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Abstract

This paper develops new distributional theory and bootstrap-based inference methods for
a broad class of convex pairwise difference estimators. These estimators minimize a kernel-
weighted objective function over observation pairs that are similar in terms of covariates, where
the similarity is governed by a localization (bandwidth) parameter. While classical results estab-
lish asymptotic normality under restrictive bandwidth conditions, we show that valid Gaussian
and bootstrap-based inference remains possible under substantially weaker assumptions. First,
we extend the theory of small bandwidth asymptotics to convex pairwise estimation settings,
deriving robust Gaussian approximations even when a smaller than standard bandwidth is used.
Second, we employ a debiasing procedure based on generalized jackknifing to enable inference
with larger bandwidths, while preserving convexity of the objective function. Third, we con-
struct a novel bootstrap method that adjusts for bandwidth-induced variance distortions, yield-
ing valid inference across a wide range of bandwidth choices. Our proposed inference method
enjoys demonstrable more robustness, while retaining the practical appeal of convex pairwise

difference estimators.
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1 Introduction

Suppose z1,...,%Z, is a random sample from the distribution of a random vector z. This paper
studies the large-sample distributional properties of the following convex pairwise difference esti-

mator:

~ 1
0, c arg mian(zi,zj; 0)Kp, (w; —wj), Kp(u) = 5K (B) ,
oco i h h

where © C RF is the parameter space, 6 m(zi,z;;0) is a convex objective function, K is a
symmetric, non-negative kernel, h,, is a positive bandwidth (or localization) parameter sequence,
w is a continuously distributed d-dimensional subvector of z, and where ), _ ; denotes Z?:z Zf;ll .
Pairwise difference estimation, which relies on local comparisons between observation pairs, has
been widely used to address heterogeneity in nonlinear models. See Powell (1994), Honoré and
Powell (2005), and Aradillas-Lopez et al. (2007) for overviews, and Section 2 for three motivating
examples.

In contrast to classical extremum estimators, é\n is a local M-estimator that employs observation
pairs (¢,7) for which w; and w; are similar. The bandwidth h,, governs the degree of similarity:
When h, — 0 (as n — 00), the estimator increasingly focuses on nearly identical-in-w pairs. In
turn, focusing on such pairs is natural in settings where identification arises from the condition
w; ~ w; (combined with smoothness assumptions). The localization introduces a familiar trade-
off for estimation and inference: A smaller h, reduces bias from dissimilarity between w; and
w;, but increases variance due to fewer available usable pairs. As a consequence, the large-sample
behavior of §n depends critically on a delicate bias-variance trade-off determined by h,,. This paper
develops novel inference methods for convex pairwise difference estimators that are demonstrably
more robust to bandwidth choice than existing methods.

Under regularity conditions and assuming that
d 4
nh,, — 0o and nh, — 0,

where d is the dimension of w, it is well known that the pairwise difference estimator is asymptot-

ically linear, admitting a representation of the form

~

V6, — 60) = ;ﬁ S 2€(z:) + op(1) ~ N(0, VI2€(2,)]), (L1)
=1

where 6 is the population parameter of interest and 2£(-) is the influence function. (The exact
form of £ is given below.) Here, the condition nh% — oo lower bounds the level of localization h,,
allowed for, while the condition nh} — 0 upper bounds the level of localization. The purpose of
the latter condition is to control a smoothing bias term. The bias condition nh: — 0 could be

replaced by the weaker condition nh2l — 0 if a (higher-order) kernel of order L > 2 were used,



but a higher-order kernel annihilates the convexity of the objective function because higher-order
kernels must take negative values.

This paper makes three main contributions:

1. Small bandwidths. Building on the idea of small bandwidth asymptotics introduced by Cat-
taneo et al. (2014a), we establish a more robust Gaussian distributional approximation for
the pairwise difference estimator that allows for higher levels of localization: It remains valid
even when the condition nh,‘i — oo is violated. This generalized distributional approximation
shows that, while the localization restriction nh‘fl — 00 is necessary for establishing asymp-
totic linearity, a Gaussian approximation can hold under the substantially weaker condition
thfl — 00, albeit with a convergence rate and large sample variance that depends explicitly

on the level of localization used.

2. Debiasing. Building on the idea of generalized jackknifing introduced by Schucany and Som-
mers (1977), and following Honoré and Powell (2005), we debias the pairwise difference esti-
mator, thereby allowing for larger bandwidths that violate the bias condition nh? — co. This
debiasing approach retains the convexity of the objective function, which is crucial for both
theoretical (weaker regularity conditions) and practical (faster computation) reasons. The
debiasing procedure combines linearly a collection of convex pairwise difference estimators
constructed using different levels of localization. The resulting ensembling-based pairwise
difference estimator admits a small bandwidth Gaussian approximation with an associated
bias condition of the form nh2 — 0, where L > 2 denotes the order of a certain (equivalent)

kernel induced by the debiasing procedure.

3. Bootstrap Inference. Building on insights in Cattaneo et al. (2014b), we develop valid
bootstrap-based distributional approximation for the debiased pairwise difference estima-
tor. The nonparametric bootstrap distributional approximation exhibits a mismatch in its
asymptotic variance under small bandwidth asymptotics. The mismatch is characterized by
a known multiplicative factor involving the localization parameter h,. As a result, boot-
strapping the (debiased) pairwise difference estimator with a different localization parameter
(namely, 31/dp,, rather than hy) leads to a valid bootstrap-based inference procedure, which

is robust to small bandwidths.

In combination, our three contributions therefore offer a novel resampling-based inference method
for (convex) pairwise difference estimators that are demonstrably more robust to a wider set of
choices of the localization parameter h,,.

Our theoretical work is carefully developed to retain and leverage convexity of the objective
function defining the pairwise difference estimator. This feature not only allows for fast implemen-
tation of the estimator and resampling-based methods, but also helps establishing our theoretical
developments under weaker technical conditions. When developing our theoretical results, we rely
heavily on the foundational work of Hjort and Pollard (1993) and Pollard (1991), which we apply

to the case of U-processes.



This paper is connected to several strands of the literature. Contributions to the pairwise dif-
ference estimation literature include Ahn and Powell (1993), Ahn et al. (2018), Aradillas-Lopez
(2012), Blundell and Powell (2004), Hong and Shum (2010), Honoré (1992), Honoré et al. (1997),
Honoré and Powell (1994), Jochmans (2013), and Kyriazidou (1997). The theoretical and prac-
tical features of small bandwidth asymptotics, and their connection with resampling methods for
inference, are discussed in Cattaneo et al. (2010), Cattaneo et al. (2014b), Cattaneo et al. (2018),
Cattaneo and Jansson (2018), Matsushita and Otsu (2021), Cattaneo and Jansson (2022), Catta-
neo et al. (2025a), and references therein. The generalized jackknife has been successfully used for
debiasing in density weighted average derivative estimation (Powell et al., 1989), asymptotically lin-
ear pairwise difference estimation (Honoré and Powell, 2005), nonlinear semiparametric estimation
(Cattaneo et al., 2013), monotone estimation (Cattaneo et al., 2024), and random forest estimation
(Cattaneo et al., 2025¢), among other settings. Shao and Tu (2012) give a textbook introduction
to jackknifing, bootstrapping, and other resampling methods.

The rest of the paper proceeds as follows. Section 2 introduces the three motivating examples
used throughout the paper to motivate our work, and to illustrate the verification of the high-
level assumptions imposed. Section 3 present our main theoretical distributional and bootstrap
results for robust inference employing convex pairwise difference estimators. Section 5 showcases
how the high-level sufficient conditions imposed in our theoretical developments are verified for the
three motivating examples. Section 6 gives final remarks. The appendix includes the proofs of our

theoretical results and other technical details.

2 Motivating Examples

We use three examples to motivate and illustrate our work. The first example involves an estimator
that can be written in closed form, while the other two examples do not. The second example has
a smooth objective function, while the third example does not. All three examples have convex
objective functions and employ the following notation: z; = (y;,x}, w})" with y; a scalar outcome
variable, x; a k-dimensional covariate, and w; a d-dimensional covariate. For more details on the
examples, see Powell (1994), Honoré and Powell (2005), and Aradillas-Lopez et al. (2007).

2.1 Partially Linear Regression Model

The partially linear regression model studied here is of the form
yi = x;00 + g(wi) +ei,  Eleilxi, wi] =0,

where g : R? — R is an unknown function, treated as a nuisance parameter, and the parameter of

interest is @y. A pairwise difference estimator of @y can be based on the objective function

1
m(Zl,ZQ; 9) = mPL(ZbZQ; 9) = §(y1 — Y2 — (Xl - X2)/9)2-



The objective function is convex in @, and setting © = R* the pairwise estimator admits a closed

form solution:

-1

0 = | D (i = %)) (i = %) K, (wi = wy) | D7 (i = x3)(ys = ) K, (wi = w;).

i<j 1<j
2.2 Partially Linear Logit Model
The partially linear logit model studies here is of the form
yi = 1{x00 + g(wi) +&; > 0},
where ¢ is an unknown nuisance function, @ is the parameter of interest, and where

Aw) exp(u)

The parameter 6 can be estimated using a pairwise difference estimator with © = R* and
m(z1,2z2;0) = mprL(z1,22;0) = —1{y1 # o} y2 In A(x50 — x0) + y1 In A(x} 0 — x,0)].

The estimator does not admit a closed form solution, but u — —InA(u) is convex, rendering the

minimization problem convex provided that a non-negative kernel function is used.

2.3 Partially Linear Tobit Model

The partially linear censored regression model studied here is of the form
y; = max{0,x;0p + g(w;) + &;},

where g is an unknown nuisance function, 8y is the parameter of interest, x; L ¢;|w;, and the con-
ditional distribution ¢;|w; admits a Lebesgue density. The associated pairwise difference estimator

of 8y employs © = R* and the function

m(ZhZz; 9) = mPLT(ZhZQ; 9) = mPLT(Zla Z2; 0) - mPLT(Zla Z2; 0)7
where
ly1] — ((x1 — x2)'0 + yo2) sgn(y1) if (x1 — x2)'0 < —yo
mpLr(21,22;0) = 4 [y1 — y2 — (x1 — x2)'6)| if —yo < (x1 —%2)'0 <y -

lya] + ((x1 — x2)'0 — y1) sgn(y2) if y1 < (x1 —x2)'6

Because mprr(z1,22;0) does not depend on 6, the presence of mprr(2z1,22;0) in mprr(2z1,22;0)

does not affect the minimization problem defining the estimator. Nevertheless, it is theoretically



attractive to work with mprr rather than mprr, as doing so allows for weaker regularity conditions
for the existence of the expectation of the objective function.

For future reference, we note that mprr admits the alternative representation

/

ly1 — y2 — (x1 — X2)'0] — [y1 — 12| if y1 > 0,42 >0

max{y; — (x1 — x2)'0,0} — max{y;,0} ify; >0,y0=0
mPLT(ZhZ?;O) = .
max{ys + (x1 — x2)'0,0} — max{ys,0} ify; =0,y2 >0

0 if Y1 = O, Yo = 0
The function @ — mprr(2z1,22;0) is convex and so is the minimization problem defining the esti-

mator provided that the kernel function is non-negative.

3 Distributional Approximation and Bootstrap Inference

~ ~

As it is standard in the literature, we define our estimator 8, = 6,(h,) to be a sequence of

measurable random variables satisfying

M, (8, (h); h) < inf M, (8;h)+ op(n~'),
6co
where J/\/[\n is the objective function discussed in the introduction:

M,(0:h) = <Z> - N m(zi, 25 0) K (wi — w;).
1<J
Assuming basic regularity conditions, the objective function Mn is a sample counterpart of
M(6; h) = E[m(z1, 22; 0) Ky (w1 — w2)] = E[M,,(6; h)],
and this function M (-; h) approximates, as h | 0, the function

My(0) = /E[m(zl,ZQ; 0)|w1 = w, wy = W] fw(w)idw

where fy is the Lebesgue density of w. This function My plays an important role in pairwise
difference estimation problems because the parameter of interest 6y can often be characterized as
a unique solution to the minimization problem mingcg My(0).

