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SA-1 Overview

SA-1.1. This appendix provides some omitted details and proofs.

We consider two algorithms: RMSProp and Adam, and two versions of each algorithm (with the
numerical stability € parameter inside and outside of the square root in the denominator). This means there
are four main theorems: Theorem SA-2.4, Theorem SA-3.4, Theorem SA-4.4 and Theorem SA-5.4, each
residing in the section completely devoted to one algorithm. The simple induction argument taken from
[1], essentially the same for each of these theorems, is based on an auxiliary result whose corresponding
versions are Theorem SA-2.3, Theorem SA-3.3, Theorem SA-4.3 and Theorem SA-5.3. The proof of this
result is also elementary but long, and it is done by a series of lemmas in Section SA-6 and Section SA-7,
culminating in Section SA-7.6. Out of these four, we only prove Theorem SA-2.3 since the other three
results are proven in the same way with obvious changes.

Section SA-8 contains some details about the numerical experiments.

SA-1.2 Notation. We denote the loss of the kth minibatch as a function of the network parameters
0 € R? by Ej(0), and in the full-batch setting we omit the index and write E(0). As usual, VE means
the gradient of £, and nabla with indices means partial derivatives, e.g. V;;,F is a shortcut for %.

The letter T' > 0 will always denote a finite time horizon of the ODEs, h will always denote the
training step size, and we will replace nh with ¢,, when convenient, where n € {0,1,...} is the step number.

We will use the same notation for the iteration of the discrete algorithm {O(k)}k . the piecewise ODE
€Z>o

solution 0(t) and some auxiliary terms for each of the four algorithms: see Definition SA-2.1, Definition SA-

3.1, Definition SA-4.1, Definition SA-5.1. This way, we avoid cluttering the notation significantly. We are

careful to reference the relevant definition in all theorem statements.



SA-2 RMSProp with ¢ outside the square root

Definition SA-2.1. In this section, for some 0 ¢ RP, VO =0 €RP, pe (0,1), let the sequence of

p-vectors {O(k)} be defined for n > 0 by
kGZZO

2
v = pr 4 (1= p) (vjEn (0<”>)> ,

: ) " (SA-2.1)
o =0 - v;E, (8").

Vj(n+1) +e

Let é(t) be defined as a continuous solution to the piecewise ODE

; ViEa(6(1))
j(t) W
, v, (00) (267 (800) + P (000) ) 3,9, (010) Tkl | A

2R (500) +<) W) R0+

with the initial condition 8(0) =

6 where R(™ (), P(™)(0) and P (8) are p-dimensional functions
with components

R(n) $ipnk1 VEk( ))’

n—1

P(9) =Y p" (1 - p)V, Er(0 ZV”Ek ZLZ'EZ(Q)

k=0 1= kR(l)(e) +e
5" (g ~ ok V,E,(0)
P! PR = p)VER(0) S Vi Er(0
J ];) Z J R(n( )_'_5

Assumption SA-2.2.
1. For some positive constants My, Ms, M3, My we have
SUp Sup Sgp|viEk(0)‘ < My,
3
S_upsup Sup|VijEk(0)’ < Ms,
sup sup sup|V”SEk(9)‘ < Ms,

i,5,s k

sup supsup‘Vljerk(BH < My,.
i,3,8,7 k

2. For some R > 0 we have for all n € {O, 1,..., LT/hj}

R”( )>R Zp"klf (VEk@(tk)))ZZRQ,

where 0(t) is defined in Definition SA-2.1.



Theorem SA-2.3 (RMSProp with ¢ outside: local error bound). Suppose Assumption SA-2.2 holds.
Then for alln € {0,1,...,|T/h]}

_ i V,E, (é(tn))
9]' (tn+1) - 03’ (tn) +h =
\/ZZ=0 PRl —p) (vjEk (é(tk))) +e

for a positive constant Cy depending on p.

< Ch3

The proof of Theorem SA-2.3 is conceptually simple but very technical, and we delay it until
Section SA-7. For now assuming it as given and combining it with a simple induction argument gives a
global error bound which follows.

Theorem SA-2.4 (RMSProp with ¢ outside: global error bound). Suppose Assumption SA-2.2 holds,
and

n 2
St (o) ) >

k=0
for {B(k)}k ; defined in Definition SA-2.1. Then there exist positive constants di, do, ds such that for
€L>o
alln € {0,1,...,|T/h]}

Hen” S dled'—’”th and ||en+1 - en“ S dSEdthhsa

where e, := 0(t,) — 0™, The constants can be defined as

dl = Ola
Ms./p M12
dy = |1 1]d
’ +R+€<R(R+€)+ 1| VP
d3 = Cldg.

Proof. We will show this by induction over n, the same way an analogous bound is shown in [1].
The base case is n = 0. Indeed, eg = 6(0) — 8®) = 0. Then the jth component of e; — e is

ler — o], = [e1], = 6,(t1) — 0O hV;Ey (0(0)>
J J J J 5
\/(1 —p) (Von (9(0))) +e
hV; By (é(to))

= 0,(t:1) — 0;(to) + =
\/ 1=V (01) )+

By Theorem SA-2.3, the absolute value of the right-hand side does not exceed C;h3, which means
ler —eo]l < C4 h3\/ﬁ Since C1,/p < d3, the base case is proven.
Now suppose that for all k =0,1,...,n — 1 the claim

lerl| < die®*"h?  and |leyy1 — ex|| < dzed?*h3

is proven. Then

(a)
lenl] < llen—1ll + llen — en—1]l < dyed>(n=Dhp2 o gedz(n=Dhp3

d: (b)
:dledz(n—l)th(l_i_djh) < d]€d2(n_1)hh2<1+d2h)



(gd 6dg(n 1)hh2 dah :dledznth,

where (a) is by the triangle inequality, (b) is by ds/dy < da, in (c) we used 1+ = < e® for all > 0.
Next, combining Theorem SA-2.3 with (SA-2.1), we have

V,E, (é(tn)) V,E, (0("))

