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Abstract

This supplement includes additional results not reported in the main paper to conserve space.
First, it discusses in detail the examples of semiparametric estimators analyzed in the main
paper, and also introduces and discusses a new example of interest: ‘Hit Rate’, which involves
a non-differentiable functional of the nonparametric component and is briefly mentioned in the
simulation section of the main paper. Second, it reports a technical lemma useful to handle

kernel-based nonparametric estimators, which may be of independent interest.
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SA.1 Example 1: Average Density

This section considers the estimand
00 = Blo()] = [ 0(w?du,

where 7, denotes the Lebesgue density of a random vector z € R?. In many respects this can be
seen as the simplest possible semiparametric problem; that is, it can be viewed as a semiparametric
analogue of the problem of estimating the mean of a distribution in parametric mathematical sta-
tistics. For our purposes, the example is attractive because it provides a straightforward illustration
of several interesting features of semiparametric estimators, as already mentioned in the main text.

Suppose z1,...,z, are i.i.d. copies of z. We consider three distinct estimators, each of which

employs the kernel-based density estimator

3,(2) = iZm u K =k (1)

n

where K is a kernel and h,, is a bandwidth. The estimators considered are: (i) the average density
estimator @iD =n"1Y" | 4,(2); (ii) the integrated square density estimator 9281) = Jpa Yn(u)?du;
and (iii) the “locally robust” estimator QZR = 29? — 9ZSD.

To obtain primitive bandwidth conditions for the high-level conditions of Theorems 1 and 2,

suppose that for some P > d/2, the following regularity conditions are satisfied:

® 7 is P+1 times differentiable, and 7, and its first P+ 1 derivatives are bounded, continuous

and square integrable.

e K is even and bounded with [pq |K ()| (1 + [|ul|"™)du < oo and

1 iflij=---=1l3=0
/ ulll---uildK(u)du: o =
R4 0, if(ll,...,ld)IEZiandl1+‘--+ld<P

The smoothness assumption on 7, can be relaxed substantially (e.g., Giné and Nickl (2008) and
the references therein), but the stated assumption is sufficient for our purposes.

As discussed in the paper, this example is used to illustrate three main findings. First, éZD
sheds light on the Stochastic Equicontinuity condition featuring prominently in existing “master
theorems”. To be specific, @f illustrates the consequences of relaxing the Stochastic Equicontinuity
condition and shows how the weaker Asymptotic Separability condition is useful to that end; in
the case of @ZD, BLL =£ 0 and BN = 0. Second, 92513 shows that changing the form of the estimating
equation can have important implications for small bandwidth biases; in the case of 9281), B =0
but B £ 0. Finally, 0"
bandwidths; in the case of @I;LR, BLE £ 0 and BN #£ 0.

shows that “locally robust” estimators are not necessarily robust to small



SA.1.1 Average Density Estimator

When verifying the conditions of Theorems 1 and 2 for @2]3, we set dy =1, x(z,0) = z, w(z,0) =1,
and let @21) be defined by Gn(énD,fAyn) = 0, where g(z,0,7) = ¢**(2,0,7) = v(z) — 0 is a linear
functional of 7.
Because
b 1~ I
0, = m Z’Yn(zi) =2 ZZKn(Zz - 2j),
i=1 i=1 j=1
the estimator can be represented as a second-order V-statistic and is therefore very tractable. For
this reason (and others), the estimator has been widely studied. We include it here in part because
it provides a dramatic demonstration of the fragility of Stochastic Equicontinuity with respect to
bandwidth choice. It also illustrates how to verify sufficient conditions, and their relationship to
necessary conditions, in a very simple and transparent case.
If the bandwidth satisfies nh2” — 0 and nh¢ — oo, we show here that the assumptions of
Theorems 1 and 2 are satisfied and that

V(0N — 6o — B) - N(0,50), T = AV[1o(2)],

with
1

B~ L
d
nhé

K(0).

Because /nBA” = K (0)//nh24, the condition nh? — oo is weak enough to permit BAP # o(n~1/2).
On the other hand, \/n(fh — 6y — BA) ~ A(0, %) reduces to /n(fh — 6o) ~ N(0,Zg) when
imposing conditions requiring nh2¢ — oo, so it is necessary to guard against this when the goal is
to obtain the more refined results given by Theorems 1 and 2.

SA.1.1.1 Condition AL

Condition AL holds with J,, = Jy = 1 and without any O[p:(n_l/ 2) term.

SA.1.1.2 Condition AS

Because

9n(2,7) = gn(2, %) + Iy (DY =Yl Gny (2] = (1 = n"H)n(2),

Condition AS holds with g, = g, if V(gn(2:)[3%]) = o(n) whenever i and j are distinct. More

precisely, the first part of Condition AS is automatically satisfied, and the second part becomes

\/15 Z[’?g)(zi) — 27, (zi) + 6,] = op(1),
i=1



where
n

NG 1
W= 3 Kalr=z)  and 0= [ ya(@nude
j=1j#i

A simple variance calculation now shows that Condition AS is satisfied if nh? — oo, because then

<

(gna(z)[38]) = (L =072 V[Kn(zi — 2)) = 10(2)] = O(h,?) = o(n)
whenever ¢ and j are distinct.

SA.1.1.3 Condition SE

If h, — 0 and if nh¢ — oo, then, using Condition AS,
1 .
N > nl21) = (i) = v0(2:) + 6o
i=1

— \/15 Z[n*lKn(O) + (1= YA (21) = vp(20) — 7o(20) + 00]
K(0)

- J/nh2 + T Z (1= n"1)(27,(20) = On) — Y (2i) — Yo(2i) + 0] + 0p(1)
- fm Z Vn(2i) = Y0(2i) = (0n — 60)] + 0p(1) = K;l(;?%d + op(1),

where the last equality uses E(|y,,(2) — vo(2) — (0, — 00)]?) = o(1).

As a consequence, Stochastic Equicontinuity requires nh2? — oo in this example; that is, because
the calculations are based on an exact decomposition we are able to give necessary conditions for
Condition SE.

SA.1.1.4 Condition AN

As in the paper, we have:

1 & n
- gn Ziy 'Yn + G @ Gn - zz + ana
NG ; (Yn”) — Gn(vn = ;

where

n(2) =2t (2) — 0F], B =67 — 0o,
() = n K (0) + (L= n (), 6 = / 7 () yo ().
]Rd

Suppose h,, — 0. Then v,,(z) — 1(z) for every z, and, by the dominated convergence theorem,

E([yn(2) = o(2)*) = 0, 9(2) = 2[10(2) — bo]-



Therefore, it follows from Lemma 3 that Condition AN is satisfied with Qo = 4V]vy(2)].
Furthermore, EB,, = BS + BLL 4 B, where

L K(0)+0( ),

n

ByLL =0, B?LI = Gn(fyn) - Go(f}/n) =

and
By = Go(v,,) = hlBg + o(h)),

1
8= (0" X o ([ wrwan) ([ ol @) du).
P \JRd Rd
lp|=P
where, for p = (p1,...pa)" € Zi, the definition of B uses the multi-index notation

ol
or1...opd"

Ip| =p1 + -+ pa, pl =p1!---pal, uP =t -l o =

As a consequence, we can set B, = K(0)/(nhd) provided that nh2f — 0.

In summary, if nh2” — 0 and if nh% — oo, then the conditions of Theorem 1 are satisfied and
V(0 — g5 — BE) s N(0, o) holds with X = 4V[yy(2)] and B2 = O(n~'h;%).
SA.1.1.5 Bandwidth Selection

Assuming BiE # 0 and Bj # 0, we can balance the leading bias terms to obtain a (second-order)

optimal bandwidth selector:

|B| 1) T T BSB BS
B3| ™ if sgn(By”) # sgn(Byp) -
hopt = 1 s BO = K(O)
a8 1) : SB S
Ps| if sgn(B5°) = sgn(By)

SA.1.1.6 Condition AL*

Condition AL* holds with J* = J3 = 1 and without any op(n~'/2) term.

SA.1.1.7 Condition AS*

Because
9n(2:7) = gn(2:90) + 0, ()Y = Al gnn (R = (1=n"")n(2),

Condition AS* holds with g, = gy, if V*(gy, (2] D57]) = op(n) whenever i and j are distinct. A

sufficient condition for this to occur is that nh? — oo, because then

BV (g1, (=10 [527]) = (1= 0™ 2BV (1 — 25) = A0 (zh)] = O(hi®) = ofn)

©,n ©,n J,n



whenever ¢ and j are distinct.

SA.1.1.8 Condition AN*
We have:
1 n

_ . _ 1 & .
L * (k2 wx 2%, (1)\ A% (2 _ * (% *
T 2l ie) + G0 = G = T S e+ VA

where
V(i) = 288 (25) — On), B =0 K (0) — 0,

() =n T Ky (0) + (1 —n"Y4,(25,), 0

Suppose h,, — 0 and nh% — oo. Then B: = K(0)/(nh%)+op(n~'/2) because ,, = Op(1). Moreover,
because 0, — 0, —p 0, E{|lyn (27 ,) — z/Jn(zl*’n)]Q] = op(1) also holds provided

*Z 90 (2) = Y (20) P = 0p(1).

A sufficient condition for this to occur is that maxi<i<n |9, (2i) — 7,(2i)| = op (1), which in turn
will hold if nh?/logn — oo, as can be established using Lemma SA-1 below. Sufficiency of the

slightly weaker condition nh¢ — oo can be demonstrated by using a direct calculation to show that
Zm zi) = Yulz)* | = O~ hy ).

In other words, if h, — 0 and if nh¢ — oo, then Condition AN* holds with Qp = Qo and

By, = K(0)/(nhs).

In summary, if nh2P — 0 and if nh¢ — oo, then the conditions of Theorem 2 are satisfied.

