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S1 Overview

This document includes additional material not included in the paper “Interpreting Regression Dis-

continuity Designs with Multiple Cutoffs” to conserve space.

Section S2 reports a selected list of RD papers employing data with multiple cutoffs in political

science, economics and other disciplines, where the predominant strategy for identification, estimation

and inference is the normalizing-and-pooling approach.

Section S3 provides the proofs of the results presented in the paper.

Finally, Section S4 gives some extensions and further discussion. In particular, Section S4.1 com-

pares the different weighting schemes in the pooled estimand and the overall average of treatment

effects across cutoffs, and contrasts the parameters with the ones in Lee (2008). Section S4.2 ex-

tends our results for sharp multi-cutoff RD designs to the case of kink multi-cutoff RD designs (c.f.,

Card, Lee, Pei, and Weber, 2015). Finally, section S4.3 discusses the relationship between RD designs

with multiple cutoffs and multidimensional RD designs, i.e., RD designs with multiple running vari-

ables (c.f., Papay, Willett, and Murnane, 2011; Wong, Steiner, and Cook, 2013; Keele and Titiunik,

2015).

S2 Literature Review

Table S1 provides a selected list of examples of empirical papers employing RD designs with multiple

cutoffs in Political Science and other disciplines, including economics, education, public health and

public policy. In most cases, these papers apply only the normalization-and-pooling approach.

S3 Proofs of Results

This section gives the proofs and derivations underlying the main results reported in the paper. We

employ the same notation and assumptions described in the paper, which are not reproduced here

for brevity.
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Table S1: Empirical Examples of Multi-Cutoff RD Designs with Normalization and Pooling

Citation Place Score Outcome No. Cutoffs

Political Science

Albouy (2013) U.S. Vote Share Federal Spending Many
Boas and Hidalgo (2011) Brazil Vote Share Incumbency Many
Boas, Hidalgo, and Richardson (2014) Brazil Vote Share Govt Contracts Many
Brollo and Nannicini (2012) Brazil Vote Share Federal Transfers Many
Broockman (2009) U.S. Vote Share Reverse Coattails Many
Butler (2009) U.S. Vote Share Incumbency Many
Duraisamy, Lemennicier, and Khouri (2014) India Vote Share Incumbency Many
Eggers and Hainmueller (2009) UK Vote Share Wealth Many
Eggers et al. (2015) Several Vote Share Incumbency Many
Ferreira and Gyourko (2009) U.S. Vote Share Policy Outcomes Many
Folke and Snyder (2012) U.S. Vote Share Gov. Vote Share Many
Gagliarducci and Paserman (2012) Italy Vote Share Early Termination Many
Gerber and Hopkins (2011) U.S. Vote Share Municipal Spending Many
Hainmueller and Kern (2008) Germany Vote Share Incumbency Many
Kendall and Rekkas (2012) Canada Vote Share Incumbency Many
Klašnja (2015) Romania Vote Share Incumbency Many
Klašnja and Titiunik (2016) Brazil Vote Share Incumbency Many
Lee, Moretti, and Butler (2004) U.S. Vote Share Incumbency Many
Lee (2008) U.S. Vote Share Incumbency Many
Pettersson-Lidbom (2008) Sweden Vote Share Fiscal Policy Many
Trounstine (2011) U.S. Vote Share Incumbency Many
Uppal (2009) India Vote Share Incumbency Many
Uppal (2010) U.S. Vote Share Incumbency Many

Education

Angrist and Lavy (1999) Israel Cohort size Test scores 3
Canton and Blom (2004) Mexico Eligibility Score College Outcomes 5
Chay, McEwan, and Urquiola (2005) Chile Eligibility Score School Aid 13
Dobkin and Ferreira (2010) U.S. Birthday Education Attainment 3
Goodman (2008) U.S. Test Score Scholarship 20+
Hoxby (2000) U.S. Cohort size Test scores 3
Kane (2003) U.S. GPA College Attendance 4
Urquiola (2006) Bolivia Cohort Size Test scores 2
Urquiola and Verhoogen (2009) Chile Cohort size Test scores 3
Van der Klaauw (2002) U.S. Aid Score Financial Aid 3
Van der Klaauw (2008) U.S. Poverty Score School Aid 3

Criminal Justice

Berk and de Leeuw (1999) U.S. Prison Score Re-conviction 4
Chen and Shapiro (2004) U.S. Prison Score Rearrest 4
Hjalmarsson (2009) U.S. Adjudication Score Re-conviction 2

