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Abstract

This supplemental appendix contains proofs of the main theorems presented in the paper as
well as other related technical results that may be of independent interest. Specific examples of
linear regression models covered by our general framework are also discussed in detail, including

the role of regularity conditions. Finally, complete results from a simulation study are reported.
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1 General Framework
Suppose {(Yin, X; ,, Wi ,) 1 1 <@ <n} is generated by

Yim = ﬁ’xm + 'yilwi,n + Ui, i=1,...,n, (SA-1)

Let || - || denote the Euclidean norm, set &,, = (X1, ..., Xnn) and for a collection W, of random

variables satisfying E[w; ,|W,] = w; ,, define the constants

1 n
On = E Zl E[Rin], Ri,n = E[ui,n|Xn7 Wn]7
1=
1 n
Pn = ﬁ X;E[Tin]’ Tin = E[uim Wn]v
i—

1 n
o = S BIQual) Qi = Blvia W,
=1

where vi;, = Xin — Q7 Blxjnw) ) (320, E[w; W} ,])"'Win is the population counterpart of

Vin. Also, letting Amin(+) denote the minimum eigenvalue of its argument, define

Cp = max {E[U;%MXann] + E[Hvi,nHﬂWn] + 1/E[Uz‘2,n|Xn7Wn]} + 1/>‘min(E[f‘n’Wn])a

1<i<n

where Ui’n = Yin = E[yi’n|Xn’W"]’ Vz’,n = Xin — E[Xi,np/vn]v f‘n = Zznzl Vi,nvg,n/n7 and Vz’,n =
2?21 M;;nVjn. Recall that

k=1
Mnl,n T Mnnm,

1 <i4,5 <n. That is, M,, is the orthogonal projection matrix onto the complement of the column
space of w; .

We impose the following three high-level conditions.

Assumption 1 C[U;,, Ujn|X,, Wy = 0 for i # j and maxi<i<n, #Zin = O(1), where #7;,
is the cardinality of T;, and where {T;, : 1 < i < Ny} is a partition of {1,...,n} such that
{(Uin, Vi) it € Tin} are independent over i conditional on Wy.

Assumption 2 P[Apin(d i, winw;,) > 0] — 1, limy, 0o Kpn/n < 1, and C,, = Op(1).

Assumption 3 x,, = O(1), o, + n(0, — p,) + 1X,,0, = 0(1), and maxi<i<n [|[Vin|/v/n = 0p(1).



2 Technical Lemmas

Our main results (Theorems 14 in the paper) are obtained by working with the representation
Vn(B, —B) =TSy,

where

. 1 1
~ ~/ “
Ir,=—- g VinVin and S, =— g VinUin.
n \/ﬁ

1<i<n 1<i<n

Strictly speaking, the displayed representation is valid only when Amin(} ;- Wi,nwfi’n) > 0 and
)\min(f‘n) > 0. Both events occur with probability approaching one under our assumptions and
our main results are valid no matter which definitions (of Bn and i]n) are employed on the com-
plement of the union of these events, but for specificity we let Mijm = wpM;jpn, where w, =

HAmin (O f—1 Wk W} ,,) > 0}, and, in a slight abuse of notation, we define

N 1 1 _
. ~ ~) o Ny . S, .. .
r,= ﬁ E VinVin, S, = \/ﬁ § VinUin, Vin = § MZ],TLX],TH

1<i<n

and .
3 =1 )\min f‘n 0 f\_l - Az’n im)-
B = 1win(F) > 05 S i)

1<i<n
We first present seven technical lemmas, some of which may be of independent interest. These
technical lemmas are used to establish our main results.

The first lemma can be used to bound f‘; L

Lemma SA-1 If Assumptions 1-3 hold, then T';* = O,(1).

Let 3, = 3, (X, Wy) = V[S,,| X, Wy]. The second lemma can be used to bound X! and to

show asymptotic normality of S,.

Lemma SA-2 If Assumptions 1-3 hold, then £, = O,(1) and . '%s, —q N(0,I).

The third lemma can be used to approximate 6% by means of 6%, where

) 1 ) ) 1 i
=g D Ui On=—— D Ul

" 1<i<n " 1<i<n

o o ~ -
with @, = Zlgjgn Mijn(Yjn — BnXjn) and Uip = Zlgjgn MijnUjm.
Lemma SA-3 If Assumptions 1-3 hold, then &% = B[52|X,, Wa] + 0p(1).

The fourth lemma can be used to approximate 3, (k,) by means of £, (k,), where

. 1 - 1 ~
_ S S a2 _ R S 2
Yn(kn) = = KijnVinVinWjn, En(kn) = = KijmVinVinUsp-
n J n J
1<i7<n 1<i<n



Lemma SA-4 Suppose Assumptions 1-8 hold.
If [[Knlloo = maxi<i<n Zlgjgn |Kijn| = Op(1), then 2n(“n) = E[Xn(kn)|Xn, Wa] + 0p(1).

~

The fifth lemma can be combined with the third lemma to show consistency of 30 = 52T,

under homoskedasticity.

Lemma SA-5 Suppose Assumption 1 holds.
IfE[UiQ,n|Xn,Wn] =02, then B[52|X,, Wy = 02w, and 3, = o2 27

The sixth lemma can be combined with the fourth lemma to show consistency of gn(&n) Part
(a) is a general result stated under a high-level condition. Part (b) gives sufficient conditions for
the condition of part (a) for estimators of HCk type and part (c) does likewise for 3¢ = 33, (kHC),
KHC = (M,, ® M,,) L. With a slight abuse of notation, let

M, =1— min M;,.
n 1255 i,n

Lemma SA-6 Suppose Assumption 2 holds.
(a) If

R IR DL RERIF B Rt ) e

1<k<n 1<j<n,j#i |1<k<n

then B[S, (kn)| X, Wa] = Zp + 0p(1).

(b) Suppose kijn = wpl(i = 7)Y, nM“il ", where 0 <&, <4 and Tiy, > 0.
If maxy<j<n{|1 = Tinl} = 0,(1) and if M,, = 0,(1), then B[, (kn)|Xn, W] = i + 0,(1) and
[Knlloo = Op(1).

(c) Suppose K, = w,kiC, where

-1
HC HC 2 2
Kiijm " Kinn My, -+ M

s In,n
HC . . . . . . _ -1
Kn = : - : = : - : = (M, ©M,,)"".
HC HC 2 2
Bpin 7 Ennn Mnl,n e Mnn,n

If PIM,, < 1/2] — 1 and if 1/(1/2 — My,) = O,(1), then B[Z,(kn)|Xn, Wa] = Zn + 0p(1) and
[&nlloo = Op(1).

Finally, the seventh lemma can be used to formulate primitive sufficient conditions for the last

part of Assumption 3.

Lemma SA-7 Suppose Assumptions 1 and 2 hold and suppose that

Z [1Qi.nlI**7] = O(1)

1<z<n



for some 0 > 0. If either (i) 8 > 0 and M, = op(1); or (ii) x,, = o(1); or (i) 6 > 0 and
/v = op(1).

maxi<i<n Y 1<jon A Mijn 7 0) = 0p(n?/7F2)  then maxi<i<n [[Vin

3 Properties of M,, ® M,,

Because M, is symmetric, so is M,, © M,, and it follows from the Gerschgorin circle theorem (see,
e.g., Barnes and Hoffman (1981) for an interesting discussion) that
. 2 2 : 2 2
Amin(My, © My,) > 1I§I£n{Mnn - Z |M;; |} = min {2M5, — Z M s

: . 1<i<n -
1<j<n,j#i 1<<n

where, using the fact that Zl<j<n M2z = M;; », because M, is idempotent,

17,

lgliign{QMz%,n - Z M) = lgliign{QMi,n — Miin} =2 @ign{Mn‘,n(Mii,n —1/2)}.
1<j<n
Thus, Apin(M,, © M,,) > 0 (i.e., M,, © M,, is positive definite) whenever M,, < 1/2.