Introducing the functions M (0; h) and My(0) is useful for our distributional approximation theory
because we can decompose én — 6¢ into the non-stochastic “bias” component and the “centered”

stochastic component. Specifically, we define a non-random (fixed-h) “pseudo” parameter

0, = 0(h,), 0(h) € argmin M (0;h).
6co



Then, we decompose én — 0 into §n — 0, (“mean-zero” stochastic term) and 6,, — 8y (non-random
“bias” term). Using this decomposition, below we discuss the role of generalize jackknifing to achieve
higher-order bias reduction without affecting the convexity of the objective function defining the
estimator, nor the generalized distributional approximation based on small bandwidth asymptotics.

First, we provide a set of sufficient conditions which guarantees, among other things, M (0;h)

converges to My(@) as h | 0, which is crucial for the bias term to vanish asymptotically.
Assumption 1. For € > 0, define Of = {0 € O : |0 — 0| < €}.

(i) The kernel function K is a symmetric, bounded probability density.

(ii) © C R* is convex and @ + m(z1, z2;0) is convex with probability one.

(iii) The distribution of w is absolutely continuous with respect to the Lebesgue measure. The

density is bounded and continuous on its support.

(iv) For some & > 0, ©% C O. For each 6 € O, E[m(z1,22;0)] < oo,
lig}]E[m(zl,zQ; 0)|wi,wy = wy + u] = E[m(z1,2z2;0)|w1, wa = wy]
with probability one, and, denoting the support of w by W,

E | sup E[m(z1,29;0)|w1,ws = w|fw(w)| < o0.
wew

My is uniquely minimized at 6y on ©.

Next, we state regularity conditions under which we analyze asymptotic properties of §n —-0,.
The function (z1,22) — s(z1,22;0) € R¥ can be interpreted as a “derivative” of @ — m(z1, z2;6)
at @, although we do not require full differentiability: the partially linear Tobit example above
has m(z1,29,0) that is not differentiable at points such that (x; — x2)’6 = 0. Similarly, the
function (z1,29) — H(w1, wo;0,t) € RF** can be thought of as the second directional derivative
of E[m(z1, z2; 0)|w1, Wa], where t € R¥ is the direction of derivative. As the partially linear Tobit
example indicates, the map 6 — m(z1,z2;0) may not be twice directionally differentiable, but the
conditional expectation E[m(z1,z2; 0)|wi, wo] often enjoys the required smoothness with respect
to 8 because the integral can smooth out kinks. Let C' > 0 denote an absolute constant that may

take different values in each case.

Assumption 2. Let § > 0. For 8 € 9, t € R¥, and 7 > 0 small enough, define e (z1,22;0,t,7) =
7= Hm(z1,29;0 +t7) — m(z1,22;0) — s(2z1,22;0)'t7} and ea(w1,wo;0,t,7) = 7 2{E[m(z1,22;0 +

t7) — m(z1,22; 0) — 5(21, 22; 0)'t7|W1, wo] — 3t'H(w1, wa; 0, t)t7°}.

(i) There exists a real-valued function b(z) such that for 8 € 09, ||s(z1,22;0)|| < b(z1)b(z2),
E[b(z)*|w] fw(W) < C < oo with probability one, and E|b(z)[* < oco.



(ii) Let S(z1,22;9,0) = s(z1,2z2; 9)s(z1,22;0). With probability one,

(0711)1_)11(10070) [s(z1,29;0)|z1,Ws = W1 + U] [s(z1,22;0p)|21, Wwa = W1],
lim E[S(z1,22;9,0)|wi,wo = w1 + u] = E[S(z1, 22; 00, 00) | W1, wa = w1].
(9,19,u)~>(00,00,0)

(iii) For each t € R¥, there is some 7 > 0 such that

2
E sup ‘E[el(Z1,Z2; 0,t,7)|z1,W2]fw(W2)} < 00
| 7€(0,7),0€08 ,waeW
E sup E[el(zl,ZQ; 0,t,T>2‘W1,W2]fw(W2) < 00
| 7€(0,7),0€08 ,wa2eW
E sup ’eg(wl,WQ;G,t,T)}fW(WQ) < 00
| 7€(0,7),0€08 ,waeW
El  sup  [[H(wi, wa;0,t)|| fw(wz)| < oo.
_06@8,W2€W
(iv) For t € R¥, with probability one,
lim E[el(ZbZQ;O,t,T)‘Zl,WQ:W1+u] =0
(T797u)4)(0700a0)
lim E[el(zl,ZQ;B,t,T)2{w1,w2 :wl—l—u] =0

(7—79711)_)(079070)

lim eo(wi,wy +u;0,t,7) =0
(7,0,u)—(0,60,0)

lim sup |H(wi, w1 +u;0,t) — H(wy,wi;0,t)| =0
(u,7)—(0,0) 9cO]

lim H(wi,w1;0,t) = H(wi,wi;6p,t)

9—)90

and H(wy,w1;60p,t) = H(wy, wy;600,s) almost surely for any t,s € R*, which allows for

dropping the last argument of H when evaluated at wi = wo, 8 = 6y. The matrix
Ho = [ o, wi60) fu(w)dw
is positive definite.

3.1 Small Bandwidth Asymptotics

To describe the generalized asymptotic distribution of the estimator 0An, define

n

Vi = Vau(hy,), V,(h) =Hy! 0

-1
n '3+ < > hdAO(K)] Hal,



where §(z1) = E[s(z1, 22; 00)|z1, W2 = W1] fw(w1), E(W) = E[s(z1, 22; 00)s(21, 22; 60)'|[w1 = W, wa =

W] fw (W),
/ K%*(u (3.1)

The notation Ag(K) emphasizes its dependence on the kernel function. The following theorem gives

3o =4E [£(2)€(z)'] and Ag(K) =

[I]

the small bandwidth Gaussian distributional approximation for the canonical pairwise difference
estimator. Let ®(t) denote the distribution function of a k-dimensional standard Gaussian random

vector.

Theorem 1. Suppose Assumptions 1 and 2 hold. If n*h% — oo and h, — 0, then

sup

P[V; /26, — 0,) <t] - cp(t)‘ 0.
teRk

The convergence rate of 6., equals the magnitude of V, 172,

Th = (n71/2 + (nth)flﬂ)_ 1 % O(min {\/ﬁ, n2h%}>.

Provided that V" 2(0n —6y) = o(1), Theorem 1 encompasses the following three distinct large-

sample Gaussian approximations.
o Asymptotic Linearity: nh® — oo. Then, \/ﬁ(gn — 6p) admits the linear representation (1.1).

e Root-n Consistency: nh: — ¢ € (0,00). Then, \/ﬁ(én — 6p) is not asymptotically linear, but

convergences in law to a mean-zero Gaussian distribution with asymptotic variance

2
lim nV, =H, [20 + AO(K)} H,'.
C

n—o0

e Small Bandwidths: nhl — 0. Then, vn2hd (9 — 6y) converges weekly to a mean-zero Gaus-

sian distribution with asymptotic variance 2A¢(K).

Whenever the localization parameter is chosen so that nh¢ % oo, the variance in the Gaussian
approximation includes the small bandwidth component (g) 71h; 1A, (K), capturing the additional
uncertainty generated from increasing the localization of the observations pairs. Therefore, The-
orem 1 gives a refined Gaussian distributional approximation for §n — 60y, removing the condition
nh® — oo, and enlarging the range of localization parameters by imposing the weaker condition
n?hd — 0, provided the bias condition V,, Y 2(9n —6p) = o(1) holds. As demonstrated by Catta-
neo et al. (2025a), the first-order small bandwidth asymptotic theory can lead to a higher-order

corrected distributional approximation.



3.2 Debiasing via Generalized Jackknifing

In Theorem 1, we centered the statistic at 8,, = 8(h,,) to circumvent smoothing bias issues. This
section focuses on the bias term, and introduces an automatic debiasing approach under high-level
conditions. Assumption 1 implies that limp o @(h) = 0y, but with additional mild conditions it is
possible to show that the bias term is O(h%). We employ standard multi-index notation: || =

||
2?21 aj for a = (a1,...,ay) € Z% and 02 f(w,v) = avala_wf(W,V) for v=(v1,...,v4) € R
1 d

Proposition 1. Suppose Assumptions 1 and 2, and the following conditions hold.
(i) [ulPE () < .

(i) wo — p(wi,wa) = E[s(z1,292;600)|W1, Wa] fw(W2) is twice continuously differentiable with

probability one, and E[sup, ey, |05 (w1, v)||] < oo for all |a| < 2.

Then, there exists a non-random vector by € R¥ such that
0(h) = 6y + bah? + o(h?), as h | 0.

The bias expansion in Proposition 1 can be extended to a higher-order bias expansion i.e.,
characterizing leading bias terms up to O(h%) with L > 2 under appropriate smoothness conditions.
We illustrate this in Section 4.5, where we establish a bias expansion of local M-estimators for L = 4
under primitive conditions. This result explicitly leverages convexity of the objective function, and
thus appears to be new to the literature. Formalizing the bias expansion for an arbitrary order
of L > 4 is cumbersome, so we instead impose the following high-level condition (cf., Honoré and
Powell, 2005, Equation (3.6)).

Assumption 3. For by = 0 and some even L > 0, there exist non-random vectors b; € R¥,
l=1,...,L, such that

L/2
O(h) — 0o =Y _byh® + o(h"), as h | 0.
=0

This assumption encompasses the setting under Assumptions 1 and 2 (L = 0), as well as the
setting under the additional conditions imposed in Proposition 1 (L = 2). Assumption 3 sets the
terms with odd powers of h equal to zero, which holds whenever a symmetric kernel function and
appropriate smoothness conditions are imposed. See Section 4.5 for more discussion.

To describe the debiasing procedure via generalized jackknifing, let ¢o = 1 and ¢ = (cg, ..., ¢y, /2)’
be distinct positive constants such that the (L/2 + 1) x (L/2 4 1) matrix

11 ... 1
. e C%/Q
1 & c£/2



is invertible, and let A = (Ao, A1,...,Ars2) € RE/2+1 be a vector such that CA = (1,0,...,0).

The debiased estimator is

L/2
On,c = §n,c(hn)> §n,c(hn) = Z )\lé\n(clh>-
=0

~

This procedure involves solving L/2 + 1 convex optimization problems: 6,(ch), I = 0,...,L/2.
The debiased estimator is a generalization of the original pairwise difference estimator because, if
c =1 (hence A\g = 1) and we take L = 0 in Assumption 3, then §n7c = én

Our next theorem generalizes Theorem 1 by establishing the small bandwidth Gaussian approx-

imation for the debiased pairwise difference estimator §n7c. Accordingly, let

L/2
en,c = Oc(hn)a Oc(h) = Z)‘ZG(Clh)
=0

and
n —1
Ve = Viae(hy), Vae(h) =Hy' |n 120 + <2> hdAO(KC)] H,',
where
u L/2 u
Ki(u) = ¢, 'K (Cl) L Ke(w) =Y ANKi(w),  Kep(w) = hTK. <E> .
=0

It follows that O¢(h) and V,c(h) are a generalization of @(h) and V,,(h), respectively, because
0(h) = 0.(h) and V,(h) = V,c(h) if ¢ = 1. Debiasing via generalized jackknifing affects the

variance formula only through the kernel shape entering its small bandwidth component.