(et — en]j’ <Ch® 4+ h N/ T (SA-2.3)
where to simplify notation we put
n 2
A= 30 o) (5 (Bw) )
k=0
n 2
B:=Y p"*(1-p) <VjEk (0( ))>
k=0
Using A > R?, B > R?, we have
I A - B < A=Bl (SA-2.4)
VAte VBel (VAte)(VB+e)(VA+VB)  2R(E+e)
But since
B 2 2
<vjEk (euw)) - (vjEk (0“”)) ‘
= |vm(800)) - 95 (69)| - |9  (6000)) + 9, (6|
< 20|V, B (8(t)) — VB (9““))‘ < 2M1M2\/[9H9(tk) — ™|,
we have .
|A— Bl <2M My /p > p"H(1 - p)Hé(tk) - 0<’€>H. (SA-2.5)
Combining (SA-2.4) and (SA-2.5), we obtain
V,E, (é(tn)) V,E, (49("))
VA+e  VB+e
or . ‘vjEn (é(tn)) ~V,E, (0“”)‘
‘ "‘f+s VB+el VB +e
My My /By p" (1 — p He t) — 6" H Mg\/ﬁHé(tn) IO
= My 2R(R +¢)? * R+e
_ MEMovp S~ gy o® ||« M2vPllg | pm)
1R—i—fs Z,O kl Hgtk kH+R+€H0(t”) 0
(;) Mlewj\sf Z n— k Led2khp2 | R2+\[d edanhp? (SA-2.6)

where in (a) we used the induction hypothesis and that the bound on ||e,|| is already proven.

. k . . .
Now note that since 0 < pe~%" < p, we have > _, (pe™®")" <377 pF = ilp, which is rewritten
as

anik(l _ p)edzkh S edznh.



Then we can continue (SA-2.6):

V,E,(0(tn)) V,E,(6™ M 2
J ( ) J ( ) < 2\/ﬁ< M1 )+1>d16d2nhh2 (SA-27)

VA +e - VB+e “ R+e\RR+c¢

Again using 1 < e?"" we conclude from (SA-2.3) and (SA-2.7) that

Ma/p M donh 3
w1 —en] < | C 1)d anhp3,
len+s e”—( lJFJ~3+5<1~3(1~3+5)+ 1| Vpe

<ds

finishing the induction step. O

SA-2.5 RMSProp with ¢ outside: full-batch. In the full-batch setting Ej, = E, the terms in (SA-2.2)
simplify to

R (0) = |V,B(0)|V/1—p+T,
P (0) =" p" M (1 - p)V,E(0) Y Vi, Z A (0)

k=0 =1

—pHl e’
Vz’E(O)
|ViE(0)]\/1 - pn T + e

P () = (1 - "+1)v E(9) zp:vijE(e)

If ¢ is small and the iteration number n is large, (SA-2.2) simplifies to

_\VjE(é(m\_l{—vjE(é(t)) th— ) V HVE >M'

SA-3 RMSProp with ¢ inside the square root

Definition SA-3.1. In this section, for some 0 ¢ R, 10 =0eRP, pe (0,1), let the sequence of

p-vectors {B(k)} be defined for n > 0 by
keZZO

2
v = ™ 4 (1= p) (VjEn (0<">)> ,

v +¢€
Let é(t) be defined as a continuous solution to the piecewise ODE
B Vj E, (é(t))
0; (t)= YN
R (8(1))
0 ") (o p(n) (§ ~ V,En (6 (SA-3.2)
o) (o 00) £ 00)) 52, ) T
+h 3 - s - .
2R (8(1)) 2R™ (6(1))



with the initial condition 8(0) = 0¥, where R(™ (), P(")(8) and P(") () are p-dimensional functions

with components

n 2
R\ () == an k(1 —p)(V,;Ee(0))” +e,
—1
Mgy . N ek ViEi(6) SA-3.3
PO) = 31~ B0 YV E0) zTa (A9
k=0 1=k Ri C)
Pj Zp 1 o v Ek Zv” Ek n)
=0 6)
Assumption SA-3.2. For some positive constants My, Ms, M3, My we have
sup sup sup|ViEk(9)‘ < M,
sup sup sup|V”Ek(9)’ < Mo,
nj  k
sup sup sup‘VUsEk(G)‘ < M3,
1,7, k
sup bupsup|VUerk(9)‘ < M.
i,3,8,7 k
Theorem SA-3.3 (RMSProp with ¢ inside: local error bound). Suppose Assumption SA-3.2 holds. Then

foralin € {0,1,...,|T/h]}

0;(tn+1) — 0;(tn) +h Vo (é( ))

\/Zk 0P R(L— )(V Ek(é(tk)>>2+5

for a positive constant Cy depending on p, where é(t) is defined in Definition SA-3.1.

< Cyh3

We omit the proof since it is essentially the same argument as for Theorem SA-2.3.

Theorem SA-3.4 (RMSProp with ¢ inside: global error bound). Suppose Assumption SA-3.2 holds.
Then there exist positive constants dy, ds, dg such that for all n € {0, 1,..., [T/hj}

d5 nh h3
’

len| < die®™™h?  and |leni1 —en|| < dse

where e, = 0(t,) — 0™ B(t) and {H(k)} are defined in Definition SA-3.1. The constants can be

kEZZO
defined as
d,1 = CQ,
M. /p M1
ds := |1 —4+1]d
5 + NG < B + > 4| VD,
d(; = ngg).

We omit the proof since it is essentially the same argument as for Theorem SA-2.4.

