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Abstract
In previous literature, backward error analysis
was used to find ordinary differential equations
(ODEs) approximating the gradient descent trajec-
tory. It was found that finite step sizes implicitly
regularize solutions because terms appearing in
the ODEs penalize the two-norm of the loss gra-
dients. We prove that the existence of similar
implicit regularization in RMSProp and Adam
depends on their hyperparameters and the train-
ing stage, but with a different “norm” involved:
the corresponding ODE terms either penalize the
(perturbed) one-norm of the loss gradients or, con-
versely, impede its reduction (the latter case being
typical). We also conduct numerical experiments
and discuss how the proven facts can influence
generalization.

1. Introduction
Gradient descent (GD) can be seen as a numerical method
solving the ordinary differential equation (ODE) θ̇ =
−∇E(θ), where E(·) is the loss function and ∇E(θ) is its
gradient. Starting at θ(0), it creates a sequence of guesses
θ(1),θ(2), . . ., which lie close to the solution trajectory θ(t)
governed by the aforementioned ODE. Since the step size h
is finite, one could search for a modified differential equa-
tion ˙̃

θ = −∇Ẽ(θ̃) such that θ(n) − θ̃(nh) is exactly zero,
or at least closer to zero than θ(n) − θ(nh), that is, all the
guesses of the descent lie exactly on the new solution curve
or closer compared to the original curve. This approach to
analysing properties of a numerical method is sometimes
called backward error analysis in the numerical integration
literature (see Chapter IX in Ernst Hairer & Wanner (2006)
and references therein).

Barrett & Dherin (2021) used this idea for full-batch GD
and found that the modified loss function Ẽ(θ̃) = E(θ̃) +
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(h/4)∥∇E(θ̃)∥2 makes the trajectory of the solution to
˙̃
θ = −∇Ẽ(θ̃) approximate the sequence {θ(n)}∞n=0 one
order of h better than the original ODE, where ∥ · ∥ is
the Euclidean norm. In related work, Miyagawa (2022)
obtained the correction term for full-batch GD up to any
chosen order, also studying the global error (uniform in the
iteration number) as opposed to the local (one-step) error.

The analysis was later extended to mini-batch GD in Smith
et al. (2021). Assume that the training set is split into
batches of size B and there are m batches per epoch (so
the training set size is mB). The cost function is rewritten
as E(θ) = (1/m)

∑m−1
k=0 Êk(θ) with mini-batch costs de-

noted Êk(θ) = (1/B)
∑kB+B

j=kB+1 Ej(θ). It was obtained
in that work that after one epoch, the mean iterate of the
algorithm, averaged over all possible shuffles of the batch
indices, is close to the solution to θ̇ = −∇ẼSGD(θ), where
the modified loss is given by ẼSGD(θ) = E(θ)+h/(4m) ·∑m−1

k=0

∥∥∇Ê(θ)
∥∥2.

Modified equations have also been derived for GD with
heavy-ball momentum θ(n+1) = θ(n) − h∇E(θ(n)) +

β(θ(n) − θ(n−1)), where β is the momentum parameter.
In the full-batch setting, it turns out that for n large enough
it is close to the continuous trajectory solving

θ̇ = −∇E(θ)

1− β
− h

1 + β

(1− β)3
∇∥∇E(θ)∥2

4︸ ︷︷ ︸
implicit regularization

. (1)

Versions of this general result were proven in Farazmand
(2020), Kovachki & Stuart (2021), Ghosh et al. (2023) under
different assumptions. The focus of the latter work is the
closest to ours since they interpret the correction term as
implicit regularization. Their main theorem also provides
the analysis for the general mini-batch case.

In another recent work, Zhao et al. (2022) introduce a regu-
larization term λ · ∥∇E(θ)∥ to the loss function as a way
to ensure finding flatter minima, improving generalization.
The only difference between their term and the first-order
correction coming from backward error analysis (up to a
coefficient) is that the norm is not squared and regularization
is applied on a per-batch basis.

The application of backward error analysis for approximat-
ing the discrete dynamics of adaptive algorithms such as
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RMSProp (Tieleman et al., 2012) and Adam (Kingma &
Ba, 2015) is currently missing in the literature. Barrett
& Dherin (2021) note that “it would be interesting to use
backward error analysis to calculate the modified loss and
implicit regularization for other widely used optimizers such
as momentum, Adam and RMSprop”. Smith et al. (2021)
reiterate that they “anticipate that backward error analysis
could also be used to clarify the role of finite learning rates
in adaptive optimizers like Adam”. Ghosh et al. (2023)
agree that “RMSProp ... and Adam ..., albeit being powerful
alternatives to SGD with faster convergence rates, are far
from well-understood in the aspect of implicit regulariza-
tion”. In a similar context, in Appendix G to Miyagawa
(2022) it is mentioned that “its [Adam’s] counter term and
discretization error are open questions”.

This work fills the gap by conducting backward error analy-
sis for (mini-batch, and full-batch as a special case) Adam
and RMSProp. Our main contributions are listed below.

• In Theorem 3.1, we provide a global second-order in
h continuous piecewise ODE approximation to Adam
in the general mini-batch setting. (A similar result for
RMSProp is moved to Appendix C.) For the full-batch
special case, it was shown in prior work Ma et al. (2022)
that the continuous-time limit of both these algorithms is a
(perturbed by the numerical stability parameter ε) signGD
flow θ̇ = −∇E(θ)/(|∇E(θ)|+ ε) component-wise; we
make this more precise by finding a linear in h correction
term on the right.

• We analyze the full-batch case in the context of regu-
larization (see the summary in Section 2). In contrast
to the case of GD, where the two-norm of the loss
gradient is implicitly penalized, Adam typically anti-
penalizes the perturbed one-norm of the loss gradient
∥v∥1,ε =

∑p
i=1

√
v2i + ε (i. e., penalizes the negative

norm), as specified in (5). Thus, the implicit bias of Adam
that we identify serves as anti-regularization (except for
the unusual case β ≥ ρ, large ε or very late at training).

• We provide numerical evidence consistent with our theo-
retical results by training various vision models on CIFAR-
10 using full-batch Adam. In particular, we observe that
the stronger the implicit anti-regularization effect pre-
dicted by our theory, the worse the generalization. This
pattern holds across different architectures: ResNets, sim-
ple convolutional neural networks (CNNs) and Vision
Transformers. Thus, we propose a novel possible explana-
tion for often-reported poor generalization of adaptive gra-
dient algorithms. The code used for training the models is
available at https://github.com/borshigida/
implicit-bias-of-adam.

1.1. Related Work

Backward error analysis of first-order methods. We out-
lined the history of finding ODEs approximating different
algorithms above in the introduction. Recently, there have
been other applications of backward error analysis related to
machine learning. Kunin et al. (2020) show that the approx-
imating continuous-time trajectories satisfy conservation
laws that are broken in discrete time. França et al. (2021)
use backward error analysis while studying how to discretize
continuous-time dynamical systems preserving stability and
convergence rates. Rosca et al. (2021) find continuous-time
approximations of discrete two-player differential games.

Approximating gradient methods by differential equa-
tion trajectories. Under the assumption that the hyperpa-
rameters β, ρ of the Adam algorithm (see Definition 1.1)
tend to 1 at a certain rate as h → 0, a first-order continu-
ous ODE approximation to this algorithm was derived in
Barakat & Bianchi (2021). On the other hand, if β, ρ are
kept fixed, Ma et al. (2022) prove that the trajectories of
Adam and RMSProp are close to signGD dynamics, and
investigate different training regimes of these algorithms
empirically. SGD is approximated by stochastic differential
equations and novel adaptive parameter adjustment policies
are devised in Li et al. (2017). Malladi et al. (2022) derive
stochastic differential equations that are order-1 weak ap-
proximations of RMSProp and Adam. We go in a different
direction: instead of clarifying the previously obtained con-
tinuous ODE approximations by taking gradient noise into
account, we take a deterministic approach but go one order
of h further. In particular, we keep β, ρ fixed (thus gen-
eralizing the analysis for SGD with momentum), whereas
Malladi et al. (2022) take β, ρ → 1.

Connection with signGD. The connection of adaptive gra-
dient methods with sign(S)GD is extensively discussed
in Bernstein et al. (2018). Balles et al. (2020) study
a version of signGD with an update proportional to
−∥∇E(θ)∥1 sign∇E(θ) as a special case of steepest de-
scent, and discuss when sign-based methods are preferable
to GD.

Implicit bias of first-order methods. Soudry et al. (2018)
prove that GD trained to classify linearly separable data with
logistic loss converges to the direction of the max-margin
vector (the solution to the hard margin SVM). This result
has been extended to different loss functions in Nacson
et al. (2019b), to SGD in Nacson et al. (2019c), AdaGrad in
Qian & Qian (2019), (S)GD with momentum, deterministic
Adam and stochastic RMSProp in Wang et al. (2022), more
generic optimization methods in Gunasekar et al. (2018a),
to the nonseparable case in Ji & Telgarsky (2018b), Ji &
Telgarsky (2019). This line of research has been generalized
to studying implicit biases of linear networks (Ji & Telgar-
sky, 2018a; Gunasekar et al., 2018b), homogeneous neural
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networks (Ji & Telgarsky, 2020; Nacson et al., 2019a; Lyu &
Li, 2019). Woodworth et al. (2020) study the gradient flow
of a diagonal linear network with squared loss and show
that large initializations lead to minimum two-norm solu-
tions while small initializations lead to minimum one-norm
solutions. Even et al. (2023) extend this work to the case
of non-zero step sizes and mini-batch training. Wang et al.
(2021) prove that Adam and RMSProp maximize the margin
of homogeneous neural networks. Our perspective on the
implicit bias is different since we are considering a generic
loss function without any assumptions on the network archi-
tecture. Beneventano (2023) proves that in expectation over
batch sampling the trajectory of SGD without replacement
differs from that of SGD with replacement by an additional
step on a regularizer. As opposed to the work on backward
error analysis for SGD discussed above, they do not assume
the largest eigenvalue of the hessian to be bounded.

Generalization of adaptive methods. Cohen et al. (2022)
investigate the edge-of-stability regime of adaptive gradient
algorithms and the effect of sharpness (the largest eigenvalue
of the hessian) on generalization. Granziol (2020); Chen
et al. (2021) observe that adaptive methods find sharper
minima than SGD and Zhou et al. (2020); Xie et al. (2022)
argue theoretically that it is the case. Jiang et al. (2022)
introduce a statistic that measures the uniformity of the
hessian diagonal and argue that adaptive gradient algorithms
are biased towards making this statistic smaller. Keskar &
Socher (2017) propose to improve generalization of adaptive
methods by switching to SGD in the middle of training.

1.2. Notation

We denote the loss of the kth minibatch as a function of the
network parameters θ ∈ Rp by Ek(θ), and in the full-batch
setting we omit the index and write E(θ). ∇E means the
gradient of E, and ∇ with indices denotes partial derivatives,
e. g. ∇ijsE is a shortcut for ∂3E

∂θi∂θj∂θs
. The norm notation

without indices ∥·∥ is the two-norm of a vector, ∥·∥1 is
the one-norm and ∥·∥1,ε is the perturbed one-norm defined
as ∥v∥1,ε =

∑p
i=1

√
v2i + ε. (Of course, if ε > 0 the

perturbed one-norm is not really a norm, but taking ε = 0
makes it the one-norm.) For a real number a the floor ⌊a⌋ is
the largest integer not exceeding a.

To provide the names and notations for hyperparameters,
we define the algorithm below.

Definition 1.1. The Adam algorithm (Kingma & Ba, 2015)
is an optimization algorithm with numerical stability hy-
perparameter ε > 0, squared gradient momentum hyper-
parameter ρ ∈ (0, 1), gradient momentum hyperparame-
ter β ∈ (0, 1), initialization θ(0) ∈ Rp, ν(0) = 0 ∈ Rp,
m(0) = 0 ∈ Rp and the following update rule: for each

n ≥ 0, j ∈ {1, . . . , p}

ν
(n+1)
j = ρν

(n)
j + (1− ρ)

(
∇jEn(θ

(n))
)2
,

m
(n+1)
j = βm

(n)
j + (1− β)∇jEn(θ

(n)),

θ
(n+1)
j = θ

(n)
j − h

m
(n+1)
j /(1− βn+1)√

ν
(n+1)
j /(1− ρn+1) + ε

.

Remark 1.2. Note that the numerical stability hyperparame-
ter ε > 0, which is introduced in these algorithms to avoid
division by zero, is inside the square root in our definition.
This way we avoid division by zero in the derivative too: the
first derivative of x 7→

(√
x+ ε

)−1
is bounded for x ≥ 0.

This is useful for our analysis. In Theorems B.4 and D.4, the
original versions of RMSProp and Adam are also tackled,
though with an additional assumption which requires that
no component of the gradient can come very close to zero in
the region of interest. This is true only for the initial period
of learning (whereas Theorem 3.1 tackles the whole period).
Practitioners do not seem to make a distinction between the
version with ε inside vs. outside the square root: tutorials
with both versions abound on machine learning related web-
sites. Moreover, the popular Tensorflow and Optax variants
of RMSProp have ε inside the square root. Empirically we
also observed that moving ε inside or outside the square
root does not change the behavior of Adam or RMSProp
qualitatively.

2. Implicit Bias of Full-Batch Adam: an
Informal Summary

We are ready to describe our theoretical result (Theorem 3.1
below) in the full-batch special case. Assume E(θ) is the
loss, whose partial derivatives up to the fourth order are
bounded. Let {θ(n)} be iterations of Adam as defined
in Definition 1.1. We find an ODE whose solution trajectory
θ̃(t) is h2-close to {θ(n)}, meaning that for any time hori-
zon T > 0 there is a constant C such that for any step size
h ∈ (0, T ) we have ∥θ̃(nh)−θ(n)∥ ≤ Ch2 (for n between
0 and ⌊T/h⌋). The ODE is written the following way (up to
terms that rapidly go to zero as n grows): for the component
number j ∈ {1, . . . , p}

˙̃
θj(t) = −

∇jE
(
θ̃(t)

)
+ correctionj

(
θ̃(t)

)√∣∣∇jE
(
θ̃(t)

)∣∣2 + ε
(2)

with initial conditions θ̃j(0) = θ
(0)
j for all j, where the

correction term is

correctionj(θ)

:=
h

2

{
1 + β

1− β
− 1 + ρ

1− ρ
+

1 + ρ

1− ρ
· ε

|∇jE(θ)|2 + ε

}
3
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×∇j

∥∥∇E(θ)
∥∥
1,ε

. (3)

Depending on hyperparameters and the training stage, the
correction term can take two extreme forms listed below.
The reality is in between, but typically much closer to the
first case.

• If
√
ε is small compared to all components of ∇E

(
θ̃(t)

)
,

i. e. minj
∣∣∇jE

(
θ̃(t)

)∣∣≫ √
ε, which is usually the case

during most of the training, then we can write

correctionj(θ) ≈
h

2

{
1 + β

1− β
− 1 + ρ

1− ρ

}
∇j∥∇E(θ)∥1,ε.