Theorem 2. Suppose Assumptions 1 and 2 hold. If thfL — o0 and h, — 0, then

sup |P[Virt/?(One — One) <t] — (I)(t)‘ S0

tcRk

If, in addition, Assumption 3 holds and nh2l — 0, then

sup
tceRk

PV (B — 80) < t] — B(t)| = 0

In addition to establishing a valid small bandwidth Gaussian distributional approximation, this
theorem explicitly deals with the smoothing bias term via generalized jackknifing: the debiased
estimator is centered at the parameter of interest 6y rather than at the pseudo-true parameter
sequence 6,,. While from an asymptotic perspective debiasing inflates variance only when nhd /£

0o, through the term Ag(K¢), the Gaussian approximation in Theorem captures a finite sample

10



contribution of the debiasing procedure, and thus can offer a better finite-sample distributional
approximation. See Cattaneo et al. (2025a) for more discussion.
It is interesting to note that K. is a higher-order kernel, even though the construction of the

debiased estimator é\nﬁ only employs second-order kernels, hence retaining the desired convexity for

implementation. More precisely, [ K.(u)du = L/2 oM [ Kq(u)du = 1. For a = (ev,...,0q) €
Z4, let ua:H? 1 ]JforuGRd Then, for0<]a|<L
L2 L2

/O‘K du—Z)\l/u K., (u du_ZAlc}"‘/ vOE(v)dv =0

where the second equality uses changes-of-variables v = cl_lu and the last equality uses the defining

property of A and the symmetry of K.

3.3 Bootstrap Inference

To develop feasible inference procedures, we consider the nonparametric bootstrap approximation
of the limiting distribution of the debiased pairwise difference estimator é\mc. In particular, our
results cover the canonical estimator én by setting ¢ = 1.

Let {z! :i=1,...,n} be a bootstrap i.i.d. sample drawn from the empirical CDF computed from
the original observations {z; : ¢ = 1,...,n}. By the plug-in approach, we construct the bootstrap

pairwise difference estimator 6% = é\:‘l(hn) as an approximate minimizer:
M (05, (h); h) < inf My (05h) + op(n ),
€
where

AT (6; 1) = (’;) S (et 2t 0) Ky (wi — w)

1<j

is the bootstrap-analogue objective function. Furthermore, the bootstrap (generalized jackknife)

debiased estimator is

L/2
0:1,0 = O:L,C(hn)7 Z )‘l Clh

When ¢ =1, é\,’;c = é\; reduces to the bootstrap-analogue of the pairwise difference estimator én

The following theorem characterizes the distributional approximation obtained from the non-
parametric bootstrap. In perfect analogy with the results in Cattaneo et al. (2014b), we find that
the bootstrap distribution estimator consistently estimate the correct limit distribution only when
nhd — oo, but otherwise exhibits a variance inflation making the distributional approximation

inconsistent. Let P*[-] = P[-|z1,...,2y], and —p denote convergence in probability.
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Theorem 3. Suppose Assumptions 1 and 2 hold, and that my(z,z;0) =0 and s,(z,2;0) = 0 for
all z and 8 € @8. If n?hd — 0o and hy, — 0, then

~

Sup [P* [V (87 h0) ™/2(8) o (hn) = Buc(n) < t] = D(t)| —5p 0.

tERk

)

Letting I denote the k-dimensional identity matrix, it follows that V, ¢ (3_1/ dhn)_an,c(hn) —1
if and only if nhfb — 00, which implies that

sup [P*[0* (h,) — 0, o(hy) < t] — P[B,, (hn) — O(hy,) < t]| —p 0
[P (6 c(hn) — Buc(hn) < t] —P[Bc(ha) — 6(ha) < ]|

tcRk

if and only if nh? — oco. In particular, if lim inf, o, nh? < oo, then the nonparametric bootstrap is
inconsistent, albeit it will be conservative in the sense that the leading variance under the bootstrap
distribution is larger than the leading variance of the asymptotic distribution: Vn,c(?)_l/ ah,) >
V.c(hy) in a positive definite sense.

The leading variance inflation generated by the nonparametric bootstrap under the small band-
width regime, liminf, ., nh% < oo, can be easily fixed by appropriately rescaling the bandwidth
used for the bootstrap implementation of the pairwise estimator: according to Theorem 3, com-
puting 5;';(31/ ah,) — BAn(31/ h,,), instead of the original plug-in bootstrap statistic employing the
bandwidth choice h,,, automatically adjusts the bootstrap variance, and therefore leads to a con-

sistent distributional approximation. The following theorem formalizes this result.

Corollary 1. Suppose Assumptions 1 and 2 hold, and that my(z,z;0) =0 and s,(z,2z;0) = 0 for
all z and O € ©). If n>he — oo and h,, — 0, then

sup P[0 c(3hn) = Brc(3"/"hn) < ] — P[Bnclhn) — 8(hn) < ]| =5 0.

teRk

If, in addition, Assumption 3 holds and nh2l — 0, then

sup [P*[07 o (3 hs) — 0,.c(3" ) < t] — P[Brc(hn) — 6 < t] ] —p 0.

teRk

Corollary 1 emphasizes the rate-adaptive nature of the consistency property enjoyed by the boot-
strap distributional approximation. This result has immediate implications for robust inference.
For example, letting o € (0,1) and a € R* be a fixed vector, and using the “percentile method” (in
the terminology of van der Vaart, 1998), the (nominal) level 1 — a bootstrap confidence interval for

a’fy is
Cl_apn = {a/é\n,C(hn) - qikfa/Q,n ) a/é\n,C(hn) - q;/Q,n]
with
g, = inf {qg € R: P*[a'0} .(3Y/%h,) — a'0,,c(3h,) < q] >},

12



which satisfies

lim Pla’6y € Cli_,,,,] =1—a,

n—oo

under the substantially weaker conditions n?h% — oo and nh2l — 0.

4 Proofs and Other Technical Results

In the sequel, we use C' to denote a positive constant that does not depend on the sample size. In

different places, C' may refer to different constants. Recall

/ d
Tn = (n_1/2 + (thg)_l/z)*l = \/EHT/}% = O(mln {\/ﬁ, n2h;€}>
n n

Theorem 1 follows from Theorem 2 by setting ¢ = 1, and Corollary 1 follows from Theorems 2
and 3. Thus, we only give proofs for Theorems 2 and 3.
4.1 Proof of Theorem 2
Let M, 1(6) = M(0; cihy), My, y(6) = My(6; cihy), 6,y = 0(cihy),

Sn.1(21,22) = s(z1,22; 0,,1) K¢ h, (W1 — Wa), and

eni(z1,22;t) = e1(21,22; 01, .7, ) Kepp, (W1 — Wa).
For t € R¥,

My y(Bng + tr ") = My 1(0,))

i

-1
_ n _
= My (Ong +tr) — My (0,0) + < 2) > Asni(zi ;) — Elsni(z1,22)]} tr, !

1<J

+ryl (;) - 3 {eni(@izjit) — Elen(z1,22:1)] ).

i<j

By Lemma 3 below, r2[M, (6, +tr, 1) — M, 1(0,,)] = 2t'Hot+0(1). By Hoeffding decomposition

and Lemma 4,

1
(n) Zen,l(Zqu;t) —Elen(z1,22;t)] = op <n71/2 + nilh;dﬂ).

2 —
1<
= -1
Writing U, ; = (Z) ZKj sn1(2i,2;) — E[sy, (21, 22)], we have

_ _ 1 .
ro [ M (0 + try, ') — My, 1(6,)] = §t/H0t + 71Uyt + op(1).

13



Since t ]\//.77%1(0%1 +tr 1) is convex almost surely, Hy is positive definite, and rnﬂ‘n’l = Op(1)
(which we prove below), the corollary following Lemma 2 of Hjort and Pollard (1993) implies that

Tn (é\n(clhn) - on,l) - ( - Halrnﬁn,l) = OIP’(l)'

Since the above holds for each | = 0,...,L/2, we have

L/2

Tn (en,c - On,c) = _Hal Z )\lrnﬁn,l + OlP’(l)' (41)
=0

Under Assumption 3 and nh%L — 0,

~ ~ ~

Tn (en,c - 00) =Tn (en,c - en,c) + 7y (en,c - 00) =Tn (en,c - en,c) + 0(1)

Thus, it suffices to analyze asymptotic behavior of ZlL:/ g )\lrnﬁn,l- By Hoeffding decomposition,

L/2 n L/2 n -1 L/2
an, = LSS o) + (2) SN Mo (51, 27) = T + W,
i—1 1=0 i<j 1=0
where
£,1(z1) = Elsy (21, 22)|2z1] — E[sp (21, 22)]
and

Wi 1(21,22) = 8p1(21,22) — €1(21) — £n,1(22) — E[sy,1(21, 22)].

Below, we prove

(oL Yo vomat([§].[ % a0 ]) 2

where O is the k x k zero matrix. By (4.1) and Hoeffding decomposition, we have

~

on,c - On,c = - [ \fL

than + op(r; 1),

\ﬁ

and we can prove the desired result by invoking an almost sure representation theorem. Let L and
W be mean-zero joint normal random vectors with the covariance matrix in (4.2), and with some

abuse of notation,

PV (One — Onc) <t =P |-Vid"Hy" (n 721 + (n?hi) 7P W) + 2, <t

14



where a,, = o(1) almost surely. Since the variance of Hy ' (n™ /2L 4 (n?h%)~1/?W) equals V,, ¢,
the desired result holds. O

Proving (4.2) For py, us € R¥, letting pu = (p) ph)’, define
i—1
gin (1) =2 [ 0712000 (2) + (0 — 1)1 /S pheon (21, 25)
j=1

where £,(z;) = S>E2 M 1(2:) and w,(zi,25) = STH2 Newn (24, 2;). Note (vaLi, /n?hdW/,)u =
Yoy gin(p). Since E[gin(p)|z1,...,25] = 0 for j € {1,...,i — 1}, {gin(p), Fi}}_; is a martingale
difference sequence where F; is the sigma field generated by {zi,...,z;}. Using this martingale

structure, we apply the following result of Heyde and Brown (1970).

Lemma 1 (Heyde and Brown, 1970). Let {X,,, F,} be a martingale with Xo =0 a.s., X,, = Y 1, Y;
forn > 1, and F, be the sigma field generated by Xo, X1,...,X,. Define 02 = E[Y,2|F,_1] and
2 ="  Eo?. Suppose for some § € (0,1], E|Y,|>*2 < oo for all n. Then, there exists a finite
constant K depending only on d such that

1
1+6 3F25

n
sup [P(X, < ut) — ()] < K { ;24 | STE[y; 2040 4 B
teR —

n

2 2
E 0; —Sn
i=1

where ®(-) denotes the cdf of a standard normal random variable.

Using the above central limit theorem and the Cramer-Wold device, to prove (4.2), it suffices to

show
n
$2 = D Elgin(1)?] = HiZop1 + 245 A (K) p2, (4.3)
=1
1 n
i 2 Elgin(m)* >0, (4.4)
n =1
and
2
E| zn:f’? 1 =0 o5, = Elgin(p)?|21, - ., 2i 1] (4.5)
g% m ) mn m ooy big—1]. .

Verifying (4.3) By E[£,(z;)wn(zi,2;)'] = O for i > j and E[w,,(2;,2;)wy,(2i,2,)] = O for j # p,

AE[(p18n(2:))%] | 4hE 2
A 21 _ 1 n E : / .
E[an(ﬂ/) ] - n + (Tl _ 1)2 = E |:(l‘l’2wn(z’lﬂz])) i|
and
S = ME [€,(21)€0(21)'] 1 + 2~ ﬁ 1H/2h§llE [wn (21, 22)wn (21, 22)'] po.

15



For the first term on the right-hand side above,

L/2
Bl (21)n(21)] = E | > MAE[sn1(21,22)|21]E[s,, j(21,22) |21
ll 0
L/2 L/2 !
—-E Zkzsn,l(zl,@) E ZAlSn,l(Zl,Zz)
=0 =0

where the second term after the equality is zero (Lemma 3). By the dominated convergence
theorem, for each I = 0,...,L/2, E[s,(2z1,22)|z1] —q.s &(z1) and, another application of the

dominated convergence theorem implies

L2 L/2 1

E | > NAE[sni(z1,29)21]E[s, j(z1,22)[z1) | = E | Y MN&i(z)&i(2)' | = -2

4
1,/=0 1,/=0

because ZZL:/g A\ = 1. For the other term in the decomposition of ¢,

L2
Elwn (21, 22)wn(21,22) ] =B | > NAsni(21, 22)sn(21,22)' | +O(1)
1,/=0

where O(1) comes from E[s,;(z1,2z2)E[s nl(zl,z2)|z1]] = E[E[sy (21, 22)|z1]E[s nl(zl,ZQ)]zl]] =

O(1) and Els,, i(2z1,22)] = 0. The dominated convergence theorem implies

th[Sn,l(Zl,Zz)Snj(Zl,ZQ)/} —>/ (W1) fw(w1) dwl/KCl u) K¢, (u)du.