SA-3.5 RMSProp with ¢ inside: full-batch. In the full-batch setting E; = F, the terms in (SA-3.2)
simplify to

R (0) = |V, BO)(1 - ) + <,



n

) . p E(9)
PO = M O LSO S @

k=0

V,E(0)
VVE@PA— ) +e

ﬂ%m=u—wﬁwmmﬁw E(6)

If the iteration number n is large, (SA-3.2) rapidly becomes

0;(t) = (V;E(0(t)) + bias), (SA-3.4)
\/|v E@W)? + ¢
where
. h) 2 I+p € _ ~ i
bias := 2{ 1o, Y EGO)F T }VJHVE(O(t))HLE. (SA-3.5)

SA-4 Adam with ¢ outside the square root

Definition SA-4.1. In this section, for some 0 ¢ RP, 10 =0 cRP, B,p€ (0,1), let the sequence of

p-vectors {O(k)} be defined for n > 0 by
kGZZO

2
yj(-nﬂ) = pvj(n) +(1-p) (VjEn (0(”))) ,
m{" Y = g+ (1= BV, (6™),

JtD) _ gl _ (n+1)/( ﬂnJrl)
J T e

or, rewriting,

T 2o B = B)V; By (G(k))

(n+1) _ 5(n)
K B 2 . (SA-4.1)
\/1_,}n+1 Sor_o P E(1 = p) (vjEk <9(k))> L
Let é(t) be defined as a continuous solution to the piecewise ODE
() (g
; M; (‘9 (L‘))
i) = ——77
R; (g(t)) +e
’ ! P (B . N (SA-4.2)
M )(9(15)) <2p< )<0(t)) + P )(a(t)>> o (™) (a(t)> LI (e(t)>
+h B

with the initial condition 8(0) = 8®), where R (0), P (8), P("(9), M(™)(0), L™ (6), L) (0) are



p-dimensional functions with components

R (0 szn K1 = 9)(V,Eu(6))"/ (1= pr ),

n 1 —
MJ( '(0) = T pnit 25 "(1 - B)V;Ex(0),
k=0

n P n—1 0
gy . 1L 3 gk 3 3 M;"(6)
k=0 i=1 1= 1;°(0) + ¢ (SA-4.3)
(n)
™0 : Bk - B)S Vi Er(8 :
J /BTL-‘rl Z Z J (n) (0) +e
(n) Z k (R VOIT’)!
P'n (0) — pn 1 _ V Ek VZ Ek E 7477
j 1- pn+1 Z ’ = R (0) +¢

(n)
S MM (6
PM(0) = ——r § jpn 5(1— p)V;E(6 § v, B (0) M 0)

J 1_

Assumption SA-4.2.
1. For some positive constants My, Ms, M3, My we have

sup sup Sup|ViEk(9)‘ < My,

i k6
s_u_psup Sup|VijEk(0)’ < Mo,
sup sup sup|V”sEk(9)‘ < M3,

i,5,s k

sup supsup‘V”erk(eﬂ < M.
%,3,8,7 k

2. For some R > 0 we have for all n € {0, 1,...,|T/h]}

2
Rgn) (9(tn)> > R, 1_ pntt an "1-p <V Ej, (a(tk))> > R?,
where 0(t) is defined in Definition SA-4.1.

Theorem SA-4.3 (Adam with e outside: local error bound). Suppose Assumption SA-4.2 holds. Then
foralln € {0,1,...,|T/h]}

i i e Yo (L - 8)95 B (Bt )

\/1;)1"+1 Y=o P (L= p) (VjEk (é(tk))>2 +e

for a positive constant C3 depending on B and p.

< Csh?

We omit the proof since it is essentially the same argument as for Theorem SA-2.3.

Theorem SA-4.4 (Adam with ¢ outside: global error bound). Suppose Assumption SA-4.2 holds, and
n—k (k) 2
(v (e)) > 5

for {O(k)}k , defined in Definition SA-4.1. Then there exist positive constants d7, ds, dg such that for
€Z>0

alln € {0,1,...,|T/h]}

lenll < dre®™™h? and |eni1 — en|| < doge®" R,



where e, := 0(t,) — 0™, The constants can be defined as

d7 = Cg,
Ms\/p M12
dg := |1 1|d
¢ +R+5<R(R+g)+ 7| VP
dy 1= Csds.

Proof. Analogously to Theorem SA-2.4, we will prove this by induction over n.

The base case is n = 0. Indeed, ey = 6(0) — 6¥) = 0. Then the jth component of e; — e is

nv ;B (61)

[e1 — eo]j = [el}j = éj (tl) — 9;0) +

v, Eo ((9(0))’ te

hV; By (é(to))

\/(VjEO (é(to)))2 + s.

By Theorem SA-4.3, the absolute value of the right-hand side does not exceed Csh?, which means
ler — eoll < C5h®\/p. Since C5./p < dy, the base case is proven.
Now suppose that for all k =0,1,...,n — 1 the claim

=6;(t1) — 0;(to) +

lex]] < dre™h* and [epi1 — x| < doe™* h?

is proven. Then

(a)
lenll < llen_ill + llen — en_1|| < dre®"DrR2 4 doeds(r=Dhp3
dog

=d ds(nfl)th 1 w9 (b) ds(n—1)h 2
= dre + p h| < dre h (1 +d8h)
7

(2 d7ed8(n—1)hh2 . edsh _ d7€d8nhh2,

where (a) is by the triangle inequality, (b) is by do/d7 < ds, in (c) we used 1+ = < e® for all > 0.
Next, combining Theorem SA-4.3 with (SA-4.1), we have

[ ]‘<Ch3+h N N (SA-4.4)
€n —€enl;| = Lo - ) —.
B E VD' +e VD' +e
where to simplify notation we put
1 SN
N':= 1= gt Y BTE1 =BV, By (9(k))7
k=0
1 N .
N":= 1—75"“ Zﬁ k(l — BV, Ex (e(tk))7
k=0
1 n 2
D= g 2" A=) (VjE’“ (o(k)>> ’
P k=0
"o, 1 & n—k 0 2
D™= 1—7,0”4‘1 ZP (L=p){ V;Ek (O(tk)) :
k=0
Using D' > R?, D" > R?, we have
1 1 B |D/7DN| - |D/7DN| (SA45)
VD' +e VD" +e (\/D’ + s) (\/D” + s) (\/D' + \/D") T 2R(R+¢)* '



But since

2

(w502~ (7,5 (0001

= |75 (6%) - 93 (B00)

V,Ey, (0(’“)) + V;E} (é(tk)> ‘

<M, |V, Ek(e ) v, Ek<0(tk))‘ < 2M1M2\fH0 —oay)|,
we have
D' = D"| < 2]‘{1]\{3{2,& “1 - )0~ B(t)| (SA-4.6)
Similarly,

N’ N'| < WZ” (13|75 (6) 9,5 (30|

(SA-4.7)
= 1—76"“ kZB”"“(l ~ B)Ma/p|0%) ~ B(1)|.
=0
Combining (SA-4.5), (SA-4.6) and (SA-4.7), we get
N’ N 1 ’N N//|
o e W \/ﬁ+s o
1 o\ 2M1M2 N
< - - n—k@q _ n— k (k) _
= 1-— pntl ZB (1—B8)M - 2R(R +¢)2( n+1 ZP P)H9 O(tk)H
M2\f k (k) _ p
R - 0\ —0(t
B M1 M2 —~ K *® 5
T RER+e2(1- n+1 Z” )||07 — 6t)
M2\[ - -k O
R — 0" —0(t
FErea- e T e e
) M2M2 - k dskh 2
< n— s
R(R+E n+1 ];Op d e h
M n
2/P A1 = B)dre™ M h?, (SA-4.8)

TR - ) &

where in (a) we used the induction hypothesis and that the bound on ||e,|| is already proven.