SA.1.2 Integrated Square Density Estimator

~AD ~ISD
Like 60,, , the estimator 6, can be represented as a second-order V-statistic:

2

~ISD R 9, 1 & | |
0n - /]Rd Vn(u) du = /Rd H;Kn(u—.%']) n2 ZZ Z)Kn(u_fl'])du

=1 j=1

where

)
= — KWK | — — .
h% R4 (u) (hn U> a

- . ~ISD .
For our purposes, however, it is more attractive to analyze #,,  with the help of Theorems 1 and



2. To do so, we set dy =1, z(z,0) = z, w(z,0) = 1, and let @ZSD be defined by G’n(éiSD,’yn) =0,

where g(z,6,7) = g™"(2,0,7) = [gav(u)?du — 6 is a non-linear functional of ~.
If the bandwidth satisfies nh2” — 0 and nh¢ — oo, we show here that the assumptions of
Theorems 1 and 2 are satisfied and that

Va0 0y — BIP) s N(0,50), o = 4V]30(2)]
with )
B = / / K (v)? ~vo(u — vhy)dudv = O(n"th; ).
nhg Rd JRd

~AD
As in the case of 6, , the condition nhg — o0 is weak enough to permit BISP # o(n_l/ 2), while
~ISD ~TSD

Vn(8,, — 0y — BEP) ~ N(0,30) reduces to v/n(6, —0g) ~ N(0,%0) when imposing conditions
requiring nh%d — 00, SO once again it is necessary to guard against this when the goal is to obtain

the more refined results given by Theorem 1 and 2.

SA.1.2.1 Condition AL

Condition AL holds with 7, = Jp = 1 and without any o]p(nfl/ 2) term.

SA.1.2.2 Condition AS
Let a quadratic approximation to g, be given by

1

297"07"/7[7 — VY — ’}/n]u

Gn(2:7) = gn(2,70) + Inry ()Y — 0l +

where
n(err) = [ [ K= 2) (1= 07 ()P = 6

Inoy ()] = 2(1 = n7h) /Rd [0 K (u = 2) + (1= n ™)y, (w)]n(u)du,

%wmﬂzﬂbm*FéﬂwmmmL

The first part of Condition AS holds directly, without any remainder term, because the quadratic
approximation is exact. The second part of Condition AS follows from Lemma 2 if nh? — oo

because simple variance calculations show that if 4, j, and k are distinct, then

Vigny (203, = 1all = O(hy®) = 0o(n),  V(gnay[¥h = VsV = Val) = O(h,*?) = o(n?),

V(B (Gnyy [ =V 3=V 120)) = O(h2) = 0(0?),  V(Gnyy [ =V 4% —70]) = O(hy3%) = o(n®).



SA.1.2.3 Condition AN

We have:
LN (i N s VB
\/ﬁlzl[gn( w'yn) +G ( ) Gn('Yn)] \/ﬁ;wn( l)—{_\/»Bna
where
Gn(7) = Ga(¥n) + Gnyly =7l + 5 He nr[Y = Yo Y = Talbs
) = [ [ K= o)+ (=0 duno(o)do = o,
Guglal = 21 =n7) [ [ w2+ (L= 0y @lu)duno(o)de
= 20-nY) [ e
= —n 1?2 U u)du
Gy, @] = 2(1 ) /Rdn( )o(u)du,
and

Yn(2) = gn(2,70) = Ga(n) +0u(2),  Gn(2) =2(1—n7") /Rd V(W) EKn(u = 2) = 7, (w)]du,

5 11 & ;
=1

Suppose h,, — 0 and nhfll — o0. Then, for every z,

mlam) = [ =)+ (= P

= n? | Kuy(u—2)72%du+2n"t1-n"1) [ K,(u—2)7,(u)du
R4 R4

+(1— n_1)2/ ’yn(u)Qdu — 0y
R4
= O 2h,"+nt+hl)y =0

and hence
Vn(2) = ¥o(2) = 00(2),  do(2) = 2[y0(2) — bo].

Therefore, E([1),,(2) — 1y(2)]?) — 0 by the dominated convergence theorem. Moreover, if i and j

are distinct, then

V(G 7’7’7[7 ,Yn?f)/n f)/n]) = O(h;zzd) = O(’I’L2), V(G 7’77[’7 fYn?Wn fyn]) = O(h;d) = O(”)a

so it follows from Lemma 3 that Condition AN is satisfied with Q¢ = 4V[y,(2)].



Finally, consider the biases BS, BE!, and BN In this case,
B =hiBj +o(hl)+0(n™")

with

g =201 ¥ o ([ werwn) ([ o) @) )

lpl=P
~IS ~A
that is, to the order A2 the smoothing bias of 02 ” is twice that of GnD. In addition, BE! = 0 and

1
2n
1
= — / K (v)? 7 (u — vhy)dudv + O(n~t + n=2h; %),
nh% Rd JRd

1 N N e _
By = 25 BGnn Vo = 1n Yo = 1nl = 5 -BGnn [T, An] + O(n D)

where the second equality uses EGy, - [45,7,] = O(1) and Gy v [Vn, s = O(1), and the last

equality uses

u—v

o 1 2
NV —1\2
EG vy [0 An) =21 —n77) /Rd /Rd h%dK< I ) duryg(v)dv.

As a consequence, we can set

1 2
B, = nhd /Rd y K (v)* vo(u — vhy)dudv
1 2 1y —d
= o K(u)*du+o(n™"h,%),
provided that nh2f — 0.

In summary, if nh2" — 0 and if nh% — oo, then the conditions of Theorem 1 are satisfied and
~ISD

V0, — 0o — BIP) ~ N(0, %) holds with Yo = 4V[yy(2)] and B = O(n~'h;?).

SA.1.2.4 Bandwidth Selection

Assuming B3? # 0 and Bj # 0, we can balance the leading bias terms to obtain a (second-order)

optimal bandwidth selector:

1
BSB P+d .
G
hopt = ‘BSB’ %M ) BO - R4 K(u) du
(BT e s

v

SA.1.2.5 Condition AL*

Condition AL* holds with J* = J; = 1 and without any op(n~'/2) term.



SA.1.2.6 Condition AS*

Define the (exact) quadratic approximation

% * ~ * A 1 * A ~
gn(z7’7) = gn(za Vn) + gnq(z) [’7 - ’Vn} + ign,'y'yh/ VsV T 7n]7
with
i) = [ Ealu = 2) + (1= 0 () - by
Rd

Iny(D] = 2(1 = n7) /Rd [ K (u = 2) + (1= n 1), (uw)]n(w)du,

Iyl 0] = 2(1 n~1)? /]Rd n(u)e(u)du.

Condition AS* holds if nhfl — 00, because then the conditions of Lemma 5 hold: If 4, j, and k

are distinct, then
A [gn 7( )h/n - '?n]] = Op(h;d) = OP(”)?

A (gn,v'y[fy anfyn - ﬁ/n]) = Op(h;Qd) = 0[@(712),
V(B (g5 0y 57 = Ao 57 = Anll250)) = Op(hy,*%) = 0p(n?),

A (g":’Y’Y[’Yn’] 7n77n - ;Yn]) = OP(hggd) = OP(nS)'

SA.1.2.7 Condition AN¥*

We have:

- * (L%,(2 Ak [ A~ ]. n * * -

D103 i) + G GG = = S Ui i) + VB,
=1

=1

Bl

where

n(Zin) = 9u(Zin An) = Gr(n) + 05 (250) = 0,(2550),

Fei) =2 [ )[Rl = 250) = ()l

. . P
Bn = G:L(’YTL) + 5; Z Gn,'y'y[’y;?(l) - 7n77:’(1) - Vn]
i=1

Assuming h,, — 0 and nhg — 00, the assumptions of Lemma 6 are satisfied. In particular,

E*{[U5(25n) = Y (250)P] = B8 (250) — 0n(2]) Pl + Op(n™") = op(1)

and
5% * 1% — 1 _
B: = E*B: + op(n~/?) = — /Rd y K (v)? ~vo(u — vhy)dudv + op(n~/?).

10



In other words, if h,, — 0 and if nhg — 00, then Condition AN* holds with Qf = Q¢ and

* 1 2
B, = i /Rd o K (v) vo(u — vhy,)dudv.

In summary, if nh2” — 0 and if nh¢ — oo, then the conditions of Theorem 2 are satisfied.

SA.1.3 Locally Robust Estimator

When verifying the conditions of Theorems 1 and 2 for 9?, we set dy =1, x(z,0) = z, w(z,0) =1,
LR

and let " be defined by Gy (65, 4,) = 0, where

9(2,0,7) = g"*(2,0,v) = 2¢"°(2,0,7) — ¢""(2,0,7),

which is a “locally robust” estimating equation because, with V., denoting the appropriate func-

tional derivative, V,E[g(z, 0o, 7)]|70 =0.

If the bandwidth satisfies nhi — 0 and nh¢ — oo, we show here that the assumptions of
Theorems 1 and 2 are satisfied and that

Vil — 8o — BE) > N(0,5), S = 4V[yo(2)),

with

1 1
LR _ 9gaAD _ gaISD _ _ 2 _ _ —1;—d
B, =28, — B, i <2K(0) i /Rd RdK(U) Yolu vhn)dudv> O(n~"h,%).

Once again, /nBE* = O(1/y/nh2?) and therefore the condition nh? — oo is weak enough to
permit B £ o(n~1/2). On the other hand, as before, \/ﬁ(él;LR — 0o — BLR) ~ N(0,%g) reduces
to \/ﬁ(é;R — 6y) ~ N(0,%0) when imposing conditions requiring nh2? — oco. Importantly, this
example shows that @ER has both leave-in and non-linearity small bandwidth biases in general.

SA.1.3.1 Condition AL

Condition AL holds with 7, = Jp = 1 and without any OP(nfl/ 2) term.

