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Introduction

Adaptive Decision Trees are widely used in academia and industry.

▶ CART: Breiman, Friedman, Olshen & Stone (1984).

▶ Adaptivity: incorporate data features in their construction.

▶ Popularity: prime example of “modern” machine learning toolkit.

▶ Preferred for interpretability or pointwise learning:

yi = µ(xi) + εi, E[εi | xi] = 0, E
[
ε2i | xi

]
= σ2(xi),

where xi = (xi1, xi2, . . . , xip)
′ covariates supported on X .

▶ Today: a foundational result for Adaptive Decision Trees.

▶ Axis-aligned: pointwise inconsistent =⇒ uniformly inconsistent.
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Adaptive Axis-Aligned Decision Tree (CART)

t0

x

K = 0, 2K = 1

for each K : min
j=1,2,··· ,p

min
β1,β2,τ

∑
xi∈t

(
yi − β11(xij ≤ τ)− β21(xij > τ)

)2
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Adaptive Axis-Aligned Decision Tree (CART)
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Adaptive Axis-Aligned Decision Tree (CART)
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Adaptive Axis-Aligned Decision Tree (CART)
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Adaptive Axis-Aligned Decision Tree (CART)

x1

x
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t3 t4
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t0

t2t1

t6t5t4t3

x2 ≤ b1 x2 > b1

x1 ≤ b2 x1 ≤ b3x1 > b2 x1 > b3

µ̂(TK)(x) = yt =
1

n(t)

∑
xi∈t

yi, n(t) =
∑
xi∈t

1(xi ∈ t).

CKT (2024): for “honest” trees and µ(x) = µ,

P
(
sup
x∈X

|µ̂(TK)(x)− µ| > C
)
> C2 if K ≳ log log(n),

E
[
∥µ̂(TK)− µ∥2

]
= E

[ ∫
X
(µ̂(TK)(x)− µ)2Px(dx)

]
≤ 2K+1σ2

n+ 1
.
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Adaptive Axis-Aligned Decision Tree (CART)
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x1 ≤ b2 x1 ≤ b3x1 > b2 x1 > b3

µ̂(TK)(x) = yt =
1

n(t)

∑
xi∈t

yi, n(t) =
∑
xi∈t

1(xi ∈ t).

Main Result: for “honest” trees and µ(x) = µ,

P
(
sup
x∈X

|µ̂(TK)(x)− µ| > C
)
> C2 if K ≳ log log(n),

E
[
∥µ̂(TK)− µ∥2

]
= E

[ ∫
X
(µ̂(TK)(x)− µ)2Px(dx)

]
≤ 2K+1σ2

n+ 1
.
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Decision Trees for Heterogeneous Causal Effects

“...enables researchers to let the data discover relevant subgroups while pre-
serving the validity of confidence intervals constructed on treatment effects
within subgroups...”

▶ Our paper challenges this claim.

14/25



Motivation: Heterogeneous TE, Policy Decisions, Design RCTs, etc.

▶ {(yi,x′
i, di) : i = 1, 2, . . . , n} i.i.d., and yi = yi(1) · di + yi(0) · (1− di).

▶ RCT: (yi(0), yi(1),x
T
i ) ⊥⊥ di and ξ = P(di = 1) ∈ (0, 1), so

τCATE(xi) = E[yi(1)− yi(0) | xi = x]

= E[yi | xi, di = 1]− E[yi | xi, di = 0]

= E
[
yi

di − ξ

ξ(1− ξ)
| xi

]
.

“Honest” Causal Decision Trees (Athey and Imbens, 2019):

▶ Regression-based heterogeneity discovery:

τ̂REG(TK)(x) =
1

#{xi ∈ t : di = 1}
∑

xi∈t:di=1

yi −
1

#{xi ∈ t : di = 0}
∑

xi∈t:di=0

yi

▶ IPW-based heterogeneity discovery:

τ̂IPW(TK)(x) =
1

#{xi ∈ t}
∑
xi∈t

yi
di − ξ

ξ(1− ξ)

▶ Adaptive tree TK with sample splitting, and t denotes the unique (terminal)
node containing x ∈ X .
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Setup: Constant (Treatment Effect/Regression) Model

yi = µ(xi) + εi, E[εi | xi] = 0, E
[
ε2i | xi

]
= σ2(xi)

The following conditions hold.

1. (yi,x
′
i), i = 1, 2, . . . , n, is a random sample.

2. µ(x) ≡ µ is constant for all x ∈ X ⊆ Rp.

3. xi has a continuous distribution.

4. xi ⊥⊥ εi for all i = 1, 2, . . . , n.

5. E
[
|εi|2+ν

]
< ∞ for some ν > 0.

