℓ + δ

k−1∑
k′=ℓ−1

(
k′ − 1
ℓ − 2

)
(1 − δ)k′−ℓ+1δℓ−1

=

k∑
k′=ℓ

(
k′ − 1
ℓ − 1

)
(1 − δ)k′−ℓδℓ,

where we used Pascal’s identity. This completes the inductive proof of (23).

Let X ∼ NB(L, δ), i.e., the number of independent trials, each occurring with probability δ,
until L successes. Choose

L = ⌈logc logc(n) − logc logc(M) − 1⌉ ≍ log log(n), nL = n(1/c)L
∈ [M,Mc].

By (23) and Markov’s inequality applied to the tail probability of X, we have that

P(ñK ≤ nL) ≥
K∑

k′=L

(
k′ − 1
L − 1

)
(1 − δ)k′−LδL

= 1 − P(X ≥ K + 1)

≥ 1 −
E[X]
K + 1

= 1 −
L

δ(K + 1)

≥
1
2
,

(25)

as long as K ≥ 2L/δ ≳ log log(n). By the Paley-Zygmund inequality [Petrov, 2007] and
the fact that Var(µ̃(TK)(0)) = E[1/ñK] ≤ 1, we have

P

(
|µ̃(TK)(0)| >

E[|µ̃(TK)(0)|]
2

)
≥

(E[|µ̃(TK)(0)|])2

4Var(µ̃(TK)(0))
≥

(E[|µ̃(TK)(0)|])2

4
. (26)

By the honest construction of the tree and (25), we have the lower bound

E[|µ̃(TK)(0)|] =
n∑

k=1

E

[∣∣∣∣∣∣1k
k∑

i=1

ỹi

∣∣∣∣∣∣
]
P(ñK = k)

≥ min
k=1,2,...,⌈nL⌉

E

[∣∣∣∣∣∣1k
k∑

i=1

ỹi

∣∣∣∣∣∣
]
P(ñK ≤ ⌈nL⌉)

≥
1
2

min
k=1,2,...,⌈nL⌉

E

[∣∣∣∣∣∣1k
k∑

i=1

ỹi

∣∣∣∣∣∣
]
.

(27)
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Since a sum of independent random variables is almost surely constant if and only if the
individual random variables are almost surely constant, it follows that the last expression
in (27) is bounded away from zero. Returning to (26) completes the proof. □

Proof of (12). Let 0 = ı̃0 < ı̃1 ≤ · · · ≤ ı̃2K−1 < ı̃2K = n and 0 = τ̃0 < τ̃1 ≤ · · · ≤ τ̃2K−1 <
τ̃2K = 1 denote the successive splits indices and values, respectively, at the terminal level
of the tree (if a node cannot be further refined, we duplicate the split indices and values
at the next level). Note that the split indices are independent of the ỹi data by the honest
condition and the xi data per Assumption 1. In particular, note that τ̃k = x(ı̃k) given ı̃k = i is
distributed Beta(i, n − i + 1). Thus, the IMSE can be bounded as follows:

E

[ ∫
X

(µ̃(TK)(x))2Px(dx)
]
=

2K∑
k=1

E

[
(τ̃k − τ̃k−1)

(
1(ı̃k > ı̃k−1)
ı̃k − ı̃k−1

n∑
i=1

ỹi1(τ̃k−1 ≤ xi < τ̃k)
)2]

= E

[
τ̃1

ı̃1

]
+

2K−1∑
k=2

E

[
τ̃k − τ̃k−1

ı̃k − ı̃k−1
1(ı̃k > ı̃k−1)

]
+ E

[
1 − τ̃2K−1

n − ı̃2K−1

]

≤ E

[
1

n + 1

]
+

2K−1∑
k=2

E

[
1

n + 1

]
+ E

[
1

n + 1
n − ı̃2K−1 + 1

n − ı̃2K−1

]
≤

2K+1

n + 1
. □

A.3 Random Forests
In this section, we prove Theorem 7.1. The following lemmas will be helpful.