Under the same condition, M,, ® M, is diagonally dominant and it follows from Theorem 1 of

Varah (1975) that
1

IV © M) e < 5

4 Motivating Examples

This section discusses technical details and main results for three type of examples covered by our
framework: (i) linear regression models with increasing dimension, (ii) semiparametric partially
linear models, and (iii) fixed effects panel data regression models. Recall that the objective is to

find an estimator 3, of the variance of S,, = > Vinuin/+/n such that

-~

921/2\/7;(1371 - 6) —d N(07 1)7 Qn = f‘;linrrzlv (SA—2)

in which case asymptotically valid inference on 3 can be conducted in the usual way by employing
the distributional approximation 3, ~ N(8,Q,/n).

4.1 Linear Regression Model with Increasing Dimension

Our first example corresponds to the classical linear regression model characterized by (SA-1) and

the following assumptions.

Assumption LR1 {(yin,x},,w,,):1<i<n} areiid. over i.

,my T,



Assumption LR2 PAuin(3211 WinWj,,) > 0] — 1, lim, oo Kp/n < 1, and Ci* = O,(1), where

CHE = max {E[uj,|%in, Win] + B[ Vin|*win]}
1<i<n ’

+ max {1/Bluf,[%in, Win] + 1/ Amin(BVin Vi win])},
with V@n =Xjn — E[Xi,n‘wi,n]'
Assumption LR3 E[||x;,[*] = O(1), nE[(E[uin|Xin, Win])?] = o(1), and maxi<i<n [[Vinll/v/n =
op(1).

The main difference between Assumptions LR1-LR3 and those familiar from the fixed-K,, case

[/v/n = op(1)

in Assumption LR3. The first condition is implied by the classical “exogeneity” assumption

is the presence of the conditions nE[(E[w;n|Xin, Win])?] = o(1) and maxi<i<y, ||[¥in

E[w; n|Xin, Win] = 0, but is somewhat weaker because it allows for a (vanishing) misspecification
error in the linear model specification. As for the second condition, at the present level of generality
it seems difficult to formulate primitive sufficient conditions for maxi<j<p ||¥in||/v/n = 0p(1) that
cover all cases of interest, but for completeness we mention that under mild moment conditions it

follows from Lemma SA-8 below that it suffices to require that one of the following conditions hold:
(i) M, =o0p(1), or

(if) X3 = minseprnx<a Bl|E(Xin|Win) — 6'Winl’] = o(1), or

(iil) maxicicn Y71 UMijp # 0) = 0p(n'/3).

Each of these conditions is interpretable. First, M,, > K, /n because Z?:l Mi; , = n— K, and

a necessary condition for (i) is therefore that K, /n — 0. Conversely, because

Kn 1-— minlgign Mii,n

M, <

n 1— maxj<i<n Mii,n’

the condition K, /n — 0 is sufficient for (i) whenever the design is “approximately balanced” in
the sense that (1 —minj<j<n, Mii )/ (1 — maxi<i<p Miin) = Op(1). In other words, (i) requires and
effectively covers the case where it is assumed that K, is a vanishing fraction of n. In contrast,
conditions (ii) and (iii) can hold also when K, is a non-vanishing fraction of n, which is the case
of primary interest in this paper.

Because (ii) is a requirement on the accuracy of the approximation

E[Xi’n

Win] & 0, Win, 6 = E[w; nw; | ' E[winx],],

primitive conditions for it are available when the elements of w;, are approximating functions,
as in the partially linear model example discussed next. Indeed, in such cases one typically has
X2 = O(K,,®) for some a > 0, so condition (ii) not only accommodates K, /n - 0, but actually

places no upper bound on the magnitude of K, in important special cases.



Finally, condition (iii) is useful to handle cases where w; ;, cannot be interpreted as approximat-
ing functions, but rather just many different covariates included in the linear model specification.
This condition is a “sparsity” condition on the matrix M,,, which allows for K, /n - 0. Although
somewhat stronger than needed, the condition is easy to verify in certain cases, including linear
regression models with dummy variables, the partially linear model with “locally bounded” bases

of approximation, and linear panel data models with fixed effect, as further illustrated below.

Specializing Theorems 2—4 in the paper to this linear regression model, we obtain the following

result.

Theorem LR Suppose Assumptions LR1-LR3 hold.
(a) If E[u2,,|Xin, Zin] = 02, then (SA-2) holds with 3, = 3H0,
(b) If M,, —, 0, then (SA-2) holds with 3, = 3E¥.
(c) If P[M,, < 1/2] — 1 and if 1/(1/2 — M,,) = O,(1), then (SA-2) holds with 3, = 3:HC,

This theorem gives a formal justification for employing 2“:20 as the variance estimator when
forming confidence intervals for B in linear models with possibly many nuisance covariates and
heteroskedasticity. The resulting confidence intervals for 8 will remain consistent even when K, is

proportional to n, provided the technical conditions given in part (c) are satisfied.

4.1.1 Gaussian Regressors

The linear regression model discussed above, and each of the other models discussed in the upcoming
sections, distinguishes between the main covariates of interest x;, and the additional nuisance
covariates w; ,,. This distinction is important not only conceptually but also technically because
the high-level restrictions imposed on the distribution of these covariates are indeed quite different

in general (see, for example, Assumptions LR1-LR3 above). However, an important exception

/

occurs when the “long” vector of covariates (x;,,w; ) is assumed to have a Gaussian distribution.
7 )

In this exceptional case, the role of the covariates x;, and w;, is indeed interchangeable and

therefore our results apply to any finite dimensional subvector of (x;’n, ng). The main goal of this
subsection is to illustrate this finding.

To begin, we assume that {(yin,X},,w;,) : 1 < i < n} are i.id., and furthermore let
/ /

(x},,w; ) ~ N(0,I). The mean-zero, variance-identity assumption is a useful normalization.
b K

Under the Gaussian distributional assumption on the covariates,

n
win ~N(0,1), and W, = ZWi,nW;,n ~ Wk, (n,1)
i=1

with Wk (a,B) denoting the Wishart distribution. These conditions immediately imply Assump-
tions LR1-LR3 provided that nE[(E[u;»|Xin, Win])?] = o(1) and C* = O,(1). In particular,
maxlgignE[uﬁMxi,n,wi’n] = Op(1) and maxi<i<p 1/E[uf’n|xi,n,wi7n] = Op(1) can be verified, for

example, if the conditional heteroskedasticity is multiplicative, as well as bounded and bounded



Win] = Op(1) and maxi <i<n 1/ Amin (B[Vin Vi, Wi n]) =

O,(1) can be verified by restricting the covariance matrix of (x},,w!, ). The other conditions in

away from zero. Similarly, maxj<;<p E[|| Vi,

Assumptions LR1-LR3 are easy to verify due to the joint Gaussian distributional assumption on

!
7,m)

the vector of covariates (x w;n) Thus, asymptotic normality of the least squares estimator of
any finite subvector of the parameters accompanying (x;,,, w; ) holds (Theorem 1 in the paper).
Finally, to obtain the conclusions of Theorem LR it remains to study the properties of
M, =1~ 11%1%1” M = nax Py, Piin =W, W, Wi,
and, in particular, to give conditions under which either M,, —,, 0 for part (b), or P[M,, < 1/2] — 1

and 1/(1/2 — M,,) = Op(1) for part (c).

For all t =1,2,--- ,n, we have
pl © n
,n 7 _
P’L’i,n = G) Pii,n = W{i,nw(iinwi,n’ W(z),n = Z Wj,nW;,na
1+ Pii,n j=1,j#i

where w; , 1. W ,,. Standard properties about quadratic forms of normal random variables imply

that
p . _fn
e — Ky,

with F(a,b) denoting the F distribution, and hence

F(Kp,n—Ky,),

P = Pz(zl,)n ni(;(nf(Kmn_Kn) B(I{n n—Kn>
LR 14 e F(Kn - Ky 5 2 )

iw,n

with B(a,b) denoting the Beta distribution. It follows that

9—1
K, +2¢
g 1 _ n _
E[Pii,n] - H n 4+ 20 ) 1727'
=0
and, in particular,
K K, (K, +2)
E[Pin) = — E[PZ,] = ———
[ n,n] n ) [ u,n] TL(TL i 2) )
B[P} ] = K, (K,+2)(K,+4) E[P4 = Ky (K, +2)(K, +4)(K, +6)
wn nn+2)(n+4) ~’ o n(n+2)(n+4)(n+ 6)
Therefore, using these results, we obtain
Kn —~1/4
Piip — —2| = /
max |Pin — == = 0p(n~"")




because

1/9
E [max Py, — B[Py n]@ < plf? (max E [|PM —E[P; n]yﬂD . 0>,

1<i<n 7 ’ 1<i<n ’ ’
and

12 K% — 12K* — 2K3n? + 24K3n + K?n3 — 16K?n? + 4Kn?
- n? n® + 12n* + 44n3 + 48n?

E [|Pii,n - E[Pii,n”ﬂ =0(n™?).
In conclusion, the assumption w;, ~ N(0,I) implies M,, —, 0 if K,,/n — 0, and P[M,, <
1/2] — 1 and 1/(1/2 — M,) = O,(1) if lim, 0K, /n < 1/2. This, in turn, implies that the

conclusions in Theorem LR hold for the least squares estimator of any finite subvector of parameters

/ /

accompanying the covariates (x},,w,, ) in the linear regression model, under the joint Gaussian
b b

distributional assumption.