Since
L)2 L/2

/Kf(u)du :/ ZAchl(u) du = Z A7 /Kcl
=0

we have
heE[wy (21, 22)wn (21, 22)'] = Ag(Ke).
Thus, the desired result holds.

Verifying (4.4) Given ¢2 converges to a positive number, it suffices to show Y"1 | E|gi,(p)|* =
o(1). By (a+ b)* < 25 (a* + b°),

E VAl 4 8h2d "
ngm )21t < S EREn O o DE zuzwn
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Let sk(zy,22) = ZzL/g NiSni(z1,22). Then, E|€,(z1)||* is bounded by a constant multiple of
E[||E[s%(z1, z2)|z1]||*], which is o(n) by Lemma 5. For the other term,

4
i—1 i—1 -1
E Zuéwn(zi,z] ZE[ powy, (i, z;) ] +Z Z E[ phwn ( zl,zj))2(u’2wn(zi,zp))2}
j=1 j=1 J=1p=1p#j

< nd|p2 | "Ellsy; (21, 22) || + n?4Y| o || "E[E[|sy; (21, 22) %] 21)°]

where the inequality uses Lemma 6. Then,

4

h2d n h2d I 4 h2d I ) 9
n n
44 “12 |4n4 E E § “2"‘)% ZZ7Z] < n2 EHSn <Z17Z2)H + n E |:E [Hsn (Z17Z2)H ‘Zl] ]

which is o(1) by Lemma 5.

Verifying (4.5) Adding and subtractmg E]qun(zl,zQ)] = 1)QIE',| ZJ L phwn(2i,25)]%,

i-1 2
Fi| — E(Z Wown (2, Zj))

Jj=1

n 4hd n 1—1 2
20'1'271_ 2 (n—1) QZ (Z“éwn(zhzj))
° =

+(n_1\/>ZE Zﬂlz Zz szn(zwz])

Then, to show (4.5), it suffices to verify
2

}:j i <Z“2wn Z;, %) >2 Fi| — E(gﬂéwn(ziazj)>2 = o(1) (4.6)

i=1
and )
hd n 1—1 ) )
LN E D gz phwn (2, 7)) = o(1), (4.7)
i=1 | j=1
For (4.6), letting @, = E[|uhw(z1,22)|?],
2

z (ZM )

i—1 2
Fi| — E(Z ﬂéwn(zzﬁ Zj))
j=1

17



i—1j—-1
Z Z E [pown(2i, 2;) pown (i, 2p) |2, 2
Jj=1p=1

n

oy
i=1
= znz_:lnz_:l(n —j)(n —p)E (E [(Héwn(z?zj))ﬂzj} - @n) (E [(,uéwn(z,zp))Q‘zp] — (Dn>
j=1p=1
+47§ "z‘:l ”2—22 ”z—:l (n—j1)(n — j2)

p1=1j1=p1+1 p2=1 jo=p2+1

X B |E [hwn (2, 2, ) 1heon (2, 2p,) 25, 2, | B [owon (2, 25 1heon (2,2, |2 7] |

< 23K ‘E [(M’an(zl,zz))z‘zl} — Wy, ?

2
+4n'E [E [u’zwn(zl,ZQ)u'gwn(zl, Z3)|z2, Zg] }

where the last inequality uses E[phwn (21, 22) phwn (21, 23)|22] = 0. Then, (4.6) follows from

2

h2d n i1 2 i—1 9
4424 > |E <Zu’2wn(zi,zj)> ‘fi _E<Zﬂl2wn(ziazj)>
' J=1 j=1

=1

_ 2
< 2 a0 W2 | [ls (21, 22) 1% ]| + lpsal| 2TE (B[S (21, 72)80 (21, 75) |72, 2]2]

and Lemma 5.

For (4.7),
2
n i—1
E ]E Zu z;) own, (i, Z;) ‘.7-"
1= 7=1

n n min{ij}—1

NN N E[E[pin(z)wn(zi,2) oz, | E[11£0(2) )wn(25,2,) 1a]2,]

=1 j=1 p=1

< n® (B [E[W\Elsk (21, 78) [m]sk (21, 22) al] | + O(1))
and Lemma 5 implies heE[E[||s% (21, 22)s% (21, 23)'|||22]%] = o(1).
4.2 Proof of Theorem 3

Define M} (8) = M;(8; cihy) and

n n
~, (n _ 1
ni =y anz Zi,Z;) — Sn, Sn,z—ﬁzzsn,l(zuzj)-

i<j i=1 j=1

For sufficiently large n,

-1
A7 — T 7* — n — n
Mml(Bn,l—i—trnl)_Mn’l(eml)_rn1<2> > eni(zf, 7 t) —|—rn1t/<2> > snalz, 7))

1<J 1<J
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-1
1 n
=r, 9 E €n,l zz,z],t e} g eni(2i, 25t
1<j

+ (1= [Myy(0 + tr ) — J\?ml(en,l)] +r 0

where the second equality uses m(z,z;60) = 0 and s(z,z) = 0. By identical arguments to the proof
of Theorem 1, 72 []\/Zn,l(Bn,l—i-trgl) —]\//Tn,l(en’l)] = rnt’ﬁn,l—l—%t’Hot—i—OP(l). Combined with Lemma,

7, we have
P2 (AT (B + tr ) — M2y (0,0)] = rat! (T, + U) + %t/HOt +op(1).
Using rnU = Op(1) and the corollary following Lemma 2 of Hjort and Pollard (1993), we have
T (OA;(clhn) —0,,) — ( ~H,'r, (IAJ'ZZ + ﬁnl)) = op(1)

and using rn(é\n(clhn) -0, + Halrnﬁml = op(1),

1o (67 (cthn) — Bn(cihn)) — ( - 5%{;71) — op(1).

The above display and Hoeffding decomposition imply

6: . — 00 = —H;' lli " ﬁﬁﬁf +op(r))
where
L 5o 1y \ 1
;;)\z%nl , £y (z") = - ;Sn,l(z ,Zj) — Sp Sl = 3 %sn,l(zi,zj),
and
L2
W= <Z> ; ; WIENICH ) G (25, 25) = 80,1(2,25) — £,1(2]) — £n1(25) — Sy

Let F7 be the sigma field generated by {z%,...,z}}, and for p = () pb)’ € R?*,

L/2 i—1 L/2
g,;kn(l,l,) - 27“n7’L l’l’l Z )‘len l ) + 2hd/2 ! Z H’IQ Z )‘lwn l R ]
=0 j=1

Note (rn L%’ nh¥*W

with respect to the bootstrap measure. As in the non—bootstrap asymptotic distribution, we use

Wi = >0 g5 () and {gf,(p), F;F}, is a martingale difference sequence

7
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the result of Heyde and Brown (1970). Below we show that
o= E g ()] = ph [72S0 + (1 — mn)?4A0(Ke)| 1 + 25 Ao (Ke)pa + op(1) (4.8)
i=1

\/nhd

where m, = D/
1 & i
= D B |gh, ()] —p 0, (4.9)
Sn i=1

and )

* 1 - *2 *2 K[ % 2, % *
E ? ZGM =1 —=p0, opn = E i, ()72, ..., 2] 4] (4.10)
n =1

First consider the case in which the limit lim, nh¢ exists in the extended real. Below é and %

. . . \/nhd
are understood as 0 and oo, respectively. Writing 7y = lim,, € [0,1], by (4.8)-(4.10),

14++/nhd

Tnfl:; 0 7T2EO + (1 - 7T0)24A0(Kc> O

2
If mo € (0,1], lim, nh¢ > 0 and lim,, \/n/r, = 1/m. Write x for lim, nh%, which equals (130 ) .

n? mo

Denoting equality in law by =4, we have

VitGre =) = —H5 [ Lo+ L g W+ on(1)

n Tn,
2 1
<L+Vﬁw>+vrquw—Hf L+¢&W]
K K K

where (L’ W’) be a mean-zero joint normal random vector with the covariance matrix in (4.2) and

~SP _Hﬂ_l

Wy is a mean-zero normal vector with the covariance matrix 2A, independent of L, W. That is,

\/ﬁ(é\fw - énc) is asymptotically normal with the asymptotic covariance
_ 6 _
H; ' [20 + H_AO(Kc)] Hy'
which equals lim,, oo anC(S*l/dhn) because, when x = lim,, nhd > 0,

. _ . 2 _
lim nV,c(h,) = H; 1 [Eo + lim hdAO(KC)} H, L

n—00 n—oo nh

If mp = 0, lim,, v/n2hd/r, =1 and

o~ JnZhd - _
Mﬁ@@pﬁ@:4%1 By L 4\ /n2hd W

Tn

+ Op(l)
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P —Hgl [\@W + WQ] =4 —Hal [\/§W] .
Thus, with my = 0, \/nzh%(éfl — HAn) is asymptotically normal with the covariance matrix

H; ' [6A0(K)Hy! = lim n2hdV,, (37Vh,,).

n—oo

In both cases, for each t = (¢1...13)" € R¥,
p* \fnp(3—4/3hn)—1/2(ézﬂ(hn)-égﬂ(hn)) g<{|-»¢(t)::oP(1) (4.11)

where @ is the cdf of a k-dimensional standard normal random vector.
For the general case in which nh% may not have a limit on the extended real, we argue along

subsequences to prove (4.11).

Verifying (4.8) Write

L/2 L/2

2) =Y Alni(z),  @n(z1,2) Z A@n, (21, 22).
1=0

By E*[E (z})wn(z;,2;)'] = O for i > j and E*[wy (2], z})wn (2], 2,)'] = O for distinct 4, j, p,

n

o 421 ~ 2hdn 1
= LS (147 ) 2 LSS (a1, 7))

; (n—1) n2
1=1 =1 j=1

For the first sum on the right-hand side, by the hypothesis s(z;,z;;0) = 0 for ¢ = 1,...,n and
6 €0,

/

L L oo n L/2 L/2
- D ln(zi)ln(z:) = 3 DO D D snalmaz) | | D] Misna(zi,z)
i=1 i=1 j=1,j#i p=1,p#j,i \I=0 1=0
L oL L/2 L/2 ! L/2 L2 !
+ .3 Z | Z | > Nsna(zinzg) | | Y Nsna(ziz) | = [ D NSaa | | D NS
1=1 j=1,5#4i \ =0 =0 =0 =0
~ / d
Note §,; = ”TflUn,l + E[s,1(z1,22)] = o(1). Using Lemma 9, with 7, = = nhzd,
n n
4r2 1 & ~ 9
—n (118n(2:))" = p} [7250 + (1 — 7,)24A0] p1 + op(1).
i=1

Since 7, € [0, 1], this variance term is asymptotically bounded from above and bounded away from

Zero.
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For the term ) ;" , Z?Zl(uéﬁn(zi,zj))Q, note that for 1,1 € {0,...,L/2},

n

> bni(z)8,;=0,
=1
and
n n R n R R
Z Z Sml(zi, Zj)ﬁn,f(zi)/ =N enJ(Zi)Enj(Zi),.
i=1 j=1 =1

Then, using the calculations in the proof of Lemma 9,

hd n n
3 YD ©nlziiz))on(zi,2;)
i=1 j=1

L/2 L/2 !

hd n n
=3 ST D Asna(ziz) | | D] Misna(ziz;)
i=1 j=1,j#i \ =0 1=0

/ /

n (L2 L/2

ond L2 L2
- Z D Nili() | [ D Nka(z) | = b | D NSa | | D NS
i=1 \ I=0 1=0 1=0 1=0
= Ao(Ke) + op(1).
Verifying (4.9) By (z +y)* < 8(z* + y*) for z,y € R,
. 4
4 T 'y 4 hat — /A~
E* g (1)[* < C-HE [ £ (2)|" + OB | D phion (2], 7))
j=1

We calculate the stochastic order of each term on the right-hand side. To ease notational burden,

in this subsection and the next, we write s%(z;,zs) = ZZL:/02 A\isn (21, 22).