Lemma A.2. If W ∼ Bin(w, r), where w ∈ N and r ∈ (0, 1], then E
[ 1

W+1

]
≤ 1

(w+1)r .

Proof. We have

E

[
1

W + 1

]
=

w∑
i=0

1
i + 1

(
w
i

)
ri(1 − r)w−i =

1
(w + 1)r

w+1∑
i=1

(
w + 1

i

)
ri(1 − r)w+1−i ≤

1
(w + 1)r

. □

Lemma A.3. Let m and a be positive integers and A and A′ be two independent random
subsets of {1, 2, . . . ,m} of size a. Then, 1

(m
a)

2

∑
A,A′ |A ∩ A′| = a2

m .

Proof. We have

EA,A′[|A ∩ A′|] =
∑

i∈{1,2,...,m}

E[1(i ∈ A ∩ A′)] =
∑

i∈{1,2,...,m}

P(i ∈ A)P(i ∈ A′) = m ·
a
m
·

a
m
=

a2

m
. □
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Lemma A.4. Let (S 0, S 1) and (S ′0, S
′
1) be two independent subsamples from the honest

forest construction. Then, we have

1(
n

s/2

)2(n−s/2
s/2

)2

∑
S 0,S 1

∑
S ′0,S

′
1

|S ′1 ∩ S 0||S 1 ∩ S ′0| ≤
s4

16n(n − s/2)
.

Proof. First, assume that S ′1 and S 0 are fixed. Notice that S 1 ∩ S ′0 is disjoint from S ′1 ∪ S 0.
Thus, we have

E[|S 1 ∩ S ′0| | S
′
1, S 0]

=
∑

i<S ′1∪S 0

P(i ∈ S 1 ∩ S ′0 | S
′
1, S 0) =

∑
i<S ′1∪S 0

P(i ∈ S 1 | S ′1, S 0)P(i ∈ S ′0 | S
′
1, S 0),

= (n − |S ′1 ∪ S 0|)
(

s/2
n − s/2

)2

≤
s2

4(n − s/2)
.

(28)

Combining (28) and Lemma A.3, we have

1(
n

s/2

)2(n−s/2
s/2

)2

∑
S 0,S 1

∑
S ′0,S

′
1

|S ′1 ∩ S 0||S 1 ∩ S ′0| = E[|S ′1 ∩ S 0| · E[|S 1 ∩ S ′0| | S
′
1, S 0]]

≤
s4

16n(n − s/2)
. □

Lemma A.5. Let (S 0, S 1) and (S ′0, S
′
1) be two independent subsamples from the honest

forest construction. Given a fixed S 1 and S ′1 such that |S 1 ∩ S ′1| ≥ 1, we have

1(
n−s/2

s/2

) ∑
S 0

1
|S ′1\S 0|

−
2
s
=

1(
n−s/2

s/2

) ∑
S ′0

1
|S 1\S ′0|

−
2
s
≤

2n
s(n − s + 2)

. (29)

Furthermore,

1(
n−s/2

s/2

)2

(∑
S 0

1
|S ′1\S 0|

−
2
s

)(∑
S ′0

1
|S 1\S ′0|

−
2
s

)
≤

4n2

s2(n − s + 2)2 . (30)
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Proof. Fix S 1 and S ′1 and note that P(|S 1 ∩ S ′0| = k | S 1, S ′1) =
(s/2−|S 1∩S ′1 |

k )(n−s+|S 1∩S ′1 |
s/2−k )

(n−s/2
s/2 ) . Then,

1(
n−s/2

s/2

) ∑
S ′0

1
|S 1\S ′0|

=

s/2−|S 1∩S ′1 |∑
k=0

1
s/2 − k

P(|S 1 ∩ S ′0| = k | S 1, S ′1)

≤

s/2−|S 1∩S ′1 |∑
k=0

2
s/2 − k + 1

(
s/2−|S 1∩S ′1 |

k

)(
n−s+|S 1∩S ′1 |

s/2−k

)
(

n−s/2
s/2

)
≤

2(n − s/2 + 1)
(n − s + |S 1 ∩ S ′1| + 1)(s/2 + 1)

s/2−|S 1∩S ′1 |∑
k=0

(
s/2−|S 1∩S ′1 |

k

)(
n−s+|S 1∩S ′1 |+1

s/2−k+1

)
(

n−s/2+1
s/2+1

)
≤

4(n − s/2 + 1)
s(n − s + 2)