4.2 Fixed Effects Panel Data Regression Model

A second class of examples covered by our results are related to linear panel data models with
multi-way fixed effects. For example, Stock and Watson (2008) consider heteroskedasticity-robust

inference for the panel data regression model
Yit:ai‘i',@/Xit"i‘Uit, 1=1,..., N, t=1,...,T, (SA—3)

where a; € R is an individual-specific intercept, X;; € R? is a regressor of dimension d, U; € R is

an error term, and the following assumptions are satisfied.

Assumption FE1 {(U;1,...,Uir, X}, ..., X};) : 1 < i < n} are independent over i, T' > 3 is
fixed, and E[U;U;s|Xi1 ..., Xir] =0 for ¢t # s.

Assumption FE2 CE = O,(1), where

e = 41y 4 4
CF = e, {BUGIXG - Xor] + X T}

21y, ) . V.. V'
+ 1§i§%ﬁ§t§T{1/E[Uit|le oy Xir] + 1/ Amin(B[Vie Vi) },
with Vi = Xy — B[Xy] — TP 0 (X4 — B[X).
ASSllmptiOIl FE3 E[Uzt’le ce 7XiT] =0.

Defining n = NT, K,, = N, v,, = (a1, ...,ay)’, and

(y(i—l)T—i-tm:X,(ifl)Tﬁg’na u(i—l)T+t,n>WEi71)T+t,n) = (Yit, Xiy, Uit, €5 v), 1<i<N, 1<t<T,

where e; y € RY is the i-th unit vector of dimension N, the model (SA-3) is also of the form (SA-

1) and ,(:}n is the fixed effects estimator of 8. In general, this model does not satisfy Assumption



LR1, but Assumption FE1 enables us to employ results for independent random variables when
developing asymptotics. In other respects this model is in fact more tractable than the previous
models due to the special nature of the covariates w; ,,.

One implication of Assumptions FE1 and FE3 is that E[Yy|X1,. .., Xir| = a; + 3’ X, where
a; can depend on i and the conditioning variables (Xj1,...,X;7) in an arbitrary way. In the
spirit of “fixed effects” (as opposed to “correlated random effects”), Assumptions FE1-FE3 fur-
ther allow V[Yj;|X;1,...,X,r| to depend not only on (Xj1,...,X;r), but also on . In particular,
unlike Stock and Watson (2008), we do not require (Uj1, ..., Ui, X}, ..., X)) to be iid. over
i. In addition, we do not require any kind of stationarity on the part of (U, X},). The amount
of variance heterogeneity permitted is quite large, as Assumption FE2 basically only requires
V[Yie| Xi1, - .-, Xir] = E[Uft]Xﬂ, ..., X;7] to be bounded and bounded away from zero. (On the
other hand, serial correlation is assumed away because Assumptions FE1 and FE3 imply that
C[Yit, Yis|Xi1, ..., Xy =0 for t # s.)

Because K, /n = 1/T is fixed this model does not admit an analog of Theorem 3 in the paper.

On the other hand, it does admit an analog of Theorems 2 and 4 in the paper.

Theorem FE Suppose Assumptions FE1-FE3 hold. Then (SA-2) holds with 3, = 3HC. If also
B[U2|Xi1, ..., Xir] = 02, then (SA-2) holds with 32, = 33H0,

Consistency under homoskedasticity follows from Lemma SA-3: the fixed effects «; are not

2 averages over the noisy estimates, and hence 62 —p 02

consistently estimated, but the estimator &
To see the connection between our results and those in Stock and Watson (2008), observe that
M, =In ® (I — ¢pt/T) for v € RT a T x 1 vector of ones. We then obtain M, =1-1/T
(for : =1,...,n) and therefore M,, < 1/3 because T' > 3. More importantly, perhaps, we obtain a

closed-form expression for ¢ given by

As a consequence,

1 N T 1 N 1 I T
) 3 X X2 — _ - N\"X.X! = N2
n N(T—fz),ZZ Rt N(T—Q); T—1; it T—1t; )

where X;; = Xy —T1 23:1 X, and Uy = Yy — T2 23:1 Yis — B;th Apart from an asymptoti-
cally negligible degrees of freedom correction, this estimator coincides with the estimator SHR-FE
of Stock and Watson (2008, Eq. (6), p. 156).

The generic variance estimator flgc is not well defined when T' = 2. Nevertheless, in the special
case of the one-way fixed effects linear panel model a simple, case-specific alternative valid inference

method is available if the model is transformed. To be more precise, heteroskedastic-robust inference



for 3 is straightforward if the following first-differences model is considered:
AE:,@/AXI—FAU“ i1=1,...,N,

where AY; = Yo — Y1, AX,; = X5 — X1 and AU; = U;s — U;p. Conventional standard errors
can be used to conduct valid inference on the least-squares estimator of 3 in the first-differences
model, which is robust to large K,, by construction. In fact, the resulting least-squares estimator
is numerically equivalent to the one-way fixed effects estimator discussed above.

The results above not only highlight a tight connection between our general standard error
estimator and the one in Stock and Watson (2008), but also indicate that our general formula 2%0
could be used to derive explicit, simple expressions in other contexts where multi-way fixed effects
or similar discrete regressors are included. For a second concrete example, see the recent work of
Verdier (2017) in the context of linear models with two-way unobserved heterogeneity and sparsely
matched data.

4.3 Semiparametric Partially Linear Model

Another model covered by our results is the partially linear model
Yi :B/Xi+g(zi)+€iv i = 17"'7“7 (SA—4)

where x; and z; are explanatory variables, ¢; is an error term, and the function g(z) is unknown.
Suppose {p*(z) : k = 1,2,---} are functions having the property that linear combinations can
approximate square-integrable functions of z well, in which case g(z;) ~ ), pn(z;) for some =,,
where p,(z) = (p'(2),...,p""(2)). Defining Yin = Yi, Xin = Xi, Win = Pn(2i), and u;, =
gi + 9(2i) — v, Win, the model (SA-4) is of the form (SA-1), and 3, is the series estimator of 3.
See Cattaneo, Jansson, and Newey (2018) for references.

Let h(z;) = E[x;|z;]. Our analysis of 3, proceeds under the following assumptions.
Assumption PL1 {(y;,x],z}): 1 <14 < n} are i.i.d. over i.

Assumption PL2 P[Apin (30 Pn(2i)Pn(z:)') > 0] — 1, limyooKp/n < 1, and CEF = O,(1),

where

Cok = 1@?<§{E[€?|Xia zi] + Bl||vi|*z:] + 1/B[e7 1%, 2i] + 1/ Amin(Blvivi|zi)) },

with v; = x; — E[x;|z;].

Assumption PL3 E[g;|x;,z;] = 0, o°F = o(1), x2F = O(1), and ne*x*F = o(1), where

w= min Bllg(zi) —v'pn(zi)], W= min E[|h(z) - §'pn(z)]?],
on = M [lg(2i) — ' Pn(z:)]7] Xo = min [ (zs) — 6"Pn(z:) 7]

and maxi<i<p [Vinl/vn = 0p(1).