E*|pi €n(2")* < CE” [E* sy (27, 23)|27)"]

n 4
1 1
<ol 3211 st
i=1 | i
2
1 n
< C’EZ > sz, )P+ >0 phsh(zi,z) sk (2i,2,)
=17 i DAL
2 2
1 n L ) 1 n L .
= Cﬁz Zm/lsn(zi’zj” +C$Z Z Z CEACRAIGEACN)
=i i=1 | j#i pAisj
1 & 1 <&
L 4 L I
= Oz DD isi(zz)'+ O s D 3 > Iwisn(z ) |uisy (2 2)

i=1 j#i i=1 j#i p#ij
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RN L L L
O DD D lmisy(ziz))Puls (zi 2 iy (2. 2)

1=1 j#i p#i,j q#i,5,p

1 - L L L L
FOSD DD D D Hisi(ziz) sy (2, zp) sy (2,2 sy (21, 20)

i=1 j#i p#i,j qFi,5,p r#1,.3,0,9
— 02 (n°E (|t (21, 20)["] + n 2B [Ellu; s (21, 20) |21 ]?]

+n B[ psy (21, 22) R[] (21, 23) |21]°] + E[E[p)s) (21, 22)121]4}>

and

ﬁiE*m’Z @) =0 (h%d]E[|HllsrLz(Z1,zQ)|4] h2UE [B]| )L (21, 22) |24]?]
n4 1£nlZ; n2(1+ \/nih;i)4 n(1+ /nhd )i
BR[|tk (21, 72) PE s (21, 25) |1 2]
(L i)
nh24E [E[p)sk (21, 22)|z1]*
+ n [ [ul n( 1 2)| 1] ]) :OP(]_)

(1+ /nhi)*

where we use Lemmas 5 and 8, and nhd /(14 \/nhd <.
For the other term, by E*[w, (z}, z* )wn(z z%)'] = O for j # p,

_l’_

PR RE )
4
1—1 1—1 i—1 j—1
E* Y ph@n(zf,z5)| =D E*|phn(z), 25" + 12> > B [|uh@n(z], 25) | hn (2, 2))|*]
j=1 j=1 j=2p=1

<CZE*‘N25 (Z17Z2)|4+C7’2E*[|y‘ (Z17Z2)| |IL (Z17Z3)|2]

—Cz—zzmzs (zj,2p) ]4+C’z 322’“25 z],zp|

Jj= lp;«éy J=1p#j

+ Ci 722 Z ‘/J/QS Zj, Zp) ’ |,u25 (Zjvzq)‘

J=1 p#j q#35.p

and

4
i—1

n
Z i g men 12| = 12008 (2B s (a1, 20)| o+ 0 B[] st (1, ) )

which is op(1) by Lemma 5.

Verifying (4.10)
2
n

hd
>t -5t = el + s Yo || )| |7



8rnyv/hd o, . e
+n(2—17SZE ot Z“’?wn 25, 2) | it | =S
i=1
4hd n i—1 2
G —ﬂi)2 Z E’ Z“é‘:’"(zj’z;) Fia| —E Zl‘zwn z;,2;)
i=1 j=1

8rn\/hd
+MZE* Zlhwn z}, j )WFiy

Then, it suffices to show E*[I?] + E*[I2] = op(1). For the term Iy,

n 1—1

= n“fdlzzi( E* | |phion (2, 75) P | i | = B [|hon (2, 25) ]

Z E* [Néwn(zzazg)ﬂéan(zmzp) - ] =Ji+J2

and

n n 11Ai2—1
E*J? gc ZZ > E
11=212=2 j=1
< c"p (s tai 2P |
h2d
< OB B [|uhsy (27, 23) 2 23]

* * * 2 2
E*[|uhn (2, 2) P | Fia | — B [lhton (21, 7))

2

h2d 1 n 1 n . )

= CTnﬁ ' - |pssy (zi,25)|
=1 ]:1

h%;i 1< iy

=B (LSS st DS ko sk
=1 =1 j#i pij

_0 (h’%dEH“zs”(zl’ZQ)’ﬂ hi"E[Enugsﬁzl,zmzﬂﬂ>
= Op e n L

which is op(1) by Lemma 5. For the term Jo, for j # p and ¢ # r,

-

E* {E* [“/2&\)71( Z;, j)l’l’2wn<zz ’ Zp) :|E* [“2"‘)”( Z;, q)l’l’2wn<zz ’ Zr)

unless j = q¢,p=7ror j=r,p=q. Then,

B} < CNE" |B [ (of. 25 007 23

* % 2
Z27Z3}

24



< coniee [ [u’zsﬂz; 235 (2. 7)

* * 2
Zy, Z3]
2
n

1 n

SO e N (1S skl mnistn)
=1 j=1 p 1»?7“»]'
n

1
_Ch2d ZZ Z Z N2S (zi,2p) WoS, (z],zp)uzs (ZZan)MQS (2, 2q)

=1 J#l DPF1,J qF4,J,p

n n3 ZZ Z \st Ziy Zj )|y, (Zz,Zp)\Q n2 n2ZZ|u2s Zi,2j)|

i=1 j#i p#i,j i=1 j#i

h2RE [E[|phst (21, 22)|?|21]?
:OP<h721dE[E[NIQS£(Z1,Z2)N§S£(Z17Z3)|Zz,z3]2} + [Ellzs1( )P lea]”]

n
h2dE ! <L 7 4
+ n |:|IJ’2STL (Zl Zz)’ ] ) _ 0]}9(1)

n2

by Lemmas 5 and 8.
Finally, for the term Is, with j # p

B [B* |1 80 (2 phn (27 7)) | Fio | B | (2 pion (2 23) | Fy || = 0

and we have

r2pd
E*[I5] < C It [E* [/’Lle (z1) Hyton (27, 25)

)

<c ”n ’ (E [E [E* ik (21, 25) |2 hsk (21 75)

2

2
]| + B [ sk )
T sh (] 2] + B s (2, 2) B [ s (2], z’é)lz’fﬂ)-

Note E*[E*[uisy(2],25)21]*] = & iy [mi€n(z)]> + [Wi5517 = Op(1 + (nhg)~!) where 57 =
le':/g MSn,, and E*[u)sk(z1,23)] = p)sk = op(1). Then, it remains to calculate the magnitude of
EX[E*[E*[p) sk (2%, 23) |25 phsk (2%, z3) |25)%]. Writing sq jp = plsE(z4,2,) for a = 1,2, the bootstrap

expectation equals

2

Tem[1 - 1 &
fE: - E: - 2: S1.ipS2.ij
n 4 n < n . Jp J
1=1 j=Llj#i  p=1,p#j
2

I 1 . R
SQ;Z — Z Z 51,jpS2,ij +2nZ; ) Z 51,ij52,ij

i=1 J=Lj#ip=1p#i,j J=Ly#

2
=5 D s20SLpS2ieSiar + 5 > {820551p52i051.0) + 524551 p52i05Lap )}
VX Ry (VR X
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2
+ E {s3 ijS1,ipS1,jr T 82,ij81,jpS2,ipS1,pr } "’ § :{52 ’Usl jp T 52 51 Jp52.ip}

0, 0J:p
2 2 2
+ 3 Z 81,i§52,ij51,ipS2,ip T B Z(Sl,ij32,ij)
i,J,p i.J
where Zm,p’q’r is understood as summation over {1 < ¢,7,p,q,7 < n : no two same indices}.
Then,

*prsy (21, 25) 23] sy, (21, 23)

l—|

N 2
2] ]
(Hznizs (1, 2) 1,51 (2, 75 s (o, ) 51 (2, 75|

+n " E|uhsy (21, 22) sy, (22, 23) whs (21, 24) '), (22, 24) |

+n " E|phsy (21, 22) sy, (22, 23) hs (21, 24) '), (23, 24) |

+n 7 E|(phsy (21, 22)) i) (22, 23) sy (22, 24)]

+ 1 Eluhs) (21, 22) sy, (22, 23) wosy, (21, 23) sy, (23, 24)|

+n 2 {E(pssy (21, 22))° (1) (22, 23))? + E| sy (21, 22) (1185, (22, 23)) sy, (21, 23) |}

+n 7 E| sy (21, 22) sy, (21, 22) i sy, (21, 23) sy, (21, 23)|

s Blust o )it .2
and E*[I2] = op(1) follows from Lemma 8.

4.3 Technical Lemmas

Lemma 2. Suppose that Assumption 1 holds. Then, there exists h > 0 such that the minimization
problem mingcg M (0;h) has a solution for each h € (0,h). Furthermore, limp, o O(h) = 6y.

Proof. By change-of-variables,
M(0;h) = /E[m(zl, Z2;0)|w1 = w, Wy = W — uh| fw (W) fw(w — uh) K (u)dudw.

By the hypothesis, the dominated convergence theorem implies M (0;h) — My(0) as h | 0. By
convexity of @ — M (0;h), the convergence is uniform on any compact set.
Now, fix € € (0,6). By the hypothesis, n = infg.|g_g,|=c Mo(0) — Mo(6p) > 0. By uniform
convergence of M (0; h), there exists h > 0 such that supgeeg |M (0 h)—Mo(0)| < n/2 for h € (0, h).
Given 6y with ||@; — 0g|| > €, let A € (0,1) be such that ||[A0; + (1 — \)@y|| = €. Write ¥ =
A1 + (1 — \)8o. Now,

M(9;h) < AM(01;h) + (1 — X\)M(6p; h)
= M()(’l?) - M0(90> - 7]/2 < )\(M(@l; h) — M(eo,h))
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= 77/2)\ < M(th) — M(Bo,h)

where the last inequality implies that infgce M (6;h) = ming.|g_g,|<c M (0;h). Then, using con-
vexity (continuity) of @ — M(@;h) on the compact set {8 € R* : ||@ — 6y|| < ¢}, a minimizer

exists.
The above argument also shows that for each e € (0, §), there exists he > 0 such that |@(h)—0g| <
e for h € (0, h). O

Lemma 3. Under Assumption 1(i)(iii) and Assumption 2(iii)(iv), for n, = o(1), 7, = o(1),
’19n = 00 + 0(1),

1
7',1_2{M(19n +t70;10) — M (O 0n) — Els(z1, 22; 90) Ky, (W1 — WQ)]/tTn} — §t'H0t =o(1)
for each t € R¥. In addition, E[s(z1,22; 0(h))Kp, (w1 — w2)] = 0 for 8(h) € 6.
Proof. For t € R¥,

‘M(G + tT; h) - M(B, h) - E[S(Zl, Z9; O)Kh(wl - Wg)]/tT - %Qt/E[H(Wl, W93 9, t)Kh(Wl - WQ)]t‘

72

< |Elea(wi, wo; 6, ¢, 7) K (w1 — wa)]|

= ’ /62(W, w —uh;0,t,7) fw(W) fw(W — uh) K (u)dwdu

where the integral in the last line converges to 0 as (1,0, h) — (0,60,0) by the dominated conver-

gence theorem under Assumption 1(i)(iii) and Assumption 2(iii)(iv). Now,
EH(wy,wo; 0,t)Kp(wi — wa)| = /H(w, w — uh; 0,t) fw(W) fw (W — uh) K (u)dwdu
and by the dominated convergence theorem,

Bt war 9, 05w = wa)l = [ (s, 0w [ K| = o).

Again by the dominated convergence theorem,
/H(W,w; O, t) fo (W)2dw = /H(w,w; 00) fw(W)2dw + o(1).