,

which implies that (29) holds regardless of (S 1, S ′1). This implies (30), since S 1\S ′0 is
conditionally independent of S ′1\S 0 given (S 1, S ′1). □

Proof of Theorem 7.1. We use the notation (ŝ(M, S 0), ȷ̂(M, S 0)) to denote the split point
and direction, respectively, for a given pair (M, S 0). First, notice that

E
[
(µ̂(x))2] = 1(

p
m

)2( n
s/2

)2(n−s/2
s/2

)2

∑
M,M′

∑
S ,S ′
E[µ̂(T (M, S ))(x)µ̂(T (M′, S ′))(x)]

=
1(

p
m

)2( n
s/2

)2(n−s/2
s/2

)2

∑
M,M′

∑
S ,S ′

∑
j∈M

j′∈M′

∑
i∈S 1
i′∈S ′1

E[LL′ + LR′ + RL′ + RR′],
(31)

where

L =
yi1( ȷ̂(M, S 0) = j)1(xi j ≤ ŝ(M, S 0))1(x j ≤ ŝ(M, S 0))

1 + #{k ∈ S 1\{i} : xk j ≤ ŝ(M, S 0)}
,

L′ =
yi′1( ȷ̂(M′, S ′0) = j′)1(xi′ j′ ≤ ŝ(M′, S ′0))1(x j′ ≤ ŝ(M′, S ′0))

1 + #{k′ ∈ S ′1\{i
′} : xk′ j′ ≤ ŝ(M′, S ′0)}

,

R =
yi1( ȷ̂(M, S 0) = j)1(xi j ≥ ŝ(M, S 0))1(x j > ŝ(M, S 0))

1 + #{k ∈ S 1\{i} : xk j > ŝ(M, S 0)}
, and

R′ =
yi′1( ȷ̂(M′, S ′0) = j′)1(xi′ j′ > ŝ(M′, S ′0))1(x j′ ≥ ŝ(M′, S ′0))

1 + #{k′ ∈ S ′1\{i
′} : xk′ j′ > ŝ(M′, S ′0)}

.

We evaluate (31) by considering five cases on the indices (i, i′, j, j′).

A.3.1 Case 1: i ∈ S 1\S ′0 and i , i′

In this case, yi is independent of ({(xk, yk) : k ∈ S 0 ∪ S ′0}, {xk : k ∈ S 1 ∪ S ′1}, yi′) and
E[yi] = 0, so we have that E[LL′] = E[LR′] = E[RL′] = E[RR′] = 0.
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A.3.2 Case 2: i′ ∈ S ′1\S 0 and i , i′

As with Case 1, we have that E[LL′] = E[LR′] = E[RL′] = E[RR′] = 0.

A.3.3 Case 3: i ∈ S 1 ∩ S ′0 and i′ ∈ S ′1 ∩ S 0

By the Cauchy-Schwartz inequality, we have

(E[LL′])2 ≤ E

[
y2

i 1( ȷ̂(M, S 0) = j)1(xi j ≤ ŝ(M, S 0))1(x j ≤ ŝ(M, S 0))
(1 + #{k ∈ S 1\{i} : xk j ≤ ŝ(M, S 0)})2

]
· E

[
y2

i′1( ȷ̂(M′, S ′0) = j′)1(xi′ j′ ≤ ŝ(M′, S ′0))1(x j′ ≤ ŝ(M′, S ′0))
(1 + #{k′ ∈ S ′1\{i