10



Because ¢(z;) # v, pn(2zi) in general, the partially linear model does not (necessarily) satisfy
E[w; n|Xin, Win] = 0. The approach taken here, made precise in Assumption PL3, is motivated by
the fact that linear combinations of {p¥(z)} are assumed to be able to approximate the functions
g(z) and possibly h(z) well. For further technical details see, for example, Newey (1997), Chen
(2007), Cattaneo and Farrell (2013), and Belloni, Chernozhukov, Chetverikov, and Kato (2015).

In particular, under standard smoothness conditions, and for standard choices of basis functions,
we have o = O(K, “?) and x** = O(K, ") for some pair (ay, ap) of positive constants, in which
case Assumption PL2 holds provided K5¢"®" /n — co. Furthermore, in this case, x?* = O(K ) =
o(1) and it therefore follows from Lemma SA-7 that maxi<i<y |[Vin|l/v/1 = 0p(1).

Overall, our results impose only weak smoothness conditions on the underlying unknown func-
tions g(z) and h(z). Furthermore, our results do not even require x** = o(1) in general. To
illustrate this point, suppose only x** < E|[||h(z;)||?] = O(1) is assumed, and consider the special
case of partitioning estimators over evenly spaced blocks; see Cattaneo and Farrell (2013) for de-
tails. To be more precise, setting supp(z;) = [0, 1}d for simplicity, partition the support of z; into
evenly spaced disjoint hyper-cubes, subclasses or blocks: supp(z;) = Uf:nl By, with By, N\ B =0
and |By,| = 1/K,. Partitioning estimators approximate the unknown function by fitting a p-th
degree polynomial regression within each block. In this case, M,, becomes a simple banded matrix:

defining py, ¢(2z;) = U(z; € By)r(z;) with r(z) = (1,z,--- ,2zP)’, we obtain

Z W Mijn #0)=p+1,

1<j<n

and hence the conditions of Lemma SA-7 can be verified under simple regularity conditions when
lim,, 0o Ky /n < 1. This discussion extends to other “locally supported” basis (i.e., any basis that
generates a banded projection matrix), under appropriate regularity conditions. In particular, for
example, note that zero order partitioning estimators over evenly spaced blocks are numerically

equal to uniform splines of order zero.

The results for the partially linear model (SA-4) are in perfect analogy with those for the linear

regression model.

Theorem PL Suppose Assumptions PL1-PL3 hold.
(a) If B[e?|x;, 2;] = 02, then (SA-2) holds with 32, = 3:H0,
(b) If M,, —, 0, then (SA-2) holds with 3, = 3E¥.
(c) If PIM,, < 1/2] — 1 and if 1/(1/2 — M,,) = O,(1), then (SA-2) holds with 3, = 3HC,

A result similar to Theorem PL(a) was previously reported in Cattaneo, Jansson, and Newey
(2018) under strictly stronger assumptions relative to those used herein. Furthermore, parts (b) and
(c) of Theorem PL are new to the literature, providing in particular valid inference in (saturated)

semi-linear models with possibly many basis functions of approximations.
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5 Proofs of Main Results

Theorem 1 in the paper follows from Lemmas SA-1 and SA-2. Theorem 2 in the paper follows from
Theorem 1 combined with Lemmas SA-3 and SA-5. Theorems 3 and 4 in the paper follow from
Theorem 1 combined with Lemmas SA-4 and SA-6.

5.1 Linear Regression Model with Increasing Dimension

If Assumption LR1 holds, then Assumption 1 holds with W,, = (W1 4,..., Wnp), Np =n, T;,, = {i},
and maxi<;<n, #7in = 1. Moreover, x,, < maxlgignE[Hxi,nHQ] and p,, < 0,, = E[(E[u; n|Xin, w,-7n})2],
so Assumption 3 holds if Assumptions LR1 and LR3 hold. Finally, Assumption 2 is implied by
Assumptions LR1-LR3. In particular,

-~ 1 -~
Awmin(BILnWal) = Amin(~ > BIVinVi,[win])

1<i<n

1
= wn)\min(g Z Mu,nE[Vz,nV;MW'L,nD

1<i<n
1
> wnﬁ Z Mii,n)\min(E[Vi,nVan|Wi,nD
1<i<n
1 .
> wn(ﬁ Z Mn,n) IISHiléln)\min(E[Vz’,nV;,n|Wi,n])

1<i<n
> wp(l— Kn/”)/CkR,

50 1/Amin(B[Tp|Wa]) = Op(1) because Plw, = 1] — 1, lim,, oo K, /n < 1, and C* = O,(1).
Under Assumptions LR1 and LR2, we have

Xn = Xn' = somin  Bl|EGe n[win) - 8'winl] = E[|Qinl’],

where

Qi =E[Vin|Winl,  Vin =Xin — E[Xin Wi, JE[Win Wi ]~ Wi

)

Setting 6 = 2 in Lemma SA-7 and specializing it to the linear regression model with increasing

dimension we therefore obtain the following lemma, whose conditions were discussed above.

Lemma SA-8 Suppose Assumptions LRI and LR2 hold and suppose that E[||x;,]|?] = O(1),
Etin|Xin, Win] = 0, and B[|QinlY] = O(1). If either (i) M,, = o,(1); or (i) x\:* = o(1);
(iii) maxi<icn Y 1< jcn WMijn # 0) = 0p(n*/3), then maxi<icn [Vinll/v/n = 0p(1).

or

5.2 Fixed Effects Panel Data Regression Model

If Assumption FE1 holds, then Assumption 1 holds with W,, = (Wi pn,...,Wnn), Np = N =n/T,
Tin ={T(i—1)+1,...,Ti}, and maxi<i<n, #7Zin = T. Moreover, x,, < maxi<;<ni<i<7 B[[| Xa?],

12



so Assumption 3 holds (with g, = p,, = 0) when Assumptions FE1-FE3 hold, the condition
maxi<i<n [[Vinl/v/n = 0p(1) holding by Lemma SA-7 because >, ;<,, 1(M;jn # 0) = T. Finally,
Assumption 2 is implied by Assumptions FE1-FE3. In particular,

- 1 - -
Amin(B[LnWVal) - = Amin( 77 > BViVy)
1<i<N,1<I<T

S . _ 7o) > FE
= 1§igrl{fl,11n§t§T Amln(E[Vthzt]) = 1/Cn )

50 1/Amin(B[Tn|Wh]) = O,(1) because CEE = O,(1).

5.3 Semiparametric Partially Linear Model

If Assumption PL1 holds, then Assumption 1 holds with W,, = (z1,...,2y), N, = n, T;n = {i},

and maxi<;<n, #7Zin = 1. Moreover, in this case we have

= min E[|E(x|z:) — 6'Pn(z) ] = xoF
X = o [IE(xi|zi) — 6'Pn(zi)[|”] = xn

and, using Ely; — 8'x;|x;, z:] = g(zi) = Ely; — 8'x;|zi],

0, = min B[Ely; — 8'xi|z;] — v'Pn(2i)|’] = min B[Ely; — B'%i[xi, 2] — v'Pn(2i)|?] = p, = &},
~yEREn ~ERER

so Assumption 3 holds when Assumptions PL1 and PL3 hold. Finally, Assumption 2 is implied by
Assumptions PL1-PL3. In particular,

~ 1
min Ern n = n/Amin\ — M'L'L nE i ; )
Amin (E[L'n Wy]) @i Amin( > My Blyw)|z))

1<i<n
1
> Wi Z M nAmin (Elviv)|zi])
1<i<n
1 .
> wp(= Z Miin) lglil%lnkmin(E[wVﬂZi])
1<i<n

> wp(l— Kn/n)/chv

50 1/Amin (B[ Wa]) = O,(1) because Plw, = 1] — 1, lim,, oo K,/n < 1, and CE* = O,(1).