Miscellaneous

Behaghel, Crépon, and Sédillot (2008) France Age Layoff Rates 20+
Black, Galdo, and Smith (2007) U.S. Training Eligibility Job Training and Aid 2
Brollo et al. (2013) Brazil Population Federal Transfers 7
Buddelmeyer and Skoufias (2004) Mexico Poverty Score Education Attainment 7
Card and Shore-Sheppard (2004) U.S. Child Age and Income Dr. Visits 4
Chen and Van der Klaauw (2008) U.S. Age Disability Awards 3
Edmonds (2004) S. Africa Age Child Outcomes 3
Litschig and Morrison (2013) Brazil Population Poverty Reduction 17

Note: “Many” refers to examples based on vote shares, where the cutoff is a continuous random variable; in these cases,

the number of cutoffs is related to the number of effective parties.
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S3.1 Lemma 1: Pooled Sharp Multi-Cutoff RD

Fix ε > 0. Because the design is sharp, we have that

E[Yi | X̃i = ε] = E
{

E[Yi | Xi −Ci = ε, Ci] | X̃i = ε
}

=
∑

c∈C

E[Yi | Xi − Ci = ε, Ci = c]P[Ci = c | X̃i = ε]

=
∑

c∈C

E[Y1i(c) | Xi = c+ ε, Ci = c]P[Ci = c | X̃i = ε]

and similarly

E[Yi | X̃i = −ε] =
∑

c∈C

E[Y0i(c) | Xi = c− ε, Ci = c]P[Ci = c | X̃i = −ε]

On the other hand,

P[Ci = c | X̃i = x] =
fX̃|C(x|c)P[Ci = c]

fX̃(x)
=

fX|C(c+ x|c)P[Ci = c]
∑

c∈C fX|C(c+ x|c)P[Ci = c]

Define ∆(ε) = E[Yi|X̃i = ε] − E[Yi|X̃i = −ε]. Since the support of Ci is finite, interchanging limits

and sums is allowed. Hence, by continuity of the conditional expectation functions and densities,

taking limit as ε → 0+ leads to

τ
P = lim

ε→0+
∆(ε) =

∑

c∈C

E[Y1i(c)− Y0i(c) | Xi = c, Ci = c] ·
fX|C(c|c)P[Ci = c]

∑

c∈C fX|C(c|c)P[Ci = c]

Define ω(c) :=
fX|C(c|c)P[Ci=c]

∑
c∈C fX|C(c|c)P[Ci=c] and the result follows.

S3.2 Proposition 1: Constant Treatment Effects

Under the assumption of constant treatment effects within cutoffs, Y1i(c) − Y0i(c) = τ(c), and con-

tinuity of the conditional expectations holds automatically. Hence, E[Y1i(c) − Y0i(c) | Xi = c, Ci =

c] = τ(c) and the result follows from Lemma 1.

S3.3 Proposition 2: Score-Ignorable Treatment Effects

Under score Ignorability, E[Y1i(c) − Y0i(c) | Xi, Ci = c] = E[Y1i(c) − Y0i(c) | Ci = c] , and continuity

of the conditional expectations holds automatically. The result follows from Lemma 1.
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S3.4 Proposition 3: Cutoff-Ignorable Treatment Effects

Under cutoffs Ignorability, E[Y1i(c)−Y0i(c) | Xi, Ci = c] = E[Y1i−Y0i | Xi = c] and the result follows

from Lemma 1.

S3.5 Lemma 2: Pooled Multi-Cutoff Fuzzy RD

Fix ε > 0. Taking the first term in the numerator,

E[Yi | X̃i = ε] = E
[

E[Yi | Xi − Ci = ε, Ci] | X̃i = ε
]

=
∑

c∈C

E[Yi | Xi − Ci = ε, Ci = c]P[Ci = c | X̃i = ε]

Now, we have that

E[Yi | Xi − Ci = ε, Ci = c]

= E[Yi | Xi = c+ ε, Ci = c]

= E[(Y1i(c)− Y0i(c))Di | Xi = c+ ε, Ci = c] +E[Y0i(c) | Xi = c+ ε, Ci = c]

= E[(Y1i(c)− Y0i(c))D1i(c+ ε, c) | Xi = c+ ε, Ci = c]