(4)
For small ε, the perturbed one-norm is indistinguishable
from the usual one-norm, and for β > ρ it is penalized (in
much the same way as the squared two-norm is implicitly
penalized in the case of GD), but for the typical case
ρ > β its decrease is actually hindered by this term (so the
bias is anti-regularization). The ODE in (2) approximately
becomes

˙̃
θj(t) = −

∇jẼ
(
θ̃(t)

)∣∣∇jE
(
θ̃(t)

)∣∣ , with

Ẽ(θ) = E(θ) +
h

2

{
1 + β

1− β
− 1 + ρ

1− ρ

}
∥∇E(θ)∥1︸ ︷︷ ︸

implicit anti-regularization (if ρ > β)

.
(5)

• If
√
ε is large compared to all gradient components, i. e.

maxj
∣∣∇jE

(
θ̃(t)

)∣∣ ≪ √
ε (which may happen during

the late learning stage, or if non-standard hyperparameter
values are chosen), the fraction in (3) with ε in the nu-
merator approaches one, the dependence on ρ cancels out,
and

∥∥∇E
(
θ̃(t)

)∥∥
1,ε

≈
p∑

i=1

√
ε
(
1 +

∣∣∇iE
(
θ̃(t)

)∣∣2/(2ε))
= p

√
ε+

1

2
√
ε

∥∥∇E
(
θ̃(t)

)∥∥2. (6)

In other words, ∥ · ∥1,ε becomes ∥ · ∥2/(2
√
ε) up to an

additive constant, giving

correctionj(θ)

≈
(
4
√
ε
)−1

(1− β)−1(1 + β)∇j∥∇E(θ)∥2.

The form of the ODE in this case is
˙̃
θj(t) = −∇jẼ

(
θ̃(t)

)
, with

Ẽ(θ) =
1√
ε

(
E(θ) +

h

4
√
ε

1 + β

1− β
∥∇E(θ)∥2

)
.

(7)

These two extreme cases are summarized in Table 1. In Fig-
ure 1, we use the one-dimensional (p = 1) case to illustrate
what kind of term is being implicitly penalized.

Table 1. Implicit bias of Adam: special cases. “Small” and “large”
are in relation to squared gradient components (Adam in the latter
case is close to GD with momentum).

ε “small” ε “large”
ρ > β −∥∇E(θ)∥1-penalized ∥∇E(θ)∥22-penalized
β ≥ ρ ∥∇E(θ)∥1-penalized ∥∇E(θ)∥22-penalized

Usually, ε is chosen to be small, and during most of the
training Adam is much better described by the first extreme
case. It is clear from (5) that, if ρ > β, the correction
term provides the opposite of regularization, in contrast
to (1). The larger ρ compared to β, the stronger the anti-
regularization effect is.

This finding may partially explain why adaptive gradient
methods have been reported to generalize worse than non-
adaptive ones (Chen et al., 2018; Wilson et al., 2017), as
it offers a previously unknown perspective on why they
are biased towards “higher-curvature” regions and find
“sharper” minima. Indeed, note that standard (non-adaptive)
ℓ∞-sharpness at θ can be defined by max∥δ∥∞≤r E(θ +
δ) − E(θ) for some radius r. This or similar definitions
have been considered often in literature, see, e. g., An-
driushchenko et al. (2023), Foret et al. (2021). Replacing
the difference of the losses with its first-order approximation
under the maximum (Foret et al., 2021; Ghosh et al., 2023)

max
∥δ∥∞≤r

E(θ + δ)− E(θ)

≈ max
∥δ∥∞≤r

∇E(θ)⊺δ = r∥∇E(θ)∥1,

we see that Adam typically anti-penalizes the approximation
of ℓ∞-sharpness. Although the connection between sharp-
ness and generalization is not clear-cut (Andriushchenko
et al., 2023), our empirical results (Section 5) are consistent
with this theory.

This overview also applies to RMSProp by setting β = 0;
see Theorem C.4 for the formal result.

Example 2.1 (Backward Error Analysis for GD with
Heavy-ball Momentum). Assume ε is large compared to
all squared gradient components during the whole training
process, so that the form of the ODE is approximated by (7).
Since Adam with a large ε and after a certain number of
iterations approximates SGD with heavy-ball momentum
with step size h(1− β)/

√
ε, a linear step size change (and

corresponding time change) gives exactly the equations in
Theorem 4.1 of Ghosh et al. (2023). Taking β = 0 (no mo-
mentum), we get the implicit regularization of GD from Bar-
rett & Dherin (2021).
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Figure 1. To illustrate what term is being implicitly penalized in
the simple case p = 1, we plot the graphs of x 7→ F (x) :=
h
2

∫ x

0

{
1+β
1−β

− 1+ρ
1−ρ

+ 1+ρ
1−ρ

· ε
y2+ε

}
d
√

ε+ y2 with β = 0.95. In
this case, the correction term in (3) is itself the gradient of the
function F (E′(θ)), where E′ is the derivative (=gradient) of the
loss: specifically, correction = d

dθ
F (E′(θ)). Hence, Adam’s

iteration penalizes F (E′(θ)). If ε is small and ρ > β, the negative
one-norm of the gradient is penalized (leftmost picture, highest
values of ρ); in other words, the one-norm is anti-penalized.

3. Main Result: ODE Approximating
Mini-Batch Adam

We only make one assumption, which is standard in the
literature: the loss Ek for each mini-batch is 4 times con-
tinuously differentiable, and partial derivatives of Ek up to
order 4 are bounded, i. e. there is a positive constant M such
that for θ in the region of interest

sup
k

{
sup
i

|∇iEk(θ)| ∨ sup
i,j

|∇ijEk(θ)|

∨ sup
i,j,s

|∇ijsEk(θ)| ∨ sup
i,j,s,r

|∇ijsrEk(θ)|
}

≤ M. (8)

Theorem 3.1. Assume (8) holds. Let {θ(n)} be iterations
of Adam as defined in Definition 1.1, θ̃(t) be the continuous
solution to the piecewise ODE

˙̃
θj(t) = −

M
(n)
j

(
θ̃(t))

R
(n)
j (θ̃(t)

)
+ h

(
M

(n)
j

(
θ̃(t)

)(
2P

(n)
j

(
θ̃(t)

)
+ P̄

(n)
j

(
θ̃(t)

))
2R

(n)
j

(
θ̃(t)

)3
−

2L
(n)
j

(
θ̃(t)

)
+ L̄

(n)
j

(
θ̃(t)

)
2R

(n)
j

(
θ̃(t)

) )
(9)

for t ∈ [nh, (n+1)h] with the initial condition θ̃(0) = θ(0),
where

R
(n)
j (θ) :=

√∑n
k=0 ρ

n−k(1− ρ)(∇jEk(θ))
2

1− ρn+1
+ ε,

M
(n)
j (θ) :=

∑n
k=0 β

n−k(1− β)∇jEk(θ)

1− βn+1
,

L
(n)
j (θ) :=

1

1− βn+1

n∑
k=0

βn−k(1− β)

×
p∑

i=1

∇ijEk(θ)

n−1∑
l=k

M
(l)
i (θ)

R
(l)
i (θ)

,

L̄
(n)
j (θ) :=

1

1− βn+1

n∑
k=0

βn−k(1− β)

×
p∑

i=1

∇ijEk(θ)
M

(n)
i (θ)

R
(n)
i (θ)

,

P
(n)
j (θ) :=

1

1− ρn+1

n∑
k=0

ρn−k(1− ρ)∇jEk(θ)

×
p∑

i=1

∇ijEk(θ)

n−1∑
l=k

M
(l)
i (θ)

R
(l)
i (θ)

,

P̄
(n)
j (θ) :=

1

1− ρn+1

n∑
k=0

ρn−k(1− ρ)∇jEk(θ)

×
p∑

i=1

∇ijEk(θ)
M

(n)
i (θ)

R
(n)
i (θ)

.

Then, for any fixed positive time horizon T > 0 there exists
a constant C (depending on T , ρ, β, ε) such that for any
step size h ∈ (0, T ) we have

∥∥θ̃(nh) − θ(n)
∥∥ ≤ Ch2 for

n ∈ {0, . . . , ⌊T/h⌋}.

Remark 3.2. In the full-batch setting Ek ≡ E, the terms
above simplify to

R
(n)
j (θ) = (|∇jE(θ)|2 + ε)1/2,

M
(n)
j (θ) = ∇jE(θ),

L
(n)
j (θ) =

[
β

1− β
− (n+ 1)βn+1

1− βn+1

]
L̄
(n)
j (θ),

L̄
(n)
j (θ) = ∇j∥∇E(θ)∥1,ε,

P
(n)
j (θ) =

[
ρ

1− ρ
− (n+ 1)ρn+1

1− ρn+1

]
P̄

(n)
j (θ),

P̄
(n)
j (θ) = ∇jE(θ)∇j∥∇E(θ)∥1,ε.

If the iteration number n is large, (9) rapidly becomes as
described in (2) and (3).

Derivation sketch. The proof is in the appendix (this is The-
orem E.4; see Appendix A for the overview of the appendix).
To help the reader understand how the ODE (9) is obtained,
apart from the full proof, we include an informal derivation
in Appendix I, and provide an even briefer sketch of this
derivation here.

Our goal is to find such a trajectory θ̃(t) that, denoting
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tn := nh, we have

θ̃j(tn+1) = θ̃j(tn)− h
T

(n)
β,j√
T

(n)
ρ,j

+O(h3) with (10)

T
(n)
β,j :=

1

1− βn+1

n∑
k=0

βn−k(1− β)∇jEk

(
θ̃(tk)

)
,

T
(n)
ρ,j :=

1

1− ρn+1

n∑
k=0

ρn−k(1− ρ)
(
∇jEk

(
θ̃(tk)

))2
+ ε.

Ignoring the terms of order higher than one in h, we can
take a first-order approximation for granted: θ̃j(tn+1) =

θ̃j(tn) − hA
(n)
j (θ̃(tn)) + O(h2) with A

(n)
j (θ) :=

M
(n)
j (θ)/R

(n)
j (θ). The challenge is to make this more

precise by finding an equality of the form

θ̃j(tn+1) = θ̃j(tn)

− hA
(n)
j

(
θ̃(tn)

)
+ h2B

(n)
j

(
θ̃(tn)

)
+O(h3), (11)

where B
(n)
j (·) is a known function. This is a numerical

iteration to which standard backward error analysis (Chapter
IX in Ernst Hairer & Wanner (2006)) can be applied.

Using the Taylor series, we can write

∇jEk

(
θ̃(tn−1)

)
= ∇jEk

(
θ̃(tn)

)
+

p∑
i=1

∇ijEk

(
θ̃(tn)

){
θ̃i(tn−1)− θ̃i(tn)

}
+O(h2)

= ∇jEk

(
θ̃(tn)

)
+ h

p∑
i=1

∇ijEk

(
θ̃(tn)

)M (n−1)
i

(
θ̃(tn−1)

)
R

(n−1)
i

(
θ̃(tn−1)

) +O(h2)

= ∇jEk

(
θ̃(tn)

)
+ h

p∑
i=1

∇ijEk

(
θ̃(tn)

)M (n−1)
i

(
θ̃(tn)

)
R

(n−1)
i

(
θ̃(tn)

) +O(h2),

where in the last equality we just replaced tn−1 with tn in
the h-term since it only affects higher-order terms. Doing
this again for steps n−2, n−3, . . ., and adding the resulting
equations will give for k < n

∇jEk

(
θ̃(tk)

)
= ∇jEk

(
θ̃(tn)

)
+ h

p∑
i=1

∇ijEk

(
θ̃(tn)

) n−1∑
l=k

M
(l)
i

(
θ̃(tn)

)
R

(l)
i

(
θ̃(tn)

) +O(h2),

where we could safely ignore that n − k is not bounded
because of exponential averaging. Taking the square of
this formal power series in h, multiplying this square by
ρn−k(1− ρ) and summing up over k will give

1

1− ρn+1

n∑
k=0

ρn−k(1− ρ)
[
∇jEk

(
θ̃(tk)

)]2
+ ε

= R
(n)
j

(
θ̃(tn)

)2
+ 2hP

(n)
j

(
θ̃(tn)

)
+O(h2),

which, using the expression for the inverse square root(∑∞
r=0 arh

r
)−1/2

of a formal power series
∑∞

r=0 arh
r,

gives us an expansion

1√
T

(n)
ρ,j

=
1

R
(n)
j

(
θ̃(tn)

) − h
P

(n)
j

(
θ̃(tn)

)
R

(n)
j

(
θ̃(tn)

)3 +O(h2).

A similar process provides an expansion for T (n)
β,j :

T
(n)
β,j = M

(n)
j

(
θ̃(tn)

)
+ hL

(n)
j

(
θ̃(tn)

)
+O(h2).

Inserting these two expansions into (10) leads to an expres-
sion for B(n)

j (·):

B
(n)
j (θ) =

M
(n)
j (θ)P

(n)
j (θ)

R
(n)
j (θ)3

−
L
(n)
j (θ)

R
(n)
j (θ)

.

We are now ready to find an ODE for t ∈ [tn, tn+1] of the

form ˙̃
θ = f̃

(
θ̃(t)

)
whose discretization is (11). This is a

task for standard backward error analysis: expand f̃(·) into
f̃(θ) = f(θ) + hf1(θ) +O(h2). By Taylor expansion, we
have

θ̃(tn+1) = θ̃(tn) + h
˙̃
θ(t+n ) +

h2

2
¨̃
θ(t+n ) +O(h3)

= θ̃(tn) + h
[
f
(
θ̃(tn)

)
+ hf1

(
θ̃(tn)

)
+O(h2)

]
+

h2

2

[
∇f
(
θ̃(tn)

)
f
(
θ̃(tn)

)
+O(h)

]
+O(h3)

= θ̃(tn) + hf
(
θ̃(tn)

)
+ h2

[
f1
(
θ̃(tn)

)
+

∇f
(
θ̃(tn)

)
f
(
θ̃(tn)

)
2

]
+O(h3).

It is left to equate the terms before the corresponding pow-
ers of h here and in (11), giving fj(θ) = −A

(n)
j (θ) and

f1,j(θ) = − 1
2

∑p
i=1 ∇ifj(θ)fi(θ) + B

(n)
j (θ). Omitting

some algebra, the piecewise ODE (9) is derived.

4. Illustration: Simple Bilinear Model
We now analyze the effect of the first-order term for Adam
in the same model as Barrett & Dherin (2021) and Ghosh
et al. (2023) have studied. Namely, assume the parameter
θ = (θ1, θ2)

⊺ is 2-dimensional, and the loss is given by
E(θ) := 1/2(3/2− 2θ1θ2)

2. The loss is minimized on the
hyperbola θ1θ2 = 3/4. We graph the trajectories of Adam
in this case: the left part of Figure 2 shows that increasing β
forces the trajectory to the region with smaller ∥∇E(θ)∥1,
and increasing ρ does the opposite. The right part shows that
increasing the learning rate moves Adam towards the region
with smaller ∥∇E(θ)∥1 if β > ρ (just like in the case of
GD, except the norm is different if ε is small compared to
gradient components), and does the opposite if ρ > β. All
these observations are exactly what Theorem 3.1 predicts.
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Figure 2. Left: increasing β moves the trajectory of Adam towards the regions with smaller one-norm of the gradient (if ε is sufficiently
small); increasing ρ does the opposite. Right: increasing the learning rate moves the Adam trajectory towards the regions with smaller
one-norm of the gradient if β is significantly larger than ρ and does the opposite if ρ is larger than β. The cross denotes the limit point of
gradient one-norm minimizers on the level sets 4θ1θ2 − 3 = c. The minimizers are drawn with a dashed line. All Adam trajectories start
at (2.8, 3.5).