6 Proofs of Technical Lemmas

Throughout the proofs we simplify the notation by assuming without loss of generality that d = 1.
In Lemma SA-2 the case where d > 1 can be handled by means of the Cramér-Wold device and

simple bounding arguments.
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6.1 Proof of Lemma SA-1

It suffices to show that T',, = E[T,|Wy] + 0,(1) and that T, — T, > 0,(1).
First,

_ 1 9 _
I'n= ﬁ g Qi + E § Qijon, Qjjn = § Mst,n‘/s,nv;‘,,na
1<i<Np 1<, <Nn,i<j S€T; n t€T;n

where > ; i, V]aijn[Wn] = Op(n) because

V(anWal < #Tn) #Tm) > ML VVenVinWal <CF,.Cvn Y M2,
867;',"7156737»" Seﬂ,nvtel]-j,n

where CT,n = MaXj1<i<N, #(7;771) = Op(1>, CV,n =1+ maxi<i<n E[HW,nH‘l’Wn] = Op(l) and

Z Z Msztvn = Z Mi?j,n = Z Mii,n <n.

1<4,j<Np, 567;,7L7t€7—]',7L 1<i,5<n 1<i<n

As a consequence,

1 1 1
V[* Z aii,n’Wn] = ﬁ Z V[azz,nlwn] <= Z V[aij}nywn] = Op(l)

n2
1<i<N, 1<i<Np, 1<4,j<Np,
and
VE Y agail= Y Vi< S ViagaWl = oy(1)
n N . .au,n n] = n2 N o Qijn|VVn] > ) 2 Aijn|”Vn] = Op s
ISZJSNTH’L<‘7 1§Z7JSNnyl<j 1§2,]§Nn
implying in particular that T, = B[L,,|W,] + 0p(1).
Next, defining Qi,n = Zlgjgn M;jnQjn, we have
B Fam b 3 02,42 0ulin> 2 S QuVin =2 S QinVin = 0y(1)
n "= L : in n : inVin = o : in¥in = o : imVinm = Op s
1<i<n 1<i<n 1<i<n 1<i<n
the last equality using the fact that E[Qm%n|Wn] =0 and
1 ~ 1 -
V[ﬁ Z Qi,nvi,n|wn] = ﬁ Z V[ Z Qs,nvs,np/vn]
1<i<n 1<i<N,,  s€T;,
1 ~ 1 1 -
S ﬁ Z (#Z,n) Z V[Qs,n%,ﬂwn] S ECT,nCV,n(ﬁ Z Z Qg,n)
1<i<Ny, s€Tim 1<i<Ny €T,
1 1 1
< ﬁCT,nCV,n(g Z an) = Eop(Xn) = op(1).

1<i<n
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6.2 Proof of Lemma SA-2
Defining S, =S, — E[Sy | X0, Wh] = Elgign Ui nUin/+/n and employing the decomposition

- 1 - 1 ~ 1 .
Sp — Sp = % Z Vi,nrri,n + % Z Qi,nri,n + % Z Ui,n(Ri,n - Ti,n)y
1<i<n

1<i<n 1<i<n

we begin by showing that S,, = S, 4 0,(1).

First, defining 7; , = Zl<j<n M;jnrjn and using E[7; ,V; ,,|W,] = 0 and

STV FeaVarVal < = D0 (#Tin) Y VIFsnVan| Wl
1<i<Ny SET,

1<i<N, s€Tin

Il
SRS

S

1 _
V[% Z Ti,nv;,n |Wn]

1<i<n

1 . 1
CT,nCV,nE Z Ti2,n < CT,nCV,nﬁ Z 7'1'2771, = Op(pn) - Op(Qn) - Op(l)a
1<i<n 1<i<n

we have )

~ 1
—F Z ‘/z’,nri,n = —F ,

1<i<n

Also, using the Cauchy-Schwarz inequality,
T'LZTL) = Op(anpn) = Op(l)

‘\}ﬁ Z Qi,nri,N‘2§n(% Z sz,n)(% Z ,

1<i<n 1<i<n 1<i<n

\/ﬁ 2 1,n 7, — n ,M n oy (2) 5 p n n p

1<i<n 1<i<n

where the penultimate equality uses
1 2 1 2 2 2 2 2
. Z Vin < - Vin < E Z Qi,n + E Z Vvi,n = Op(l)
1<i<n 1<i<n
and B[|R;n — rin|’] = B[R, ] — B[r?,]. As a consequence, S, = Sy + 0p(1).
Next, using Assumption 1,

1 ) 1 )
Sn o= > sznE[Uzn\Xn,Wn]:5 > 07 BlU7,| X, Wi
1<i<Np teT; 1<i<n

> T mini<icn BUZ| X0, Wal,

so X1 = O,(1). The proof can therefore be completed by showing that s, %3, —qa N(0,1).
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We shall do so assuming without loss of generality that Amin(X,) > 0 (a.s.). Because

_1/2& 1 _ N
X, 1/25n - ﬁ Z Mins Nin = 2 12 Z 0t,nUtn,

1<i<Np teT;

where, conditional on (&, W), 1, ,, are mean zero independent random variables with

1
E Z V[nz,n|XnaWn] :17
1<i<N,

it follows from the Berry-Esseen inequality that

s v Eln, |2 X0, W
S“n%lP(En”?SnSzwmwm—@(zn@in(zmgm ﬂffé"" Wl )
zEe

where ®(-) is the standard normal cdf. It therefore suffices to show that

1
—7 D Ellnial X Wal = 0,(1).

1<i<Ny,
Now,
1 _ 1 .
—5 O Bl X Wal < Awin(S0) P S0 Bl D tunlin |, Wl
1<i<N, 1<i<N, teT;
_ 1 .
S )\min(zn) 3/2W Z (#7;)22‘Ut,n|3EHUt,n’3‘Xn7Wn]
T 1<i<N, teT;
_ 1 .
< C%,nCU,n)‘min(En) 3”@ Z Z\vm\g:op(l),

1<i<Nn teT;

where Cy, = 1 + maxi<i<p E[U{fn]?(n, W] = Op(1) and where the last equality uses the fact that

1 . 1 N
a2 2l =g 3 1o

< (mmasizn Bl LS 2 )= 0,(1),
1<i<Np teT; 1<i<n Vn "<

@,

6.3 Proof of Lemma SA-3
It suffices to show that 62 = E[52|X,,, Wy] + 0,(1) = Op(1) and that Y i<icn(lin = Uin)? = 0p(n).
First,

5 1 2 _
Un = K Z bii,n + n K E bijﬂ—“ bij,n = E Mst,nUs,nUt,n7
1<i<N, ™ 1<i,j<Np i<j SE€ET; nt€T; n
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where > ; iy, V{bijn|Xn, Wa] = Op(n) because

[bijn| X, Wa] < (#Tin)(#7Tjn)

st,n

> M2 VUenlUsn| X, Wal

s€T; n7tEITj n
2 E 2 2
CT,nCU,TL Mst n S CT7nCU7n7’L.

<

SET; n t€Tj n

As a consequence,
V[ ! > biinlX W]—LZVW | X, Wi
TL—Kn ' 12,n N n - (H—Kn)2 ' 22,n YN n
1<i<Np 1<i<Np
1
Z V[bijn| Xn, Wa] = 0p(1)

_ 2
(n=Kn)* | 52,

and
1 1
V[ Z bij,n Xn,Wn] = 7(71 K )2 Z V[bij,n|XnaWn]
"/ 1<, j<Np,i<j

n — K,
" 1<, j<Np i<y
1

m Z Vbijn|Xn, Wa] = op(1),
1<4,j<Nn

implying in particular that 62 = E[52|&,,, Wa] + 0,p(1), where

il Xns Wa] < Cun = Op(1).

[ 2 |Xn? W " N
1<z<n
Next, by Lemmas SA-1 and SA-2 and their proofs, n(Bn — B)% = 0,(1). Also, using g,, — 0,
we have )
LS B <l Y R =000 = 0

1<i<n 1<i<n

As a consequence, using u; , —

N 2 1
E (@i — Uin)” < 2n[— R
n - ’
1<i<n

1<i<n

6.4 Proof of Lemma SA-4

) = X0 (kn) + 0p(1) and that X, (kp) = B[S (kn)|Xn, Wa] + 0p(1).