SA.1.3.2 Condition AS

In this case, an (exact) quadratic approximation to g, is given by

_ 1
n(2,7) = gn(2,Vn) + Gy (2) [y — 70l + 29 Y =YY — Yl

with

g (22792) = 27m(2) — /R [ K~ ) (1= ) ()P 6,

11



Ina ()] = 2(1 = n"Nn(z) = 2(1 = n7") /Rd [0 K (u = 2) + (1= ™)y, (w)]n(w)du,

Gnylns 0] = =21 —n~h)? /]Rd n(u)e(u)du.

The first part of Condition AS holds directly, without any remainder term because the quadratic
approximation above is exact. Next, if nh,‘i — 0, simple variance calculations show that if 7, j, and

k are distinct, then
Vgnn (20) [, = 1al] = O(hy®) = 0(n),  V(gnan[Bh = Vs A — 1)) = O(h*?) = o(n?),

V(EB(gn 39 —Tns F2 =Tl [20)) = O(h, %) = o(n®),  V(gnpy 30 —Tns ¥0=7nl) = O, *?) = o(n),

and hence Condition AS holds via Lemma 2.

SA.1.3.3 Condition AN
We have:
1 n
= 9n ZZ7rYn + G (l) G fYn ¢n ZZ + anv
\/HZ[ ( ) (n”) — Gl WZ

i=1
where

Un(2) =40y (2) = 051 =21 —n7Y) /Rd V(W) [Kn(u = 2) — 7, (w)]du,

B, — 207 —60)— </R/R u—z)+(1—n_l)'yn(u)]zdu'yo(v)dv—90>
(- Z /R d o (u) Pdu.

Suppose h,, — 0 and nhﬁ — 00. Proceeding as above, we have

P (2) = ¥o(2) = 2[v0(2) — o]

for each z, and therefore E[|1),,(2) — ¢ (2)|?] — 0 by the dominated convergence theorem. Moreover,

if 4 and j are distinct, then

V(G [ = Vs Vo= Vn)) = O(h*) = 0(n™),  V(Gryy[Ft = Vo = Val) = O(h, ) = o(n™),

so it follows from Lemma 3 that Condition AN is satisfied with Qo = 4V[y,(2)].
Finally, consider B, B!, and BN, It follows from the results for 9le and 9;81) that
1

B::;I = W2K(0) + O(n_l),

n

12



1
B =~ / K ()" yo(u = vhy)dudv + O(n”" +n~2h, ),
nhg Rd JRd

and BS = o(hl). The latter can be sharpened because it follows from a direct calculation that

B = 2067 —00] ([ ulwidu—t0) == [ batw) = ol

= hp"B§ +o(hy"),

where

5 = /
R4

2

3 < /R d upK(u)du> <;8p70(v)) dv

lp|=P
= —l | zlzl p'ls‘ </Rd upK(u)du) </Rd usK(u)du> </Rd (0Pyo(u)) (8570(u))du> .
p|=P,|s|=P

As a consequence, we can set

B, = n—;d <2K(0) - /R s K (v) o (u — vhn)dudv)

n

provided that nhf’ — 0.
In summary, if nhif — 0 and if nh% — oo, then the conditions of Theorem 1 are satisfied and
V(0 — o — BIR) v A7(0, %) holds with So = 4V[y,(2)] and B = O(n~1h; 7).

SA.1.3.4 Bandwidth Selection

Assuming BEE # 0 and BS # 0, we can balance the leading bias terms to obtain a (second-order)

optimal bandwidth selector:

1
BSB 2P+d .
(1) it sgn(5) # sen(5)
Ropt = 0 o . BB =2K(0)- [ K(u)?du.
A BT (B8 — sen(BY) Rd
2P [B3| n gDy ) = sgi{g

SA.1.3.5 Condition AL¥*

Condition AL* holds with J,; = J; = 1 and without any o]p(nfl/z) term.

SA.1.3.6 Condition AS*

Define the (exact) quadratic approximation

—% * N * N 1 * N A
gn(z,v) = gn(zv Wn) + gn,v(z) [7 - ’7n} + ign,'y'yh/ YV T lyn]’

13



with
G5 3) = 230(2) = [ [ Bl 2) 4 (1= 073 ()~ b,
Rd

Ina() =21 =n"Nn(z) —2(1 —n71) /}Rd [ K (u — 2) + (1= n ™) (w)]n(u)du,

g;,’y'y[nv 90] = _2(1 - n71)2 /Rd T](U)go(u)du

Condition AS* holds if nh% — oo, because then the conditions of Lemma 5 hold: If 4, j, and k

are distinct, then
V¥ [gnr () 77 = Anl] = Op(hy,?) = 08(n),

YV (Gnom7m? = A i = Anl) = Op(hy,2?) = 0p(n?),
V(B (900 057 = Ao ¥ = Anllzin)] = Op(hy,*?) = op(n?),

V(G an V07 = A Vi? = Anl) = Op(hy,*?) = op(n?).

SA.1.3.7 Condition AN¥*

It follows directly from the calculations above that if h,, — 0 and if nh% — oo, then Condition AN*
holds with Qf = Qg and

B — <2K(O) — /R e K (v)? vo(u — vhn)dudv) .

" nhd

In summary, if nhit — 0 and if nh¢ — oo, then the conditions of Theorem 2 are satisfied.

SA.2 Example 2: Inverse Probability Weighting

This example is also discussed in the paper. It illustrates two important features that are absent
in the average density example: (i) the parameter of interest is (implicitly) defined via a possibly
non-differentiable moment condition (i.e., Condition AL does not hold automatically), and (ii) the
unknown regression function is estimated using local polynomial estimators. Overidentification of
the parameter of interest could also be handled in this example, but we abstract from this additional
complication to save some space. Finally, see also the results in Cattaneo, Crump, and Jansson
(2013) concerning large sample distribution theory robust to (possibly) small bandwidths in the
context of weighted average derivatives for a simpler example of a non-linear (in the nonparametric
component) semiparametric problem that also fits into our general framework

Suppose z1, ..., 2z, are i.i.d. copies of z = (y,t,z’)’, where y € R is a scalar dependent variable,

t € {0, 1} is a binary indicator, and x € X C R? is a continuous covariate with density fo. Assuming
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the estimand 0y € © C R% is the unique solution to an equation of the form

t
E my;@}zo, qo(x) = E(t|lz) =Pt = 1|z],
0 (#) = B(tle) = Pt = 11
where m is a known R%-valued function, an IPW estimator @n of fy is one that satisfies

yla n) = OIP(n_l/Q)

)

where G, is an estimator of (the propensity score) go.
In what follows, we assume that qg is estimated using a local polynomial estimator of order
P > 3d/4—1. To describe this estimator, define dp = (P +d— 1)!/[P!(d—1)!], and let bp(x) € R

denote the P-th order polynomial basis expansion based on x = (x1,...,x4)" € R% that is,
1 1:110
x]! 2y
= | | =]
[2]” g
In other words, the basis vector bp(z) is defined by bp(x) = (1, 2], ..., [2']7)" with

)P = [xﬁlx?- =l bt lg=p, L= ({1, 0y, ,ed)ezi],

assumed to be ordered lexicographically.

The local polynomial estimator (of order P) of go(x) is given by

n
A~

(@) = €pl().  Eu(a) = arg min S (t; — bp(ai — )€Ko (i — ),
ERTP =1

where ep is the first unit vector in R?”, K,,(u) = K (u/hy)/hl, h, = o(1) is a bandwidth, and K is

a kernel. For our purposes, it is convenient to work with the representation ¢, (x) = q(z;4,,), where
q(x;7) = ep(vecy [v.(@))) nlz), v = (),

'Y;E n = VeCP Z IC:D n - 7 Kz,n(u) = bP,n(u)bP,n(u)/Kn (u),

’ytn Zt ICtn T; — ZL’ ,Ctyn(u) = bP,n(u)Kn(u)a

. 2 . . _ 2 .
with vecp : R¥P*dP _ R9P denoting the vectorization operator, vec Pl : R% — RIP*P denoting

the inverse of vecp, and defining bp,,(z) = bp(x/hy).
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Defining

Yoo(@) = folw)veep| [ Ke(w)dul, — Kalu) = bp(u)bp(u) K (u),

Ye0(@) = do(@)fol) | Ka(wdu, — Ki(u) = bp(u)K(u),

we note in passing that vy = (7,9, 71,0) satisfies go(z) = q(x;70)
Because 4,, is kernel-based, the associated IPW estimator én is a kernel-based two-step semi-
parametric estimator, which can be analyzed using the results of the paper by representing the

defining property of 0, as

~ ~ ~ A~ ~

G0y 40) WG (0, 4y) = 0p(n™Y), W, = I,

where

9(27977) = m(y,@)

q(z;7)

is neither linear in 7 nor (necessarily) differentiable in 6.
We impose the following primitive regularity conditions:
e Oy € int(O).
o B[t - m(y; 00)l|"] + sup,ex Bl|t - m(y; 00) | *]a] fo(w) < 00 and E [supgee ||t - m(y; 0)[|*] < 0.

e M ={t-m(y;0): 0 € ©} satisfies the bracketing integral entropy condition

é
Tya6M) = [\ o Nyale, Mde < ox,
0

with Npjo(+, M) denoting the Ly-bracketing number for the class M; for more details and
precise definitions see, e.g., van der Vaart and Wellner (1996). Furthermore, as 6 — 6,
Blt]lm(y;0) — m(y; 60)l] = O(0 — Boll) and Bltllm(y; 6) — m(y: 60) 2] = O(/l6 — Bo?) for some
p € [1,2].

o 7o(z;0) = E[m(y;0)|x,t = 1] is twice continuously differentiable in 6, with first and second
bounded derivatives denoted by 7o(z;0) and 7o(x;0), and E[sup|g_g, < [|Fo(x; 0)|]] < oo for
some o > 0.

e fo is bounded away from zero on X.
® (o is bounded away from zero and P + 2 times continuously differentiable on X.
e V[y(2)] is positive definite, where

ey )
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e K is even, compactly supported, and continuously differentiable.