5. Numerical Experiments
As a first sanity check, we train a relatively small fully-
connected neural network with around 105 parameters on
the first 10,000 images of MNIST with full-batch Adam for
100 epochs and plot the value ∥θ(n) − θ̃(tn)∥∞, i. e. the
maximal weight difference between the Adam iteration and
the piecewise ODE solution.1 We see in Figure 3 that even
on this very large time horizon the trajectories are close in
infinity-norm.

Further, we offer some preliminary empirical evidence that
Adam (anti-)penalizes the perturbed one-norm of the gradi-
ents, as discussed in Section 2.

1Since it makes little sense to numerically solve an ODE by
further discretization, θ̃(tn) is estimated using the iteration (11)
with O(h3) ignored. Strictly speaking, this is not the trajectory
obtained by the final backward error analysis step but rather the
step immediately preceding it (after removing long-term memory
but before converting the iteration to an ODE).
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Figure 3. ∥θ(n) − θ̃(tn)∥∞ for a MLP trained with full-batch
Adam on truncated MNIST, where θ̃(tn) is either first (signGD
perturbed by ε) or second order approximation to Adam; β =
0.9, ρ = 0.95, ε = 10−6. Precise definitions are provided in
Appendix H, specifically (63).
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Ma et al. (2022) divide training regimes of Adam into three
categories: the spike regime when ρ is much larger than β,
in which the training loss curve contains very large spikes
and the training is obviously unstable; the (stable) oscilla-
tion regime when ρ is sufficiently close to β, in which the
loss curve contains fast and small oscillations; the diver-
gence regime when β is much larger than ρ, in which Adam
diverges. We exclude the last regime. In the spike regime,
the loss spikes to large values at irregular intervals. This has
also been observed in the context of large transformers, and
mitigation strategies have been proposed in Chowdhery et al.
(2022) and Molybog et al. (2023). Since it is unlikely that
an unstable Adam trajectory can be meaningfully approxi-
mated by a smooth ODE solution, we reduce the incidence
of large spikes by only considering β and ρ that are not too
far apart, which is what Ma et al. (2022) recommend to do
in practice.

We train Resnet-50, CNNs and Vision Transformers (Doso-
vitskiy et al., 2020) on the CIFAR-10 dataset with full-batch
Adam. In this section, we provide the results for Resnet-50;
the pictures for CNNs and Transformers are similar and are
given in Appendix H.4. Figure 4 shows that in the stable
oscillation regime increasing ρ appears to increase the per-
turbed one-norm (consistent with our analysis: the smaller
ρ, the more this “norm” is penalized) and decrease the test
accuracy. Figure 5 shows that increasing β appears to de-
crease the perturbed one-norm (consistent with our analysis:
the larger β, the more this norm is penalized) and increase
the test accuracy. The picture confirms the finding in Ghosh
et al. (2023) (for the momentum parameter in momentum
GD).
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Figure 4. Resnet-50 on CIFAR-10 trained with full-batch Adam,
ε = 10−8, β = 0.99. As ρ increases, the norm rises and the test
accuracy falls. We train longer than necessary for near-perfect
classification on the train dataset (at least 2-3 thousand epochs),
and the test accuracies plotted here are maximal. The perturbed
norms are also maximal after excluding the initial training period
(i. e., the plotted “norms” are at peaks of the “hills” described in
Section 5). All results are averaged across five runs with different
initialization seeds. Additional evidence and more details are
provided in Appendix H.

Figure 6 shows the graphs of ∥∇E∥1,ε as functions of the
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Figure 5. Resnet-50 on CIFAR-10 trained with full-batch Adam,
ρ = 0.999, ε = 10−8. The perturbed one-norm falls as β in-
creases, and the test accuracy rises. Both metrics are calculated
as in Figure 4. All results are averaged across three runs with
different initialization seeds.

epoch number. The “norm” decreases, then rises again, and
then decreases further until it flatlines.2 Throughout most of
the training, the larger β the smaller the “norm”. The “hills”
of the “norm” curves are higher with smaller β and larger
ρ. This is consistent with our analysis because the larger ρ
compared to β, the more ∥∇E∥1,ε is prevented from falling
by the correction term.
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Figure 6. Plots of ∥∇E∥1,ε after each epoch for full-batch Adam,
h = 10−4, ε = 10−8. Resnet-50 on CIFAR-10, left: ρ = 0.999,
right: β = 0.97.

6. Limitations and Future Directions
As far as we know, the assumption similar to (8) is explicitly
or implicitly present in all previous work on backward er-
ror analysis of gradient-based machine learning algorithms.
(Recently, Beneventano (2023) weakened this assumption
for SGD without replacement, but their focus is somewhat
different.) There is evidence that large-batch algorithms
often operate near or at the edge of stability (Cohen et al.,
2021; 2022), in which the largest eigenvalue of the hessian
can be large, making it unclear whether the higher-order
partial derivatives can safely be assumed bounded near op-

2Note that the perturbed one-norm cannot be near-zero at the
end of training because it is bounded from below by p

√
ε.
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timality. In addition, as Smith et al. (2021) point out, in
the mini-batch setting backward error analysis can be more
accurate. We leave a qualitative analysis of the behavior of
first-order terms in Theorem 3.1 in the mini-batch case as a
future direction.

Relatedly, Adam does not always generalize worse than
SGD: for transformers, Adam often outperforms (Zhang
et al., 2020; Kumar et al., 2022). Moreover, for NLP tasks
a long time can be spent training close to an interpolating
solution. Our analysis suggests that in the latter regime
the anti-regularization effect disappears, which does indeed
confirm the finding that generalization can be better. How-
ever, we believe this explanation is not complete, and more
work is needed to connect the implicit bias to the training
dynamics of transformers.

In addition, the constant C in Theorem 3.1 goes to infinity
as ε goes to zero. Theoretically, our proof does not exclude
the case where for very small ε the trajectory of the piece-
wise ODE is only close to the Adam trajectory for small,
suboptimal learning rates, at least at later stages of learning.
(For the initial learning period, this is not a problem.) It
appears to also be true of Proposition 1 in Ma et al. (2022)
(zeroth-order approximation by sign-GD). This is especially
noticeable in the large-spike regime of training (see Sec-
tion 5) which, despite being obviously unstable, can still
lead to acceptable test errors. It would be worthwhile to
investigate this regime in detail.
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A. Overview
The appendix provide some omitted details and proofs.

We consider two algorithms: RMSProp and Adam, and two versions of each algorithm (with the numerical stability ε
parameter inside and outside of the square root in the denominator). This means there are four main theorems: Theorem B.4,
Theorem C.4, Theorem D.4 and Theorem E.4, each residing in the section completely devoted to one algorithm. The simple
induction argument taken from Ghosh et al. (2023), essentially the same for each of these theorems, is based on an auxiliary
result whose corresponding versions are Theorem B.3, Theorem C.3, Theorem D.3 and Theorem E.3. The proof of this
result is also elementary but long, and it is done by a series of lemmas in Appendix F and Appendix G. Out of these four, we
only prove Theorem B.3 since the other three results are proven in the same way with obvious changes.

Appendix H contains some details about the numerical experiments.

A.1. Notation

We denote the loss of the kth minibatch as a function of the network parameters θ ∈ Rp by Ek(θ), and in the full-batch
setting we omit the index and write E(θ). As usual, ∇E means the gradient of E, and nabla with indices means partial
derivatives, e. g. ∇ijsE is a shortcut for ∂3E

∂θi∂θj∂θs
.

The letter T > 0 will always denote a finite time horizon of the ODEs, h will always denote the training step size, and we
will replace nh with tn when convenient, where n ∈ {0, 1, . . .} is the step number. We will use the same notation for the
iteration of the discrete algorithm

{
θ(k)

}
k∈Z≥0

, the piecewise ODE solution θ̃(t) and some auxiliary terms for each of

the four algorithms: see Definition B.1, Definition C.1, Definition D.1, Definition E.1. This way, we avoid cluttering the
notation significantly. We are careful to reference the relevant definition in all theorem statements.

B. RMSProp with ε Outside the Square Root

Definition B.1. In this section, for some θ(0) ∈ Rp, ν(0) = 0 ∈ Rp, ρ ∈ (0, 1), let the sequence of p-vectors
{
θ(k)

}
k∈Z≥0

be defined for n ≥ 0 by

ν
(n+1)
j = ρν

(n)
j + (1− ρ)

(
∇jEn

(
θ(n)

))2
,

θ
(n+1)
j = θ

(n)
j − h√

ν
(n+1)
j + ε

∇jEn

(
θ(n)

)
.

(12)

Let θ̃(t) be defined as a continuous solution to the piecewise ODE

˙̃
θj(t) = −

∇jEn

(
θ̃(t)

)
R

(n)
j

(
θ̃(t)

)
+ ε

+ h

∇jEn

(
θ̃(t)

)(
2P

(n)
j

(
θ̃(t)

)
+ P̄

(n)
j

(
θ̃(t)

))
2
(
R

(n)
j

(
θ̃(t)

)
+ ε
)2

R
(n)
j

(
θ̃(t)

) −

∑p
i=1 ∇ijEn

(
θ̃(t)

) ∇iEn(θ̃(t))
R

(n)
i (θ̃(t))+ε

2
(
R

(n)
j (θ̃(t)) + ε

)


(13)

for t ∈ [tn, tn+1] with the initial condition θ̃(0) = θ(0), where R(n)(θ), P(n)(θ) and P̄(n)(θ) are p-dimensional functions
with components

R
(n)
j (θ) :=

√√√√ n∑
k=0

ρn−k(1− ρ)(∇jEk(θ))
2
,

P
(n)
j (θ) :=

n∑
k=0

ρn−k(1− ρ)∇jEk(θ)

p∑
i=1

∇ijEk(θ)

n−1∑
l=k

∇iEl(θ)

R
(l)
i (θ) + ε

,

12
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P̄
(n)
j (θ) :=

n∑
k=0

ρn−k(1− ρ)∇jEk(θ)

p∑
i=1

∇ijEk(θ)
∇iEn(θ)

R
(n)
i (θ) + ε

.

Assumption B.2.

1. For some positive constants M1, M2, M3, M4 we have

sup
i

sup
k

sup
θ
|∇iEk(θ)| ≤ M1,

sup
i,j

sup
k

sup
θ
|∇ijEk(θ)| ≤ M2,

sup
i,j,s

sup
k

sup
θ
|∇ijsEk(θ)| ≤ M3,

sup
i,j,s,r

sup
k

sup
θ
|∇ijsrEk(θ)| ≤ M4.

2. For some R > 0 we have for all n ∈ {0, 1, . . . , ⌊T/h⌋}

R
(n)
j

(
θ̃(tn)

)
≥ R,

n∑
k=0

ρn−k(1− ρ)
(
∇jEk

(
θ̃(tk)

))2
≥ R2,

where θ̃(t) is defined in Definition B.1.

Theorem B.3 (RMSProp with ε outside: local error bound). Suppose Assumption B.2 holds. Then for all n ∈
{0, 1, . . . , ⌊T/h⌋}, j ∈ {1, . . . , p}∣∣∣∣∣∣∣∣θ̃j(tn+1)− θ̃j(tn) + h

∇jEn

(
θ̃(tn)

)
√∑n

k=0 ρ
n−k(1− ρ)

(
∇jEk

(
θ̃(tk)

))2
+ ε

∣∣∣∣∣∣∣∣ ≤ C1h
3

for a positive constant C1 depending on ρ.

The proof of Theorem B.3 is conceptually simple but very technical, and we delay it until Appendix G. For now assuming it
as given and combining it with a simple induction argument gives a global error bound which follows.

Theorem B.4 (RMSProp with ε outside: global error bound). Suppose Assumption B.2 holds, and

n∑
k=0

ρn−k(1− ρ)
(
∇jEk

(
θ(k)

))2
≥ R2

for
{
θ(k)

}
k∈Z≥0

defined in Definition B.1. Then there exist positive constants d1, d2, d3 such that for all n ∈

{0, 1, . . . , ⌊T/h⌋}
∥en∥ ≤ d1e

d2nhh2 and ∥en+1 − en∥ ≤ d3e
d2nhh3,

where en := θ̃(tn)− θ(n). The constants can be defined as

d1 := C1,

d2 :=

[
1 +

M2
√
p

R+ ε

(
M2

1

R(R+ ε)
+ 1

)
d1

]
√
p,

d3 := C1d2.

Proof. We will show this by induction over n, the same way an analogous bound is shown in Ghosh et al. (2023).

13



On the Implicit Bias of Adam

The base case is n = 0. Indeed, e0 = θ̃(0)− θ(0) = 0. Then the jth component of e1 − e0 is

[e1 − e0]j = [e1]j = θ̃j(t1)− θ
(0)
j +

h∇jE0

(
θ(0)

)
√
(1− ρ)

(
∇jE0

(
θ(0)

))2
+ ε

= θ̃j(t1)− θ̃j(t0) +
h∇jE0

(
θ̃(t0)

)
√

(1− ρ)
(
∇jE0

(
θ̃(t0)

))2
+ ε

.

By Theorem B.3, the absolute value of the right-hand side does not exceed C1h
3, which means ∥e1 − e0∥ ≤ C1h

3√p.
Since C1

√
p ≤ d3, the base case is proven.

Now suppose that for all k = 0, 1, . . . , n− 1 the claim

∥ek∥ ≤ d1e
d2khh2 and ∥ek+1 − ek∥ ≤ d3e

d2khh3

is proven. Then

∥en∥
(a)

≤ ∥en−1∥+ ∥en − en−1∥ ≤ d1e
d2(n−1)hh2 + d3e

d2(n−1)hh3

= d1e
d2(n−1)hh2

(
1 +

d3
d1

h

)
(b)

≤ d1e
d2(n−1)hh2(1 + d2h)

(c)

≤ d1e
d2(n−1)hh2 · ed2h = d1e

d2nhh2,

where (a) is by the triangle inequality, (b) is by d3/d1 ≤ d2, in (c) we used 1 + x ≤ ex for all x ≥ 0.

Next, combining Theorem B.3 with (12), we have

∣∣∣[en+1 − en]j

∣∣∣ ≤ C1h
3 + h

∣∣∣∣∣∣
∇jEn

(
θ̃(tn)

)
√
A+ ε

−
∇jEn

(
θ(n)

)
√
B + ε

∣∣∣∣∣∣, (14)

where to simplify notation we put

A :=

n∑
k=0

ρn−k(1− ρ)
(
∇jEk

(
θ̃(tk)

))2
,

B :=

n∑
k=0

ρn−k(1− ρ)
(
∇jEk

(
θ(k)

))2
.