It suffices to show that f)n(nn
First,
- 1 2
Zn(’in) = — Z Ciin + H Z Cijms

1<i<Nn 1<4,j<Nn,i<j

A2 2T —
Cijn = § 5 Hkl,nvk,nMsl,thl,nUs,nUt,n7

SE€ET; n,t€Tj,n 1<k,I<n
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where > o; iy, Vicijn|Xn, Wa] = 0p(n?) because

V[Cij,n|xnawn] < (#Z,n)(#l]},n) Z ( Z Hkl,n@zynMsl,thl,n)QV[Us,nUt,n|XnaWn]
SE€ET; nt€Tj n 1<k, I<n

2 Z Z 22 2 Y
CT7nCU,n ’fkl,nK‘KL,nvk,an,nMsl,thl,nMsL,thL,n
S€T; n,t€Tj n 1<k, K,L<n

= C%7nCU,n E E Hk:z,nHKL,nﬁ%,n@%,nMu,nMjl,nMiL,nMjL,n
1<i,j<n 1<k,LK,L<n

IN

2 2 A9 2
= C7.,.Cun E, Kkl KK Ln Ok n Vi n ML
1<k,l,K,L<n

2
Ct nCum § | Kk
1<kLK.L<n

IN

29 2 2
”iKL,n|Uk,nUK,nM1L,n

and

IN

Z |’€kl,n| |’€KL,7’L |{)l%,n@%(,an2L,n (maxlﬁiﬁn ﬁin) Z |Hkl7’ﬂ| |I€KL,H|6%(,an2L,n
1<k, LK,L<n 1<k ,K,L<n

< (maxicicn 07) lhnlloo Y [EKLAlOR ML,
1<I,K,L<n

< (maXléiSn@gn)”“nHoo Z ’”KL,HW%(,TL
1<K,L<n

maxi<i<n |Oinl\2, 2 1 .2 2
< 0P (= k% (= Y 97,) = 0p(n?).
vn " 1<i<n
As a consequence,
1 1 1
V[g Z Cii,n’Xnawn] = ﬁ Z V[sz,n‘Xnywn} < ﬁ Z V[Cij,n‘Xnywn] = Op(l)
1<i<Np 1<i<Nyp 1<4,j<Nn
and
1 1 1
V[; Z Cijon|Xn, W] = w2 Z Vlcijn|Xn, Wa] < 2 Z Vicijn| X, W] = op(1).
1<0,j<Np,i<j 1<0,j<Np, i<y 1<i,j<N,
In particular, ¥, (k,) = B[X, (k0 )| X, Wa] 4 0p(1), where
. 1 . ~ 1 .
B[ (k)| Xn, Wa]| < n Z |“ij,n|vy2,nE[Ui2,n|Xn,Wn] < CU,nﬁ Z |Kijn U]2',n
1<ij<n 1<i,j<n
1 N
< Cunllfnlleo( Y 0a) = 0p(1).

1<i<n
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To complete the proof it suffices to show that

En(fﬁn) - (Iin = Z Rij, nU] n([Uz n+ Rzn - Vz n(Bn - /B)]2 - Uz%n) = Op(l)'

1<z,j<n

To do so, it suffices (by the Cauchy-Schwarz inequality and using 9, = Vjn + Qjn, Rin =
Tin + (Rm — Tin), and Sn(/ﬁn) = Op(1)) to show that

1 i 1
- > kil Vi, = op(1), - > Ikijn

V2 Rin — Tinl® = 0p(1),

1<ij<n 1<ij<n

1 2 52 2 21 2

o Z ‘KUTL’Q R;, = op(1), (Bn = B) o Z |Kijn |0 gann_Op(l)-
1<ij<n 1<i,j<n

First, n 121<1]<n |Kijn| V2 i Zzn = 0p(1) because

1

1
E[ﬁ Z ‘HZJTL’ jn T zn|W] = E Z Z ”%U» n‘W]
1<i,j<n 1<i<n 1<j<n
1 .
< CTJLCV,nHHnHOOﬁ Z Tzz,n = Op(pn) = Op(l)a
1<i<n
where the inequality uses
EVZIWa = BI( Y MijnVin) Wal =E[( Y D MisnVin)? Wil
1<j<n 1<j<Np s€Tjn,

< Z (#73771) Z 8,n [ ‘W ] < CT,”CV’" Z Z is,n

1<j<Np s€Tjn 1<j<Nn s€Tjn
= CT,nCV,n Z ijn—CTnCVn mnSCTnCVn
1<j<n
Next,
1 72 | S 2 1 72y L » =12
— VinlRin = Tinl” < nCon(— > Vin) > |Rin = Finl?)
n 1<i,5<n 1<i<n 1<i<n
= Opl[n(o, — pp)l = 0p(1)
and
1 022, < s oyt v my=o0 1
SN @B, < nllslse( 30 GRG0 ST RE,) = Oynna0,) = 0p(1),
1<4,5<n 1<i<n 1<i<n
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Finally,

1<i,j<n

because /n(3,, — 8) = O,(1) and

IN

1 1
ﬁ Z "%]n’ ],n‘/zzn (112?321)2 )nQ Z ‘/izgn’ i,n

1<ij<n 1<ij<n

Il 3 VA = o0l

6.5 Proof of Lemma SA-5

Because E[ﬁﬁn]Xn,Wn] = Zlgign wn E[U? | Xns W],
- 1
E[U%‘men] = Z lj’n XmW ] = K, Z M;; | i%n‘XmWn]
1<’L ,J<n 1<i<n
— it,n 7n|Xn,Wn]a

1<7,<TL
so if B[U?,| Xy, Wa] = 02, then

. > i<i<n Miin

(65X, Wa] = 2711_—7}% = onwn
and .
= > 67, B[UZ,| X0, Wy = 021,
1<i<n
6.6 Proof of Lemma SA-6
Defining d;; n, = Zlgkgn ﬁlknﬂfkn —1(i = j), we have
B[S0 (Kn)] X, Wil Z dijn 2 BIU, | X0, Wal,
1<z,j<n
so if maxi<i<n Y 1<j<p [dijn| = 0p(1), then
. 1 . 1 .
B[S0 (k)| X, Wal = Snl < = > |dijnl|0F,BlUZ [ X, Wal < Cum— Y |dijinli?,
" 1<ig<n " 1<ig<n

IN

1 .
Conl— 30 ) (max S ldijal) = 0p(1)

1<i<n -7 1<55n

This establishes part (a).
Next, if Amin(S4_y Went),,) > 0 and if rgj, = 1{i = j}0;,, M, 5" (with 0 < &, < 4 and

'L'L?’Z
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Tin > 0), then

2 51” 7477/
Z ’dij,n| = |Tl" ii,n - 1| + Z T nMun MJQZTL
1<j<n 1<j<n,j#i
2 £Zn 1 £Zn
< ‘Tln_1|+’rln’ ii,n _1‘+TZanzn ( _Miiﬂl)
< ‘Tln_ll—i_’rln( ii,n Mzzzn)+T1”Mzzn( MZZ”)

- ‘TZJI - 1’ + Tl,n[(l + Mzzz n)(l + Mi; 71) + M’L’L n]( MM,”)

Part (b) follows from this inequality and the fact that P[Amin (> g—; wknwy,,) > 0] — 1.
Finally, if M,, < 1/2, then

>0 AR M =1+ DD | DD AR Ml =0

1§k§n 1§j§n7j7él 1<k<n
and, by Theorem 1 of Varah (1975),

1

HC
K < —.
e lloe < 1/2 - M,

Part (c) follows from these displays and the fact that P[M,, < 1/2] — 1.

6.7 Proof of Lemma SA-7

Because 9; 5, = V; n + Qin, we have

maxi<i;<n ‘@z,n‘ < maxi<i<n "71',71| + maxi<;<n ‘Qz,n‘ _ maXi<i<n ’Qz,n’

Vn B Vn Vn N Vn

the equality using the fact that

+ op(1),

maxj<i<n | ‘z,n |

~ 1 ~
P[ > eWa] <min( > Pl[Vin| > evnWa] 1) < min(—— > EVEIWLL 1)

VD 4 .
1<i<n 1<i<n
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and

E[Vi Wil =

1<j<n

E[( Z MijnVin)* [ Wal

:E[( Z Z Mis,n‘/s,n)ﬂwn]

1<j<Np s€Tjpn

= Z E[( Z Mis,n‘/s,n)4|Wn]

1<j<Np

+3

2

8673,n

Z Mit,n‘/t,n)2 ‘Wn]

E[( Z Mis,n‘/s n)z(

1<, k<Nn,k7éj s€Tjn t€Tim
< DL @Ta)t Y MBIV
1<j <Ny s€Tjm
2
+3 Z (#737")(#776,71) Z Mzs n zt n [ V;f n|W ]
1<j,k< N k] €T mt€Tiom
3 2 2
< 3CT,nCVﬂ’L Z Z Mzs ant n
1§j7k<Nn 567—]’ nateTk n
— 3 2 —
= BCT,nCV,TL Z Mz] ankn - 3CT nCVTL zzn < 3CT nCvin = Op(l)'
1<j,k<n

It therefore sufﬁces to show that max;<;<p |Qin|/v/n = 0p(1).