CKT (2024): axis-aligned adaptive (CART) decision trees.

1. Decision stumps (K = 1) split with high probability “near” the boundaries.

2. µ̂(T1)(x) has at best polylog(n) convergence rate near boundaries.

3. “Honest” µ̂(TK)(x) are uniformly inconsistent as soon as K ≳ log log(n).

▶ n = 1 billion implies depth log log(n) ≈ 3.

▶ Inconsistency occurs at countable many points on support, not just at boundaries.

4. Pruning does not solve the inconsistency; other regularization requires care...
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Decision Stumps: polylog(n) Convergence Rate Near Boundaries

Recall: for each level K, adaptive (CART) decision trees solve

min
j=1,2,··· ,p

min
β1,β2,τ

∑
xi∈t

(
yi − β11(xij ≤ τ)− β21(xij > τ)

)2
,

which is equivalent to maximizing the so-called impurity gain∑
xl∈t

(yl − µ)2 −
∑
xl∈t

(
yl − ytL

1(xlj ≤ τ)− ytR
1(xlj > τ)

)2
=

1

i(n(t)− i)

( 1√
n(t)

i∑
l=1

(yl − µ)− i

n(t)

1√
n(t)

n(t)∑
l=1

(yl − µ)
)2

with respect to index i and variable j, after reordering the data =⇒ (̂ı, ȷ̂).

▶ Darling-Erdös (1956) limit law (Berkes & Weber, 2006): for any non-decreasing
function 1 ≤ h(m) ≤ m for which limm→∞ h(m) = ∞ and any w ∈ R,

P

(
max

m/h(m)≤i≤m

∣∣∣∣∣ 1√i

i∑
l=1

(yl − µ)

∣∣∣∣∣ < λ(h(m), w)

)
→ ee

−w

,

as m → ∞, where λ(·, ·) is known.
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Decision Stumps: polylog(n) Convergence Rate Near Boundaries
Careful study of maximum over different ranges of the split index gives:

Theorem

Suppose p = 1. Let µ̂(T1)(x) be the CART estimator of the regression function at the
root node. For any a, b ∈ (0, 1) with a < b, we have

lim inf
n→∞

inf
x∈Xn

P
(
|µ̂(T1)(x)− µ| ≥ σn−b/2

√
(2 + o(1)) log log(n)

)
≥ b− a

e
,

where Xn = [0, (1 + o(1))na−1) ∪ (1− (1 + o(1))na−1, 1].

▶ Decision stumps cannot converge at a polynomial rate, i.e., its rate is slower
than any polynomial-in-n.

▶ With arbitrary high probability, split index ı̂ will concentrate near its extremes,
from the beginning of any tree construction.

▶ The first split generates cell containing, at most, loga(n) observations, with
probability at least (log(n))−b, up to constant factors.

▶ Too few observations will be available on one of the cells after the first split for
CART to deliver a polynomial-in-n consistent estimator of µ.
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“Honest” (Decision/Causal) Trees: Uniform Inconsistency

Iterating nearly inconsistent decision stumps can only make things worse... Thus,
employing “honesty” (i.e., sample splitting), we have:

Theorem

Suppose p = 1. Consider a maximal depth Kn ≳ log log(n) tree TKn constructed with
CART+ methodology. Then, there exists a positive constant C such that

lim inf
n→∞

P

(
sup
x∈X

|µ̃(TKn)(x)− µ| > C

)
> 0.

▶ Shallow “Honest” decision/causal trees are uniformly inconsistent.

▶ Inconsistency due to variance issue, not to boundary/misspecification bias.

▶ Inconsistency can occur at countable many points on the entire support X .

▶ Pruning does not mitigate the inconsistency.

▶ Non-constant µ have similar problems: e.g., piecewise heterogeneity.
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Simulations: Decision Stumps (K = 1) for Constant (Treatment) Model
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(a) Pointwise RMSE of decision stump.
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(b) Pointwise RMSE of causal decision
stump.

21/25



Simulations: Decision Stumps (K = 1) with Pruning
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(a) Pointwise RMSE for pruned tree at
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T .
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(b) Pointwise RMSE for pruned causal tree

at x = (0, x2)
T .
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Takeaways

Adaptive Decision Trees are a leading component of the machine learning toolkit.

▶ Today: two foundational results for Adaptive Decision Trees.

▶ Axis-aligned: pointwise inconsistent =⇒ uniformly inconsistent.

▶ Adaptive ML methods have advantages and disadvantages.

▶ Statistical and algorithmic implementations must be studied together.

▶ Mechanical implementations of machine learning can be detrimental.

▶ Open question: do other machine learning methods have similar problems?
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