Using A ≥ R2, B ≥ R2, we have∣∣∣∣ 1√
A+ ε

− 1√
B + ε

∣∣∣∣ = |A−B|(√
A+ ε

)(√
B + ε

)(√
A+

√
B
) ≤ |A−B|

2R(R+ ε)
2 . (15)

But since ∣∣∣∣(∇jEk

(
θ̃(tk)

))2
−
(
∇jEk

(
θ(k)

))2∣∣∣∣
=
∣∣∣∇jEk

(
θ̃(tk)

)
−∇jEk

(
θ(k)

)∣∣∣ · ∣∣∣∇jEk

(
θ̃(tk)

)
+∇jEk

(
θ(k)

)∣∣∣
≤ 2M1

∣∣∣∇jEk

(
θ̃(tk)

)
−∇jEk

(
θ(k)

)∣∣∣ ≤ 2M1M2
√
p
∥∥∥θ̃(tk)− θ(k)

∥∥∥,
14
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we have

|A−B| ≤ 2M1M2
√
p

n∑
k=0

ρn−k(1− ρ)
∥∥∥θ̃(tk)− θ(k)

∥∥∥. (16)

Combining (15) and (16), we obtain∣∣∣∣∣∣
∇jEn

(
θ̃(tn)

)
√
A+ ε

−
∇jEn

(
θ(n)

)
√
B + ε

∣∣∣∣∣∣
≤
∣∣∣∇jEn

(
θ̃(tn)

)∣∣∣ · ∣∣∣∣ 1√
A+ ε

− 1√
B + ε

∣∣∣∣+
∣∣∣∇jEn

(
θ̃(tn)

)
−∇jEn

(
θ(n)

)∣∣∣
√
B + ε

≤ M1 ·
2M1M2

√
p
∑n

k=0 ρ
n−k(1− ρ)

∥∥∥θ̃(tk)− θ(k)
∥∥∥

2R(R+ ε)2
+

M2
√
p
∥∥∥θ̃(tn)− θ(n)

∥∥∥
R+ ε

=
M2

1M2
√
p

R(R+ ε)2

n∑
k=0

ρn−k(1− ρ)
∥∥∥θ̃(tk)− θ(k)

∥∥∥+ M2
√
p

R+ ε

∥∥∥θ̃(tn)− θ(n)
∥∥∥

(a)

≤
M2

1M2
√
p

R(R+ ε)2

n∑
k=0

ρn−k(1− ρ)d1e
d2khh2 +

M2
√
p

R+ ε
d1e

d2nhh2, (17)

where in (a) we used the induction hypothesis and that the bound on ∥en∥ is already proven.

Now note that since 0 < ρe−d2h ≤ ρ, we have
∑n

k=0

(
ρe−d2h

)k ≤
∑∞

k=0 ρ
k = 1

1−ρ , which is rewritten as

n∑
k=0

ρn−k(1− ρ)ed2kh ≤ ed2nh.

Then we can continue (17):∣∣∣∣∣∣
∇jEn

(
θ̃(tn)

)
√
A+ ε

−
∇jEn

(
θ(n)

)
√
B + ε

∣∣∣∣∣∣ ≤ M2
√
p

R+ ε

(
M2

1

R(R+ ε)
+ 1

)
d1e

d2nhh2 (18)

Again using 1 ≤ ed2nh, we conclude from (14) and (18) that

∥en+1 − en∥ ≤
(
C1 +

M2
√
p

R+ ε

(
M2

1

R(R+ ε)
+ 1

)
d1

)
√
p︸ ︷︷ ︸

≤d3

ed2nhh3,

finishing the induction step.

B.1. RMSProp with ε outside: full-batch

In the full-batch setting Ek ≡ E, the terms in (13) simplify to

R
(n)
j (θ) = |∇jE(θ)|

√
1− ρn+1,

P
(n)
j (θ) =

n∑
k=0

ρn−k(1− ρ)∇jE(θ)

p∑
i=1

∇ijE(θ)

n−1∑
l=k

∇iE(θ)

|∇iE(θ)|
√
1− ρl+1 + ε

,

P̄
(n)
j (θ) =

(
1− ρn+1

)
∇jE(θ)

p∑
i=1

∇ijE(θ)
∇iE(θ)

|∇iE(θ)|
√
1− ρn+1 + ε

.

If ε is small and the iteration number n is large, (13) simplifies to

˙̃
θj(t) = − sign∇jE(θ̃(t)) + h

ρ

1− ρ
·
∑p

i=1 ∇ijE(θ̃(t)) sign∇iE(θ̃(t))∣∣∣∇jE(θ̃(t))
∣∣∣

15
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=
∣∣∣∇jE(θ̃(t))

∣∣∣−1
[
−∇jE(θ̃(t)) + h

ρ

1− ρ
∇j

∥∥∥∇E(θ̃(t))
∥∥∥
1

]
.

C. RMSProp with ε Inside the Square Root

Definition C.1. In this section, for some θ(0) ∈ Rp, ν(0) = 0 ∈ Rp, ρ ∈ (0, 1), let the sequence of p-vectors
{
θ(k)

}
k∈Z≥0

be defined for n ≥ 0 by

ν
(n+1)
j = ρν

(n)
j + (1− ρ)

(
∇jEn

(
θ(n)

))2
,

θ
(n+1)
j = θ

(n)
j − h√

ν
(n+1)
j + ε

∇jEn

(
θ(n)

)
.

(19)

Let θ̃(t) be defined as a continuous solution to the piecewise ODE

˙̃
θj(t) = −

∇jEn

(
θ̃(t)

)
R

(n)
j

(
θ̃(t)

)

+ h

∇jEn

(
θ̃(t)

)(
2P

(n)
j

(
θ̃(t)

)
+ P̄

(n)
j

(
θ̃(t)

))
2R

(n)
j

(
θ̃(t)

)3 −

∑p
i=1 ∇ijEn

(
θ̃(t)

)∇iEn(θ̃(t))
R

(n)
i (θ̃(t))

2R
(n)
j (θ̃(t))

.

(20)

for t ∈ [tn, tn+1] with the initial condition θ̃(0) = θ(0), where R(n)(θ), P(n)(θ) and P̄(n)(θ) are p-dimensional functions
with components

R
(n)
j (θ) :=

√√√√ n∑
k=0

ρn−k(1− ρ)(∇jEk(θ))
2
+ ε,

P
(n)
j (θ) :=

n∑
k=0

ρn−k(1− ρ)∇jEk(θ)

p∑
i=1

∇ijEk(θ)

n−1∑
l=k

∇iEl(θ)

R
(l)
i (θ)

,

P̄
(n)
j (θ) :=

n∑
k=0

ρn−k(1− ρ)∇jEk(θ)

p∑
i=1

∇ijEk(θ)
∇iEn(θ)

R
(n)
i (θ)

.

(21)

Assumption C.2. For some positive constants M1, M2, M3, M4 we have

sup
i

sup
k

sup
θ
|∇iEk(θ)| ≤ M1,

sup
i,j

sup
k

sup
θ
|∇ijEk(θ)| ≤ M2,

sup
i,j,s

sup
k

sup
θ
|∇ijsEk(θ)| ≤ M3,

sup
i,j,s,r

sup
k

sup
θ
|∇ijsrEk(θ)| ≤ M4.

Theorem C.3 (RMSProp with ε inside: local error bound). Suppose Assumption C.2 holds. Then for all n ∈
{0, 1, . . . , ⌊T/h⌋}, j ∈ {1, . . . , p}∣∣∣∣∣∣∣∣θ̃j(tn+1)− θ̃j(tn) + h

∇jEn

(
θ̃(tn)

)
√∑n

k=0 ρ
n−k(1− ρ)

(
∇jEk

(
θ̃(tk)

))2
+ ε

∣∣∣∣∣∣∣∣ ≤ C2h
3

for a positive constant C2 depending on ρ, where θ̃(t) is defined in Definition C.1.

The argument is the same as for Theorem B.3.
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Theorem C.4 (RMSProp with ε inside: global error bound). Suppose Assumption C.2 holds. Then there exist positive
constants d4, d5, d6 such that for all n ∈ {0, 1, . . . , ⌊T/h⌋}

∥en∥ ≤ d4e
d5nhh2 and ∥en+1 − en∥ ≤ d6e

d5nhh3,

where en := θ̃(tn)− θ(n); θ̃(t) and
{
θ(k)

}
k∈Z≥0

are defined in Definition C.1. The constants can be defined as

d4 := C2,

d5 :=

[
1 +

M2
√
p

√
ε

(
M2

1

ε
+ 1

)
d4

]
√
p,

d6 := C2d5.

The argument is the same as for Theorem B.4.

C.1. RMSProp with ε Inside: Full-Batch

In the full-batch setting Ek ≡ E, the terms in (20) simplify to

R
(n)
j (θ) =

√
|∇jE(θ)|2(1− ρn+1) + ε,

P
(n)
j (θ) =

n∑
k=0

ρn−k(1− ρ)∇jE(θ)

p∑
i=1

∇ijE(θ)

n−1∑
l=k

∇iE(θ)√
|∇iE(θ)|2(1− ρl+1) + ε

,

P̄
(n)
j (θ) = (1− ρn+1)∇jE(θ)

p∑
i=1

∇ijE(θ)
∇iE(θ)√

|∇iE(θ)|2(1− ρn+1) + ε
.

If the iteration number n is large, (20) rapidly becomes

˙̃
θj(t) = − 1√

|∇jE(θ̃(t))|2 + ε

(
∇jE(θ̃(t)) + correctionj

(
θ̃(t)

))
,

where

correctionj
(
θ̃(t)

)
:=

h

2

{
− 2ρ

1− ρ
+

1 + ρ

1− ρ
· ε

|∇jE(θ̃(t))|2 + ε

}
∇j

∥∥∇E(θ̃(t))
∥∥
1,ε

.

D. Adam with ε Outside the Square Root

Definition D.1. In this section, for some θ(0) ∈ Rp, ν(0) = 0 ∈ Rp, β, ρ ∈ (0, 1), let the sequence of p-vectors{
θ(k)

}
k∈Z≥0

be defined for n ≥ 0 by

ν
(n+1)
j = ρν

(n)
j + (1− ρ)

(
∇jEn

(
θ(n)

))2
,

m
(n+1)
j = βm

(n)
j + (1− β)∇jEn

(
θ(n)

)
,

θ
(n+1)
j = θ

(n)
j − h

m
(n+1)
j /

(
1− βn+1

)√
ν
(n+1)
j /(1− ρn+1) + ε

or, rewriting,

θ
(n+1)
j = θ

(n)
j − h

1
1−βn+1

∑n
k=0 β

n−k(1− β)∇jEk

(
θ(k)

)
√

1
1−ρn+1

∑n
k=0 ρ

n−k(1− ρ)
(
∇jEk

(
θ(k)

))2
+ ε

. (22)
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Let θ̃(t) be defined as a continuous solution to the piecewise ODE

˙̃
θj(t) = −

M
(n)
j

(
θ̃(t)

)
R

(n)
j

(
θ̃(t)

)
+ ε

+ h

M
(n)
j

(
θ̃(t)

)(
2P

(n)
j

(
θ̃(t)

)
+ P̄

(n)
j

(
θ̃(t)

))
2
(
R

(n)
j

(
θ̃(t)

)
+ ε
)2

R
(n)
j

(
θ̃(t)

) −
2L

(n)
j

(
θ̃(t)

)
+ L̄

(n)
j

(
θ̃(t)

)
2
(
R

(n)
j

(
θ̃(t)

)
+ ε
)

.

(23)

for t ∈ [tn, tn+1] with the initial condition θ̃(0) = θ(0), where R(n)(θ), P(n)(θ), P̄(n)(θ), M(n)(θ), L(n)(θ), L̄(n)(θ)
are p-dimensional functions with components

R
(n)
j (θ) :=

√√√√ n∑
k=0

ρn−k(1− ρ)(∇jEk(θ))
2
/(1− ρn+1),

M
(n)
j (θ) :=

1

1− βn+1

n∑
k=0

βn−k(1− β)∇jEk(θ),

L
(n)
j (θ) :=

1

1− βn+1

n∑
k=0

βn−k(1− β)

p∑
i=1

∇ijEk(θ)

n−1∑
l=k

M
(l)
i (θ)

R
(l)
i (θ) + ε

,

L̄
(n)
j (θ) :=

1

1− βn+1

n∑
k=0

βn−k(1− β)

p∑
i=1

∇ijEk(θ)
M

(n)
i (θ)

R
(n)
i (θ) + ε

,

P
(n)
j (θ) :=

1

1− ρn+1

n∑
k=0

ρn−k(1− ρ)∇jEk(θ)

p∑
i=1

∇ijEk(θ)

n−1∑
l=k

M
(l)
i (θ)

R
(l)
i (θ) + ε

,

P̄
(n)
j (θ) :=

1

1− ρn+1

n∑
k=0

ρn−k(1− ρ)∇jEk(θ)

p∑
i=1

∇ijEk(θ)
M

(n)
i (θ)

R
(n)
i (θ) + ε

.

(24)

Assumption D.2.

1. For some positive constants M1, M2, M3, M4 we have

sup
i

sup
k

sup
θ
|∇iEk(θ)| ≤ M1,

sup
i,j

sup
k

sup
θ
|∇ijEk(θ)| ≤ M2,

sup
i,j,s

sup
k

sup
θ
|∇ijsEk(θ)| ≤ M3,

sup
i,j,s,r

sup
k

sup
θ
|∇ijsrEk(θ)| ≤ M4.

2. For some R > 0 we have for all n ∈ {0, 1, . . . , ⌊T/h⌋}

R
(n)
j

(
θ̃(tn)

)
≥ R,

1

1− ρn+1

n∑
k=0

ρn−k(1− ρ)
(
∇jEk

(
θ̃(tk)

))2
≥ R2,

where θ̃(t) is defined in Definition D.1.

Theorem D.3 (Adam with ε outside: local error bound). Suppose Assumption D.2 holds. Then for all n ∈ {0, 1, . . . , ⌊T/h⌋},
j ∈ {1, . . . , p} ∣∣∣∣∣∣∣∣θ̃j(tn+1)− θ̃j(tn) + h

1
1−βn+1

∑n
k=0 β

n−k(1− β)∇jEk

(
θ̃(tk)

)
√

1
1−ρn+1

∑n
k=0 ρ

n−k(1− ρ)
(
∇jEk

(
θ̃(tk)

))2
+ ε

∣∣∣∣∣∣∣∣ ≤ C3h
3

18



On the Implicit Bias of Adam

for a positive constant C3 depending on β and ρ.

The argument is the same as for Theorem B.3.

Theorem D.4 (Adam with ε outside: global error bound). Suppose Assumption D.2 holds, and

1

1− ρn+1

n∑
k=0

ρn−k(1− ρ)
(
∇jEk

(
θ(k)

))2
≥ R2

for
{
θ(k)

}
k∈Z≥0

defined in Definition D.1. Then there exist positive constants d7, d8, d9 such that for all n ∈

{0, 1, . . . , ⌊T/h⌋}
∥en∥ ≤ d7e

d8nhh2 and ∥en+1 − en∥ ≤ d9e
d8nhh3,

where en := θ̃(tn)− θ(n). The constants can be defined as

d7 := C3,

d8 :=

[
1 +

M2
√
p

R+ ε

(
M2

1

R(R+ ε)
+ 1

)
d7

]
√
p,

d9 := C3d8.

Proof. Analogously to Theorem B.4, we will prove this by induction over n.

The base case is n = 0. Indeed, e0 = θ̃(0)− θ(0) = 0. Then the jth component of e1 − e0 is

[e1 − e0]j = [e1]j = θ̃j(t1)− θ
(0)
j +

h∇jE0

(
θ(0)

)
∣∣∣∇jE0

(
θ(0)

)∣∣∣+ ε

= θ̃j(t1)− θ̃j(t0) +
h∇jE0

(
θ̃(t0)

)
√(

∇jE0

(
θ̃(t0)

))2
+ ε

.