With the possible exception of the third assumption, these assumptions are standard. The
third assumption controls the “smoothness” of § — m(y;0) and holds, in particular, if m(y;0) is
Lipschitz continuous in 6 (and the implied Lipschitz constant is integrable). More generally, certain
types of discontinuous-in-f moment functions are also allowed, such as m(y;0) = 1(y < 6) — 7 for

the 7-th quantile of y, 7 € (0, 1); this function satisfies
E([lm(y; 0) — m(y; 0o)[|] = E[1(min{0, 6o} < y < max{0,00})] = O([|0 — bol]),

provided that y is continuously distributed with bounded density.
Defining v, = (Y- V1,n)" With

Yanla) = vecr| | Kolwfolo+uh)dal, (o) = [ Kelwata + ub) foa + uhn)do

we also impose the following assumptions on the kernel-based nonparametric estimators:

e Uniform consistency:

sup (|9, () = 7, (@)l = 0p(1),  sup |9, (z) = 4, (@)[| = op(1).
rzeX reX

e Empirical uniform rate of convergence:

5 (s M — on(n—1/6 () (5 M = on(n—1/6
1ax |[F(@i) =yl = op(n™7), - max [19,7(25) =y ()|l = op(n7),

S () — A (2] = on(n—1/6 ) () — A ()] = on(n—1/6
ax |[¥(2i) — (@)l = op(n™7), - max (155 () — (2]l = op(n”).

e lim, . inf.cx qn(z) > 0, where g, (z) = q(z;7,,)-

Primitive conditions for these assumptions can be given using standard methods in the literature

and Lemma SA-1 below. For example, using Lemma SA-1 below, we have

max 4, (1) = 7 (1) | = Op(v/logn//nhd) = op(n™11%),

1<i<n
provided that nh?ld/ 2 /(log n)3/ 2 — o0, and similarly for the bootstrap and leave-one-out versions.

Furthermore, these assumptions imply

sup |gn () — gn ()| = op(1), max |Gn (i) — qn(zi)| = op(n~/%),
2eX 1<i<n

and similarly for the bootstrap and leave-one-out versions. If also sup,cx |gn(z) — qo(z)| = o(1),

then the third assumption is satisfied.
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Finally, we assume throughout that 9n —p g and 92 —p 6g. These consistency results can be

established using standard techniques already available in the literature.

If the bandwidth satisfies nh%d/Q/(log n)32? — oo and nh2F*? — 0, we show here that the

assumptions of Theorems 1 and 2 are satisfied and that, for some X,
Vi, — 0o — B,) ~ N(0, ).

where B,, = O(n~'h,;?). Once again, the stated bandwidth conditions are weak enough to permit
B, # o(n~/2), while \/n(6,, — 6 — B,,) ~» N(0,%¢) reduces to \/n(f, — 0p) ~ N(0,%y) when
imposing conditions requiring nh2¢ — oo.

SA.2.1 Condition AL

We apply Lemma 1 with p = 3 to verify Condition AL. In this example, W,, = Wy = I, and

qo(x) qo(z)
8 [q(w;v) B [Q(ﬂ«";’Y)

G(0.7) =B | m(0)] = n(o)|.  Go) - fo(aito)|.

q(z;7)

The smoothness assumptions imposed on ro(x; €) imply that as 6 — 6,

1G(8,7) = G(Bo,7) — G(3)(0 — 60)[| < O([|6 — 6o]*) /R pres Go(u >)|

fo(u)du

Also, setting G, = G(7,,), we obtain

1Gn = Coll < /

(w‘vn) — 4(;70)
(3 7n)4 (:v “m)

/ 17 (@) — vo(@)]| folz)dz = o(1),

170 (23 00)l| fo(x)da

under the assumptions imposed and provided that h,, — 0.
Condition (i). Holds by definition of the estimator.
Condition (ii). Using the calculations above, as 6 — 6,
1G (6, 4) = G(80: %) — G(3,)(0 — 00) | = Or([16 — 60]*)

because sup,cx ||¢n(x) — gn(x)|| = op(1) and ¢, is bounded away from zero for all n large enough.

This implies, for every 4, = o(1),

qap NGO An) = G00,30) — GE)(0 — o)

_ 1/2y _
10~00ll<6n 16— 612 = Op(0:7) = op(1).

18



Condition (iii). We have

~ ~

1Gn(0,55) — G(0,7,) — Gul00,7,) + G(00, 3| < A1.n(0) + prA2n(0) + A3n(0) + ppAan(6),

where
— e [0(@) —an(@)l g

o= S ez )

and
An0) = | 23 Y (i 0) — myss00) — B [ (m(u:0) —m(y;eo»] ,
n qn (i) qn ()
Aoy (0) = %Ztillm(yiﬂ)—m(yi;%)ll—E[tllm(y;ﬁ)—m(y;%)ll] :
=1

[ @l
D) = [ ) — oo 00) | o

Ayn(0) = B [t]lm(y; 0) — m(y; 6o)]]]

In what follows, suppose d,, = o(1). First,

sup  Aj,(0) = op(n~1/?)
160—00]|<én
because g, is non-random and bounded away from zero for all n large enough, and because the class
of n-varying functions M,, = {tm(y;0)/qn(x) : 0 € O} satisfies Jpj o(€n, My) — 0 for all €, | 0.
Similarly, using p,, = op(1),

P,  Sup AQ’H(G):O]}P(TL_l/2)
16—601|<dn

because the class of functions M| = {t|[m(y;0) —m(y;0o)| : 0 € O} satisfies Jj (1, M) < oo.
Also,
Az (0)

sup =0 n_l/?’/ Gn(w) — gp(u)|fo(u)du = o n~1/2
obes, Trmg—ag ~ P o) = an) ol = oe(n )

because sup,ex |¢n(x) — gn(z)] = op(1), gn is bounded away from zero for all n large enough,
Sup,ex ||7o(x; 0) —ro(z; 6o)|| = O(]|0 — 6o||), and, using standard results for local polynomial regres-

sion estimators and the assumed bandwidth rate restrictions,

180 = ) o = Op(n™ 0 = oo™,

Finally, by arguments similar to those given above,

L ) = op(n 1/6 -1/3y _ —1/2
" ° 7 O n or(n .
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Condition (iv). Follows directly by the results established in the following subsections, because

n

én(goﬂ&n) Z (IL‘ ylv 00)

7

n

Z 2 m(yi; 00) — 1y m(yi; 00)[Gn (i) — qn(zi)]
o1 Qn(xz n i=1
+% zz; Qn(t; ) (y17 00)[%1(:51) - qn(‘ri)]2

2 e A0 (n) )
i—1 dn\bi)"dn Ly

where
n

1 t;
l ¢ i100) = -1/2y _ -1/3
- ;1 qn(%)m(y ;00) = Op(n ) = op(n ),

n

% > q(t;,)gm(yz‘; 00)[Gn (%) — gn(zi)] = Op(n~'h % + n=1/2) = op(n~1/3),
i=1 AT
% Z m(yi; 00)[dn (1) — n(2:)]* = Op(n " hy?) + 0p(n™/?) = op(n~'/?),

1

EZ wz Qn$l)
1

_nz; :C

= Op(1) fnax 4 (2:) = v (@) |> = Op(y/(logn)3/4/n3h3%) = op(n1/3),

m(yi; 00)[dn (i) — qn(fﬂi)]?’“

@l lm(yi; Bo)[lldn (25) — g (2:)|°
K3
provided that nho?/(logn)3/? — co.
Condition (v). Holds by assumption because 6 is an interior point.

Condition (vi). We have W, = I3, = Wy and, using nhid/z/(log n)32 = oo,
M

/ u)qn(u)

= / 14 (1) = v, ()| fo(w)dz = Op(1/y/nhd) = op(n~"/°).

|G -

IN

70 (w; 00) || fo(u)dx

Condition (vii). Suppose 0, = O(n~/3). When verifying condition (iii), we already showed

sup  Aq,(0) = op(n~1/?), Pn  sup  Ag,(0) = op(n~/?).
10—0o[1<dn 10—0011<57
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Proceeding as in condition (iii), for every 8§, = O(n~'/3), we also have

sup  Ag(6) = Op(5,) / lg(us ) — q(ss 1) | folw)du = op(n="/2)
HG_GOHS&L Rd

and

P sup Ao, (0) = o]p(n—l/G)OP((;n) — OP(H—I/Q)‘
16—00]|<6n

SA.2.2 Condition AS

A quadratic approximation to g,(z,7) is given by

_ 1
Gn(2,7) = gn(2,70) + Gy (2) [y — Yl + ign,w(Z)h — Yy Y = Vals

where
gn(2,70) = %f@)m@; b0), i) = pTi(a),
TH@) =T (@) (@), Tha(@) = veep! (v7n(2),
@) = (0= 1) LK (0) veep(epeh) + 1pn(®@) () = (1 — 1) Kn(0)ep + 7o n(w),

and where, for n = (1, n})" and ¢ = (¢, ¢}), the linear and quadratic terms are of the form

gy ()] = —memn(w)*mx) n W@:rzn(mrl vecy! (1,(2)) T} (2)

and

10
Inoy (210,01 = gnyre(2) [0, )
(=1

respectively, with

Gt (21, 0] = mfl(”eo)e;rmx)lvec;f(nx(:c))r;n(x)1vec;1<sox<x>>rz<x>,

dn $)
G2 ] = —F(’))eiprzml vecs! (a ()T () veey (n, () Y (2),
Inyr3(2) [ ] = WG'IDF;”(JC)_I vec;l(nx(x))F;n(x)_lgot(x),

dnra(D] = YO0 b ) veep (o (@) () My (),

gn ()?