Now note that since 0 < pe~%" < p, we have Y ,_, (pe*d’*h)k < Sropt=(1=p"th)/(1-p),
which is rewritten as

1 . 77— n
L 3k ettt < e,
P =0
By the same logic,

n
: I18n+1 Zﬁn—k(l _ 5)€dgkh < edgnh.
k=0

Then we can continue (SA-4.8):

N’ N Mz/p M? dsnh 2
- < 1 |d7e*™"h SA-4.9
VD 1 VDiiel - Rte\RE®+e) ) ( :

10



Again using 1 < e%"" we conclude from (SA-4.4) and (SA-4.9) that

M2\/13 M12 dsnhp 3
n — ©n < C 1 d 8n h7
len+ e”—( 3+R+6<R(R+s)+ T Ve

<dg

finishing the induction step. O

SA-5 Adam with ¢ inside the square root

Definition SA-5.1. In this section, for some 0 ¢ RP, 1O =0eRP, 3,p€ (0,1), let the sequence of

p-vectors {O(k)} be defined for n > 0 by
kGZZO

2
Vj(n+1) = puj(n) +(1-p) <VjEn (0("))> ,

(™Y = m{ 4 (1= BV, E.(6™), (SA-5.1)
. . (n+1)/( — gt
oD — gl _ \/ Dy
Let é(t) be defined as a continuous solution to the piecewise ODE
.M (em)
0;(t) = R(”) (é( ))
2 (6(1) ( 2PV (B(1) + P (é(t))) o1 (60) + 1 (800 (SA-5.2)
R§”>( (t ))3 - 2R (é(t))

with the initial condition 8(0) = 8, where R (8), P (8), P(™(8), M) (0), L™ (6), L) (0) are

p-dimensional functions with components

k=0

R (0 szn K= p)(V5E0(6))* /(1= p+1) + e

M () = # SR - 5V, E(6),
k=0

n 1 " P MY 9
LY 0) = 1= Zﬂ”*’“(l—mzvij @ —
k=0 ]

@

= ;(C)Rz () (SA-5.3)
[(g) e L N gk )M, (6)
)= 1-5%125 ZV”E’“ R (0)

. . nAJ,AJ(D(a)
P (0) = TR (L — V Ex( Vi Ex( ¢ ’
;7 (0) l_pn+1 Zp k( Z 1Bl ; Rgl)(B)

P (n)
=(n n— MZ o
B0 = 3o 0 300
k=0 i=1

Assumption SA-5.2. For some positive constants My, Ms, M3, My we have
sup sup sup|ViEk(9)‘ < M,
i k 0

11



sup sup sup|V”Ek(0)| < Ma,
wj ok

Sup sup sup|V”sEk(9)} < Ms,
1,7, k

sup supsup|V”erk(9)| < My.
i,5,8,7 k

Theorem SA-5.3 (Adam with e inside: local error bound). Suppose Assumption SA-5.2 holds. Then for
alln€ {0,1,...,|T/h]}

_ _ T ko B (1= BV Ei (é(tk))

\/1—,)1n+1 ko P"TH(L = p) <vjEk (é(tk)>>2 +e

for a positive constant Cy depending on B and p.

< Cuh?

We omit the proof since it is essentially the same argument as for Theorem SA-2.3.

Theorem SA-5.4 (Adam with ¢ inside: global error bound). Suppose Assumption SA-5.2 holds for
{H(k)} defined in Definition SA-5.1. Then there exist positive constants dig, di1, di2 such that for
k€Z>o

alln € {0,1,...,|T/h]}
leall < dioe®™™h? and |leps1 — enll < dize®™ ™1,

where e, := 0(t,) — 0™, The constants can be defined as

dio := Cl,
Mg\/f) M12
dip = |1 —+11d
11 + NG < - + 10| v/,
d12 = C4d11.

SA-6 Technical bounding lemmas

We will need the following lemmas to prove Theorem SA-2.3.

Lemma SA-6.1. Suppose Assumption SA-2.2 holds. Then

sup‘Pj(”)(O)‘ < Cs, (SA-6.1)
sup‘P(n) ’ < o, (SA-6.2)
with constants Cs, Cg defined as follows:
MM, p
Csi=p R+e 1-p’
M2M2
Co = PRy

Proof of Lemma SA-6.1. The proof is done in the following simple steps.

SA-6.2 Proof of (SA-6.1). This bound is straightforward:

n n—1
(n) B . ViE(0)
supl Pf7(O)] = supl (1= )9, 50 ZVUEI« )2 004z

M3} M, ok M3} M, A
<p—Ll2(1 - " k) <p—1%(1 - k=Cs.
,pRH( p)gzop (n )prﬁ( p)gzop 5

12



SA-6.3 Proof of (SA-6.2). This bound is straightforward:

5 n— ViE,(0)
bup‘P ’ = sup PR — p)V;E,(6 Vi Ep(0) —————
Z ; J Rin)(e)+€
M2 M.
E k< p L2
R+5 P PRye ~ O

This concludes the proof of Lemma SA-6.1.

O

Lemma SA-6.4. Suppose Assumption SA-2.2 holds. Then the first derivative of t — éj (t) is uniformly

over j and t € [0,T] bounded in absolute value by some positive constant, say Dy .

Proof. This follows immediately from h < T, (SA-6.1), (SA-6.2) and the definition of 8(¢) given in (SA-2.2).