By Theorem D.3, the absolute value of the right-hand side does not exceed C3h
3, which means ∥e1 − e0∥ ≤ C3h

3√p.
Since C3

√
p ≤ d9, the base case is proven.

Now suppose that for all k = 0, 1, . . . , n− 1 the claim

∥ek∥ ≤ d7e
d8khh2 and ∥ek+1 − ek∥ ≤ d9e

d8khh3

is proven. Then

∥en∥
(a)

≤ ∥en−1∥+ ∥en − en−1∥ ≤ d7e
d8(n−1)hh2 + d9e

d8(n−1)hh3

= d7e
d8(n−1)hh2

(
1 +

d9
d7

h

)
(b)

≤ d7e
d8(n−1)hh2(1 + d8h)

(c)

≤ d7e
d8(n−1)hh2 · ed8h = d7e

d8nhh2,

where (a) is by the triangle inequality, (b) is by d9/d7 ≤ d8, in (c) we used 1 + x ≤ ex for all x ≥ 0.

Next, combining Theorem D.3 with (22), we have∣∣∣[en+1 − en]j

∣∣∣ ≤ C3h
3 + h

∣∣∣∣ N ′
√
D′ + ε

− N ′′
√
D′′ + ε

∣∣∣∣, (25)

where to simplify notation we put

N ′ :=
1

1− βn+1

n∑
k=0

βn−k(1− β)∇jEk

(
θ(k)

)
,
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On the Implicit Bias of Adam

N ′′ :=
1

1− βn+1

n∑
k=0

βn−k(1− β)∇jEk

(
θ̃(tk)

)
,

D′ :=
1

1− ρn+1

n∑
k=0

ρn−k(1− ρ)
(
∇jEk

(
θ(k)

))2
,

D′′ :=
1

1− ρn+1

n∑
k=0

ρn−k(1− ρ)
(
∇jEk

(
θ̃(tk)

))2
.

Using D′ ≥ R2, D′′ ≥ R2, we have∣∣∣∣ 1√
D′ + ε

− 1√
D′′ + ε

∣∣∣∣ = |D′ −D′′|(√
D′ + ε

)(√
D′′ + ε

)(√
D′ +

√
D′′
) ≤ |D′ −D′′|

2R(R+ ε)
2 . (26)

But since ∣∣∣∣(∇jEk

(
θ(k)

))2
−
(
∇jEk

(
θ̃(tk)

))2∣∣∣∣
=
∣∣∣∇jEk

(
θ(k)

)
−∇jEk

(
θ̃(tk)

)∣∣∣ · ∣∣∣∇jEk

(
θ(k)

)
+∇jEk

(
θ̃(tk)

)∣∣∣
≤ 2M1

∣∣∣∇jEk

(
θ(k)

)
−∇jEk

(
θ̃(tk)

)∣∣∣ ≤ 2M1M2
√
p
∥∥∥θ(k) − θ̃(tk)

∥∥∥,
we have

|D′ −D′′| ≤
2M1M2

√
p

1− ρn+1

n∑
k=0

ρn−k(1− ρ)
∥∥∥θ(k) − θ̃(tk)

∥∥∥. (27)

Similarly,

|N ′ −N ′′| ≤ 1

1− βn+1

n∑
k=0

βn−k(1− β)
∣∣∣∇jEk

(
θ(k)

)
−∇jEk

(
θ̃(tk)

)∣∣∣
≤ 1

1− βn+1

n∑
k=0

βn−k(1− β)M2
√
p
∥∥∥θ(k) − θ̃(tk)

∥∥∥. (28)

Combining (26), (27) and (28), we get∣∣∣∣ N ′
√
D′ + ε

− N ′′
√
D′′ + ε

∣∣∣∣ ≤ |N ′| ·
∣∣∣∣ 1√

D′ + ε
− 1√

D′′ + ε

∣∣∣∣+ |N ′ −N ′′|√
D′′ + ε

≤ 1

1− βn+1

n∑
k=0

βn−k(1− β)M1 ·
2M1M2

√
p

2R(R+ ε)2(1− ρn+1)

n∑
k=0

ρn−k(1− ρ)
∥∥∥θ(k) − θ̃(tk)

∥∥∥
+

M2
√
p

(R+ ε)(1− βn+1)

n∑
k=0

βn−k(1− β)
∥∥∥θ(k) − θ̃(tk)

∥∥∥
=

M2
1M2

√
p

R(R+ ε)2(1− ρn+1)

n∑
k=0

ρn−k(1− ρ)
∥∥∥θ(k) − θ̃(tk)

∥∥∥
+

M2
√
p

(R+ ε)(1− βn+1)

n∑
k=0

βn−k(1− β)
∥∥∥θ(k) − θ̃(tk)

∥∥∥
(a)

≤
M2

1M2
√
p

R(R+ ε)2(1− ρn+1)

n∑
k=0

ρn−k(1− ρ)d7e
d8khh2

+
M2

√
p

(R+ ε)(1− βn+1)

n∑
k=0

βn−k(1− β)d7e
d8khh2, (29)
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where in (a) we used the induction hypothesis and that the bound on ∥en∥ is already proven.

Now note that since 0 < ρe−d8h < ρ, we have
∑n

k=0

(
ρe−d8h

)k ≤
∑n

k=0 ρ
k =

(
1− ρn+1

)
/(1− ρ), which is rewritten as

1

1− ρn+1

n∑
k=0

ρn−k(1− ρ)ed8kh ≤ ed8nh.

By the same logic,

1

1− βn+1

n∑
k=0

βn−k(1− β)ed8kh ≤ ed8nh.

Then we can continue (29):

∣∣∣∣ N ′
√
D′ + ε

− N ′′
√
D′′ + ε

∣∣∣∣ ≤ M2
√
p

R+ ε

(
M2

1

R(R+ ε)
+ 1

)
d7e

d8nhh2 (30)

Again using 1 ≤ ed8nh, we conclude from (25) and (30) that

∥en+1 − en∥ ≤
(
C3 +

M2
√
p

R+ ε

(
M2

1

R(R+ ε)
+ 1

)
d7

)
√
p︸ ︷︷ ︸

≤d9

ed8nhh3,

finishing the induction step.

E. Adam with ε Inside the Square Root

Definition E.1. In this section, for some θ(0) ∈ Rp, ν(0) = 0 ∈ Rp, β, ρ ∈ (0, 1), let the sequence of p-vectors{
θ(k)

}
k∈Z≥0

be defined for n ≥ 0 by

ν
(n+1)
j = ρν

(n)
j + (1− ρ)

(
∇jEn

(
θ(n)

))2
,

m
(n+1)
j = βm

(n)
j + (1− β)∇jEn

(
θ(n)

)
,

θ
(n+1)
j = θ

(n)
j − h

m
(n+1)
j /

(
1− βn+1

)√
ν
(n+1)
j /(1− ρn+1) + ε

.

(31)

Let θ̃(t) be defined as a continuous solution to the piecewise ODE

˙̃
θj(t) = −

M
(n)
j

(
θ̃(t)

)
R

(n)
j

(
θ̃(t)

)
+ h

M
(n)
j

(
θ̃(t)

)(
2P

(n)
j

(
θ̃(t)

)
+ P̄

(n)
j

(
θ̃(t)

))
2R

(n)
j

(
θ̃(t)

)3 −
2L

(n)
j

(
θ̃(t)

)
+ L̄

(n)
j

(
θ̃(t)

)
2R

(n)
j

(
θ̃(t)

)


(32)

for t ∈ [tn, tn+1] with the initial condition θ̃(0) = θ(0), where R(n)(θ), P(n)(θ), P̄(n)(θ), M(n)(θ), L(n)(θ), L̄(n)(θ)
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are p-dimensional functions with components

R
(n)
j (θ) :=

√√√√ n∑
k=0

ρn−k(1− ρ)(∇jEk(θ))
2
/(1− ρn+1) + ε,

M
(n)
j (θ) :=

1

1− βn+1

n∑
k=0

βn−k(1− β)∇jEk(θ),

L
(n)
j (θ) :=

1

1− βn+1

n∑
k=0

βn−k(1− β)

p∑
i=1

∇ijEk(θ)

n−1∑
l=k

M
(l)
i (θ)

R
(l)
i (θ)

,

L̄
(n)
j (θ) :=

1

1− βn+1

n∑
k=0

βn−k(1− β)

p∑
i=1

∇ijEk(θ)
M

(n)
i (θ)

R
(n)
i (θ)

,

P
(n)
j (θ) :=

1

1− ρn+1

n∑
k=0

ρn−k(1− ρ)∇jEk(θ)

p∑
i=1

∇ijEk(θ)

n−1∑
l=k

M
(l)
i (θ)

R
(l)
i (θ)

,

P̄
(n)
j (θ) :=

1

1− ρn+1

n∑
k=0

ρn−k(1− ρ)∇jEk(θ)

p∑
i=1

∇ijEk(θ)
M

(n)
i (θ)

R
(n)
i (θ)

.

(33)

Assumption E.2. For some positive constants M1, M2, M3, M4 we have

sup
i

sup
k

sup
θ
|∇iEk(θ)| ≤ M1,

sup
i,j

sup
k

sup
θ
|∇ijEk(θ)| ≤ M2,

sup
i,j,s

sup
k

sup
θ
|∇ijsEk(θ)| ≤ M3,

sup
i,j,s,r

sup
k

sup
θ
|∇ijsrEk(θ)| ≤ M4.

Theorem E.3 (Adam with ε inside: local error bound). Suppose Assumption E.2 holds. Then for all n ∈ {0, 1, . . . , ⌊T/h⌋},
j ∈ {1, . . . , p} ∣∣∣∣∣∣∣∣θ̃j(tn+1)− θ̃j(tn) + h

1
1−βn+1

∑n
k=0 β

n−k(1− β)∇jEk

(
θ̃(tk)

)
√

1
1−ρn+1

∑n
k=0 ρ

n−k(1− ρ)
(
∇jEk

(
θ̃(tk)

))2
+ ε

∣∣∣∣∣∣∣∣ ≤ C4h
3

for a positive constant C4 depending on β and ρ.

The argument is the same as for Theorem B.3.

Theorem E.4 (Adam with ε inside: global error bound). Suppose Assumption E.2 holds for
{
θ(k)

}
k∈Z≥0

defined in

Definition E.1. Then there exist positive constants d10, d11, d12 such that for all n ∈ {0, 1, . . . , ⌊T/h⌋}

∥en∥ ≤ d10e
d11nhh2 and ∥en+1 − en∥ ≤ d12e

d11nhh3,

where en := θ̃(tn)− θ(n). The constants can be defined as

d10 := C4,

d11 :=

[
1 +

M2
√
p

√
ε

(
M2

1

ε
+ 1

)
d10

]
√
p,

d12 := C4d11.

The argument is the same as for Theorem D.4.
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F. Bounding the Derivatives of the ODE Solution
Our first goal is to argue that the first derivative of t 7→ θ̃j(t) is uniformly bounded in absolute value. To achieve this, we
just need to bound all the terms on the right-hand side of the ODE (13).

Lemma F.1. Suppose Assumption B.2 holds. Then for all n ∈ {0, 1, . . . , ⌊T/h⌋}

sup
θ

∣∣∣P (n)
j (θ)

∣∣∣ ≤ C5, (34)

sup
θ

∣∣∣P̄ (n)
j (θ)

∣∣∣ ≤ C6, (35)

with constants C5, C6 defined as follows:

C5 := p
M2

1M2

R+ ε
· ρ

1− ρ
,

C6 := p
M2

1M2

R+ ε
.

Proof of Lemma F.1. Both bounds are straightforward:

sup
θ

∣∣∣P (n)
j (θ)

∣∣∣ = sup
θ

∣∣∣∣∣
n∑

k=0

ρn−k(1− ρ)∇jEk(θ)

p∑
i=1

∇ijEk(θ)

n−1∑
l=k

∇iEl(θ)

R
(l)
i (θ) + ε

∣∣∣∣∣
≤ p

M2
1M2

R+ ε
(1− ρ)

n∑
k=0

ρn−k(n− k) ≤ p
M2

1M2

R+ ε
(1− ρ)

∞∑
k=0

ρkk = C5.

and

sup
θ

∣∣∣P̄ (n)
j (θ)

∣∣∣ = sup
θ

∣∣∣∣∣
n∑

k=0

ρn−k(1− ρ)∇jEk(θ)

p∑
i=1

∇ijEk(θ)
∇iEn(θ)

R
(n)
i (θ) + ε

∣∣∣∣∣
≤ p

M2
1M2

R+ ε
(1− ρ)

n∑
k=0

ρn−k ≤ p
M2

1M2

R+ ε
= C6,

concluding the proof of Lemma F.1.

Lemma F.2. Suppose Assumption B.2 holds. Then the first derivative of t 7→ θ̃j(t) is uniformly over j and t ∈ [0, T ]
bounded in absolute value by some positive constant, say D1.

Proof. This follows immediately from h ≤ T , (34), (35) and the definition of θ̃(t) given in (13).

Our next goal is to argue that the second derivative of t 7→ θ̃j(t) is bounded in absolute value. For this, we need to bound
the first derivatives of all the three additive terms on the right-hand side of (13).

Lemma F.3. Suppose Assumption B.2 holds. Then for all n, k ∈ {0, 1, . . . , ⌊T/h⌋}, j ∈ {1, . . . , p} we have

sup
t∈[0,T ]

∣∣∣∣(∇jEn

(
θ̃(t)

))·∣∣∣∣ ≤ C7, (36)

sup
t∈[tn,tn+1]

∣∣∣∣∣∣
p∑

i=1

∇ijEk

(
θ̃(t)

) ˙̃
θi(t) +

∇iEn

(
θ̃(t)

)
R

(n)
i

(
θ̃(t)

)
+ ε

∣∣∣∣∣∣ ≤ C8h, (37)

sup
t∈[0,T ]

∣∣∣∣∣∣
p∑

i=1

∇ijEk

(
θ̃(t)

) n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε

∣∣∣∣∣∣ ≤ (n− k)C9 for k < n, (38)
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sup
t∈[0,T ]

∣∣∣∣(P (n)
j

(
θ̃(t)

))·∣∣∣∣ ≤ C10 + C14, (39)

sup
t∈[0,T ]

∣∣∣∣(P̄ (n)
j (θ̃(t))

)·∣∣∣∣ ≤ C15, (40)

sup
t∈[0,T ]

∣∣∣∣∣∣∣
 p∑

i=1

∇ijEk

(
θ̃(t)

) ∇iEn

(
θ̃(t)

)
R

(n)
i

(
θ̃(t)

)
+ ε

·∣∣∣∣∣∣∣ ≤ C13, (41)

sup
t∈[0,T ]

∣∣∣∣∣∣∣
∇jEn

(
θ̃(t)

)(
2P

(n)
j

(
θ̃(t)

)
+ P̄

(n)
j

(
θ̃(t)

))
2
(
R

(n)
j

(
θ̃(t)

)
+ ε
)2

R
(n)
j

(
θ̃(t)

)


·∣∣∣∣∣∣∣ ≤ C17, (42)

sup
t∈[0,T ]

∣∣∣∣∣∣∣∣

∑p

i=1 ∇ijEn

(
θ̃(t)

) ∇iEn(θ̃(t))
R

(n)
i (θ̃(t))+ε

2
(
R

(n)
j (θ̃(t)) + ε

)


·∣∣∣∣∣∣∣∣ ≤ C18, (43)

with constants C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18 defined as follows:

C7 := pM2D1,

C8 := pM2

[
M1(2C5 + C6)

2(R+ ε)2R
+

pM1M2

2(R+ ε)2

]
,

C9 := p
M1M2

R+ ε
,

C10 := D1p
2M1M

2
2

R+ ε
· ρ

1− ρ
,

C11 :=
D1pM1M2

R
,

C12 := D1p
2M1M3

R+ ε
,

C13 := C12 + pM2

(
D1pM2

R+ ε
+

M1

(R+ ε)2
C11

)
=

D1p
2

R+ ε

(
M1M3 +M2

2 +
M2

1M
2
2

(R+ ε)R

)
,

C14 := M1C13
ρ

1− ρ
,

C15 :=
D1p

2M1M
2
2

R+ ε
+

D1p
2M2

1M3

R+ ε
+

D1p
2M1M

2
2

R+ ε
+

pM2
1M2C11

(R+ ε)2
,

C16 :=
2C11

R(R+ ε)3
+

C11

(R+ ε)4
,

C17 :=
D1pM2 · (2C5 + C6)

2(R+ ε)
2
R

+
M1(2(C10 + C14) + C15)

2(R+ ε)
2
R

+
M1(2C5 + C6)C16

2
,

C18 :=
1

2(R+ ε)

(
p2D1M1M3

R+ ε
+

p2D1M
2
2

R+ ε
+

pM1M2C11

(R+ ε)
2

)
+

1

2
· pM1M2

R+ ε
· C11

(R+ ε)2
.