Inyr5(2) [, 0] = We;r;n(x) Yy (@) () T4 (2) Lep,
Inyy.6(2) [0, 0] = WG}F;H(I)IQ( x)n(z )/F;n($)71(3p,
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Iny,1(2)[0, 0] = meﬁafin(ml Vecl_)l(nx(w))T,f(w)TZ(:c)’Vec]_gl(cpx(x))f‘;n(x)*lep,

Inyy.8(2) [0, 0] = Weﬁafin (2) "t vecy (¢ (@)Y (2) T} () vecy (1, (m))an (z) tep,

era(@ne] = =2 o) o T o) e (2 ()DL ) e
Inr10(2) [0, @] = —We;r;n(x)—lgot(x)rg(x)'vecgl(nm(x))r;n(x)—lep.

Suppose h,, — 0. The first part of Condition AS is satisfied if

NOIR N ~1/6
g@llvn (7:) = V(i) || = op(n™ /"),

a sufficient condition for which is that nh3"> / (log n)*/* - .
Moreover, the second part of Condition AS can be verified using Lemma 2, because if 4, j, and

k are distinct, then
V(g (20) 3% = 1)) = O(hy, ) = o(n),

V(g (207 = s n = Tal) = O(h,*4) = o(n?),
V(E(gn,1 (20)[7, = Tns A% = ll20)) = O(hy, ) = o(n?),
V(gnﬂﬁf(zi)[:y% ~ Tno ,A)/"Z“L - ’Yn]) = O(h;?’d) = O(ng)a

provided nh? — oo.

In other words, Condition AS holds if h,, — 0 and if nhidn/ (logn)*? — .

SA.2.3 Condition AN

Suppose h, — 0 and nhg — o0. Then,

t
5 lm(y: 60)lI*| — 0.

z — go(z 7] = x (@) = qo(@)]
Emgn( ”Yn) 90( ”70)” ] E [Qn( ) qo( )] (qﬁ(;g)qo(ﬂj))

Also, for the correction term §,, we have:

671(2) - 51,71(2) + 62,71(2)7

where
617”(2) -7 \/Rd q(?é:t))Q To(u, HO)QPF;F’TL("LO 1]Ct n(.%' — ’U,)tfo(u)du
+ /Rd q?((s))z ro(u; Ho)epl“;r’n(u)’llcwm(x — )Y () fo(u)du,
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i) = =t [ (s 00)e L 1) Ko = ) o)

[ s 80) T (1) Kl — 0T () o
= —t/R Mm(m — 0hp; 00)epTan(z — vhy) "t bp(v) K (v) fo(x — vhy)dv

(.’L‘ B vhn)Q ! -1 !
eplyn(z —vhy) " bp(v)bp(v) K(v) fo(x — vhy)dv + o(1)

d B . Gn(z — vhy,)? P
t
— 0 :0p).
N qo(l') To(x, 0) + ’I“o($, 0)
Next,

) = [ s b)) ) o)

Re Gn (U)2
- /]Rd Q?((Z)) ro(u; go)elpF;n(u)_lf‘x’n(u)Tj; () fo(u)du
- /R qio<(5))2 (5 00) €T, (1) Y () fo ()l

= [ It oo o+ o)
— 0.

Therefore, §,,(z) — do(z) and

B[lld.(2) = do(=)I"] = 0. do(=) = —T“;(jff) (t = qol))-

Putting the above together, we have

E ([ (2) = ¥o(2)|IP] — 0

It now follows from Lemma 3 that Condition AN is satisfied with Qy = V[¢y(z)], because

standard bounding arguments can be used to show that if ¢ and j are distinct, then
V(G [V = Vs Y = Ya) = O(h,*) = o(n?),

V(G 777[’7 — Tno fYn fYn]) - O(h;d) = O(n)7
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where the variance calculations use the representation

10

Gn,’Y’Y [777 (P] = Z Gn,'y'y,f [777 ()0]7
/=1

with, letting wo(z) = qo(x)ro(x;0p) fo(z) to save some notation,

Gupyaln ) = = | ZOE eI (1) vec! )0 (0] v o 1) X ()

Gray2[n, 0] = — /Rd ;0((5))2 e};Fj’n(u)_l vec}l(gpm(u))F;n(u)_l vecj,l(nx(u))'f:{(u)du,

wo(u) S N | -1
Gp, , :/ epld, (w) ! vec LNT (u w)du,
300 @l e 2T (u) P (M (w)T, (w) ™ i (u)

Gp, , :/ wo(u) eplF (u) 7L vee s (@, ()T, () "y, (u)du,
malh el = | Fazerle () P (Pa (W)l ()™ 1y (u)

wolUw _ _
Grruali = [ 2000 T () g ()i (w) T () Lepdu
R4 Gn (U)

wolw _ _
Grcrvoli el = [ 200 rt () o)y () T ()~ epdu,

R qn (u)3
G [ :/ wo(u) , r+ 1 1 T+ ()T rooo—1 r+ -1
n,YY,7 77a<P] Ré qT-{-(u)g €p zn(u) VeCp (nm(u)) n(u) n(u) veCp (@m(u)) xn(u) €pdu,
Gnyy,805 ¢ /Rd ;O(%l el (w) "t veept (0, ()Y (w)Y5h (w) vec st (1, (w)T), (w) " tepdu,
Gupyol o) = = [ S0t ) o)X 0 v ()L 1) e

Finally, to characterize B,,, suppose nh2P*2 — 0 and nh3/? /(logn)3/? = oo and let

Fx,n(x) = Veczzl (%c,n(w))a 19P—l-l,n(fﬂ) = i Kt(u)[u];;+1fg(m + uhy)du,

1
A7) = [ 1 =P 1, = (e ) e 2.

where for £ = (¢1, 0o, -+ ,£q) € Z2, the definition of q[()PH)(m) uses the multi-index notation

ol
|£|:£1+"‘+£d7 E':El'fd', GZ:W.
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Using
Lyn(z) = fo(z)ly, r,= ) Ko (u)du,

R
Dpiin(@) = fo@Ope,  Dpa = [ Kiwlulp.du
R

and the representation

4 () = go(x) = qu(x) — qo(x)

+(n— 1) K (0)epTyn(z) tep {1 Tt (- 1>—1Kn<0>e;afx,n<w>‘1ep]

(n — 1)72Kn(0)2 / _ 2
_1 + (n — 1)_1Kn(0)€lprx,n(l')_1€p (eprx,n(.%') 1€P) ’

gn(z)

the leading term in the expansion

B2+ 85 = Gol) = B | B0 (a300)] = - | SOy 02g0)] 4 ofa 17

admits the decomposition

& [MTO(:E; 90)] =B + B,

qo(7)
with
B = —pbt / T () 9y 1) (1) 20 ) 4 o)
Rd qo(u)
= —h5+1(6/PF;1’L9P+1)/ q((]PH)(u)Mfo(u)du+0(h5+1)
Rd qo(u)
and
_ K(0 1-—
K(0) -1 1 — qo(u) . -1/2
= — i (epl; ep)/xqo(u)ro(u,%)du—i—o(n /).

To also characterize the nonlinearity bias, we use the representation

1 v w " "
§EG7L777 [’7:1 — Tno '77;1 - 'Yn] = Z EGn;y%f [7:1 — Tns '7:7, - ’Yn]
0€{1,3,5,7,9}

= Z EGn,v’y,K [’%m '%L] + 0(1)7
0{1,3,5,7,9}

where the first equality holds because Gy, q.041[7% — Vi Vs = Yol = Gyt — Yns Yy — V] for
¢ e€{1,3,5,7,9}, and the second equality uses EGn,W,g[”ﬁl, Yol = O(1) and EGy, 4y [V, Vn) = O(1).
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The term EGy, 1[4, 4] + EGh vq.3[95, 4] is asymptotically negligible because

e (BGh 1 [%ﬁn] +EGh 390 )
/R d /R - 2 T () K ()T () o (0) 0+ vhn) — Ko (0) X5 ()] ot + 0 )l

=O0(n 'hd + h{f“),

where the second equality uses Ky (v)qo(u + vhy,) — Kz(v) T (u) = O(n=thd + P+,
Next, defining o7 (z) = V[t|z] = go(z)(1 — go(x)) and using simple algebra, we have

:/Rd/R wo((ult))ge'pfx n(w)” 1ICt( )U?(u—i_Uh”)lct(”)lr;n(u)flepfo(u+vhn)dudv

< G
+ /Rd /Rd qqio((;;)g eIPF:U n( ) 1’Ct( ) [QO(U + 'Uh,n> — T;:(ll/)/bp(v)]z,Ct(vyratn(u)flepfo(u + Uhn)dUd’U
- /Rd /Rd ;3_0((5))3633Fg;n< w) " U (v) 0 (u + vhy Ko (0)' TE (w) " Lep folu + vhy)dudo + O(hE*)
= » /Rd WGIPF%”(U)l’Ct(U)ICt(U),Fx,n(U)1€P‘7$(u + vhy,) fo(u + vhy,)dudv

where the second equality uses qo(u + vhy,) — T; (u)'bp(v) = O(REH1).
Putting the results together, we have

1 v v
‘871\71,L = 7EG"{Y’Y ["Y; — Tno ’an - fYn]

- nhd /d /d rolss 90 fO )elPF:L“,n(u)_l’Ct(U)Kt(v)/rx,n(“)_lePag(u + vhy) fo(u + vhy)dudv
Re JR

+o(n~?)
In particular, we can set

_ KO, 1—qo(w)
B, = — nhd (BPF;EIGP)/XqO(O)TO(%@O)dU

i o[ PR ) 00 () e oo+ o )dudo
nh R4 JRA

in Condition AN.
In summary, if nh2P*+2 — 0 and if nhidﬂ/(log n)3/2 — oo, then the conditions of Theorem 1
are satisfied and /n(6,, — g — B,) ~ N(0, o) holds with £y = V[¢py(2)] and B,, = O(n~1h; 7).
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SA.2.4 Bandwidth Selection

As in the previous example, and assuming B3® # 0 and B§ # 0, we can balance the leading bias

terms to obtain a (second-order) optimal bandwidth selector:

3

1
BSB P+i+d .
<‘BO | 1> if sgn(B5?) # sgn(Bg)
d_|B|
i e

where, defining A, = [pa Ko (u) Ky () du,

own

hopt =

Y

3=

P+1+d
) T i san(BE®) = sgn(B)

1—
B§? = — [K(0) (e};F;lep) - (e'pF;lAwF;lep)] / Mm(w; 0o)dx

x  qo(x)
and (s 60)
B =~ (ply ) [ ™) ) 0 )
R4 qo(w)
SA.2.5 Condition AL¥*

We apply Lemma 4 with p = 3 to verify Condition AL*, following as closely as possible our

calculations above for Lemma 1.