Combining above arguments, we obtain the first conclusion.

For the second conclusion,

. < |Ele1(z1,22; 0, t, 7) K (w1 — w)]|

‘M(O +t;h) — M(0; h) — E[s(z1,2; 0) Kj, (w1 — wa)]'tT

and for 0 € @g, as 7 — 0, the right-hand side term goes to zero by the dominated convergence
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theorem, which implies that @ — M(0;h) is (directionally) differentiable on ©f. Then, the desired

result follows because 8(h) is a local minimizer of M (0;h). O

Lemma 4. Suppose Assumption 1(i)(iii) and Assumption 2(iii)(iv) hold. For 7, — 0, 9, =
00+ o(1), and 1, = o(1),

E[Elei(z1,22; 90, t, 7) Ky, (W1 — Wg)\zl]Q] = o(1), ngEHel(Zl,ZQ;ﬂn,t,Tn)Kn (wy — W2)’2] = o(1).

Proof. By change-of-variables,
Ele1 (21, 22; On, t, 70) Ky, (W1 — W2)|z1]

= /E[€1(Z1,Z2;ﬂmt,Tn)|Z1,W2 = w1 — uny| fw(wi —un,)K(u)du

and under the hypothesis, the dominated convergence theorem implies the first result. For the

other result, by change-of-variables,

NeE[le1 (21, 22; O, t, ) Ky, (W1 — w2)|?]

= /]E[el(Zl,ZQ; I, t, Tn)Q\wl,Wg =wi — uny|fw(wi) fw(wy — unn)KQ(u)dudwl

and by the hypothesis, we can apply the dominated convergence theorem to conclude that the
desired result holds. O

Lemma 5. Let s,,(z1,22) = s(21,22; 0(cihy)) Keyn, (W1 — Wa). Suppose hy, — 0, n?hd — oo, and
limy, 0 O(h) = 8. Assumptions 1(i)(iii) and 2(i) imply that for 1,1 € {0,...,L/2},

E|[Efsyi(21,22)|21]|* = o(n),

o Bsn1(21,22)||* = o(n?),

o BE(|8n,1(21,22)[|*|21]%] = o(n),

W B[E]|[s, (21, 22)s,, (21, 23)' || |22, z3]*] = o(1),

heE[E(|Isn1(21,22)s,, j(21,23)'|[|22]*] = o(1).
Proof. For h,, small enough, ||s,,;(z1,22)|| < b(z1)b(z2) K., (W1 — wa) by Assumption 2(i).
Verification of E|[E[s,(z1,22)|z1][|* = o(n). By E[b(z)|w]f(w) < C,
(o, 2]l < [ o E00Ga) ) () e, (31— whaw < Ci) [ Ko

and E||E[s,, (z1,22)|z1]||* < C follows from Eb(z)? < oc.
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Verification of h2E|s, (z1,22)||* = o(n?).

Ellsn(z1,22)]|* < Eb(21)*b(22) Ko, (W1 — W)

< \szghngd/E[b(ZQ)ﬂWz = wi + uh]f(wi + uhy)E[b(z1)" |wi] f(w1) K () dudw;
< Ch; > R[b(z1)Y] / K*(u)du.
Then, h2E||s, (z1,22)||* < Ch,? = o(n?) as n?hd — oc.

Verification of h2E[E|||s, (21, 22)|*|z1]%] = o(n).

Bllsnato1,52) o) < ()2 [ o Bl S K (122
< Cb(zl)2hnd/K(u)2du
so, we have h%d]E[E[HSnJ(ZMz2)||2|zl]2] <C.
Verification of h%dIE[IE[Hsn,l(zl,z2)sn,l~(z1,Z3)’H|z2,Z3}2] =o(1).
Isn1(21, 22)s,, 1(21,23) || < b(21)*b(22)b(23) Kepn,, (W1 — Wa) Koy, (W1 — W3)
and
E[b(z1)2b(zz)b(Z3)Kclhn (wy — Wg)K%n (wy — Wg)‘ZQ, 23]

< b(22)b(z3)h; / E[b(z1)*|w1 = wo + uh]f(ws + uh) K, (w) K., <W3h_w2 - u> du

< hy,"Cb(z2)b(z3) K <WBh_WQ>
where K(w) = [ K, (u) K (w — u)du. Now,
E|b(22)b(23) K, (w3 — wa)|* < Chﬁd/K(u)2dUE[b(Z2)]
and thus, h%dE[E[Hsn,l(zl, z2)sn7l~(z1,Z3)’H|z2, z3)?] < Chﬁ = o(1).

Verification of heE[E[||s,(z1,22)s,, j(z1,23)'|||22]%] = o(1).

E[b(Z1)2b(Z2)b(Zg)Kclhn (Wl — WQ)KCl"hn (Wl — W3)‘Z2}
< b(z2) /E[b(zl)2|wl = wa + uh]f(wz + uh)E[b(z3)|ws = wa + vh]|f(ws + vh)

x K¢ (u)Ke; (v —u) dudv
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< Cb(z2) /I_( (v)dv
and E[E[||sp(21,22)s,, j(21, z3)'|||z2]%] < C, which implies the desired result. O
Lemma 6. Forr € N, E[|pf/w,(21,22)|"|21] < 4"E[|'sn (21, 22)|"|21] almost surely.
Proof. Fori < j <p<g,
wn(2i,2;) = Elsn(2i, 2;) — sn(2i,2p) — sn(2, 2p) + sn(2p, 29)|2i, 2;].
Then, by Jenssen’s inequality,
Bl wn (i, 2) [ [21] < E [(11/5n (2 25)] + 1150 (20, 29)] + 115025, 2)]| + 11/50 (2, 20)])” |24
and by (1 + 2 + m3 + 24)" <40 |l
B[ p'wn(zi, 2))|"|2i] < A"E[|p'sn (21, 22)|"|2i].
O

Lemma 7. Suppose that Assumption 1(i)(iii) and Assumption 2(iii)(iv) hold. Also, assume that
hy, — 0, n?h% — oo, 0, — 6, and that for any z in the support of z, s(z,z) = 0 and m(z,z;0) =0
for 8 € ©). Then, fort € R¥ and1=0,...,L/2,

-1 1
(5) Teustarzist) - o S enilmnait) = on ().
4,J

1<j

Proof. By Hoeffding decomposition,

1
n v % 1
<2> g eni(z7,25;t) — 2 E ' en(2i, 253 t)
l’]

1<J
1 — 1 — 1
= EZQ nZen7l(zf,zj;t)nzz%’l(zi,zj;t)>
i=1 j=1 i
n\ * 1< 1< 1
H(5) S entlaigi) - LY cnslat gt 1 Y ol t) o S entlan i
i<j p=1 p=1 D,q

The variance of > i eni(zf,z55t) — n—lz > i €ni(2is Zj;t) with respect to the bootstrap distribu-
tion is

n n n

n n 2
% Z Z Z eni(2zi,25;t)en 1(2i, 2p; t) — (7112 Z Z en,i(2i,2j; t)> = 01@(1 + (nhg)*1/2>

i=1 j=1p=1 i=1 j=1

30



where the last equality follows from E[E[e, (21, z2;t)|z1]%] = o(1), héE[e, (21, 22;t)?] = o(1) (both
follow from Lemma 4), and ﬁ > i1 D=1 eni(Zi, 25 t) = Elen (21, 225 t)] +0p(1) = op(1) where
the last equality holds because Ele,, ;(z1, z2; t)] = 1 [My1(0n 1 +tr, 1 — My, 1(0,0)] —Elsni(z1,22)]'t
o(1). Thus, by Markov inequality,

1 & 1 & . 1 _ _
n§;2 n;eml(zi,zj;t)— ﬁZenyl(zi,zj;t) zo]p(n 1/2+(n2h2) 1/2>.
i= j= i,j

The variance of e, (z},2};t) — = w2 pet En (2], Zp; ) — 1 > p=1 en (25, Zp; t) + — > pq Enl(Zp; Zg; t)

with respect to the bootstrap distribution is

1 1 n n n 1 n n 2
3 el 0 =235 st o) (2 XS enitmaiv)

i=1 j=1 p=1 i=1 j=1

which is op(h; %) by hiE[e, (21, z2;t)%] = o(1). By Markov inequality,

—1 n
n 1 N 1
<2> Z €n,l szzjat Zenl Z“Zpa _Ezen,l(zjﬁzp;t)+Ezen,l(zp7zl;t)
i<y p=1 D)l
= O[P((n2h7dl)71/2> .
The desired result follows from combining the two stochastic orders. O

Lemma 8. Suppose h,, — 0, n?hd — oo, and limpj0 O(h) = 0y. Assumptions 1(i)(iii) and 2(i)
imply

E[|E[E[sy, (21, 22)|21]s) (21, 23) |z3][|*] = o(n),
heE[||s) (z1,22) | |E[s) (21, 23)|z1]|*] = o(n*hi, An),

ho B[|[Elsy (21, 22)sy, (21, 22)'|21] %] = o(n),

ho B[|[Elsy (21, 22)sy, (21, 23) |22, 23] ||°] = o((nh)* A1),

ho B(|[Elsy (21, 22)sy, (21, 23) |22, 23] ||y, (22, 23) [|”] = o(n),

haE[|Elsy; (21, 22)sy; (21, 23)' |22, 23] |||y, (22, 23) ||| Elsy; (23, 1) |23]|[] = o(n),
haE[|Elsy (21, 22)sy; (21, 23) |22, 23] [[|E[sy; (1, 22) | 20] || E sy (21, 23)|23]|[] = o(1).

Proof. We have

L)2
s (21,22) || < b(21)b(22)Kn, (W1 —wa),  K(u) =D [\|K,(u)

it0,; c Q) for each | = 0,...,L/2 (which occurs for sufficiently large n by Lemma 2). Note that

KC is non-negative, bounded, symmetric, and integrable with respect to the Lebesgue measure.
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Verification of E|E[s%(z1,23)E[sk(z1,22)|21]'|23]||?] = o(n). As shown in the proof of Lemma 5,
E[l|s; (21, 22)|l|z1] < Cb(z1). Then, ||s);(z1, 23)E[s]; (21, 22)|z1]'|| < Cb(21)?0(23)Kh, (W1 — w3) and

E[b(z1)2b(23)Kh,, (W1 — w3)|z3] = b(z3) / E[b(z1)*|w1 = w3 + uh] (w3 + uh)KC(u)du < Cb(z3).

Thus, E|[E[sk (21, 23)Els’ (21, 2) |21 |z]|] < C.
Verification of hiE[||sL(z1,22)||2|E[sL (21, z3) 21][|2] = o(n2hé An). As above,

s (21, 29) ||| Els; (21, 23)|21][|* < Cb(z1)*b(z2)*Ch,, (w1 — w2)*.
Then,

Blb(a1) b(2)° K, (w1 — w2 )?) < 10 [ BlbGa)? e = wf(w)dw [ ()
and hiEl[l|sy; (21, 22) |*|Elsy; (21, 23) |[21] %] < C.
Verification of h29E[|[E[sk (21, 2,)sE (21, 25) |z1]||2] = O(1). We have
Isn (21, 22)85 (21, 22)'| < b(21)?b(22)°Kp,, (W1 — w2)?.

Then, E[b(z1)%b(22)*K},, (w1 — w2)?|z1] < Ch;,%(z1)? and h2?E[|E[sk (21, 22)sk (21, 22) |z1]||?] < C.

Verification of h2E[E|[||s(z1,22)sk(z1,23)|||22,23]?] = o((nhd)? A1). Using the argument for

verifying h2/E[E||s,, (21, 22)s,, j(z1,23)"||| 22, 23])?]] = o(1) in Lemma 5, we can show
hE[Elsy (21, 22)sy; (21, 23) || |22, 23]%] < C

and
_ C
(nh) 2 h2'BIE[||s) (21, 22)s) (21, 23)'|| |22, 25]*] < = o(1).