Proof of Lemma F.3. We prove the inequalities one by one.

The bound (36) is straightforward:∣∣∣∣(∇jEn

(
θ̃(t)

))·∣∣∣∣ =
∣∣∣∣∣

p∑
i=1

∇ijEn

(
θ̃(t)

)
˙̃
θi(t)

∣∣∣∣∣ ≤ C7.
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The inequality (37) follows immediately from the fact that by (13) we have for t ∈ [tn, tn+1]∣∣∣∣∣∣ ˙̃θj(t) +
∇jEn

(
θ̃(t)

)
R

(n)
j

(
θ̃(t)

)
+ ε

∣∣∣∣∣∣ ≤ h

[
M1(2C5 + C6)

2(R+ ε)2R
+

pM1M2

2(R+ ε)2

]
.

The bound (38) follows from the assumptions immediately.

We will prove (39) by bounding the two additive terms on the right-hand side of the equality

d

dt
P

(n)
j

(
θ̃(t)

)
=

n∑
k=0

ρn−k(1− ρ)

p∑
u=1

∇juEk

(
θ̃(t)

)
˙̃
θu(t)

p∑
i=1

∇ijEk

(
θ̃(t)

) n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε

+

n∑
k=0

ρn−k(1− ρ)∇jEk

(
θ̃(t)

) p∑
i=1

d

dt

∇ijEk

(
θ̃(t)

) n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε

.

(44)

It is easily shown that the first term in (44) is bounded in absolute value by C10:∣∣∣∣∣∣
n∑

k=0

ρn−k(1− ρ)

p∑
u=1

∇juEk

(
θ̃(t)

)
˙̃
θu(t)

p∑
i=1

∇ijEk

(
θ̃(t)

) n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε

∣∣∣∣∣∣
≤ D1p

2M1M
2
2

R+ ε
(1− ρ)

n∑
k=0

ρkk

≤ D1p
2M1M

2
2

R+ ε
(1− ρ)

∞∑
k=0

ρkk

= C10.

For the proof of (39), it is left to show that the second term in (44) is bounded in absolute value by C14.

To bound
∑p

i=1
d
dt

{
∇ijEk

(
θ̃(t)

)∑n−1
l=k

∇iEl(θ̃(t))
R

(l)
i (θ̃(t))+ε

}
, we can use

∣∣∣∣∣∣
p∑

i=1

d

dt

∇ijEk

(
θ̃(t)

) n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε


∣∣∣∣∣∣

≤

∣∣∣∣∣∣
p∑

i=1

d

dt

{
∇ijEk

(
θ̃(t)

)} n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε

∣∣∣∣∣∣
+

∣∣∣∣∣∣
p∑

i=1

∇ijEk

(
θ̃(t)

) n−1∑
l=k

d

dt

 ∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε


∣∣∣∣∣∣

By the Cauchy-Schwarz inequality applied twice,∣∣∣∣∣∣
p∑

i=1

d

dt

{
∇ijEk

(
θ̃(t)

)} n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε

∣∣∣∣∣∣
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≤

√√√√ p∑
i=1

p∑
s=1

(
∇ijsEk

(
θ̃(t)

))2√√√√ p∑
u=1

˙̃
θu(t)2

√√√√√√ p∑
i=1

∣∣∣∣∣∣
n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε

∣∣∣∣∣∣
2

≤ M3p ·D1
√
p ·

√√√√√√ p∑
i=1

∣∣∣∣∣∣
n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε

∣∣∣∣∣∣
2

≤ (n− k)C12.

Next, for any n and j∣∣∣∣ ddtR(n)
j

(
θ̃(t)

)∣∣∣∣ = 1

R
(n)
j

(
θ̃(t)

)∣∣∣∣∣
n∑

k=0

ρn−k(1− ρ)∇jEk

(
θ̃(t)

) p∑
i=1

∇ijEk

(
θ̃(t)

)
˙̃
θi(t)

∣∣∣∣∣
≤ 1

R
(n)
j

(
θ̃(t)

)D1pM1M2

n∑
k=0

ρn−k(1− ρ) ≤ C11.

(45)

This gives ∣∣∣∣∣∣ ddt
 ∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε


∣∣∣∣∣∣ ≤

∣∣∣∑p
s=1 ∇isEl

(
θ̃(t)

)
˙̃
θs(t)

∣∣∣
R

(l)
i

(
θ̃(t)

)
+ ε

+

∣∣∣∇iEl

(
θ̃(t)

)∣∣∣ · ∣∣∣ ddtR(l)
i

(
θ̃(t)

)∣∣∣(
R

(l)
i

(
θ̃(t)

)
+ ε
)2

≤ D1pM2

R+ ε
+

M1

(R+ ε)2
C11.

We have obtained ∣∣∣∣∣∣
p∑

i=1

d

dt

∇ijEk

(
θ̃(t)

) n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε


∣∣∣∣∣∣ ≤ (n− k)C13. (46)

This gives a bound on the second term in (44):∣∣∣∣∣∣
n∑

k=0

ρn−k(1− ρ)∇jEk

(
θ̃(t)

) p∑
i=1

d

dt

∇ijEk

(
θ̃(t)

) n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε


∣∣∣∣∣∣

≤ M1

n∑
k=0

ρn−k(1− ρ)(n− k)C13 ≤ C14,

concluding the proof of (39).

We will prove (40) by bounding the four terms in the expression

d

dt


n∑

k=0

ρn−k(1− ρ)∇jEk

(
θ̃(t)

) p∑
i=1

∇ijEk

(
θ̃(t)

) ∇iEn

(
θ̃(t)

)
R

(n)
i

(
θ̃(t)

)
+ ε


= Term1 + Term2 + Term3 + Term4,

where

Term1

:=

n∑
k=0

ρn−k(1− ρ)
d

dt

{
∇jEk

(
θ̃(t)

)} p∑
i=1

∇ijEk

(
θ̃(t)

) ∇iEn

(
θ̃(t)

)
R

(n)
i

(
θ̃(t)

)
+ ε

,
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Term2

:=

n∑
k=0

ρn−k(1− ρ)∇jEk

(
θ̃(t)

) p∑
i=1

d

dt

{
∇ijEk

(
θ̃(t)

)} ∇iEn

(
θ̃(t)

)
R

(n)
i

(
θ̃(t)

)
+ ε

,

Term3

:=

n∑
k=0

ρn−k(1− ρ)∇jEk

(
θ̃(t)

) p∑
i=1

∇ijEk

(
θ̃(t)

) d
dt

{
∇iEn

(
θ̃(t)

)}
R

(n)
i

(
θ̃(t)

)
+ ε

,

Term4

:= −
n∑

k=0

ρn−k(1− ρ)∇jEk

(
θ̃(t)

) p∑
i=1

∇ijEk

(
θ̃(t)

)∇iEn

(
θ̃(t)

)
d
dtR

(n)
i

(
θ̃(t)

)
(
R

(n)
i

(
θ̃(t)

)
+ ε
)2 .

To bound Term1, use
∣∣∣ ddt{∇jEk

(
θ̃(t)

)}∣∣∣ ≤ D1pM2, giving

|Term1| ≤ D1p
2M1M

2
2

R+ ε

n∑
k=0

ρn−k(1− ρ) ≤ D1p
2M1M

2
2

R+ ε
.

To bound Term2, use
∣∣∣ ddt{∇ijEk

(
θ̃(t)

)}∣∣∣ ≤ D1pM3, giving

|Term2| ≤ D1p
2M2

1M3

R+ ε

n∑
k=0

ρn−k(1− ρ) ≤ D1p
2M2

1M3

R+ ε
.

To bound Term3, use
∣∣∣ ddt{∇iEn

(
θ̃(t)

)}∣∣∣ ≤ D1pM2, giving

|Term3| ≤ D1p
2M1M

2
2

R+ ε

n∑
k=0

ρn−k(1− ρ) ≤ D1p
2M1M

2
2

R+ ε
.

To bound Term4, use (45), giving

|Term4| ≤ pM2
1M2C11

(R+ ε)2

n∑
k=0

ρn−k(1− ρ) ≤ pM2
1M2C11

(R+ ε)2
.

The proof of (40) is finished.

The inequality (41) is already proven in (46).

To prove (42), note that the bound (45) gives∣∣∣∣∣∣ ddt
 1

R
(n)
j

(
θ̃(t)

)

∣∣∣∣∣∣ =

∣∣∣ ddtR(n)
j

(
θ̃(t)

)∣∣∣
R

(n)
j

(
θ̃(t)

)2 ≤ C11

R2
, (47)

∣∣∣∣∣∣ ddt
 1

R
(n)
j

(
θ̃(t)

)
+ ε


∣∣∣∣∣∣ =

∣∣∣ ddtR(n)
j

(
θ̃(t)

)∣∣∣(
R

(n)
j

(
θ̃(t)

)
+ ε
)2 ≤ C11

(R+ ε)2
, (48)

∣∣∣∣∣∣∣
d

dt

 1(
R

(n)
j

(
θ̃(t)

)
+ ε
)2

∣∣∣∣∣∣∣ =

2
∣∣∣ ddtR(n)

j

(
θ̃(t)

)∣∣∣(
R

(n)
j

(
θ̃(t)

)
+ ε
)3 ≤ 2C11

(R+ ε)3
. (49)
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Combining two bounds above, we have∣∣∣∣ ddt
{(

R
(n)
j

(
θ̃(t)

)
+ ε
)−2

R
(n)
j (θ̃(t))−1

}∣∣∣∣
≤

∣∣∣∣ ddt{(R(n)
j

(
θ̃(t)

)
+ ε
)−2

}∣∣∣∣
R

(n)
j (θ̃(t))

+

∣∣∣ ddt{R(n)
j (θ̃(t))−1

}∣∣∣(
R

(n)
j

(
θ̃(t)

)
+ ε
)2 ≤ C16.

We are ready to conclude ∣∣∣∣∣∣∣
∇jEn

(
θ̃(t)

)(
2P

(n)
j

(
θ̃(t)

)
+ P̄

(n)
j

(
θ̃(t)

))
2
(
R

(n)
j

(
θ̃(t)

)
+ ε
)2

R
(n)
j

(
θ̃(t)

)


·∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
(
∇jEn

(
θ̃(t)

))·(
2P

(n)
j

(
θ̃(t)

)
+ P̄

(n)
j

(
θ̃(t)

))
2
(
R

(n)
j

(
θ̃(t)

)
+ ε
)2

R
(n)
j

(
θ̃(t)

)
∣∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣
∇jEn

(
θ̃(t)

)(
2P

(n)
j

(
θ̃(t)

)
+ P̄

(n)
j

(
θ̃(t)

))·
2
(
R

(n)
j

(
θ̃(t)

)
+ ε
)2

R
(n)
j

(
θ̃(t)

)
∣∣∣∣∣∣∣

+

∣∣∣∣∣∣
∇jEn

(
θ̃(t)

)(
2P

(n)
j

(
θ̃(t)

)
+ P̄

(n)
j

(
θ̃(t)

))
2

×
((

R
(n)
j

(
θ̃(t)

)
+ ε
)−2

R
(n)
j (θ̃(t))−1

)·∣∣∣∣ ≤ C17.

It is left to prove (43). Since ∣∣∣∣∣∣
p∑

i=1

∇ijEn

(
θ̃(t)

) ∇iEn

(
θ̃(t)

)
R

(n)
i

(
θ̃(t)

)
+ ε

∣∣∣∣∣∣ ≤ pM1M2

R+ ε

and, as we have already seen in the argument for (40),∣∣∣∣∣∣∣
 p∑

i=1

∇ijEn

(
θ̃(t)

) ∇iEn

(
θ̃(t)

)
R

(n)
i

(
θ̃(t)

)
+ ε

·∣∣∣∣∣∣∣ ≤
p2D1M1M3

R+ ε
+

p2D1M
2
2

R+ ε
+

pM1M2C11

(R+ ε)
2 ,

we are ready to bound ∣∣∣∣∣∣∣∣

∑p

i=1 ∇ijEn

(
θ̃(t)

) ∇iEn(θ̃(t))
R

(n)
i (θ̃(t))+ε

2
(
R

(n)
j (θ̃(t)) + ε

)


·∣∣∣∣∣∣∣∣ ≤ C18.

The proof of Lemma F.3 is concluded.

Lemma F.4. Suppose Assumption B.2 holds. Then the second derivative of t 7→ θ̃j(t) is uniformly over j and t ∈ [0, T ]
bounded in absolute value by some positive constant, say D2.

Proof. This follows from the definition of θ̃(t) given in (13), h ≤ T and that the first derivatives of all three terms in (13)
are bounded by Lemma F.3.
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Finally, we need to argue that the third derivative of t 7→ θ̃j(t) is bounded in absolute value. To achieve this, we need to
bound the second derivatives of the terms on the right-hand side of (13).