Conditions (i*)-(ii*). Are verified exactly like their counterparts in Lemma 1 were verified

above.
Condition (iii*). We have

1G5(6.47) — G(8,47) — G (60, 37) + G (00,47l
< ALL(0) + A1n(0) + 085, (0) + 05, A2, (0) + A3,(0) + p7Aan(0),

where d5(22,) — anlal,)]
x an wi,n —dn xi,n . -1/2
e P P e A
and
O = |53 g 10) — (g 0)) — B | —n (i 6) — mlytni )
n\l) = = (MY 3 0) — M(Y; s - —— (M(Y; 3 0) — m(Y; 3 )
1, n gt qn(l’i,n) , , 0 Qn(xi,n) , , 0
* 1 i * * * * * * *
=1

o [ @ a@l
8300) = [ Sy 0:0) = oo 00) | o)
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In what follows, suppose d,, = o(1). First,

Sup A7) = op(n )
[16—60||<67
because ¢, is non-random and bounded away from zero for all n large enough, and because the class
of n-varying functions M,, = {tm(y;0)/qn(x) : 0 € O} satisfies Jpj o(€n, My) — 0 for all €, | 0.
Next, using p¥ = op(1),
ph sup A3 L(0) =op(n/?)
||6_90HS611
because the class of functions M| = {t|[m(y;0) —m(y;00)|| : 0 € O} satisfies Jj (1, M) < o0

Finally,

A3 ,(0)
sup n 70 —1/3 / _qn Wi = o n_1/2
- 90H<6 1+n1/3][6 — 6| p(n |dn )| fo(w) p( )

because sup,cx |45 () — qu(z)] = op(l), gn is bounded away from zero for all n large enough,
sup,cx ||ro(z; 0) —ro(z;6o)|| = O(]|6 — 6o]|), and, using standard results for local polynomial regres-

sion estimators and the assumed bandwidth rate restrictions,

/Rd 1G5 (1) — gn (w2 fo(u)du = Op(n~hy®) = op(n=1/3).

Condition (iv*). Follows directly by the results established in the following sections, because

n *

G:L(QO”?:L) = Z yznve)
1f h 00) - 13 im0 — )]
= - yln’ - ~ * mMA\Y; ns A \T; pn) — qn\T; p
n<q n qn(xi7n)2 nr V0 . ;

MY 00) @5 (25 ) — G (27,))

Z
1
nZ )qn< B

MY i 00105 (25 ) = Gn (7)),

where

1 in * _ _
D (i f0) = Op(n %) = op(n™1%),

JIRTAN o N[k . 1p-d o —1/2y ~1/3
n ; dn(xzn)zm(yi,nv 60)[qn(xz,n) —qn ( Ty n)] OP( hn +n ) - O]P)(n )7
*Z (Y 300105 () — a5 ) = Op(n~ b ) + 00 (n~112) = op(n =11,
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1 " ) * Ak * ~ *
ﬁ Z An(«x* )gTi* * m(yz‘,n; 00)[qn(xi,n) - qﬂ(mi,n)]g

l - i,n m ¥ (¥ — 6. (x* 3
S TLZ ’An( ) ( )||| (yzn7 )H”qn( z,n) qn( z,n)”

:Op(l) max H%( ) = A (@)|IP = Op(y/(ogn)3/1/n3h31) = op(n'/3),

provided that nhidm/(log n)3/? — co.

Conditions (v*)-(vii*).

above.

Are verified exactly like their counterparts in Lemma 1 were verified

SA.2.6 Condition AS*

A quadratic approximation to g is given by

_ . . 1, . .
n(2:7) = 9n(2:90) + 9n ()Y = Anl + 59047 (2 = Fn v = Al

where

Y-ﬁ-

n

(z) =

gn(2,4,) = m(y;00),  Gf(z) =ep T (2),

(:L“)

I @) 4 (), T (x) = vecp! (31, (2)),

Fam(@) = (n = 1) 7 Kn(0) veep(epep) +920(2),  Fin(z) = (n = 1) Kn(0)ep + 4, (@),

)

and where, for n = (., n})" and ¢ = (¢, ¢})’, the linear and quadratic terms are of the form

g (] = —we;f;n<x>lnt<x> "

and

respectively, with

g;(L,'y'y,l (Z) [77, 90] =

Iny.2(2) [0 0] =

tm(y; 6o)

Rl e () T )

Gy (2 Z Iy (2

I 00) g ot (@) veop ! (n, (@) (@) vecp ! (i, (@) T (2,

G (x)?

_Im800) o pt () veep! (0 ()T (@) veerd(n, ()T (),

G (x)?

* tm Y 9 - — — . —
g s (Dl = T ) veept (i, (2)FE (@) (@),

Gt (x)?

* tm ya 9 -l _ _ ~ _
g (] = 0 ) veep (o (@) EE (@) g (),

G (x)?
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92,77,5(2)[77&]—weﬁafaﬁn(ﬁﬂ)1 (2)pu(a) T

* tm(ya 90) - — —
gn,'y’y,(i(z)[nv 90] = WG}’F;H(QZ) ltpt(ﬂ?)ﬁt(.r)/l_‘;n(I) lep,

tm(?/? 90) /Tt

)] = T ) v () T ()T 0 oo (n o)) e
a1 = T ) v (2 () T ) T ) v ) ) e
ol Dne] = T B o)y (o) T ) )L o) e,
o)) = =B (o) )T ) ) (o) e,

Suppose h,, — 0. The first part of Condition AS* is satisfied if

lg?}én H )(x]) - ﬁn(xJ)H = OP(n_l/G)a

a sufficient condition for which is that nh3"? / (logn)*/* — .
Moreover, the second part of Condition AS* can be verified using Lemma 5, because if 7, j, and

k are distinct, then
V(g oz 7 = An)) = Or(hy,"(1+ 07 hy %)) = op(n),

V(g (22 AT = Ay A = A0)) = Op(h 24 (1 + n 7t hyyh)?) = op(n?),
V(B (5 (2 ) 57 = A 457 = Aullzi ) = Op(hy 2 (1 + 0~ hyy ) = op(n?),
V(g5 () 57 = A A7 = Al) = Op(hy* (1 4+ n by ) = op(n?),

provided nh? — oo.
In other words, Condition AS* holds if h,, — 0 and if nh%dﬂ/ (logn)*'? = .

SA.2.7 Condition AN¥*

Suppose h,, — 0 and nhqgfl/Z/ (log n)3/2 — 00. Then, using the fact that 6,, —p 6y and maxj<i<p |9, (zi)—
Y (zi) || = op (1), it can be shown that
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Also, the correction term

* [ % tym Y 59 * N
5n<zz,n) = Z ]q(xjj)w PF ( ) ! [K;t,”(xi,n - xj)t - Vt,n(xj)]
i

can be shown to satisfy

As a consequence,
B (19 (25n) = U (5P = 0p(1), 95 (250) = 0n(2in An) = Gr(Fn) + 5 (250)-
Moreover, if ¢ and j are distinct, then
VG [0 s A = A]) = Op(hy, ) = 0p(n®), VXG0 s A —nl) = Op(hy,?) = 0p(n).
Finally, it can be shown that
B, = BB}, + op(n/?) = B}, + op(n~'/?),

where

* K(O) I = 1_q0(u) .
B, = — hd (epl“xlep)/xqo()ro(uﬁo)du

nhd / / (u; «90 fO )elprz,n(u)*ll@(v)]ct(v)’Fx,n(u)*lepaf(u + vhy) fo(u + vhy, ) dudv.
Rd JRd

In other words, if A, — 0 and if nh3"/? / (logn)*? — oo, then the assumptions of Lemma 6 are
satisfied and Condition AN* holds with Qf = Q.

In summary, if nh2F+2 — 0 and if nh34/? /(logn)3/2 — oo, then the conditions of Theorem 2

are satisfied.

SA.3 Example 3: Hit Rate

This example is Example 1 in Chen, Linton, and van Keilegom (2003), which corresponds to
a particular instance of a so-called ‘Hit Rate’. While simple in many respects, this example is
interesting because it allows us to compare our results with previous influential work in a tractable
setting, where the semiparametric estimator 0, is given in closed form but it involves a discontinuous
functional of a kernel density estimator 4,,. Thus, we illustrate how Condition AS (and AS*) can

be verified in a non-smooth example to construct valid, more robust inference procedures, where
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standard empirical process methods cannot be applied to obtain asymptotic normality for two-step
kernel-based semiparametric estimators when 9B, # o(n~1/2).