′} : xk′ j ≤ ŝ(M′, S ′0)})2

]
≤ E

[
1(xi j ≤ ŝ(M, S 0))1( ȷ̂(M, S 0) = j)
1 + #{k ∈ S 1\{i} : xk j ≤ ŝ(M, S 0)}

]
· E

[
1(xi′ j′ ≤ ŝ(M′, S ′0))1( ȷ̂(M′, S ′0) = j′)
1 + #{k′ ∈ S ′1\{i

′} : xk′ j ≤ ŝ(M′, S ′0)}

]
,

(32)
where we used the fact that yi is independent of ({xk′ : k′ ∈ S 1}, ŝ(M, S 0), ȷ̂(M, S 0))
and yi′ is independent of ({xk′ : k′ ∈ S ′1}, ŝ(M′, S ′0), ȷ̂(M′, S ′0)). Now, since ({xk j : k ∈
S 1}, ȷ̂(M, S 0)) is independent of ŝ(M, S 0) and ({xk′ j′ : k′ ∈ S ′1}, ȷ̂(M′, S ′0)) is independent
of ŝ(M′, S ′0), by applying Lemma A.2 to (32), we have

E[LL′] ≤
2
s

√
P( ȷ̂(M, S 0) = j)P( ȷ̂(M′, S ′0) = j′).

By symmetry, we have that

E[LL′ + LR′ + RL′ + RR′] ≤
8
s

√
P( ȷ̂(M, S 0) = j)P( ȷ̂(M′, S ′0) = j′).

Therefore, by the Cauchy-Schwarz inequality,∑
j∈M

j′∈M′

∑
i∈S 1∩S ′0
i′∈S ′1∩S 0

E[LL′ + LR′ + RL′ + RR′]

≤
8|S 1 ∩ S ′0||S

′
1 ∩ S 0|

s

∑
j∈M

j′∈M′

√
P( ȷ̂(M, S 0) = j)P( ȷ̂(M′, S ′0) = j′)

≤
8|S 1 ∩ S ′0||S

′
1 ∩ S 0|

s

√∑
j∈M

P( ȷ̂(M, S 0) = j)
∑
j′∈M′
P( ȷ̂(M′, S ′0) = j′)

=
8|S 1 ∩ S ′0||S

′
1 ∩ S 0|

s
,

so that, by Lemma A.4, we have

1(
p
m

)2( n
s/2

)2(n−s/2
s/2

)2

∑
M,M′

∑
S ,S ′

∑
j∈M

j′∈M′

∑
i∈S 1∩S ′0
i′∈S ′1∩S 0

E[LL′ + LR′ + RL′ + RR′] ≤
s3

2n(n − s/2)
.
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A.3.4 Case 4: j = j′ ∈ M ∩ M′ and i = i′

In this case, i ∈ S 1 ∩ S ′1 is not in S 0 or S ′0 so yiyi′ = y2
i is independent of ({xk : k ∈

S 1}, ŝ(M, S 0), ȷ̂(M, S 0), ŝ(M′, S ′0)) and E[y2
i ] = 1. Therefore,

E[LL′] ≤ E
[
1( ȷ̂(M, S 0) = j)1(xi j ≤ ŝ(M, S 0))1(x j ≤ ŝ(M, S 0))1(x j ≤ ŝ(M′, S ′0))

1 + #{k ∈ S 1\{i} : xk j ≤ ŝ(M, S 0)}

]
≤
P( ȷ̂(M, S 0) = j, x j ≤ ŝ(M, S 0), and x j ≤ ŝ(M′, S ′0))

s/2
,

where we similarly applied Lemma A.2. By symmetry, we have∑
j= j′∈M∩M′

∑
i=i′∈S 1∩S ′1

E[LL′ + LR′ + RL′ + RR′]

≤
∑

j= j′∈M∩M′

∑
i=i′∈S 1∩S ′1

P( ȷ̂(M, S 0) = j)
s/2

≤
2|S 1 ∩ S ′1||M ∩ M′|

sm
.

Applying Lemma A.3 twice, we see that

1(
p
m

)2( n
s/2

)2(n−s/2
s/2

)2

∑
M,M′

∑
S ,S ′

∑
j= j′∈M∩M′

∑
i=i′∈S 1∩S ′1

E[LL′ + LR′ + RL′ + RR′] =
sm

2np
.