Lemma F.5. Suppose Assumption B.2 holds. Then for all n, k ∈ {0, 1, . . . , ⌊T/h⌋}, j ∈ {1, . . . , p}

sup
t∈[0,T ]

∣∣∣∣(∇jEn

(
θ̃(t)

))··∣∣∣∣ ≤ C19, (50)

sup
t∈[0,T ]

∣∣∣∣(R(n)
j

(
θ̃(t)

))··∣∣∣∣ ≤ C20, (51)

sup
t∈[0,T ]

∣∣∣∣((R(n)
j

(
θ̃(t)

)
+ ε
)−2

)··∣∣∣∣ ≤ C21, (52)

sup
t∈[0,T ]

∣∣∣∣(R(n)
j

(
θ̃(t)

)−1
)··∣∣∣∣ ≤ C22, (53)

sup
t∈[0,T ]

∣∣∣∣((R(n)
j

(
θ̃(t)

)
+ ε
)−2

R
(n)
j

(
θ̃(t)

)−1
)··∣∣∣∣ ≤ C23, (54)

sup
t∈[0,T ]

∣∣∣∣∣∣∣
 p∑

i=1

∇ijEk

(
θ̃(t)

) n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε

··∣∣∣∣∣∣∣ ≤ (n− k)C24 for k < n, (55)

with constants C19, C20, C21, C22, C23, C24 defined as follows:

C19 := p2M3D
2
1 + pM2D2,

C20 :=
C11

R2
pM1M2D1 +

1

R
p2M2

2D
2
1 +

1

R
p2M1M3D

2
1 +

1

R
pM1M2D2,

C21 :=
6C2

11

(R+ ε)4
+

2C20

(R+ ε)3
,

C22 :=
2C2

11

R3
+

C20

R2
,

C23 :=
C21

R
+

4C2
11

R2(R+ ε)3
+

C22

(R+ ε)2
,

C24 := p

[
2C11

(
D1M

2
2 p+D1M1M3p

)
(R+ ε)2

+M1M2

(
2C2

11

(R+ ε)3
+

C20

(R+ ε)2

)

+
2D2

1M2M3p
2 +M2

(
D2

1M3p
2 +D2M2p

)
+M1

(
D2

1M4p
2 +D2M3p

)
R+ ε

]
.

Proof of Lemma F.5. We prove the inequalities one by one.

The proof of (50) is straightforward:∣∣∣∣(∇jEn

(
θ̃(t)

))··∣∣∣∣ =
∣∣∣∣∣

p∑
i=1

p∑
s=1

∇ijsEn

(
θ̃(t)

)
˙̃
θs(t)

˙̃
θi(t) +

p∑
i=1

∇ijEn

(
θ̃(t)

)
¨̃
θt(t)

∣∣∣∣∣ ≤ C19.

To prove (51), note that

(
R

(n)
j

(
θ̃(t)

))··
=

(
R

(n)
j

(
θ̃(t)

)−1
)· n∑

k=0

ρn−k(1− ρ)∇jEk

(
θ̃(t)

) p∑
i=1

∇ijEk

(
θ̃(t)

)
˙̃
θi(t)

+R
(n)
j

(
θ̃(t)

)−1 n∑
k=0

ρn−k(1− ρ)
(
∇jEk

(
θ̃(t)

))· p∑
i=1

∇ijEk

(
θ̃(t)

)
˙̃
θi(t)
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+R
(n)
j

(
θ̃(t)

)−1 n∑
k=0

ρn−k(1− ρ)∇jEk

(
θ̃(t)

) p∑
i=1

(
∇ijEk

(
θ̃(t)

))· ˙̃
θi(t)

+R
(n)
j

(
θ̃(t)

)−1 n∑
k=0

ρn−k(1− ρ)∇jEk

(
θ̃(t)

) p∑
i=1

∇ijEk

(
θ̃(t)

)
¨̃
θi(t),

giving by (47) ∣∣∣∣(R(n)
j

(
θ̃(t)

))··∣∣∣∣ ≤ C11

R2
pM1M2D1

n∑
k=0

ρn−k(1− ρ) +
1

R
p2M2

2D
2
1

n∑
k=0

ρn−k(1− ρ)

+
1

R
p2M1M3D

2
1

n∑
k=0

ρn−k(1− ρ) +
1

R
pM1M2D2

∑
k=0

ρn−k(1− ρ)

≤ C20.

To prove (52), note that

((
R

(n)
j

(
θ̃(t)

)
+ ε
)−2

)··

=

6

((
R

(n)
j

(
θ̃(t)

))·)2

(
R

(n)
j

(
θ̃(t)

)
+ ε
)4 −

2
(
R

(n)
j

(
θ̃(t)

))··
(
R

(n)
j

(
θ̃(t)

)
+ ε
)3 ,

giving by (45) and (51) ∣∣∣∣((R(n)
j

(
θ̃(t)

)
+ ε
)−2

)··∣∣∣∣ ≤ C21.

The bound (53) follows from (45), (51) and

(
R

(n)
j

(
θ̃(t)

)−1
)··

=

2

((
R

(n)
j

(
θ̃(t)

))·)2

R
(n)
j

(
θ̃(t)

)3 −

(
R

(n)
j

(
θ̃(t)

))··
R

(n)
j

(
θ̃(t)

)2 .

To justify (54), put temporarily a :=
(
R

(n)
j

(
θ̃(t)

)
+ ε
)−2

, b := R
(n)
j

(
θ̃(t)

)−1

and use

|a| ≤ 1

(R+ ε)2
, |b| ≤ 1

R
,

|ȧ| ≤ 2C11

(R+ ε)3
,
∣∣∣ḃ∣∣∣ ≤ C11

R2
,

|ä| ≤ C21,
∣∣∣b̈∣∣∣ ≤ C22

combined with
(ab)

··
= äb+ 2ȧḃ+ ab̈.

To justify (55), put temporarily

a := ∇ijEk

(
θ̃(t)

)
,

b := ∇iEl

(
θ̃(t)

)
,

c :=
(
R

(l)
i

(
θ̃(t)

)
+ ε
)−1

,
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and use

|a| ≤ M2, |ȧ| ≤ pM3D1, |ä| ≤ p2M4D
2
1 + pM3D2,

|b| ≤ M1,
∣∣∣ḃ∣∣∣ ≤ pM2D1,

∣∣∣b̈∣∣∣ ≤ p2M3D
2
1 + pM2D2,

|c| ≤ 1

R+ ε
, |ċ| ≤ C11

(R+ ε)2
, |c̈| ≤ 2C2

11

(R+ ε)3
+

C20

(R+ ε)2
,

from which (55) follows.

The proof of Lemma F.5 is concluded.

Lemma F.6. Suppose Assumption B.2 holds. Then the third derivative of t 7→ θ̃j(t) is uniformly over j and t ∈ [0, T ]
bounded in absolute value by some positive constant, say D3.

Proof. By (38), (46) and (55)∣∣∣∣∣∣
p∑

i=1

∇ijEk

(
θ̃(t)

) n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε

∣∣∣∣∣∣ ≤ (n− k)C9,

∣∣∣∣∣∣∣
 p∑

i=1

∇ijEk

(
θ̃(t)

) n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε

·∣∣∣∣∣∣∣ ≤ (n− k)C13,

∣∣∣∣∣∣∣
 p∑

i=1

∇ijEk

(
θ̃(t)

) n−1∑
l=k

∇iEl

(
θ̃(t)

)
R

(l)
i

(
θ̃(t)

)
+ ε

··∣∣∣∣∣∣∣ ≤ (n− k)C24.

From the definition of t 7→ P
(n)
j

(
θ̃(t)

)
, it means that its derivatives up to order two are bounded. Similarly, the same is true

for t 7→ P̄
(n)
j

(
θ̃(t)

)
.

It follows from (52) and its proof that the derivatives up to order two of

t 7→
(
R

(n)
j

(
θ̃(t)

)
+ ε
)−2

R
(n)
j

(
θ̃(t)

)−1

are also bounded.

These considerations give the boundedness of the second derivative of the term

t 7→
∇jEn

(
θ̃(t)

)(
2P

(n)
j

(
θ̃(t)

)
+ P̄

(n)
j

(
θ̃(t)

))
2
(
R

(n)
j

(
θ̃(t)

)
+ ε
)2

R
(n)
j

(
θ̃(t)

)
in (13). The boundedness of the second derivatives of the other two terms is shown analogously. By (13) and since h ≤ T ,
this means

sup
j

sup
t∈[0,T ]

∣∣∣ ...θ̃ j(t)
∣∣∣ ≤ D3

for some positive constant D3.

G. Proof of Theorem B.3
Our next objective is proving and identifying the constant in the equality

1√∑n
k=0 ρ

n−k(1− ρ)
(
∇jEk

(
θ̃(tk)

))2
+ ε
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=
1

R
(n)
j

(
θ̃(tn)

)
+ ε

− h
P

(n)
j

(
θ̃(tn)

)
(
R

(n)
j

(
θ̃(tn)

)
+ ε
)2

R
(n)
j

(
θ̃(tn)

) +O(h2).

We will make some preparations and achieve this objective in Lemma G.5. Then we will conclude the proof of Theorem B.3.

Lemma G.1. Suppose Assumption B.2 holds. Then for all n ∈ {0, 1, . . . , ⌊T/h⌋}, k ∈ {0, 1, . . . , n− 1}, j ∈ {1, . . . , p}
we have ∣∣∣∇jEk

(
θ̃(tk)

)
−∇jEk

(
θ̃(tn)

)∣∣∣ ≤ C7(n− k)h (56)

Proof. (56) follows from the mean value theorem applied n− k times.

Lemma G.2. In the setting of Lemma G.1, for any l ∈ {k, k + 1, . . . , n− 1} we have∣∣∣∣∣∣∇jEk

(
θ̃(tl)

)
−∇jEk

(
θ̃(tl+1)

)
− h

p∑
i=1

∇ijEk

(
θ̃(tn)

) ∇iEl

(
θ̃(tn)

)
R

(l)
i

(
θ̃(tn)

)
+ ε

∣∣∣∣∣∣
≤ (C19/2 + C8 + (n− l − 1)C13)h

2.

Proof. By the Taylor expansion of t 7→ ∇jEk

(
θ̃(t)

)
on the segment [tl, tl+1] at tl+1 on the left

∣∣∣∣∣∇jEk

(
θ̃(tl)

)
−∇jEk

(
θ̃(tl+1)

)
+ h

p∑
i=1

∇ijEk

(
θ̃(tl+1)

)
˙̃
θi

(
t−l+1

)∣∣∣∣∣ ≤ C19

2
h2.

Combining this with (37) gives∣∣∣∣∣∣∇jEk

(
θ̃(tl)

)
−∇jEk

(
θ̃(tl+1)

)
− h

p∑
i=1

∇ijEk

(
θ̃(tl+1)

) ∇iEl

(
θ̃(tl+1)

)
R

(l)
i

(
θ̃(tl+1)

)
+ ε

∣∣∣∣∣∣
≤ (C19/2 + C8)h

2.

(57)

Now applying the mean-value theorem n− l − 1 times, we have by (46)∣∣∣∣∣∣
p∑

i=1

∇ijEk

(
θ̃(tl+1)

) ∇iEl

(
θ̃(tl+1)

)
R

(l)
i

(
θ̃(tl+1)

)
+ ε

−
p∑

i=1

∇ijEk

(
θ̃(tl+2)

) ∇iEl

(
θ̃(tl+2)

)
R

(l)
i

(
θ̃(tl+2)

)
+ ε

∣∣∣∣∣∣ ≤ C13h,

· · ·∣∣∣∣∣∣
p∑

i=1

∇ijEl

(
θ̃(tn−1)

) ∇iEk

(
θ̃(tn−1)

)
R

(l)
i

(
θ̃(tn−1)

)
+ ε

−
p∑

i=1

∇ijEk

(
θ̃(tn)

) ∇iEl

(
θ̃(tn)

)
R

(l)
i

(
θ̃(tn)

)
+ ε

∣∣∣∣∣∣ ≤ C13h,

and in particular ∣∣∣∣∣∣
p∑

i=1

∇ijEk

(
θ̃(tl+1)

) ∇iEl

(
θ̃(tl+1)

)
R

(l)
i

(
θ̃(tl+1)

)
+ ε

−
p∑

i=1

∇ijEk

(
θ̃(tn)

) ∇iEl

(
θ̃(tn)

)
R

(l)
i

(
θ̃(tn)

)
+ ε

∣∣∣∣∣∣
≤ (n− l − 1)C13h.

Combining this with (57), we conclude the proof of Lemma G.2.
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Lemma G.3. In the setting of Lemma G.1,∣∣∣∣∣∣∇jEk

(
θ̃(tk)

)
−∇jEk

(
θ̃(tn)

)
− h

p∑
i=1

∇ijEk

(
θ̃(tn)

) n−1∑
l=k

∇iEl

(
θ̃(tn)

)
R

(l)
i

(
θ̃(tn)

)
+ ε

∣∣∣∣∣∣
≤
(
(n− k)(C19/2 + C8) +

(n− k)(n− k − 1)

2
C13

)
h2.

Proof. Fix n ∈ Z≥0.

Note that∣∣∣∣∣∣∇jEk

(
θ̃(tk)

)
−∇jEk

(
θ̃(tn)

)
− h

p∑
i=1

∇ijEk

(
θ̃(tn)

) n−1∑
l=k

∇iEl

(
θ̃(tn)

)
R

(l)
i

(
θ̃(tn)

)
+ ε

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−1∑
l=k

∇jEk

(
θ̃(tl)

)
−∇jEk

(
θ̃(tl+1)

)
− h

p∑
i=1

∇ijEk

(
θ̃(tn)

) ∇iEl

(
θ̃(tn)

)
R

(l)
i

(
θ̃(tn)

)
+ ε


∣∣∣∣∣∣

≤
n−1∑
l=k

∣∣∣∣∣∣∇jEk

(
θ̃(tl)

)
−∇jEk

(
θ̃(tl+1)

)
− h

p∑
i=1

∇ijEk

(
θ̃(tn)

) ∇iEl

(
θ̃(tn)

)
R

(l)
i

(
θ̃(tn)

)
+ ε

∣∣∣∣∣∣
(a)
≤

n−1∑
l=k

(C19/2 + C8 + (n− l − 1)C13)h
2 =

(
(n− k)(C19/2 + C8) +

(n− k)(n− k − 1)

2
C13

)
h2,

where (a) is by Lemma G.2.

Lemma G.4. Suppose Assumption B.2 holds. Then for all n ∈ {0, 1, . . . , ⌊T/h⌋}, j ∈ {1, . . . , p}∣∣∣∣∣
n∑

k=0

ρn−k(1− ρ)
(
∇jEk

(
θ̃(tk)

))2
−R

(n)
j

(
θ̃(tn)

)2∣∣∣∣∣ ≤ C25h (58)

and ∣∣∣∣∣
n∑

k=0

ρn−k(1− ρ)
(
∇jEk

(
θ̃(tk)

))2
−R

(n)
j

(
θ̃(tn)

)2
− 2hP

(n)
j

(
θ̃(tn)

)∣∣∣∣∣ ≤ C26h
2 (59)

with C25 and C26 defined as follows:

C25(ρ) := 2M1C7
ρ

1− ρ
,

C26(ρ) := M1|C19 + 2C8 − C13|
ρ

1− ρ

+

(
M1C13 + |C19 + 2C8 − C13|C9 +

(C19 + 2C8 − C13)
2

4

)
ρ(1 + ρ)

(1− ρ)2

+

(
C13C9 +

C13

2
|C19 + 2C8 − C13|

)
ρ
(
1 + 4ρ+ ρ2

)
(1− ρ)3

+
C2

13

4
·
ρ
(
1 + 11ρ+ 11ρ2 + ρ3

)
(1− ρ)4

.