Suppose z1, ..., z, are i.i.d. copies of z = (y,2’)’, where y € R is a scalar and the vector = € R4
is a continuous explanatory variable with density =y,. Letting 1(-) denote the indicator function, the
estimand is

0o = Ply = 7o(2)] = B(1[y = 1o(2)]),
and the corresponding estimator is
= IS M2, ) = 2D Ko Hal) = ek ()
n i 2 Yn(Zi)], n n i) n i .

n
i=1 j=1 "

To study this estimator using our main results, we set d, = 1, z(z,0) = z, w(z,0) =1, and let
0,, be defined by Gy, (0,,4,) = 0, where g(z,0,~) = 1]y > v(z)] — 6.

In what follows, we assume that for some P > 3d/4, the following regularity conditions hold:

® 7o is P + 1 times differentiable, and v, and its first P 4+ 1 derivatives are bounded and

continuous.
® Fy;(+|z), the conditional cdf of y given z, has three bounded (uniformly in x) derivatives.

e K is even and bounded with [5q |K (u)|(1+ [lul|")du < oo and

1 iflij=---=1l3=0
/ ulll---uildK(u)du: i = .
Rd 0, if(1,....lq) €ZL andly+ - +lg<P

As in the average density example, the smoothness assumptions can be relaxed, but once again the
stated assumption is sufficient for our purposes.
If the bandwidth satisfies nh2" — 0 and nh3Y/? /(logn)3/? — 0o, we show here that the assump-

tions of Theorems 1 and 2 are satisfied and that, for some X,
V(05 = 0o = B) ~> N(0, o).

where B,, = O(n~'h;?). Once again, the stated bandwidth conditions are weak enough to permit
B, £ o(n"1/2), while \/n(0,, — 0 — B,,) ~ N(0,%0) reduces to /n(f, — 0p) ~» N(0,%y) when

imposing conditions requiring nh2¢ — oo.

SA.3.1 Condition AL

Condition AL holds with J,, = Jy = 1 and without any 0]p(n_1/ 2) term.
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SA.3.2 Condition AS

Define
gn(@,7) = Blgn(z,7)|2] = (1 = 0) = =Fyju[n” 'K (0) + (1 = n™)y(2)|2].

Being a defined through a projection, g,(x,~) is likely to be close to g,(z,~) in the the appropriate

sense and, indeed,
1 ~ (i o ~ (i o

if A, = maxi<i<p |’Ay,(f)(asl) — v, (x;)| = op(1), because then

n 2
1 N7 N N7 N
=1

)

= lv (Z[gn(zupﬁ(;)) - gn(ziaf)/n)]’Xn) < sup fy|m(r|3)An = op(1),

n ;
=1

where X, = (21,...,%,)'; fy+(-|z) denotes the derivative of Fy,(-[x), and

4 (g =01 Z Kp(x — xj).

Next, being smooth g, (z,7) admits the quadratic approximation

1,
SOy ()Y = Vs Y — Yl

where, letting fy|w(|ar) denote the derivative of fy,(:|z),
Gnr(@)) == =0 ) fyalyn @)zly(@), b (@) =n K (0) + (1= )y, (),

Gnomy (@), = =(L =072yl (@) ey (2)n(@).

It follows from standard bounding arguments that if A,, = op(n~1/%), then
fZ Gn(@1.4D) = Gu(@1,49) — Ga(@i70) + Gn1,7,)] = 08 (D).

As a consequence, the first part of Condition AS is satisfied if A, = O[p(n_l/ 6). By Lemma SA-1,
the latter holds provided that nh34/? /(logn)3/? — oo. Moreover, if i, j, and k are distinct, then

V(G (@) = 1m]) = O D) Vg (@) 5% = Yo 3 — 1) = O(h, %),
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V(E(Gny (@) 3 — Vs 45 — all20) = O(h 2, V(G (@) 3 — Vs ¥ — 1)) = O(B ),

and hence it follows from Lemma 2 that the second part of Condition AS holds provided nhé — oc.

SA.3.3 Condition AN

We have:
1

TZ

%\

Zgn Zz>'7n +G (¥ (l)) Gn( Z (2i) +\/>Bn;
=1 =1

where

Un(2) = gn(2,70) = Gn(7) +0n (@),  dnlz) = —(1-n"") /Rd Fyta v () ] [ (=) =,, (w) 170 (w)

1 1 v -
_ il E : _ (@) _
Bn - 2 n G ,’Y’Y Wn? ’771 ’}/n]
Suppose h,, — 0 and nhﬁ — 00. Then

VY (2) — o(2) = go(2,70) + do(7), do(w) = —fy|x[’70( z)|z]yo (@ / fy|a: Yo(u)|u]vo(u ) U,

for every z, and it follows from the dominated convergence theorem that E[|t,,(x) — ¥ (x)|?] — 0.

Also, the representation

9

Gl = =1 = [yt )lulntu)otu)vo(wdu
can be used to show that if ¢ and j are distinct, then
(é ,’Y’Y[ rynvfyn ’Yn]) = O(h;2d) = 0(7’1,72), (é ,’Y’Y[ ’Ynafyn ’Yn]) = O(h'r:d) = O(nil))

so it follows from Lemma 3 that Condition AN is satisfied with Q¢ = V[¢y(2)].

Under the bandwidth conditions imposed it can also be shown that

B = = K0) [ fyulro(wludo(udu+o(n™ ),

B,IiL = hd 9 / / fy\x '70 |U ( ) ( )’}/0 (U - uhn) dvdu + 0(71—1/2)7

and

B =iEsgront), B3 =07 X o ([ mtian) ([ feGotulunatn) @) du).

lpl=P "~
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As a consequence, we can set
1
B, = _W ( / fy\x 70( )‘u]fYO du +5 / / fy|:1: 70 ( )270(0)70 (U - uhn) dvdu) .

In summary, if nh2" — 0 and if nh3Y/2 /(logn)3? — oo, then the conditions of Theorem 1
are satisfied and v/n(0,, — 0y — B,,) ~ N(0,Zg) holds with S = V[¢y(2)] and B,, = O(n"1h;9).

SA.3.4 Bandwidth Selection

As in the previous example, and assuming B§® # 0 and B # 0, we can balance the leading bias

terms to obtain a (second-order) optimal bandwidth selector:

)

where

52 =K 0) [ fyeho@liroie— 3 ([ K@Pa) ([ febotluboturan).

SA.3.5 Condition AL¥*

Condition AL* holds with J,; = J; = 1 and without any o]p(nfl/z) term.

SA.3.6 Condition AS*

Let g (x,v) = gn(z,7) and define

92(2,7) = 320 3) + B (@B = A0] + 8 @Y~ Fr7 — Ful

where
Inoy(@n) = =1 =0 fyuldh @)aln(), A (2) =0 Ku(0) + (1 — n~ ')A, (2),

Ty @), 0] = =(1 =0 fya 38 (@) a]n(2)p(x).
Defining N; = Y%

=1 ]l(x; = ;) and using the fact (about the multinomial distribution) that
n~t3" | N2 = Op(1), it can be shown that

n

=1
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if A¥ =op (1), because then
2
(fzgn znv:y;‘; Z) gn( 1n7’3/:,(2)) _g’;;( znﬂf)/n)_‘_gn( 2n7’7n)]> ’XH?X:;
1 - * *
= ﬁV <Z[gn( znv’yn(z)) gn( zn77n)]|Xna‘Xn> < Suprsfy\:v < ZN2> A = ( )

=1

where Xy = (27 ,,,...,%;,,) . Also, it follows from standard bounding arguments that

\Fz (@ s A0 = 5 (@5, AR ) = G (@ V) + (@0 Fn)] = 0p(1)

provided A* = op(n~1/6). The latter rate condition holds when nhid /2/ (log n)3/2 — 00, as can be
verified using Lemma SA-1. As a consequence, the first part of Condition AS* is satisfied when

nhid/ 2 / (log n)3/ 2 _, ~ and h, — 0. Moreover, it can be shown that if 4, j, and k are distinct, then
V(G (@) A5 = Anl) = Or(hy®),
V(T () 907 = A A5F = A0]) = Op(hy ),
VB (G (@) 57 = A Vi = At n)) = Op(hy*),

V(G oy (@) 07 = A A7 = An)) = Or(hy, ),

so it follows from Lemma 5 that the second part of Condition AS* will be satisfied provided

nhd — oo.

SA.3.7 Condition AN¥*

We have:
fzgn 70 Jerk( *(Z))ié:(n \szn 1 +\fB
where
Un(2) = gn(2,9n) — G (Fn) + 03,(2),
On(z,) =G AW =4, = —(1—n~ Z Fota b (@) |23 (K (s — 27,,) — f(3)],

n

5% * /A 11 Hyk Ak *. (% ~
Bn = Gn('.)/n) + 5% Z Gn,'yyh’n’( ) — P)/n?f)/n( ) - FYn]-
i=1

3 .
Suppose h, — 0 and nhﬁd/ (log n)3/2 — 00. Using Lemma A-2 and the fact that 6,, —p g, it can
be shown that

E*HT/JZ(Zz*,n) - wn(zj,n)|2] = OP(l)'
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Also, the representation
1~ ;
G;,’y’y [777 90] = _<1 - n_l)zﬁ Z fy|azﬁ/7—t(x2)’xl]n(xl)(p(ml)
i=1

can be used to show that if ¢ and j are distinct, then
A ~ A% ~ — % ([ Sk Ak G A ~%,] o —d
v* (Gn ff[ - ’Yn?’Ynﬂ - ’Yn]) = OP(h‘nzd)? v (Gn,ffh/n,l - 7n77n’] - Vn]) = O]P’(hn )
Finally, it can be shown that

B: = E*B’ + op(n~?) = B: 4 op(n~/?),

B, =~ nhd ( / Fyevo(w)lulyo(u)du + / / Fytalv0 (@) V1 K (w) >0 (0)70 (U—uhn)dvdu>.