+E[Y0i(c) | Xi = c+ ε, Ci = c]

and so, by right continuity,

∆+(c) ≡ lim
ε→0+

E[Yi | Xi − Ci = ε, Ci = c] = E[(Y1i(c) − Y0i(c))D1i(c) | Xi = c, Ci = c]

+E[Y0i(c) | Xi = c, Ci = c]

By an analogous reasoning,

E[Yi | Xi − Ci = −ε, Ci = c] = E[(Y1i(c)− Y0i(c))D0i(c− ε, c) | Xi = c− ε, Ci = c]

+E[Y0i(c) | Xi = c− ε, Ci = c]
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and hence by left continuity,

∆−(c) ≡ lim
ε→0+

E[Yi | Xi − Ci = −ε, Ci = c] = E[(Y1i(c)− Y0i(c))D0i(c) | Xi = c, Ci = c]

+E[Y0i(c) | Xi = c, Ci = c]

giving

∆+(c)−∆−(c) = E[(Y1i(c) − Y0i(c))(D1i −D0i) | Xi = c, Ci = c]

= E[(Y1i(c) − Y0i(c)) | D1i > D0i,Xi = c, Ci = c]P[D1i > D0i | Xi = c, Ci = c]

where the second equality follows by monotonicity. On the other hand, by previous calculations,

P[Ci = c | X̃i = x] =
fX|C(c+ x|c)P[Ci = c]

∑

c∈C fX|C(c+ x|c)P[Ci = c]

and by continuity,

lim
ε→0+

P[Ci = c | X̃i = ε] =
fX|C(c|c)P[Ci = c]

∑

c∈C fX|C(c|c)P[Ci = c]

For the denominator we have that:

E[Di | X̃i = ε] =
∑

c∈C

E[Di | Xi − Ci = ε, Ci = c]P[Ci = c | X̃i = ε]

But

E[Di | Xi − Ci = ε, Ci = c] = E[D1i(c+ ε, c) | Xi = c+ ε, Ci = c]

so by continuity,

D+(c) ≡ lim
ε→0+

E[Di | Xi −Ci = ε, Ci = c] = E[D1i(c) | Xi = c, Ci = c]

and similarly

D−(c) ≡ lim
ε→0+

E[Di | Xi − Ci = −ε, Ci = c] = E[D0i(c) | Xi = c, Ci = c]
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which gives

D+(c)−D−(c) = E[D1i(c) −D0i(c) | Xi = c, Ci = c] = P[D1i(c) > D0i(c) | Xi = c, Ci = c]

Combining all the terms,

τ
P

FRD
=

∑

c∈C

E[Y1i(c)(c) − Y0i(c)(c) | D1i(c) > D0i(c),Xi = c, Ci = c] ωF(c)

where

ωFRD(c) =
P[D1i(c) > D0i(c) | Xi = c, Ci = c]fX|C(c|c)P[Ci = c]

∑

c∈C
P[D1i(c) > D0i(c) | Xi = c, Ci = c]fX|C(c|c)P[Ci = c]

which completes the proof.

The continuity Assumption 7 may be hard to interpret as it involves a random variable that is

a combination of potential outcomes and potential treatment statuses. A stronger but more easily

interpretable condition is the following:

• E[Ydi(c) | D0i(c) = d0,D1i(c) = d1,Xi = x,Ci = c] and P[D0i(c) = d0,D1i(c) = d1 | Xi =

x,Ci = c] are continuous in x at x = c for d, d0, d1 ∈ {0, 1}.

S4 Extensions and Further Discussion

S4.1 Pooled Estimand versus Average of Cutoff-Specific Effects

To further understand τ
P, it is useful to contrast it with the overall average of the (average) treatment

effects at every cutoff. This overall average of all the cutoff-specific effects is given by

τ̄ =
∑

c∈C

E[Y1i(c)− Y0i(c) | Xi = c, Ci = c]P[Ci = c]

These two effects are different due to the presence of fX|C(c|c) in the pooled estimand. In τ̄, the

weights are simply the probability that the random cutoff C takes each particular value c. In contrast,

in τ
P, this probability is multiplied by the factor

fX|C(c|c)
∑

c∈C fX|C(c|c)P[Ci=c] , which depends on fX|C(c|c), the

conditional density of the running variable given C. Suppose the potential outcomes can be written
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as nonseparable functions:

Y1i(c) = y1(x, c, Ui), Y0i(c) = y0(x, c, Ui)

where the variable Ui captures individual heterogeneity or the “type” of the individual. Define:

y+1 (c, u) ≡ lim
x→c+

y1(x, c, u), y−1 (c, u) ≡ lim
x→c−

y1(x, c, u)