Defining M Zj n = wnl(i = j)

maxXi<;<n |Qw|

NG

IN

where the last equality uses the fact that n-1 Zl<i<n [|Qz n
It therefore suffices to show that maxi<i<n > 1<j<,

In cases (i) and (ii) the desired conclusion follows from 21<J<H(M$n)2

by the Cauchy-Schwarz inequality,

‘ 7L
maxi<i<n \ Zlgjgn Mij,n

— M;j ., we have

Wn
X |Qin — Z ij, ”QJ nl

\/ﬁ 1<1< 1<]<n

maxj<;<n |an’ — max | Z Qjpnl
z]n Jm

\/,72/ TL 1<i<n 1<j<n 7
7”121?3%| Z Mz nQ% + op(1),
1<j<n

] = o(n??)if > 0 orif x,, = o(1).

ZJannV\/ﬁ_Op( )
Mt < M,, because,

mn,n

vn

Finally, in case (iii) the desired conclusion follows from n

1
2 < Mi ) (= Y @
) < (max “n n Qw)

1<i<n -
1<i<n

Ma(s S0 Q) = MaOy(x,.).

1<i<n

Y 1<i<n BllQin

IA

| = O(1) because,
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by the Holder inequality,

1 yal 1 yal 0 0 1 9
%| Z M5, Qjnl < (2+9)/(1+9\)/n"/(29+2) Z |szn (2460)/(1+6) 549 - Z |Qjnl*T

1<j<n 1<j<n 1<j<n

1<j<n

1
< (2+9>/<1+9>\>/W[1+ S (Mg £ 0)]0,(1).

7 Simulations

We conducted a simulation study to assess the finite sample properties of our proposed inference
methods as well as those of other standard inference methods available in the literature. Based on
the generic linear regression model (SA-1), we consider data generating processes (DGPs) motivated
by the three examples discussed above. To be more precise, our simulation study includes (i) a
linear regression model with increasing dimension, (ii) one-way and two-way fixed effects panel data
regression models, and (iii) a semiparametric partially linear model.

For each model, we employed three distinct distributions for the unobservable error terms:
Gaussian, Asymmetric, and Bimodal. The Lebesgue densities corresponding to each of these dis-
tributions are plotted in Figure 1. For each case, we investigate both homoskedastic as well as
(conditional on x;, and/or w;,) heteroskedastic errors entering the corresponding linear model.
Finally, for each model, we also varied the distribution generating the possibly high-dimensional
covariates w; ,,, covering both discrete covariates and uniformly distributed covariates. Putting all
together, the Monte Carlo experiment includes a total of 15 distinct DGPs. A synopsis of each DGP
is given in Table 1, while the specification details and the results for each example are discussed in
the following subsections.

For each DGP, we conducted S = 5,000 simulations with n = 700, and dim(x;) = 1 with 8 = 1.
In each replication, we constructed eight Gaussian-Based and eight bootstrap-based confidence
intervals. Our paper presents theory for Gaussian-based inference methods, but we also included
bootstrap-based inference methods for completeness. In fact, as discussed in the main paper, it is
known that the bootstrap is invalid when K o n in linear regression models. For each inference
method we report both empirical coverage error of 95% nominal confidence intervals and their
average length. The latter provides a summary of efficiency/power for each inference method.

The eight Gaussian-based confidence intervals take the form:

; -1 Qe -1 folg el
o= | Bu=®7 0= a/2) 2 B =0 a2 [ L Qe =TS

where ®~1 denotes the inverse of the standard normal cdf, and ZA]nvg with ¢ € {HO0,HO1,HC0,HC1,HC2,HC3,HC4,H
corresponds to each of the variance estimators discussed in the main paper. To be precise, £ =HO0
and ¢ =HO1 give the standard homoskedasticity-consistent standard errors without and with de-

grees of freedom correction, respectively, while £ =HCO through ¢ =HC4 corresponds to the HCK
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class of heteroskedasticity-consistent standard errors discussed in, e.g., MacKinnon (2012). Last
but not least, £ =HCK uses %,y = 2HC

., our proposed new inference method that is valid under

conditional heteroskedasticity and many covariates. Finally, the length of the confidence intervals
is:

Q. Qy,
Lo 9. 071 —a/2)- £

Le=[®7 11 — a/2) — dHa/2)] - " n

due to the symmetry of the Gaussian distribution.
To construct the eight bootstrap-based confidence intervals we employ the standard nonpara-

metric bootstrap applied to each possible t-statistic:

T@Z ﬁn_lg

\/Qn’g/n’

indexed by the choice of standard error estimator, £ € {HO0,HO1,HC0,HC1,HC2,HC3,HC4, HCK}.
This bootstrap method is usually called the t-percentile bootstrap and the corresponding bootstrap-

based confidence intervals take the form:
I;: Bn_QZ_1<1_a/2) Qn,f 5 Bn_Qe_l(a/Q) \/ Qn,€:| 5

where Qz_l(a) denotes the a-th quantile of the (approximation to the) bootstrap distribution of T,.
Finally, the length of the confidence intervals is:

L= Q71— a/2) — Q7 May2)] - 1] 2,

n

where Qzl(l —w/2) # —Q;l(a/2) due to the possibly asymmetry of the bootstrap distribution.
For the bootstrap-based inference procedures, we employ B = 500 replications.

For each of the 15 DGPs considered, we report one table including two panels. The first panel
presents empirical coverage of each of the 16 confidence intervals, while the second panel reports the
average length for each of the 16 confidence intervals. In the remaining of this section we discuss

the details underlying each of DGP and present the numerical results.

7.1 Linear Regression Model with Increasing Dimension

To facilitate comparability, we employed a DGP that is as similar as possible to those employed in
the literature before. In particular, we considered the following model (we drop the subindex n for
notation simplicity):

Yi = BT + Y Wi + U, w;l(zi, wi) ~iid. (0,02)), 02 = seu(1+ (t(z) + 'wi)?)?,

» Y ug ut

T; = v, vi|w; ~1.i.d. (0, a%i), 02, = (1 + (t'w;)?)?,
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Table 1: Synopsis of Data Generating Processes.

Distributions
DGP Setting Wi n Vin Uin
Model 1 Linear Regression Discrete Gaussian Gaussian
Model 2 Linear Regression Discrete Asymmetric Asymmetric
Model 3 Linear Regression Discrete Bimodal Bimodal
Model 4 Linear Regression Uniform Gaussian Gaussian
Model 5 Linear Regression Uniform Asymmetric Asymmetric
Model 6 Linear Regression Uniform Bimodal Bimodal
Model 7 One-way Fixed Effects Dummy Variables Gaussian Gaussian
Model 8  One-way Fixed Effects Dummy Variables Asymmetric Asymmetric
Model 9  One-way Fixed Effects Dummy Variables Bimodal Bimodal
Model 10 Two-way Fixed Effects Dummy Variables  Gaussian Gaussian
Model 11  Two-way Fixed Effects Dummy Variables Asymmetric Asymmetric
Model 12 Two-way Fixed Effects Dummy Variables Bimodal Bimodal
Model 13 Partially Linear Power Series Gaussian Gaussian
Model 14 Partially Linear Power Series Asymmetric Asymmetric
Model 15 Partially Linear Power Series Bimodal Bimodal

Note: See upcoming subsections for precise definitions and other parameter values.
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where ¢ = (1,1,---,1)’, 8 = 1 and v = 0, the constants s, and s, are chosen so that V]u;] =
V[v;] = 1, and t(a) = al(—2 < a < 2) 4+ 2sgn(a)(1l — 1(=2 < a < 2)). In the absence of the
additional covariates w; ,, and when the distribution of the error terms is Gaussian, the design
essentially coincides with the one in Stock and Watson (2008), and is very similar to the one
considered in MacKinnon (2012). More generally, we consider three different distributions for the
error terms and also include possibly many additional covariates w;. We impose random sampling
across ¢ =1,2,--- ,n.