Verification of h2?E[E[||sk(z1, z2)s% (21, 23) |||22, 23] ||sn (22, 23)||?] = o(n).
(21, 22)80(21,23)' | < b(21)*b(22)b(23) K, (W1 — Wa)KCh,, (W1 — w3)

and as in the proof of Lemma 5 (verification of h24E[E|||s,, (21, z2)s,, [(z1,23)'|||Z2, z3)?] = o(1)), we

can show that

E[b(21)?b(22)b(23) K, (W1 — W) K, (W1 — W) |2, 2] < hy,*Cb(z2)b(23)K <W3h_W2>
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where K(u) = [ K(v)K(u— v)dv. Then,

E[||sn (21, 22)sn (21, 23)' ||| 22, 23] |sn (22, 23) |* < b(22)°b(23)*Kh,, (W3 — W2)Kp, (W2 — w3)?

and
E[b(z2)3b(23)3 K, (W3 — wa)Kp, (Wo — w3)?] < Ch;, 2E[b(z2)?] / K(u)K(u)?du.

Then, h29E[E|||s% (21, z2)sk (21, 23)'|||22, 23] ||sn (22, 23) %] < C.

Verification of hiE[E[||s;(z1,22)s;; (21, 23)’[||22, zs]|ls;; (22, 23) | [Els}; (23, 21)|23][]] = o(n).
E|||sn(21,22)sn(21,23)|||22, 23] < Cb(22)b(23)Kp,, (W3 — W2)

and [|E[sy(z3,21)|z3]|| < Cb(z3). Then,

E[||sn (21, 22)sn (21, 23)’|| |22, 23] [|sn (22, 23) ||| E[sn (23, 21) 23] |

< Cb(22)b(23)* Kn,, (W3 — w2)Kp, (wa — w3)
and E[b(22)%b(z3)*Kp,, (W3 — w2)Kp, (wa — w3)] < Ch,¢. Thus, the desired conclusion holds.
Verification of heE[||E[s,(z1,22)sn(21,23) |22, 23] ||| E[sn (21, 22) |22]|| |E[sn (21, 23)|23]||] = o(1).
[0 (21, 22)8n (21, 23)' |22, 23] | [ Elsn (21, 22) |22] ||| E[sn (21, 23) |23] || < Cb(22)*b(25)°Kn, (w2 — w3)

and E[b(z2)?b(z3)?Kp,, (wo — w3)] < C. Thus, the desired conclusion follows. O

Lemma 9. Under Assumptions 1 and 2,

n n n L/2 L/2 !
ig Z Z Z (Z /\lsnl ZZ,ZJ ) (; /\lsn,l(ziyzk)) = %20 + op <nilld + 1>

i=1 j=1,j#1 k=1,k#7,i n

and

=1,j#i

;& L/2 L/2 !
*32 Z (Z )\lSn,l(Zi,Zj)) (Z )\lsn,l(zi,zj)) = nhd [Ao( ) —I—Op(l)].
=1 =0

Proof. By Hoeffding decomposition,

i=1 j=1,j7#i p=1,p#j,i

L/2 L/2 !
n(n —1) 1 Z Z Z o (Z NiSni(2i, 2 ) (Z )\lsml(zi,zp)) 1
1=0
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L)2
= piE Z NNE[sn1(21,22) |21 | E[s nl(Z17Z2)|Z1] ©1

1 - _
+n23(E[c1,ijp|zi1—c1>+(Z) 33 (Bl igploe, 23] — BlGrsipl] — Bl splzs) + 1)

Z i<j

+ (Z) Z (Crijp — ElC1,ijplzir 25] — E[C1ijp|2i, 2p] — E[C1ijpl25, 2p) + E[C1ijp|24]
E[C1ijplz;] + E[C1,ijp|2zp] — 51)

where

i = sy, (2i,2)sy (2, 2p)' +877(2;, )87/ (2,2p)' + 57 (2, 2;)8; (2. 2:)'
Ajp 1 3

M1,

sk(z1,22) = Zleo NisniL(z1,22), and (1 = E[(yj,]. Using identical arguments for verifying (4.3),
the expectation term in the above Hoeffding decomposition converges to g} 3op1/4. For the mean-
zero U-statistic terms, it suffices to show that their variances are op(1 + (nh%)~!). Lemmas 5 and

8 imply
VIEijela]] < B [E[psh(2i,2))l2:] | +E [E[E[uisk (2, 20)l2,] st (25, 20)12:] | = o(n).
Lemma 8 implies

VIE[C1i5k12i, 2j] — ElCijkl 2] — ElC1i5k125] + C1] < CE[E[C1 k124, 25]°]
< CE((118], (2i, 7)) Elpisy (2i, 25)|2:)°] + CE[E[p)sy; (24, 215y, (2, 25) |24, 25]%] = o(n?).

Lemma 8 implies

V(Crik — Bk 12, 25) — B[C1ign|2i, 2] — E[Cijel 25, 2] + E[Cijklzs) + ECikl25] + E[Cikl2e]]
< CE[(} ] < CE[E[|s] (zi,2))*|z:]*] = o(nh;,*%).

By Hoeffding decomposition,

n
<2> ZNQS ZuZ] (Z’L7Z]) M2

1<J
= poE[s) (i, 2;)s) (2, 2;) g + — Z (ks (2i,25))? | i) — El(phsy; (21,22))7])
1
(5) S an)? — Byt o) ]~ Bt s 2) ]+l (2

Using identical arguments for verifying (4.3), hiE[s%(z;, z;)sL(zi,z;)'] converges to Ag(K.), and the
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remaining U-statistic terms are op(n) by E[E[(u5sE(z,2,))?|2i]?] = o(n®) and E[(pbsk (zi,2;))*] =
o(n?h;;%) because n2hd — oo. O
4.4 Proof of Proposition 1

Since

My(6o +t7) — Mo(60) — E[tp(w, w)]'tT

= /E[el(zl,z2§90at77)|wl = w, Wy = W] fw(w)dw,

Assumption 2(iii)(iv) implies that E[¢)(w, w)] is the (directional) derivative of My(0) at 6y, and
thus, E[¢(w,w)] = 0 because M is minimized at 6y, which lies in the interior of ©.
For the following result, we use multi-index notation as introduced in the paragraph before

Proposition 1.

Lemma 10. Let ¥ (wi,wa) = E[s(z1,22;600)|w1,W2] and L > 2 be an even integer. Suppose
that Assumption 1(i)(iii) holds and that v — p(w,v) is L-times continuously differentiable with
E[supyey |02 (w,v)|| < oo for each || < L. Then, there exist non-random vectors bd! € Rk
l=1,...,L/2 such that

L/2
E[s(z1, 22; 00) Kn (w1 — w2)] = Y by h?* + o(h").
=1

Proof. As just shown, E[)(w,w)] = 0. Then

E[s(z1,z2; 00) K (w1 — wa)] = Z h'o"(a!)*lE[a“,"d)(w,V)‘V:w] /uo‘K(u)du

la| <L

+ Kt Z (a!)_l/ <8f,"1/)(w,v)|vw_mh — 8\‘,"¢(w,v)‘vw> fw(w)dwu®K (u)du

la|=L

where 7 € (0, 1) denotes a mean value which may depend on w and uh. The desired result follows
from the dominated convergence theorem. Note that [u®K(u) = 0 when at least of one element
of a € Zi is odd. O

In the context of Proposition 1,

d
Ly [ Pp(w,v)
e
i=1 ?

The above expansion and Lemma 3 imply that as h | 0,

B fw(w)dw/u?K(u)du.
1
h4[M (0o + th* hy) — M(60; h)] — t'by! — 5t’Hot =o(1).

35



Since t — M (g + th%; h) — M(0g; h) is convex and its minimizer is h=2(0(h) — 6y), the corollary
following Lemma 2 of Hjort and Pollard (1993) implies

h2(8(h) — 6) — (—Hy'bY) =0(1) = 6(h) =6y — Hy'bY 1* + o(h?).

4.5 Bias Expansion

We demonstrate how to verify Assumption 3 with L = 4 under the following primitive conditions.

Assumption 4. Assumptions 1 and 2 hold. There exist RF-valued functions hij(wl,wz;G,t),
1 < i <5 <k, such that l:lij(Wl,WQ;g(),t) is continuous with respect to wg with probability
one, Esupy ey |[hij (w1, v; 0, t) fu (V)] < 00, and letting Ez(w1, wa; 8, t,7) be the k x k symmetric

matrix whose (i, j)th element is

Hij(wl, W9j 9 + tT, t) — Hij(Wl, W9; 9, t) — hij(wl, W9; 9, t)/t’i‘

)

T

we have limy g +—(0,60,0) E3(W1, w1 +u;6,t,7) = O with probability one and for t € R*, there is
7 > 0 such that

E sup HEg(Wl,v;O,t,T)H < 0.
vEW,0€0),7€(0,7)

v — P (w, w + v) satisfies the hypothesis of Lemma 10 with L = 4.

v — fw(v) and v — H(w, v; 60, t) are twice continuously differentiable and for |a| < 2,
E sup |08 (H(w1,v; 60, ) fw(v)}]| < o0.
vew
The following proposition generalizes Proposition 1 to the case of L = 4. In particular, it
demonstrates that the term associated with the third power of h is equal to zero.

Proposition 2. Under Assumption 4, Assumption 8 holds with L = 4.

Proof. We have by = —Hy'b). Let OM(8;h) = E[s(z1,22;0)Kp(w1 — w2)] and H(0,t;7) =
E[H(w1, wa; 0o, t)K,(wi — ws)|. For h,n > 0 close to zero, by Taylor expansion,

OM (8o + bah?;m) = OM(6¢;n) + H(Og, ba; n)boh? + by 1h* + o(h?) (4.12)

where by 1 = Z‘ij:l 2-1 | OH(w, w; 6; b2)/00;]6=0, fw(W)2dwbabs ;. By the expansion H(8y, ba; 1) =
HO + 0(772),
H (69, ba; n)bs = —b)’ + by2n? + o(n?)

where byo = — 3% 271 [ 92H(w, v; 0, ba) /002 |y—w fo (W)2dw [u2K (u)duHy 'b)!. Then, using
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Lemma 10 and (4.12),
OM (8o + bah?;m) = ban? + byt — b h? + by 1h* + baon®h® + o(n* + ).

Then,
OM (8o + bah?;h) = (b4 + by1 + baz)h* + o(h?).

By Lemma 3, as h | 0,
1
h=8{ M (8o + bah® + th*;h) — M(0y + bah® 1)} — h™*OM (6 + bah?; h)'t = 5t’Hot +o(1).

Since h™10M (6y + bah?; h)'t + 3t Hot = Q(t) + o(1) where
Q(t) = (b} +by1 + b))t + %t’Hot,
the corollary following Lemma 2 of Hjort and Pollard (1993) implies
h=4(0(h) — 89 — bah?) + Hy' (b + by + bao) = o(1)

and we have the desired conclusion with by = —Hal (biu + by + [1472). O

Propositions 1 and 2 verified Assumption 3 for L = 2 and L = 4, respectively, under primitive
conditions. The approach underlying those propositions could be extended to verify Assumption 3

for L > 4 at the expense of additional cumbersome notation and technical work.

5 Sufficient Conditions for Motivating Examples

We provide primitive sufficient conditions for each example in Section 2 to verify that Assumptions
1(iv) and 2 hold. Recall that Assumption 1(ii) holds in each of the examples.

5.1 Partially Linear Regression Model

In this example, the objective function mpr (21, z2; 0) is twice-differentiable in @ and we can take
s(2z1,22;0) = spr(21,22;0) = —(y1 — y2 — (x1 — %x2)'0) (x1 — x2)

and

H(wi,wo;0,t) = Hpp (w1, wa) = E[(x1 — x2)(x1 — X2)'|w1, wo]

where the H function does not depend on t and 6.

To verify our assumptions, we impose the following conditions.