A.3.5 Case 5: j , j′ and i = i′

If j < M′, then #{xk j : k ∈ S 1\{i}} is independent of (yi, ŝ(M, S 0), { ȷ̂(M, S 0) = j}, L′, yi).
Otherwise #{xk j : k ∈ S 1\{S ′0 ∪ i}} (which is less than #{xk j : k ∈ S 1\{i}}) is independent of
(ŝ(M, S 0), { ȷ̂(M, S 0) = j}, L′). Therefore, by applying Lemma A.2, we have

E[L | yi, ŝ(M, S 0), { ȷ̂(M, S 0) = j}, L′]

≤ yi1( ȷ̂(M, S 0) = j)
(
1( j < M′)

s/2
+
1( j ∈ M′)
|S 1\S ′0|

)
1(x j ≤ ŝ(M, S 0)).

Similarly, we also have

E[L′ | yi, { ȷ̂(M, S 0) = j}, ŝ(M′, S ′0), { ȷ̂(M′, S ′0) = j′}]

≤ yi1( ȷ̂(M′, S ′0) = j′)
(
1( j′ < M)

s/2
+
1( j′ ∈ M)
|S ′1\S 0|

)
1(x j′ ≤ ŝ(M′, S ′0)).

Therefore, we have

E[LL′] ≤ P( ȷ̂(M, S 0) = j, ȷ̂(M′, S ′0) = j′, x j ≤ ŝ(M, S 0), and x j′ ≤ ŝ(M′, S ′0))

·

(
1( j < M′)

s/2
+
1( j ∈ M′)
|S 1\S ′0|

)(
1( j′ < M)

s/2
+
1( j′ ∈ M)
|S 1\S ′0|

)
,
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where we used the fact that y2
i is independent of the data indices in S 0 ∪ S ′0, for i = i′ ∈

S 1 ∩ S ′1, and E[y2
i ] = 1. By symmetry, we have∑

j∈M
j∈M′

∑
i∈S 1∩S ′1

E[LL′ + LR′ + RL′ + RR′]

≤
∑

j∈M
j∈M′

∑
i∈S 1∩S ′1

P( ȷ̂(M, S 0) = j, ȷ̂(M′, S ′0) = j′)
(
1( j < M′)

s/2
+
1( j ∈ M′)
|S 1\S ′0|

)(
1( j′ < M)

s/2
+
1( j′ ∈ M)
|S 1\S ′0|

)

≤
|S 1 ∩ S ′1|

m2

(
m − |M ∩ M′|

s/2
+
|M ∩ M′|
|S 1\S ′0|

)(
m − |M ∩ M′|

s/2
+
|M ∩ M′|
|S ′1\S 0|

)
≤ |S 1 ∩ S ′1|

(
4
s2 +

2|M ∩ M′|
sm

(
1

|S 1\S ′0|
+

1
|S ′1\S 0|

−
4
s

)
+
|M ∩ M′|

m

(
1

|S 1\S ′0|
−

2
s

)(
1

|S ′1\S 0|
−

2
s

))
.

(33)
Since i ∈ S 1 ∩ S ′1, we have |S 1 ∩ S ′1| ≥ 1, so by (33) and Lemma A.5, we have∑

M,M′
∑

S ,S ′
∑

j, j′
∑

i=i′ E[LL′ + LR′ + RL′ + RR′](
p
m

)2( n
s/2

)2(n−s/2
s/2

)2

≤

∑
M,M′

∑
S 1,S ′1
|S 1 ∩ S ′1|

(
4
s2 +

8n|M∩M′ |
s2(n−s+2)m +

4n2 |M∩M′ |
s2(n−s+2)2m

)
(

p
m

)2( n
s/2

)2

≤
1
n
+

2m
(n − s + 2)p

+
nm

(n − s + 2)2 p

≤
1
n

(
1 +

3m
p

(
n

n − s + 2

)2)
,

where we applied Lemma A.3 in the second inequality. Combining Cases 1-5, we have
thus shown that

E
[
(µ̂(x))2] ≤ 1

n

(
1 +

sm
2p
+

3m
p

(
n

n − s + 2

)2

+
s3

2(n − s/2)

)
. □
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