We consider five dimensions for w; : K € {1,71,141,211,281}, where in all cases the first co-
variate is an intercept. Given the above, the two main parameters varying in the Monte Carlo
experiments are: the constant ¥ and the distribution of the covariates w; ,. The first parameter
controls the degree of heteroskedasticity: ¥ = 0 corresponds to homoskedasticity, and 9 = 1 corre-
sponds to moderate heteroskedasticity, as classified by MacKinnon (2012). For the distribution of
the covariates w; we consider two cases: (i) independent, sparse and discrete covariates constructed
as 1(NV(0,1) > 2.5), giving Models 1-3 in Table 1, and (ii) independent uniformly distributed on
(—=1,1), giving Models 4-6 in Table 1. For each case, the unobserved errors (u;,v;) are taken to be
independent and with the same distribution (each model corresponds to one distribution depicted
in Figure 1). See Table 1 for details on the labelling.

The results for this example are given in Tables 2-7. These tables report empirical coverage rates
for the 16 nominal 95% confidence intervals for 3, across the range of K, for both the Homoskedastic
Model and the Heteroskedastic model. The main findings from the small simulation study are
in line with our theoretical results. We find that the confidence interval estimators constructed
our proposed standard errors formula ﬁ)gc, denoted HCK, offer close-to-correct empirical coverage
in all cases. The alternative heteroskedasticity consistent standard errors currently available in
the literature lead to confidence intervals that could deliver substantial under or over coverage
depending on the design and degree of heteroskedasticity considered. We also found that inference
based on HC3 standard errors is conservative. The bootstrap-based confidence intervals seem to
perform better but they still do not deliver close-to-correct empirical coverage in all cases. Finally,
our proposed inference method exhibits good average interval length properties, when compared to

the other procedures (many of which are in fact far from their nominal coverage target).

7.2 Fixed Effects Panel Data Regression Model
We also consider the following fixed effects panel data model:
yit:ai+egit+6xit+uit7 i:17...,N, t:17"'7T7

where o; are unobserved unit-specific time invariant factors, and eg4,;, are unobserved factors common
to all observations sharing the same index g; € {1,2,--- ,G}. When eg4, = 0, this model reduces
to the one-way fixed effects model studied in Stock and Watson (2008), while otherwise this model
coincides with the one studied in Verdier (2017).
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In this simulation example, we also set d = 1 and 8 = 1, and consider i.i.d. sampling across

i and ¢, which coincides with the first simulation setup in Stock and Watson (2008). To generate

heteroskedasticity, we let z;; = (z14t, - - , za.it) With zg ~ i.i.d. Uniform(—1,1), ¢ =1,--- ,d., and
employ:

wit|(xit, zt) ~ 1.i.d. (0, azi), agi =2 (1 4 (t(xi) + L’zit)Q)ﬁ7

xit|zit ~ ii.d. (0, U%i)’ 0-1211' = %1,(1 + (LIZit)Z)ﬂ,
where once again the constants s, and s, are chosen so that V]u;] = V[v;] = 1, and the Ho-

moskedastic Model sets ¥ = 0 while the Heteroskedastic Model sets 1 = 1. The distributions of wu;;
and x;; are again chosen to be each of the ones depicted in Figure 1, leading to fixed effects Models
10-15 in Table 1. Specifically, when it is assumed that ey, = 0 for estimation we obtain the one-way
fixed Models 10-12 in Table 1, while when it is assumed that ey, # 0 for estimation we obtain
the two-way fixed Models 13-15 in Table 1. In the former case, the model includes dim(w;) = N
fixed effects, while in the latter case we assume G = | N/3] groups in the population, leading to
dim(w;) = N + Gy indicator variables. For all models, we set o; = ey, = 0 when generating the
data (i.e., 7,, = 0 in the DGP), and consider T' € {700, 10,5,4,3} and N = |700/T| so that the
total sample size is always roughly n = 700.

Two key differences between these DGPs and the ones considered in the context of linear
regression models with increasing dimension are: (i) the heteroskedasticity does not change with
dim(w;), and (ii) the design matrix induced by the fixed effects is truly sparse. Note that Models
1-3 are similar to those considered here, as both include only dummy variables, but a key distinctive
feature of multi-way fixed effect models is the lack of potential overlap across groups and the lack
of randomness in the construction of w;.

The results for the one-way fixed effects model are given in Tables 8-10, while the results for
the two-way fixed effects model are given in Tables 11-13. In all cases, the numerical findings
are consistent with our theoretical results, and in line with the results obtained from the other
simulation models. One important feature of these DGPs is that the failure of the bootstrap is
more extreme. This is due, in part, to the one-way and two-way fixed effect structure that induces a
highly sparse covariates vector w;, leading to singularity and other numerical issues when employing
the a bootstrap distributional approximation. In contrast, our analytic distribution theory performs

remarkably well.

7.3 Semiparametric Partially Linear Model

Finally, to complement our simulation study, we also conducted a Monte Carlo experiment using a

semiparametric semilinear model. In this case the model takes the form:

yi = Bx; + g(z) + &, &il(wi, z;) ~iid. (0,0%), 02, = (1 + (t(z;) + /z;)%)?,
x; = h(z;) + v;, vi|z; ~iid. (0,02), 02 = ,(1+ (V2;)%)?,

28



where d = 1, 8 = 1, dim(z;) = 6, z; = (214, , 26:)" with 2z ~ i.i.d. Uniform(—=1,1),¢=1,--- ,6,
giving Models 7-9 in Table 1. The unknown regression functions are set to g(z;) = exp(—||z||'/?)
and h(z;) = exp(||z]|'/?), which are non-linear and non-additive-separable in the covariates z;.
Note that here 7,, # 0 by construction. The constants sz, and s, are again chosen so that V|u;| =
V]vi] = 1, and we continue to consider two models: Homoskedastic (¢ = 0) and Heteroskedastic
(9 = 1). We impose random sampling across ¢ = 1,2,--- ,n, and for each simulation model we
set the marginal distribution of the unobserved independent errors (e;,v;) according to each of the
three distributions depicted in Figure 1. In the absence of heteroskedasticity, the simulation models
coincide with the ones considered in Cattaneo, Jansson, and Newey (2018).

To construct the covariates w;, entering linear regression model (SA-1), we employ power
series expansions. The following table gives a summary of the expansions considered, where w; , =
pPn(zi) = p(zi; K) for K € {7,13,28,34,84,90,210,216} are defined as follows.

Polynomial Basis Expansion: dim(z;) = 6 and n = 700

K p(z;; K) K/n

1 1 0.001

7 (1, 214, 2921, 230, 2445 255 26i) 0.010
13 (P(zi; 7)), 2%, 23, 23, 23, 22, 28 0.019
28 p(zi; 13) + first-order interactions 0.040
34 (p(2i;28)', 23, 25, 25;, 23, 23, 28.) 0.049
84  p(z;;34) + second-order interactions 0.120
90 (P(zi; 84)', 24y, 22> 35> 24> %50 Z6:)' 0.129
210 p(z;;90) + third-order interactions 0.300
216 (p(z;210), 25, 25,, 25, 25, 255, 28;) 0.309

The results for this example are given in Tables 14-16, which report only K € {1,13,34,90,216}
to conserve same space. The numerical findings are in perfect agreement with those reported pre-
viously for the linear model with increasing dimension, with the only exception that now the model
clearly exhibits misspecification error (i.e., for K = 1 all methods are affected by misspecification
bias). The key distinctive features of this setting, relative to the linear regression model with in-
creasing dimension considered previously, are: (i) ,, # 0 by construction, (ii) heteroskedasticity
does not change as the dimension of the model changes (i.e., it only depends on z; and z;, but not

Wi ), and (iii) the covariates w; ,, are correlated and dependent through the polynomial expansion.
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