Lemma SA-6.5. Suppose Assumption SA-2.2 holds. Then

sup sup (VjEn(é(t))) < Cy,
tel0,T] J

P ) . ViE,(0(t)
w2 V() Qf(t”w < e,

. nml VE (é(t))
zli]ites&l)%] zzlvazC (0( )) ; W < (n—k)Cy,

ViEn(8(t))

i VB (B00) e
2R (B(1) +¢)

S Cl8a

with constants 07, CS, Cg, ClO: Cll) Clg, 013, 014, 015, Clﬁ, 017, Clg deﬁned as fOllO”LUS.’

C7 = pM, Dy,
Cy := p]\]éll_f_\/[;,
Cio == DpoZ\élj_wj2 : %7
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(SA-6.3)

(SA-6.4)

(SA-6.5)

(SA-6.6)

(SA-6.7)

(SA-6.8)

(SA-6.9)

(SA-6.10)



DyipMy M-
Cyy = 1PR1 27

o My M3
R+¢’

Ci3:=Ch2 +pM2<

C]Q = Dlp

DipMy M,
C
R+e +(R+5)2 11)

Dqp? M2M?2
_ thp <J\41A7\43+J\/[22Jr 1 2>,

" R+e (R+¢)R
Ci4 == M Ci3 ;
L—p
O Dyp® My M3 . D1p? M} Ms n Dyp? My M3 pMiM,Ciy
BT T Rye R+e R+e (R+¢e)? "’
Cro i= 2C11 Cii

RE+eP T (Rtot
DipMs - (2C5 + Cs) My (2(010 +Chy) + 015) M;(2C5 + Cs)Cip

Ci7 = ’
: 2(R+¢)°R 2(R+¢)°R 2

Cie = 1 p2D1M1M3 p2D1M22 leMQCll } ' pM1M2 . iy
T 2R+ e) R+e R+e (R+¢)? 2 R+:c (Rte?

Proof of Lemma SA-6.5. We divide this argument in several steps.

SA-6.6 Proof of (SA-6.3). This bound is straightforward:

<VjEn(é(t))>" _ z”:vijEn(é(t))éi(t) < (5.

SA-6.7 Proof of (SA-6.4). By (SA-2.2) we have for t = ¢,

vjEn(é(t)) - h{M1(2c5+06) oMM, }
R§n) (é(t)) +e| 2(R+¢)’R 2(R+¢)?2]

giving (SA-6.4) immediately.
SA-6.8 Proof of (SA-6.5). This bound follows from the assumptions immediately.

SA-6.9 Proof of (SA-6.6). We will prove this by bounding the two terms in the expression

de 7
n » ) ol VE(6()
_ kZ:Op"*k(l —p) ; VuEk (e(t))eu(t) ; Vi E (e(t)) ; 700 1 @((t)) 25 s

=t ViE(8(1))
k=0 i=1 ’ I=k REZ) (é(t)) +e
It is easily shown that the first term in (SA-6.11) is bounded in absolute value by Ci:
P n-1 V,E (é(t))

zn: p"F (1= p) ) VjuE (é(t))éu(t) Zp: Vij Bl (é(t)) >

k=0 u=1 I—k Rgl) (9(1&)) +€

14



= Cl()'

For the proof of (SA-6.6), it is left to show that the second term in (SA-6.11) is bounded in absolute
value by C1y.

n—1 ViE/(0
To bound >°F_, dt{vUEk< (t )) S kl R(l)(z(t)()t)) } we can use

By the Cauchy-Schwarz inequality applied twice,

P4 i n-1 V,E (é(t))
Z dt{Vngk (0( ))} ; Rz(»l) (é(t)) L

éJif(szEk(f’ ))Zdimz >

i=1 s=1

p
< Msp-Divp- |

Next, for any n and j

%Rgm (9( ))‘ poIr ( ) kz PV, (é(t)) ;vijEk (é(t))é,;(t)
(SA-6.12)
< ]%?L)(lé(t))Dlleﬂb kZ:OP" F(1-p) < Cui.
This gives

al ViE (é(t)) ‘Zs 1 Visk (é( ))é (t )‘
- <
dt le (é(t)) +e€ B R(l) ( ) <R§l) (é(t)) + €> ?

< DipMy n M,
~ R+4+e (R+¢)?

15



‘We have obtained

P n=1 V,E(6(t)
St o) § 0 00)

—_— n—=k Clt . SA-6.
= RY (é(t)) te = =i (54-6.19)

This gives a bound on the second term in (SA-6.11):

ipn F P)V; Ek( )zp:;i ZJEk(é ))nE:l M (é(t))

k=0 =k Rgl) (é(t)) +e

<MY p" (1= p)(n—k)Cis < Cha,
k=0

concluding the proof of (SA-6.6).
SA-6.10 Proof of (SA-6.7). We will prove this by bounding the four terms in the expression
ViE, (6(t)
G 2= (00) 3w (o) e 00)
R (e(t)) te

= Term1 + Term2 + Term3 + Term4,

where
Terml
n i P N ViE,(0(t)
- kz;;pn—k(l _ )(?{v By (a(t)) } ; Vi B (0(t)) Rgmga((w)zs’
Term?2
n ) P N ViE,(0(t)
_ kgop K1 p)V, By (e( )) ; i{v”Ek (0(15)) } o (égt)) 26,
Term3

P _ o) d () (G
=— Z PR (1 — p)V,;Ex (é(t)> Z V., Ex (é(t)) V.Ey, (0(t)) (;it R} (0(15)) |

k=0

To bound Terml, use < D1pMs, giving

jt{vjEk (é(t))}

Dlp M1M2 ik D1p2M1M22
To bound Term2, use ddt{vijEk (é(t))} < DipMs, giving
p M1 Ms ko _ D’ MPM;
Term2| < 21 § T AP
| Term2| o S

16



To bound Term3, use < D1pMs, giving

jt{ViEn (é(t))}

Dip? My M3 <~ Dy p? My M3
Term3| < ————2% " p" k(1 - p) < Z——2.
[Terms]| < R+« k:op (1=p) < R+«

To bound Term4, use (SA-6.12), giving

2 n 2
|Term4| < MZ nfkr(l o ) < 29]\417]\426'11

R+e? & (R+e)?

SA-6.11 Proof of (SA-6.8). This is proven in (SA-6.13).