Then we can write the average treatment effect at each cutoff as:

E[Y1i(c) − Y0i(c) | Xi = c, Ci = c] =

∫

(y+1 (c, u) − y−0 (c, u)) dFU |X,C(u|c, c)

=

∫

(y+1 (c, u) − y−0 (c, u))
fX,C|U (c, c|u)

fX,C(c, c)
dFU (u)

=

∫

(y+1 (c, u) − y−0 (c, u))
fX|C,U (c|c, u)

fX|C(c|c)
·
P[C = c|u]

P[C = c]
dFU(u)

where P[C = c|u] is the probability that C = c conditional on U = u and fX|C,U(c|c, u) is the density

of X conditional on C = c and U = u. This treatment effect is calculated as a weighted average of

individual effects at X = C for the whole population (not only for units around the cutoff), where

the weights are higher for units who are more likely to face that particular cutoff and for units who,

conditional on facing the cutoff, are more likely to be around the threshold. In particular, if C is

independent of both X and U and the exclusion restriction holds, this parameter becomes the one in

Lee (2008).

In this setting, our results show that the pooled estimand can be written as:

τ
P =

∑

c∈C

∫

(y+1 (c, u) − y−0 (c, u))
fX|C,U (c|c, u)

fX|C(c|c)
·

fX|C(c|c)
∑

c∈C fX|C(c|c)P[C = c]
·P[C = c|u] dFU (u)

On the other hand, the average of (average) treatment effects over cutoffs is:

τ̄ =

∫

(y+1 (c, u) − y−0 (c, u))
fX|C,U (c|c, u)

fX|C(c|c)
·P[C = c|u] dFU (u)

Thus, the pooled estimand differs from the average over cutoffs by the term
fX|C(c|c)

∑
c∈C fX|C(c|c)P[C=c] ,
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which is the density of the running variable at each cutoff relative to the average conditional density.

Compared to τ̄, the pooled estimand gives more weight to the effects at the values c for which this

density is above its average
∑

c∈C fX|C(c|c)P[C = c]. If this conditional density is constant over

cutoffs, i. e. fX|C(c|c) = k for all c ∈ C, where k is a constant, this additional weighting factor

becomes one, and τ
P = τ̄.

S4.2 Kink RD Design with Multiple Cutoffs

In this section, we succinctly show how our results can be extended to the Kink RD design. This

design arises when a treatment or policy is assigned on the basis of a score via a formula, and this

formula contains one or more kinks—points at which the formula that relates the assignment variable

to the treatment changes. For example, unemployment insurance benefits may be 100 dollars for

individuals with one dependent, 200 dollars for individuals with two dependents, and 300 dollars for

individuals with three or more dependents, creating a piece-wise linear relationship between number

of dependents and benefits.

Formally, these kinks in the formula that connects the assignment variable (number of dependents)

to the treatment (unemployment insurance benefits) are discontinuous jumps in the first derivative

or slope of the conditional regression function of the treatment given the assignment variable at the

points in the assignment variable where the kinks occur. The kink RD design is analyzed formally by

Card, Lee, Pei, and Weber (2015), who discuss nonparametric identification results. To our knowl-

edge, kink RD design applications have not yet been explored in political science, but we imagine

that kinks in policy rules could be exploited, for example, to study whether increased welfare benefits

translate into increased political support of the party who is seen to “own” that particular issue area.

Let the outcome variable be Y = y(B,X,C,U) where B is a (continuous) treatment of interest

such as unemployment benefits and, as before, X,C and U represent the running variable, the cutoff

that each individual faces and the individual heterogeneity, respectively. For the moment we focus

on the case of discrete cutoffs. The treatment of interest is now a function of two arguments, X and

C: B = b(X,C).

We start by assuming that we have a multi-cutoff RKD design, that is, that there is a discontinuity

in the first derivative of the regression function at each possible value of the cutoff:

Assumption 1 (Kink RD) For all c ∈ C:
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lim
x→c+

∂
∂x
b(x, c) 6= lim

x→c−

∂
∂x

b(x, c).