In other words, if h, — 0 and if nh3"/? / (logn)®? — oo, then the assumptions of Lemma 6 are
satisfied and Condition AN* holds with Qf = Q.

3/2

In summary, if nh2” — 0 and if nh34/? /(logn)?/* — oo, then the conditions of Theorem 2 are

satisfied.

SA.4 Uniform Convergence Rates for Kernel-Based Estimators

Various results on uniform convergence rates for kernel-based estimators are used to verify the
conditions of Theorems 1 and 2 in the examples. The results utilized are all special cases of Lemma
SA-1 below.

Suppose that for every n, Z;, = (Win, X{,)' (i =1,...,n) are i.i.d. copies of Z, = (W,, X'),
where W, is scalar and X € R? is continuous with bounded density fx. The estimators we consider

are of the form

n—1
J=1,j#i

1< - 0 1
~n Z WinKn(z — Xjn), \IJ%)(x) = Z WinKn(z — Xjn),
j=1

where K, (z) = K(z/hyn)/hL, by, = 0(1) is a bandwidth, and K is a bounded and integrable (kernel-
like) function.
Bootstrap analogs of these estimators are also of interest. Letting {Z7,,,...,Z}; ,} be a random

sample with replacement from {Zy ,..., Zy,}, define

V() =~ Z X5, 0@ = Z = Xjn)-

J=Lg#4

37



Defining ¥, (z) = E¥,, (z), the objective is to give conditions (on hy,, p,,, and the distribution
of Z,) under which

lrgiaél “i’n(Xz,n) - \I/n<Xi,n)’ = OP(ﬂn)? (SA‘l)
ma [#0(X,0) — Wa(Xi0)| = Oplp,), (5A-2)
max [W5(X;) — Fn(X;)] = Oplp), (5A-3)
<j<n
 max (X ) — Un(Xjn)| = Op(py)- (SA-4)
<4,j<n

To give a succinct statement, let Gam(-) be the Gamma function and for s > 0, let
C (s) = supp>1 [BE([Wal*) + supgeps BIWa[*| X = z) fx (z)].

Lemma SA-1 (a) IfC(S) < oo for some S > 2 and if n'~Y/She /logn — oo, then (SA-1)-(SA-4)
hold with p,, = max(y/Togn/+/nhd,logn/(n*=1/Shd)).

(b) If C(s) < Gam(s)H? for some H < oo and every s and if lim,,_,
1)~(SA-4) hold with p, = \/Togn/+/nhd.

(c) If C(s) < H® for some H < oo and every s and if im,,_,
hold with p,, = v/Togn/+/nhd.

nhd /(logn)® > 0, then (SA-

nhd /logn > 0, then (SA-1)-(SA-4)

SA.4.1 Proof of Lemma SA-1

Fori=1,...,n, we have

V(X)) = (1 —=n"HPD(X;0) +n UKn(0)Win

) n ) ’

and therefore

e ¥ (Xi) = W (Xe)| < o 190 (Xe) = W (Xi) | + B

where

Ry =n""Ku(0) max [Wip| +n~" sup [W,(z)| = O(n~ ', %) max [Wi| +O(p,,)
1<i<n rERd 1<i<n

because np,, — 0o and sup,ega |¥n ()| < C(1) [pa |K(u)|du. By Chebychev’s inequality,

nC(Sy)
Pz, Wanl > Mrol < Wl > Mol < 375

for every M and every (Sy,T,). Therefore, max; |W;,| = O,(7,) if the lim, o of the majorant

can be made arbitrarily small by choosing S,, appropriately and making M large.
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In case (a), setting (S,,7,) = (S,n**) we have 7,, = O(nhlp,) and

nC(S.) C(S)
MS'rLTg” - MS ’

whose lim,,_.~, can be made arbitrarily small by making M large.

In case (b), setting (Sy,7,) = (logn,logn) we have 7,, = O(nhlp,) and

logn logn
nC(S,)  nC(logn) < nGam(logn)H _ (H) 0(1/\/logn),

MS"TE" - Mlogn(log n)logn — Mlogn(log n)logn M

where the second equality uses Stirling’s formula and the lim,, o, of the majorant can be made

arbitrarily small by making M large.

In case (c), setting (S, 7,) = (logn, 1) we have 7, = O(nhlp,,) and

nC(Sn,)  nC(logn) < (H logn
Msn'rg” o MlOgn =N M ’

where the lim,,_o, of the majorant can be made arbitrarily small by making M large.

In all cases, R, = O,(p,) because 7,/(nhl) = O(p,). The proof of (SA-1) can therefore be
completed by showing that (SA-2) holds.

Proof of (SA-2). With (S, 7,,) as before, let

Um0 (g

n—1 Z Xj7n)’ W;,—n = Wj7n1[|Wj,n| < Cral,
J=Llj#i

where C'; is a constant to be chosen. We have

PO () £ U0 () for some i] < P[lrgax |Win| > Crrypl,

whose lim,,_.o, can be made arbitrarily small by making C; large. Also,

max sup [B[WY) (z) — U7 (2)]| = O(n~"?) = O(p,,)
1<i<n zERY

because

— BT (z) - U0 ()] = £|E[Wn1(|Wn|>CrTn)’Cn(-'E—X)H
e an/ 1K (),
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whose lim,,_,o, can be made arbitrarily small by making C, large. To show the desired result it

therefore suffices to show that for every C,

max V7 O(X;,) — U (Xin)| = Op(p,),  Vi(z) = B (z) = BULO ().

1<i<n

For any M,

P | max [U70(X0) = U7(Xin)| > Mp,| < n max PR (Xi0) = U7(Xin)| > Mp,]

< nmax sup ¥ 0(2) - ¥(2)| > Mp,)],
1SI<n e

where the last inequality uses the fact that X; is independent of \iiﬁ’(i). Because

(WinKon(z = Xjn) = Wi (2)| = O(ra/hy),  VIW],Kn(x — X)) = O(1/hy),

it follows from Bernstein’s inequality that

~ . M27’L 2hd
7,0 () — P < _ MNP
m DX sup PlIW7 " () — Wy ()| > Mp,] < 2nexp O T Mpry]

To complete the proof of (SA — 2) it therefore suffices to show that

1 M2?np2hd
logn 14+ Mp, ™

limy, 00

can be made arbitrarily large by making M large.

In case (a), the desired result follows from the proof of Cattaneo, Crump, and Jansson (2013,
Lemma B-1).

In case (b),
1 M?np2hd M?
lognl+ Mp,7, 1+ MC.p,logn’

whose lim,, o, can be made arbitrarily large (by making M large) if p, logn = \/(logn)3/(nhd) is
bounded.

In case (c),
() 1 M2np2nd  M?
lognl+ Mp,7, 1+ MC.p,’

whose lim,, .o, can be made arbitrarily large (by making M large) if p,, is bounded.

Proof of (SA-3). For any M,

P[ max ’\i/:z(Xz n) — \iln(Xz,n” > Mp,| = EP*[ max ’\ij;kz(in) - \i"n(Xz,n” > Mp,]

1<i<n ' 1<i<n
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and
P*[max [¥(Xin) = Un(Xon)| > Mp,] < sup P[5 (2) — ()] > Mo,
1<i<n zER4

Because
|W;:nlcn(x - Xj*,n) - \i]n(:ﬂ” = Op(h;dTn)v A [W;nlcn(x - Xj*,n)] = Op(h_d)v

it follows from Bernstein’s inequality that

M>np}hi;
Op(1+ Mp,Ty)

P[5 (2) — Up(w)| > Mp,] < 2exp |~

Validity of (SA-3) follows from this bound and the fact that

1 M2%*np2hd
logn 1+ Mp,, ™™

lim,,— o

can be made arbitrarily large by making M large.

Proof of (SA-4). Because

we have the bound

(1—n7Y) max (W30 (X0) — Un(Xjn)| < max [W7(X;0) = Wa(X;0)| + Ry,
<i,j<n 1<j<n

where

* —1 T ) —1 :
R, = n Joax. Wi (Xin)| +n /Cn(O)lrg% | Win|

< n~t max ’\i]n(Xz,n) - \I/n(Xz,n)‘ +n71 Sup ‘\Pn(x)‘ + O(nilh;d) max ‘Wi,n| = Op(pn>
1<i<n zcRd 1<i<n

In particular, (SA-4) holds because (SA-3) holds.

References

CATTANEO, M. D., R. K. CRUMP, AND M. JANSSON (2013): “Generalized Jackknife Estimators
of Weighted Average Derivatives (with Discussion and Rejoinder),” Journal of the American
Statistical Association, 108, 1243-1268.

CuEN, X., O. LiNTON, anD I. VAN KEILEGOM (2003): “Estimation of Semiparametric Models
When the Criterion Function is Not Smooth,” Econometrica, 71, 1591-1608.

41



GINE, E., anxp R. NIckL (2008): “A Simple Adaptive Estimator of the Integrated Square of a
Density,” Bernoulli, 14, 47-61.

VAN DER VAART, A. W., aAND J. A. WELLNER (1996): Weak Convergence and Empirical Processes.
Springer, New York.

42



	Example 1: Average Density
	Average Density Estimator
	Integrated Square Density Estimator
	Locally Robust Estimator

	Example 2: Inverse Probability Weighting
	Condition AL
	Condition AS
	Condition AN
	Bandwidth Selection
	Condition AL*
	Condition AS*
	Condition AN*

	Example 3: Hit Rate
	Condition AL
	Condition AS
	Condition AN
	Bandwidth Selection
	Condition AL*
	Condition AS*
	Condition AN*

	Uniform Convergence Rates for Kernel-Based Estimators
	Proof of Lemma ??