SA-6.12 Proof of (SA-6.9). (SA-6.12) gives

4 R (é(t)) ‘

d 1 di 'ty Ch

dt ] gl (o) B Ry (é(t))2 G e
d R(ﬂ) (é(t))’

d 1 |4 Cu )

dt R{" (é(t)) +el| (ngm <e(t)) +s>2 = @®ro (34-6.15)

d pn) (5
% 1 R 2l a (G(t))‘ < (Ffiu)B' (SA-6.16)
(R§."> (6)) + 5) (R§."> (b)) + g) i

Combining two bounds above, we have

(i{ <R§n) (é(t)) + s) _2R§") 6(t)! } |




and, as we have already seen in the argument for (SA-6.7),

u ~ viE”(é(t)) | p*D1MiMs  p*Di M3 pM;M>C
VZEn 3 < 2 1412011
; J ( (t>) RZ(")(é(t))-&-& < R4e R+¢ (R+5)2

we are ready to bound

p N ~ ViE,(8(t))
S VisBn(80)) geran s

2 (R§”> @) + 5)

< Cis.

The proof of Lemma SA-6.5 is concluded. O

Lemma SA-6.14. Suppose Assumption SA-2.2 holds. Then the second derivative of t — éj(t) is uniformly
over j and t € [0,T] bounded in absolute value by some positive constant, say Ds.

Proof. This follows from the definition of () given in (SA-2.2), h < T and that the first derivatives of
all three terms in (SA-2.2) are bounded by Lemma SA-6.5. O

Lemma SA-6.15. Suppose Assumption SA-2.2 holds. Then

(vjEn (é(t)))” < 1o, (SA-6.17)
(R;m (é(:s)))n < O, (SA-6.18)
<<R§”> (61) + g) _2> <o, (SA-6.19)
<R§”> (é(t))_1> | <o, (SA-6.20)
<<R§"> (6) + 5) 72R§") (o) _1> <o, (SA-6.21)



n-1 V,E (é(t))

iVUEk (61) >

TS o — < (n—k)Cay, SA-6.22
I=k Rgl) (é(t)) +e =t G ( )

with constants Chg, Co, Ca1, Cag, Cas, Coy defined as follows:

Cig := p*M3D3 + pM>Ds,

C 1 1 1
Cy = %leMng + EpzMgD% + EPZMlMgD% + EleMQDQ,
6C% 2CY
Cor = 1 ER
(R+¢) (R+¢)
203 Oy
= R
Co3 := —
B R TR R TRy
2C11 (D1 M3p + Dy My Msp) 202, Cho
Coyy = My M.
24 =P (Rt + My Mo (Rt+epP  (Rte)

n 2D3 Mo Msp* + Mo (D3 Msp? + Do Msp) + My (D3 Myp? + DzMSP)]
R+e '

Proof of Lemma SA-6.15. We divide this argument in several steps.

SA-6.16 Proof of (SA-6.17). This bound is straightforward:

(w5 (00)) ‘ _ Z;E_:VE (60)) 6.0 (0) + ; VB (600)50)] < Cuo.
SA-6.17 Proof of (SA-6.18). Note that
(77 (601)) = (77 (600) ) ;_: o (1= )V (0) E_jVE (6)utt
LR (60) ’;pnm ~n(vim(60)) ZVE ()6t
+ B (80)) Zp K1 = )9, (001)) Z(vm (60)) ) 6o
+ R (6) kZ"Op“—k(l —0)V;E: (8(1)) ivum (8t))0:(0),
giving by (SA-6.14) _
(10000 | oo S - B 500

1
R

< Cy.

n 1
2 2 n—k n—k
My MsD 1—p)+ =pMiM>D 1-—
pm My M3 1’§OP ( P) Rp 1M2 zgop ( p)

+
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SA-6.18 Proof of (SA-6.19). Note that

Rgm 0(t)) + 2) ) = 4 ! ;
<< ( ) E) <R<,”) (é(t)) +5)4 (RE”) (é(t)) +e)3
giving by (SA-6.12) and (SA-6.18)

<<R§"> (6t)) + s) 2) < Cor.

SA-6.19 Proof of (SA-6.20). The bound follows from (SA-6.12), (SA-6.18) and

1 1
‘a|_(R+E)2’ ||—Ea
4l 201, ’ ‘ Cii

~ (R+¢)¥’ - R2’

and
(ab)” = db+ 2ab + ab.

SA-6.21 Proof of (SA-6.22). Putting

a:=Vi;Ey (é(t)),
b= V,E (é(t)),

ci= (Rg” (é(t)) + 5) 717

we have

la| < Ms, |a| < pM3Ds, |d| < p*MaD? + pM3Do,

ol <M, |b| <pMyDy, [b| < p*MDE 4+ pA D,

1 C 2C7 c
< S e 1< s
Rie ESE Btep  (Rie?
(SA-6.22) follows.
O

The proof of Lemma SA-6.15 is concluded.

Lemma SA-6.22. Suppose Assumption SA-2.2 holds. Then the third derivative of t — éj(t) is uniformly
over j and t € [0,T] bounded in absolute value by some positive constant, say Ds.

20



Proof. By (SA-6.5), (SA-6.13) and (SA-6.22)

4 ol VB (6()

;vijEk (o) > Ri”égt)ﬂ < (n—k)Co,
NS szl(é(t) < .
;Vz‘j k( (t))Z;REl) 50 + 0 (n—k)Cis,
P ol VLE(6()

;viiE’“ (W)) ~ RW (é((t)) +e = (=R

From the definition of ¢ > Pj(") (é(t)), it means that its derivatives up to order two are bounded.