As before, let X̃ = X −C. A pooling approach would sum all individuals with the same value of

the running variable across cutoffs, i.e., to use as treatment of interest the variable b(x) =
∑

c∈C b(x, c),

which in turn implies d
dx
b(x) =

∑

c∈C
∂
∂x
b(x, c). We can define the pooled estimand as:

τ
P

KRD
=

lim
x→0+

d
dx
E[Y | X̃ = x]− lim

x→0−
d
dx
E[Y | X̃ = x]

lim
x→0+

d
dx
b(x)− lim

x→0−
d
dx
b(x)

.

This corresponds to the sharp case, and the fuzzy case can be analyzed analogously.

We denote by y1(b, x, c) and y2(b, x, c) the derivatives of y(b, x, c) with respect to its first and

second arguments, respectively. We summarize the results for the multi-cutoff RK design in the

following lemma:

Lemma 1 (Kink Multi-Cutoff RD) Suppose the following assumptions hold:

1. y(b, x, c) is continuous in b and x, with y1(b, x, c) ≡
∂y
∂b

continuous in b

2. y2(b, x, c) ≡
∂y
∂x

is continuous in x, ∀b

3. b(x, c) is a known function that is continuously differentiable with respect to x, except at x = c,

where ∀c ∈ C, lim
x→c+

∂
∂x

b(x, c) 6= lim
x→c−

∂
∂x

b(x, c).

4. The density of X conditional on C = c and U = u, fX|C,U(x|c, u), is continuously differentiable

with respect to x for all c and u.

Then, the pooled kink RD causal estimand is

τ
P

KRD
=

∑

c∈C

E[y1i(b
c
0, 0, c) | X = c, C = c] ωKRD(c)

where

ωKRD(c) =
limx→0+

∂
∂x

b(x, c) − limx→0−
∂
∂x

b(x, c)
∑

c∈C

(

limx→0+
∂
∂x

b(x, c) − limx→0−
∂
∂x

b(x, c)
) ·

fX|C(c|c)P[C = c]
∑

c∈C fX|C(c|c)P[C = c]

The proof of this lemma is as follows. Using the product rule, the first term in the numerator

10



becomes

d

dx
E[Y | X̃ = x] =

d

dx

∑

c∈C

E[Y | X = x+ c, C = c]P[C = c | X − C = x]

=
∑

c∈C

∂

∂x
b(x, c)E[y1(b, x, c, w) | X = x+ c, C = c]P[C = c | X − C = x]

+
∑

c∈C

E[y2(b, x, c, w) | X = x+ c, C = c]P[C = c | X − C = x]P[C = c | X − C = x]

+
∑

c∈C

∫

y(b, x, c, w)
∂

∂x
fU |X,C(w | x, c)dw

+
∑

c∈C

E[Y | X̃ = x]
d

dx
P[C = c | X − C = x]

and similarly for the second term. Under the continuity assumptions above, all the terms except for

the first one cancel out when taking the difference, which yields

lim
x→0+

d

dx
E[Y | X̃ = x]− lim

x→0−

d

dx
E[Y | X̃ = x]

=
∑

c∈C

(

lim
x→0+

∂

∂x
b(x, c) − lim

x→0−

∂

∂x
b(x, c)

)

E[y1(b
c
0, 0, c, w)]P[C = c | X = c]

where bc0 = b(0, c). Finally, the denominator is simply

lim
x→0+

d

dx
b(x)− lim

x→0−

d

dx
b(x) =

∑

c∈C

(

lim
x→0+

∂

∂x
b(x, c)− lim

x→0−

∂

∂x
b(x, c)

)

.

which gives the desired result.

S4.3 Comparison with Multidimensional Scores

We now briefly describe the connections between RD designs with multiple scores or running variables

and the multi-cutoff RD design that we explore in this paper. For concreteness, we focus on the

Geographic RD design, where there are two adjacent geographic areas separated by a boundary and

the treatment is assigned to all units in one area and withheld from all units in the other. The GRD

design is discussed in Keele and Titiunik (2015) and a discussion of RD designs with multiple running

variables can be found in (Papay, Willett, and Murnane, 2011; Wong, Steiner, and Cook, 2013).

As before, our point of departure is the pooled parameter in the sharp design, τP =
∑

c∈C E[Y1i(c)−
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Y0i(c) | Xi = c, Ci = c]ω(c) where, again, the weights are ω(c) =
fX|C(c|c)P[Ci=c]

∑
c∈C fX|C(c|c)P[Ci=c] . These weights

can be rewritten as:

ω(c) =
fXC(c, c)

∑

c∈C fXC(c, c)

where fXC(x, c) is the (mixed) joint density of (X,C). Now call Si = (Xi, Ci) the vector containing the

running variable and the cutoff, and c = (c, c) the value of Si when Xi = Ci = c. Finally, denote the

treatment effect at each cutoff by τ(c) = E[Y1i(c)−Y0i(c) | Xi = c, Ci = c] = E[Y1i(c)−Y0i(c) | Si = c].