Proof. Note that ∣∣∣∣(∇jEk

(
θ̃(tk)

))2
−
(
∇jEk

(
θ̃(tn)

))2∣∣∣∣
≤
∣∣∣∇jEk

(
θ̃(tk)

)
−∇jEk

(
θ̃(tn)

)∣∣∣ · ∣∣∣∇jEk

(
θ̃(tk)

)
+∇jEk

(
θ̃(tn)

)∣∣∣
(a)
≤ C7(n− k)h · 2M1,
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where (a) is by (56). Using the triangle inequality, we can conclude∣∣∣∣∣
n∑

k=0

ρn−k(1− ρ)
(
∇jEk

(
θ̃(tk)

))2
−R

(n)
j

(
θ̃(tn)

)2∣∣∣∣∣
≤ 2M1C7h(1− ρ)

n∑
k=0

(n− k)ρn−k = 2M1C7h(1− ρ)

n∑
k=0

kρk = 2M1C7
ρ

1− ρ
h.

(58) is proven.

We continue by showing∣∣∣∣(∇jEk

(
θ̃(tk)

))2
−
(
∇jEk

(
θ̃(tn)

))2
−2∇jEk

(
θ̃(tn)

)
h

p∑
i=1

∇ijEk

(
θ̃(tn)

) n−1∑
l=k

∇iEl

(
θ̃(tn)

)
R

(l)
i

(
θ̃(tn)

)
+ ε

∣∣∣∣∣∣
≤ 2M1

(
(n− k)(C19/2 + C8) +

(n− k)(n− k − 1)

2
C13

)
h2

+ 2(n− k)C9

(
(n− k)(C19/2 + C8) +

(n− k)(n− k − 1)

2
C13

)
h3

+

(
(n− k)(C19/2 + C8) +

(n− k)(n− k − 1)

2
C13

)2

h4.

(60)

To prove this, use ∣∣a2 − b2 − 2bKh
∣∣ ≤ 2|b| · |a− b−Kh|+ 2|K| · h · |a− b−Kh|+ (a− b−Kh)2

with

a := ∇jEk

(
θ̃(tk)

)
, b := ∇jEk

(
θ̃(tn)

)
, K :=

p∑
i=1

∇ijEk

(
θ̃(tn)

) n−1∑
l=k

∇iEl

(
θ̃(tn)

)
R

(l)
i

(
θ̃(tn)

)
+ ε

,

and bounding

|a− b−Kh|
(a)
≤
(
(n− k)(C19/2 + C8) +

(n− k)(n− k − 1)

2
C13

)
h2,

|b| ≤ M1, |K| ≤ (n− k)C9,

where (a) is by Lemma G.3. (60) is proven.

We turn to the proof of (59). By (60) and the triangle inequality∣∣∣∣∣
n∑

k=0

ρn−k(1− ρ)
(
∇jEk

(
θ̃(tk)

))2
−R

(n)
j

(
θ̃(tn)

)2
− 2hP

(n)
j

(
θ̃(tn)

)∣∣∣∣∣
≤ (1− ρ)

n∑
k=0

ρn−k
(
Poly1(n− k)h2 + Poly2(n− k)h3 + Poly3(n− k)h4

)
= (1− ρ)

n∑
k=0

ρk
(
Poly1(k)h

2 + Poly2(k)h
3 + Poly3(k)h

4
)
,

where

Poly1(k) := 2M1

(
k(C19/2 + C8) +

k(k − 1)

2
C13

)
= M1C13k

2 +M1(C19 + 2C8 − C13)k,
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Poly2(k) := 2kC9

(
k(C19/2 + C8) +

k(k − 1)

2
C13

)
= C13C9k

3 + (C19 + 2C8 − C13)C9k
2,

Poly3(k) :=

(
k(C19/2 + C8) +

k(k − 1)

2
C13

)2

=
C2

13

4
k4 +

C13

2
(C19 + 2C8 − C13)k

3 +
1

4
(C19 + 2C8 − C13)

2
k2.

It is left to combine this with

n∑
k=0

kρk ≤
∞∑
k=0

kρk =
ρ

(1− ρ)2
,

n∑
k=0

k2ρk ≤
∞∑
k=0

k2ρk =
ρ(1 + ρ)

(1− ρ)3
,

n∑
k=0

k3ρk ≤
∞∑
k=0

k3ρk =
ρ
(
1 + 4ρ+ ρ2

)
(1− ρ)4

,

n∑
k=0

k4ρk ≤
∞∑
k=0

k4ρk =
ρ
(
1 + 11ρ+ 11ρ2 + ρ3

)
(1− ρ)5

.

This gives ∣∣∣∣∣
n∑

k=0

ρn−k(1− ρ)
(
∇jEk

(
θ̃(tk)

))2
−R

(n)
j

(
θ̃(tn)

)2
− 2hP

(n)
j

(
θ̃(tn)

)∣∣∣∣∣
≤

(
M1C13

ρ(1 + ρ)

(1− ρ)
2 +M1|C19 + 2C8 − C13|

ρ

1− ρ

)
h2
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where in (a) we used that h < 1. (59) is proven.

Lemma G.5. Suppose Assumption B.2 holds. Then∣∣∣∣∣∣∣
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Proof. Note that if a ≥ R2, b ≥ R2, we have∣∣∣∣∣∣∣
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By the triangle inequality,∣∣∣∣∣∣∣
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Apply this with
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2

by Lemma G.4.

We are finally ready to prove Theorem B.3.

Proof of Theorem B.3. By (42) and (43), the first derivative of the function
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is bounded in absolute value by a positive constant C27 = C17 + C18. By (13), this means∣∣∣∣∣∣ ¨̃θj(t) + d
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Combining this with ∣∣∣∣∣θ̃j(tn+1)− θ̃j(tn)− ˙̃
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for a positive constant C29, where
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From (61) and (62), by the triangle inequality∣∣∣∣θ̃j(tn+1)− θ̃j(tn)− ˙̃
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It is left to combine this with Lemma G.5, giving the assertion of the theorem with
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H. Numerical Experiments
H.1. Models

We use small modifications of Resnet-50 and Resnet-101 implementations in the torchvision library for training on
CIFAR-10 and CIFAR-100. The first convolution layer conv1 has 3× 3 kernel, stride 1 and “same” padding. Then comes
batch normalization, and relu. Max pooling is removed, and otherwise conv2_x to conv5_x are as described in He et al.
(2016) (see Table 1 there) except downsampling is performed by the middle convolution of each bottleneck block, as in
version 1.53. After conv5 there is global average pooling and 10 or 100-way fully connected layer (for CIFAR-10 and
CIFAR-100 respectively).

The MLP that we use for showing the closeness of trajectories in Figure 3 consists of two fully connected layers, each with
32 units and GeLU activation, followed by a fully-connected layer with 10 units.

In Figure 3, the curves called “first order” plot
∥∥θ(n) − θ̃

(n)∥∥
∞ and the curves called “second order” plot

∥∥θ(n) − ˜̃
θ(n)

∥∥
∞,

where θ(n) is the Adam iteration defined in Definition 1.1 and

˜̃
θ
(n+1)
j =

˜̃
θ
(n)
j − hA

(n)
j

(
˜̃
θ(n)

)
+ h2B

(n)
j

(
˜̃
θ(n)

)
,

θ̃
(n+1)
j = θ̃

(n)
j − hA

(n)
j

(
θ̃
(n)
) (63)

for A(n)
j (·) and B

(n)
j (·) as defined in Section 3, with the same initial point θ(0) = θ̃

(0)
=

˜̃
θ(0).

H.2. Data Augmentation

We subtract the per-pixel mean and divide by standard deviation, and we use the data augmentation scheme from Lee et al.
(2015), following He et al. (2016), section 4.2. During each pass over the training dataset, each 32× 32 initial image is
padded evenly with zeros so that it becomes 40× 40, then random crop is applied so that the picture becomes 32× 32 again,
and random (probability 0.5) horizontal (left to right) flip is used.

H.3. Experiment Details

In experiments whose results are reported in Figures 4 and 5 of the main paper, we train for a few thousand epochs and
stop training when the train accuracy is near-perfect (Figure 11) and the testing accuracy does not significantly improve
(Figure 12). Therefore, the maximal test accuracies are the final ones reached, and the maximal perturbed one-norms, after
excluding the initial fall at the beginning of training, are at peaks of the “hills” on the norm curves (Figure 12).

Since the full dataset does not fit into GPU memory, we divide it into 100 “ghost batches” and accumulate the gradients
before doing one optimization step. This means that we use ghost batch normalization (Hoffer et al., 2017) as opposed to
full-dataset batch normalization, similarly to Cohen et al. (2021).

H.4. Additional Evidence

We provide evidence that the results in Figures 4 and 5 are robust to the change of architectures. In Figures 7 and 8, we
show that the pictures are similar for a simple CNN created by the following code:

layers = [
# First block
nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding='same'),
nn.ReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),

# Second block

3https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch
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nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding='same'),
nn.ReLU(),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),

# Third block
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding='same'),
nn.ReLU(),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),

# Flatten and Dense layers
nn.Flatten(),
nn.Linear(in_features=128 * 4 * 4, out_features=512),
nn.ReLU(),
nn.Linear(in_features=512, out_features=num_classes),

]
return nn.Sequential(*layers)

In Figures 9 and 10, we show that the same conclusions can be made for a Vision Transformer (Dosovitskiy et al., 2020;
Beyer et al., 2022). In these experiments, we use the SimpleViT architecture from the vit-pytorch library with 4× 4 patches,
6 transformer blocks with 16 heads, embedding size 512 and MLP dimension of 1024 (following Andriushchenko et al.
(2023)).
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Figure 7. A simple CNN trained on CIFAR-10 with full-batch Adam, β = 0.99, ε = 10−8. As ρ increases, the perturbed one-norm rises
and the test accuracy falls. Both metrics are calculated as in Figures 4 and 5 of the main paper. All results are averaged across five runs
with different initialization seeds.
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Figure 8. A simple CNN trained on CIFAR-10 with full-batch Adam, ρ = 0.999, ε = 10−8. The perturbed one-norm falls as β increases,
and the test accuracy rises. Both metrics are calculated as in Figures 4 and 5 of the main paper. All results are averaged across three runs
with different initialization seeds.

I. Adam with ε Inside the Square Root: Informal Derivation
Our goal is to find such a trajectory θ̃(t) that
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Result I.1. For n ∈ {0, 1, 2, . . .} we have
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Derivation. We take

θ̃j(tn+1) = θ̃j(tn)− h
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for granted. Using this and the Taylor series, we can write
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Figure 9. A vision transformer trained on CIFAR-10 with full-batch Adam. The setting and conclusions are the same as in Figure 7.
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where in the last equality we just replaced tn−1 with tn in the h-term since it only affects higher-order terms. Now doing
this again for step n− 1 instead of step n, we will have
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where in the last equality we again replaced tn−1 with tn since it only affects higher-order terms. Proceeding like this and
adding the resulting equations, we have for n ∈ {0, 1, . . .}, k ∈ {0, . . . , n− 1} that
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where we ignored the fact that n− k is not bounded (we will get away with this because of exponential averaging). Hence,
taking the square of this formal power series,
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Figure 10. A vision transformer trained on CIFAR-10 with full-batch Adam. The setting and conclusions are the same as in Figure 8.
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Summing up over k, we have
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Figure 11. Train loss and train accuracy curves for full-batch Adam, ResNet-50 on CIFAR-10, β = 0.99, ε = 10−8, h = 10−4.

We conclude
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(
h3
)

= θ̃j(tn)− h
M

(n)
j

(
θ̃(tn)

)
R

(n)
j

(
θ̃(tn)

)
+ h2

M
(n)
j

(
θ̃(tn)

)
P

(n)
j

(
θ̃(tn)

)
R

(n)
j

(
θ̃(tn)

)3 −
L
(n)
j

(
θ̃(tn)

)
R

(n)
j

(
θ̃(tn)

)
+O

(
h3
)
.

Result I.2. For tn ≤ t < tn+1, the modified equation is (32).

Derivation. Assume that the modified flow for tn ≤ t < tn+1 satisfies ˙̃
θ = f̃

(
θ̃(t)

)
where

f̃(θ) = f(θ) + hf1(θ) +O
(
h2
)
.

43



On the Implicit Bias of Adam

0 1000 2000 3000 4000
Epoch

10

20

30

40

50

60

70

80

Te
st

 a
cc

ur
ac

y

=0.92
=0.9354
=0.9479
=0.9579
=0.966
=0.9726
=0.9778
=0.9821

=0.9856
=0.9883
=0.9906
=0.9924
=0.9939
=0.995
=0.996

0 1000 2000 3000 4000
Epoch

3000

4000

5000

6000

7000

8000

Pe
rtu

rb
ed

 1
-n

or
m

=0.92
=0.9354
=0.9479
=0.9579
=0.966
=0.9726
=0.9778
=0.9821

=0.9856
=0.9883
=0.9906
=0.9924
=0.9939
=0.995
=0.996

Figure 12. Test accuracy and ∥∇E∥1,ε after each epoch. The setting is the same as in Figure 11.

By Taylor expansion, we have

θ̃(tn+1) = θ̃(tn) + h
˙̃
θ
(
t+n
)
+

h2

2
¨̃
θ
(
t+n
)
+O

(
h3
)

= θ̃(tn) + h
[
f
(
θ̃(tn)

)
+ hf1

(
θ̃(tn)

)
+O

(
h2
)]

+
h2

2

[
∇f
(
θ̃(tn)

)
f
(
θ̃(tn)

)
+O(h)

]
+O

(
h3
)

= θ̃(tn) + hf
(
θ̃(tn)

)
+ h2

f1(θ̃(tn))+ ∇f
(
θ̃(tn)

)
f
(
θ̃(tn)

)
2

+O
(
h3
)
.

(65)

Using Lemma I.1 and equating the terms before the corresponding powers of h in (64) and (65), we obtain

fj(θ) = −
M

(n)
j (θ)

R
(n)
j (θ)

,

f1,j(θ) = −1

2

p∑
i=1

∇ifj(θ)fi(θ) +
M

(n)
j (θ)P

(n)
j (θ)

R
(n)
j (θ)

3
−

L
(n)
j (θ)

R
(n)
j (θ)

.

(66)

It is left to find ∇ifj(θ). Using

∇iR
(n)
j (θ) =

∑n
k=0 ρ

n−k(1− ρ)∇ijEk(θ)∇jEk(θ)

(1− ρn+1)R
(n)
j (θ)

,

∇iM
(n)
j (θ) =

∑n
k=0 β

n−k(1− β)∇ijEk(θ)

1− βn+1

we have

∇i

(
−
M

(n)
j (θ)

R
(n)
j (θ)

)
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= −
R

(n)
j (θ)2

1−βn+1

∑n
k=0 β

n−k(1− β)∇ijEk(θ)−
M

(n)
j (θ)

1−ρn+1

∑n
k=0 ρ

n−k(1− ρ)∇ijEk(θ)∇jEk(θ)

R
(n)
j (θ)

3

= −
∑n

k=0 β
n−k(1− β)∇ijEk(θ)

(1− βn+1)R
(n)
j (θ)

+
M

(n)
j (θ)

∑n
k=0 ρ

n−k(1− ρ)∇ijEk(θ)∇jEk(θ)

(1− ρn+1)R
(n)
j (θ)

3

Inserting this into (66) concludes the proof.
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