Similarly, the same is true for ¢ — Pj(") (é(t))
It follows from (SA-6.19) and its proof that the derivatives up to order two of

o (w7 o0) +2) P (o00)

are also bounded.
These considerations give the boundedness of the second derivative of the term

V,E, (é(t)) <2Pj<"> (é(t)) + P (é(@))
o

2 < R (é(t)) + e) i R\ (é(t))

in (SA-2.2). The boundedness of the second derivatives of the other two terms is shown analogously.
By (SA-2.2) and since h < T, this means

sup sup éj(t)’ < Djs
Jj t€[0,T]

for some positive constant Ds. O

SA-7 Proof of Theorem SA-2.3

Lemma SA-7.1. Suppose Assumption SA-2.2 holds. Then for all n € {O, 1,...,|T/h] }, k €
{0,1,...,n — 1} we have

‘vjEk (é(tk)) —V,E}, (é(tn))‘ < Cr(n—k)h (SA-7.1)

Proof. (SA-7.1) follows from the mean value theorem applied n — k times. O

Lemma SA-7.2. In the setting of Lemma SA-7.1, for anyl € {k,k+1,...,n— 1} we have

V,E, (é(tn))

V,E (g(tl)> —V, B (é(ml)) —h zp: Vij B (é(tn)) W
i=1 i "

< (Ci9/24 Cs+ (n—1—1)C13)h>.
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Proof. By the Taylor expansion of ¢t — V;Ej, (é(t)) on the segment [t;, ;1] at t;41 on the left

< Ciop2
=2

vjEk< (t )) v, Ek( (t1+1) )+hZV Ek( (tl+1)>0i(tl_+1)

i=1

Combining this with (SA-6.4) gives

V,E, (é(ml))

vjEk(é(tl)) —vjEk( tl+1> th Ek( tl+1)

Rgl) <é(tl+1)) +e (SA-7.2)
< (Cio/2 4 Cs)R>.
Now applying the mean-value theorem n — [ — 1 times, we have
ViE [ 0(t ViE(0(ti42)
A e A COF Y e R
V,Ey (é( _1)) P . ViE (9(tn))
ZV El( >R(l) (0( — )) . - ;VijEk (0<tn))12§l)(é(tn))—i—a < Cy3h,
and in particular
ViE (g(tlJrl ) ViE (é(tn))
Z Vi Ek( (s ) R (o(ml ) te Z;V Ek( )Rgl) (é(tn)) +e
< (n—1-1)Cish.
Combining this with (SA-7.2), we conclude the proof of Lemma SA-7.2. O

Lemma SA-7.3. In the setting of Lemma SA-7.1,

vjEk<0( )> VEk( ) hZV Ek( )T‘Zl ViEl<é(tn))

=k R§” (é(tn)) +e

< (<n B)(Crof2+ Cy) + LD ”cw) .

Proof. Fix n € Z>g.
Note that

vjEk(e( )) VEk< ) th Ek( )"Zl viEz(é(tn)>

=k RZ@ (é(tn)) +e

o1 N ViE(0(t,)
IE;{VJEk<9(tl)) —VjEk( tz+1) hZV Ek( )W}

1 (00) -5 ) 35 ) )

R (H(tn)) te
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|
—

; S (019/2 + Cg + (n - — 1)013)]12 = ((n — k‘)(Clg/Z + Cg) +
l

—~
Nai2

(n—k)n—-k-1)
2

Cl3>h27

I
>

where (a) is by Lemma SA-7.2. O
Lemma SA-7.4. Suppose Assumption SA-2.2 holds. Then for all n € {O7 1,..., LT/hJ}

an F1—p (v Ek<0( )))2 _R;m (é(tn))2

< Cosh (SA-7.3)

and
n

Z (v By (601 )))235,@(9@“)) P (b))

k=
with Cys and Cog defined as follows:

< Cogh? (SA-7.4)

Cos(p) := 2M1C71 f

Cos(p) == M1|Cig +2Cs — Ci3] 1 f

205 — Ch3)* \ p(1
+ <M1013+|019+208—013|Cg+ (Cro +2C% = C3) >€( r)

4 1—p)?
p(1—|—4p—|—p2) C3, p(1—|—11p—|—11p2—|—p3)

Cis :
+<C'13C9+2|019+2C8C13|)(1_p)3+4' a=p

Proof. Note that

’(vjEk (g(tk>)>2 - (vjEk (é(tn))>

< |V,Ex (é(tk)) — VB, (9(16”))‘ : ‘vjEk (é( )) + VB, (é( ))‘

2

(a)
< Ci(n—k)h-2M;y,
where (a) is by (SA-7.1). Using the triangle inequality, we can conclude

‘ipn’“u ~0) (vjEk (é(tk>))2 ~ B (00)°
k=0

n

< 2M,C7h(1 — Z PR = 2MCrh(1 — ka = 21\4107
k=0 k=0

(SA-7.3) is proven.
We continue by showing

<vjEk (é(tk))>2 - (vjEk (é(tn)))
29,5 (800 ZVZJEk( )nzl Vi (8(t.))

1=k REZ) (é(tn)) +e€
n—kK)(n-k-1) C13> 2 (SA-7.5)

2

2
(n—k)(n—k—-1)

< 2M, ((n —k)(Ci9/2+ Cs) +

+2(n—k)Cy <(n —k)(Ci9/2+ Cg) + Cl.‘%) h?

2
+ ((n ) (Crof2 4 Cx) 4 R TR 1)013) .
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To prove this, use
p?—§—2w04gzw.m—b—qu+ﬂKyh¢a—b—KhH4a—b—Amf
with
~ ~ p ~
a:=V;ly (g(tk)>a b:=V;Ey (9(%))’ K:= ; VijEr (0(tn)) 2 m
and bounding

—k)(n—-k-1)
2

(a)
la—b— Kh| < ((n—k)(019/2—|—08)—|— (n 013>h27
b < My, [K| < (n—Fk)Cy,

where (a) is by Lemma SA-7.3. (SA-7.5) is proven.
We turn to the proof of (SA-7.4). By (SA-7.5) and the triangle inequality

n

E:ﬂLWl—M(Vﬂ%<MMD)2—R?Ké@ﬁf-ah@ﬂ(muﬁ‘

k=0

—M§:M4%HWNn—MW+PJHM—kM3+Hwﬁn—MW)
k=0

—-p)zszk<Pobq(k)h2%—Pob@(k)h3+-P0b@(k)h4),

where
k(k—1)
2
k(k—1)