Then, we have

τ
P =

∑

c∈C

τ(c)
fXC(c)

∑

c∈C fXC(c)
=

∑

c∈C τ(c)fS(c)
∑

c∈C fS(c)
.

Now, if we define: B = {(X,C) : X = c, C = c} we get

τ
P =

∑

s∈B τ(s)fS(s)
∑

s∈B fS(s)

This expression is the discrete analog of the expressions in Papay, Willett, and Murnane (2011),

Wong, Steiner, and Cook (2013), and Keele and Titiunik (2015), and it shows that we can interpret

the multi-cutoff RD design as an RD design with two running variables X and C where the boundary

is the set of points at which X = C. In other words, an RD with one score and multiple cutoffs can

be recast as an RD with two running variables.

S5 Comparison of U.S. Senate Elections to Brazilian Mayoral Elec-

tions

We present a descriptive analysis to show that exploiting the multi-cutoff structure of the election-

based RD design is possible in the example based on Brazilian mayoral elections but not in the

example based on U.S. Senate elections. In the latter, there are simply not enough observations for

lower values of the cutoff variable.

As we highlighted in the main paper, these two examples differ sharply in the density of observa-

tions at different cutoff values. There are very few U.S. Senate elections where a third party obtains
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anything more than a very small fraction of the vote. In the Brazilian mayoral elections, however,

about a third of races occurs in municipalities where the two top-getters combined obtain less than

70% of the vote. Table S2 presents the frequency of races in our sample by different levels of strongest

opponent’s vote shares at t for the Democratic Party and the PSDB. Since this variable is continuous,

we divide its support in four exclusive intervals: [0, 35), [35, 40), [40, 45), and [45, 50). Within each

of these intervals of strongest opponent’s vote share at t, Table S2 reports the number of elections

that each party won and lost at t. Note that in a perfect two-party system, knowing the value of a

party’s strongest opponent’s vote share is equivalent to knowing whether the party won or lost the

election, but this equivalency is broken in a multi-party RD design.

For example, the columns corresponding to the PSDB show that, of the 1346 races in our sample

where the PSBD’s strongest opponent obtained between 35% and 40% of the t vote, the PSDB won

roughly 85% and lost the rest. The proportion of victories decreases for higher values of this variable,

with the PSDB winning no more than 64% of the races in all cells where vote share of its strongest

opponent is 35% or higher.

Table S2: Frequency of Observations for Different Levels of Strongest Opponent’s Vote Shares at t

Democratic Party PSDB
U.S. Senate Elections Brazil Mayoral Elections

Opponent Vote (%) Total Victories (%) Defeats (%) Total Victories (%) Defeats (%)

[0, 35) 264 100.0 0.0 1346 84.9 15.1
[35, 40) 118 94.1 5.9 986 63.9 36.1
[40, 45) 161 96.3 3.7 1251 62.3 37.7
[45, 50) 221 77.8 22.2 1490 61.5 38.5

Note: Columns corresponding to Democratic Party report number of U.S. Senate elections in 1910–2010.

Columns corresponding to PSDB report number of mayoral elections in Brazil in 1996-2012.

A very different situation occurs in U.S. Senate elections where, for example, the Democratic

Party won all 264 races where the strongest opponent obtained less than 35% of the vote, as would

occur in a perfect two-party system. Similarly, of the 118 races in our sample where the Democratic

Party’s strongest opponent obtained between 35% and 40% of the t vote, the party won 111 and lost

only 7. It is only in the [45, 50) range where the party loses 20% of races—a non-neligible but still

small proportion. Thus, despite third candidates being common, RD designs based on U.S. Senate

elections behave as single-cutoff because most races are decided very close to the 50% cutoff.
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Keele, Luke J. and Roćıo Titiunik. 2015. “Geographic Boundaries as Regression Discontinuities.”

Political Analysis 23 (1):127–155.

16



Kendall, Chad and Marie Rekkas. 2012. “Incumbency Advantages in the Canadian Parliament.”

Canadian Journal of Economics/Revue canadienne d’économique 45 (4):1560–1585.
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