POlyl(k) = 2M, <k(019/2 + Cg) + Oyg) = Mlcmk’2 =+ Ml(clg +2C5 — Clg)k,

POlyz(k) = 2k09 (k(019/2 + Cg) + 013> = 01309]{53 + (019 + 208 - 013)09]62,

k(k—1 2
Poly;(k) :== <k(019/2 +Cs) + ( 5 )Clg>
C C 1
4“]64 + — (Cl‘) +2C5 — Cl%) Z(Cm +2Cs — Clg)Zk

It is left to combine this with
- k — ko P
ka < ka - (1-— )27
1+m
k2pk: < k2 k
S s

k=0
(1+4p+p%)
k3pF < k3 k_p—7
Spey L
, (14 11p+ 11p% + p?)
EA ok < k4k:p _
Sor <YKy o

This gives




p(1+p)
(1-p)

S<M1C13 + M;|Crg +2Cs — Ch3] P >h2

I—p

p(1+4p+p?) p(L+p)\ 5
+ <01309(1—p)3 + [Chg + 2C5 — C13]|Cy 1= h
C% p(1+11p+11p2+p%) O3 p(1+4p+p?)
—2 - 2 — P I S
+ < 1 1= + |C19 + 2Cs — Ch3| 1= )P
1 2p(1+p), 4
+ 1(0194—208—013) (1—/))2 h
(a) p
< [M1|C19 +2Cs — C3) T,

04205 — C13)%\ p(1
+ <M1613+|C19+208—C'13|C$)+ (Cro + 2G5 — Cu) >p( +r)

4 (1-p)?
p(1+4p + p?)

Ci:
+ <01309 + %‘019 +2Cs — 013|> 1= )

2
)

% p(L+11p+11p° + o)
4 (L=p)*

where in (a) we used that h < 1. (SA-7.4) is proven.

Lemma SA-7.5. Suppose Assumption SA-2.2 holds. Then

-1

J éﬂ"’“(l - p) <VjEk (é(tk)>>2 +e| - (Rﬁ”) (é(tn)) + 5>

-1

P (6(1,)) Ol + RCulp)
(1 (o) + ) o) T

Proof. Note that if a > R%, b > R?, we have

+h

1 7 1 n a—b

Vat+e Vb+e 2(\/B+5>2\/B

_ (a —b)? { 1 N 1 }
2\/5(\/5+s)(\/5+e>(\/5+\/5) Vbte Va+vb

<2/R

(a—1b)*
S OR3(R+ e

By the triangle inequality,

1 1 c (a —b)? la —b—¢]
o + 2 < 2 2
Vat+e Vb+e 2(\/B+E) Vb 2R3(R +¢) 2(\/5+E) Vb

< (a—b)? la —b— ¢
T2R3(R+¢)?  2R(R+¢)’
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Apply this with

and use bounds

la —b| < 2M1071fph, la — b — ¢| < Cog(p)h?

by Lemma SA-7.4. O

SA-7.6. We are finally ready to prove Theorem SA-2.3.
Proof of Theorem SA-2.3. By (SA-6.9) and (SA-6.10), the first derivative of the function

v#h@@)@ﬂm@m)+¢M@u0) S0, i (800) o)
t — . i
4W%W0ﬂf¢%%ﬁ 2(R @) + <)

is bounded in absolute value by a positive constant Co7 = C17 + Cis. By (SA-2.2), this means

d [ VB, (é(t))

0;t) + — | ——~" || < Carh.
dt | Rf )(H(t)> +e

Combining this with

by Taylor expansion, we get

< 2 VjEn ét
0;(tns1) — 0;(tn) — 0; (1) R+ h” 4 &

itk (SA-7.6)
D3 Cor\, 5
< =2 22 )ps.
<(B+ S
Using
Vi En(B(ta)
R (0(tn)) te
with Cag defined as
Coe M, (2C5 + Cs) . pMi M,
7 2(R+e)?R | 2(R+¢)?
by (SA-2.2), and calculating the derivative, it is easy to show
a [ ViE.(60)
— FrDer S ngh (SA-??)

dt R (é(t)) +e

t=t;}
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for a positive constant Cag, where

FrDerNum

(e (00,)) +<) "R (000)

FrDerNum := V; E, (é(tn))Pj(n) (é(tn)>
- (R (000) + ) (o00) SRTACI)
i=1

] pM> M3 Map
Gz = {R—i—s + (R+¢)2R Cas.

FrDer :=

ViE, (é(tn))
R (E)(tn)) te

From (SA-7.6) and (SA-7.7), by the triangle inequality

~ = < (123_’_027-1-029)]13’

. 2
j(tn+1) — Gj(tn) — 0]' (t:{)h + %FI‘DQI‘ B

which, using (SA-2.2), is rewritten as

) Vi En (0(ta)) o V3 En (0(t)) P (8(1))

h - 2
AEE) e (W o)+ o) R (80)

It is left to combine this with Lemma SA-7.5; giving the assertion of the theorem with

D3y Cor 4 Coy C2, + R?Ca
Cr=22 My 2 .
1= T 2 TMoRsR1ep

SA-8 Numerical experiments

SA-8.1 Models. We use small modifications of default Keras Resnet-50 and Resnet-101 architectures’
for training on CIFAR-10 and CIFAR-100 (since image sizes are not the same as Imagenet), after verifying
their correctness. The first convolution layer convl has 3 x 3 kernel, stride 1 and “same” padding. Then
comes batch normalization, and relu. Max pooling is removed, and otherwise conv2_x to conv5_x are as
described in [2], see Table 1 there (downsampling is performed by the first convolution of each bottleneck
block, same as in this original paper, not the middle one as in version 1.5%; all convolution layers have
learned biases). After convb there is global average pooling, 10 or 100-way fully connected layer (for
CIFAR-10 and CIFAR-100 respectively), and softmax.

SA-8.2 Data augmentation. We subtract the per-pixel mean and divide by standard deviation, and
we use the data augmentation scheme from [3], following [2], section 4.2. We take inspiration and some
code snippets from [4] (though we do not use their models). During each pass over the training dataset,
each 32 x 32 initial image is padded evenly with zeros so that it becomes 36 x 36, then random crop is
applied so that the picture becomes 32 x 32 again, and finally random (probability 0.5) horizontal (left to
right) flip is used.

Ihttps://github.com/keras-team/keras/blob/v2.13.1/keras/applications/resnet.py
%https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_vi_5_for_pytorch
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