Assumption 5. Let C' > 0 be a finite constant.
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(1) Ele*(1 + |Ix]|*) + [|x]1®) W] fw (W) + g(W)*(E[||x*|w] + 1) fw(w) < C with probability one.
Also, E[(e* + g(w)") (1 + [Ix[|*) + [Ix]|*] < oo.

(ii) Ho = [E[(x1 — x2)(x1 — X2)'|[W1 = W, W2 = W] fw(W)2dw is positive definite.
(iii) With probability one, Ele|x, w] = 0.

(iv) The functions w — g(w), w — E[x|w], w — E[xx'|w], w — E[e?|w], w — E[e?x|w],

w — E[e?xx/|w] are continuous at almost every w.

Proposition 3. Under Assumptions 1(i)(iii) and 5, Assumptions 1(iv) and 2 hold for the partially

linear regression example.

Proof.
Assumption 1(iv) Note that
|mec (21, 22;0)] < ([x1]* + [|1x2]*)[16 — Gol|* + g(w1)? + g(w2)® + €T + &3

and by the hypothesis, E[|mpL(z1,22;0)|] < oo for each 6.
For each 0 € ©,

E[mpL(z1,22;0)| w1, w2

= 20— B0)E[(x1 — x2) (31 — x2) [ w1, w](8 — ) + ]g(wa) — g(ws)P

+ %(E[af\wl] + Ele3|w2]) — (8 — 60)E[x1 — x2|w1, wa](g(w1) — g(w2))

and by the hypothesis, wa — E[mpL(21, z2; 0)|w1, ws] is continuous with probability one. Also,
Sup. |E[mey (21,223 0) | W1, W2 = W]| fuw (W)

< C(E[IIX1II2 + [|ea][[w1][|0 — 8ol|* + g(w1)* + E[eF|w1] + (10 — G0l (B[l [[[w1] + 1) (g(w1) + 1))

and the dominating function has a finite expectation for each 6.

My function takes the form
Mo(0) = %(0 — 60)'Hy(0 — 60) + / E[e2w] for (w)2dw
which is uniquely minimized at @ = 0y as Hy is positive definite.
Assumption 2(i) By

[Ispr(21,22; 0)|| < {lex| + |e2f + [g(w1)[ + g(wa) + ([Ix1]] + [Ix2[))[|6 — ol }([[x1 1] + [Ix2]),
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we can take
b(z1) = (1+ lea] + lg(wo)[ + [Ix2[) (1 + [[xa D)
for some ¢ € (0,1). By hypothesis, E[b(z)*|w] fw (W) is bounded and E[b(z)*] < oco.
Assumption 2(ii) For 0 € ©,
o1, 723 0) — so1 (21,223 60)]| < (]| + [xal))2]16 — Boll < 21| + 2110 — 6o
and with probability one, as (6,u) — (6o, 0),
E[s(z1,2z2; 0)|z1, wo = w1 + u] — E[s(z1,2z2; 60)|21, w2 = w1 + u] — 0.
Also, under the maintained hypothesis,

E[sp (21, 2z2; 00)|z1, w2 = w1 +u] = —(g9(w1) — g(W1 + 1) + £1)(x1 — E[x2|w2 = w1 + u])

— —¢e1(x1 — E[x1|w1]) = E[spr(2z1,22;00) |21, W2 = W]

as u — 0. Thus, the first display holds.

Also, the dominated convergence theorem implies

Els(z1,22; 00)s(21,22; 00)' | w1, wa] = (g(w1) — g(w2))*E[(x1 — x2)(x1 — X2)'|W1, W2

+ E[(e] + €3) (%1 — x2) (x1 — X2)'|W1, wo]

converges to E[s(z1,z2; 00)s(z1,22;00) |w1,wa = wi] as u — 0. Combined with this observation,
the bound

|spL(2Z1, Z2; ¥) — spL(Z1,22; 00)||[|spL (21, Z2; 0) ||

< {Ulxall + lIx2l)*(lex| + lea| + [g(w1)[ + [g(w2)| + (|Ixa]| + [|x2[))]|6 — Go[[}[9 — 6o]
implies that the second display holds.
Assumption 2(iii) We have
e1(z1,292;0,t,7) = %T“’;,(Xl — x3)[?
and

Ele1(z1,22; 0, t, 7)|z1, wa] < 7l[t]|(|[x1]]* + E[[jx2]*|w2]) (5.1)

Ele1(21,22;0,t, 7)%|wi, wo] < 272 |[t]|*(E[[|x1]|*|w1] + E[|jx2]|*|w2]).
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Thus, the first and second displays hold. The third display holds because ex(w1,w2;0,t,7) = 0
almost surely. Finally, since ||Hpp (w1, w2;80,t)|| < 2(E[||x1]/?|w1] + E[||x2]|*|wa]),

E sup sup |[He(wi,w;8,t)||fw(w) < C(E[[[x1]*] +1) < 0.
0cof wew

Assumption 2(iv) By (5.1), the first two displays hold. The third display holds as es = 0
almost surely. The fourth and fifth displays hold as Hpr (w1, wo; 0, t) does not depend on 8 and is

continuous with respect to wa.

O]

5.2 Partially Linear Logistic Model

In this example, the objective function is twice-differentiable in 8 and we have
s(z1,22;0) = sprL(21,22; 0) = —1{y1 # Y2} [11A (x50 — x10) — yaA(x16 — x50))] (x1 — x2)
and
H(wi,w2;0,t) = Hprp (w1, wo; 0) = E[1{y1 # 12} M(x10 — x50) (x1 — x2)(x1 — X2)'| w1, o]

where A(u) = A(u)(1 — A(u)) and the H function does not depend on t.
Assumption 6. Let C > 0 be a finite constant.

(i) E[||x]|*|w]fw(w) < C with probability one. E[||x]|4] < co.

(ii) Ho = [Hpw(w, w; 0p) f2(w)dw is positive definite.

(ili)) w — g(w) is continuous for almost all w. The conditional distribution of x given w
has a density with respect to some measure p. Denoting the conditional density by f|w,
S+ [1x]1) sup |y <5 fxjw (XIW + v)dp(x) is finite for almost all w. Also, W = fyjw(x|W) is

continuous almost surely.
(iv) E[(x1 — x2)(x1 — x2)'|w1 = w, wy = w] is invertible for almost all w.

Proposition 4. Under Assumptions 1(i)(iii) and 6, Assumptions 1(iv) and 2 hold for the partially

linear logistic regression example.

Proof.
Assumption 1(iv) We have —InA >0 on R and by In A(u) = u — In(1 4 exp(u)),

0 < mprL(z1,22;0) < —In A(x4,0 — x10) — In A(x}0 — x5,0)
=1In (1 + exp(x50 — x10)) + In (1 + exp(x]0 — x50)) < 2In2 + 2||x1 — x2]|[|6]|

40



where the last inequality uses for v > 0, In(1 + exp(u)) < In2 + u. Thus, E[|mprL(21,22;0)|] < oo
for each 6.
The above bound and E[||x|||w]fw(w) < C imply

0 < E[mewe(21,22;0)[w1, wo = w] < C(1 + E[[|x1[[[w1][|0]] + [|6]])

which in turn implies the second display.

For the first display,

E[1{y1 # y2}y2 In A(x56 — x6)|w1, wo]

= /{1 — A(x100 + g(w1)) }A(x500 + g(W2)) In A(x50 — X1 0) fw (X1 |W1) fw (X2 W2) dp(x1) dp(x2)

where the integrand is continuous in wi, wy and the integrand times (—1) is non-negative and
bounded above by (In 2+ [x50 —x18|) sup|y|<s fxjw (X1|W1+V) sup|jy | <s fx|w(X2|W2+V) which is in-
tegrable by the hypothesis. Then, the dominated convergence theorem implies E[mpr1.(2z1, z2; 0)| w1, W)
is continuous in wo almost surely.

Finally, to show 6y uniquely minimizes My, note that for d € {0, 1},

exp(d{(x1 — x2)'00 + g(w1) — g(w2)})
1+ exp((x1 — x2)'0g + g(w1) — g(w2))

Plyr =d,y2 =1 —dly1 +y2 = 1, %1, X2, W1, W] =
and E[mprr(2z1,22;00)|x1,X2, W1 = W,Wa = W] equals the conditional log-likelihood of (y1,y2)
given y; + y2 = 1,x1,%X2, W1 = w,wo = w. By the hypothesis, P[(x; — x2)'0 = c|w; = w,wqg =
w] = 0 for any ¢ € R, which in turn implies P[E[mprr(2z1,22; 0)|x1,%X2, W1 = W,wWa = W] #

E[mprL(21, 22; 0p)|X1, X2, w1 = w,wy = w]] > 0 for @ # 0. Then, by standard arguments, the

desired conclusion follows.

Assumption 2(i) We have ||spri(z1,22;0)| < ||x1|| + ||x2|, and we can take b(z) = 1 + ||x]|.
Assumption 2(ii) Note ||sprr(21,22;0) — spr(21,22;00)| < ||@ — 6o]|||x1 — x2||? and for any w,
|E[spre (21, 22; 0)|z1, W2 = W] — E[spre(21, 22; 00) |21, w2 = W]|| fw (W)

<116 — 60| C([lx1]|* + 1)
HE[SPLL(Zh Z3; "9)SPLL(Z17Z2§ 9)/’W17W2 = W] - E[SPLL(Z17Z2; 00>SPLL(Z17 Z3; GO)I‘WLW2 = W]H Jw (W)
< 9 =60l C(Ix1|® +1) + 116 — 6o[|C (||| + 1)
where we use (E[||x||*|w] 4+ 1) fw(w) < C. Then, it suffices to show that

wo — E[spr(z1,22; 00) |21, Wo wo — Elsprr (21, 22; 00)spre (21, 22; 00) |W1, wo)
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are continuous with probability one.
We have

E[spre(z1,22; 00) |21, wa] = (1 —y1) /A(X,QBO + g(w2))A(x500 — x1600) (X1 — X2) fxjw (X2|W2)dp(x2)
- /A(Xﬁeo — X500) (X1 — X2) fxjw (X2|W2)dp(x2)
and letting £(x1, w1, X2, wa) = A(x]00 + g(w1)){1 — A(x500 + g(w2)) }A(x5600 — x160)?,

E[SPLL(Zla Z3; OO)SPLL(ZL Z2; 90)/|W1, Wz]

= /{ﬁ(XlaW13X27W2) + L(x2, W, X1, W1) }(x1 — X2) (X1 — X2)' fjw (X1|W1) fxw (X2 |W2)dp(x1)dp(x2).

Under the hypothesis, the dominated convergence theorem implies that both conditional expecta-

tions are continuous in w9 with probability one, proving the desired results.
Assumption 2(iii) For 4,0 with n = ||¢ — 0|,

|mPLL(Z17Z2; V) — merr(21,22; 0) — spri(21, 22; 9)/(19 - 9)|

<n  sup |spre(z1, 22;01) — spr(z1,22; 0)|| < n[x1 — x|
61:(|6:-6]|<n
where the last inequality uses spir(z1,22;0) = —1{y1 # vy2}(y2 — A(x50 — x70))(x2 — x1) and

|A(u) — A()|] < |u —v|. Then, |e1(z1,22;0,t,7)| < 7||t]|?||x1 — X2||?, and the first and second
displays hold.

Using twice continuous differentiability of @ — mpr1(2z1,22; 6), with ||¢ — 0] = n,

OspLL (Zh Z3; 9)

(9 -96) 00’

1
‘mpLL(ZhZQ;ﬁ) - mPLL(Zla Z3; 9) - SPLL(ZhZQ; 0)/(19 - 0) - 5 (19 - 0)

aSPLL(ZhZ% 9) _ aSPLL(ZhZQ; 9)

2
=7 oup 00’ 0=6, 00’

O e|e-6<y

| <Pl =l

Then, noting Hpyp (w1, wo; 0) = E[0sprL(21,22;0)/00'|w1, wa|, we have
lea (w1, wa; 0,t,7)| < 7[t]*E[[[x1 — xa*|w1, wa,

and the third display holds.
We have |[Hppp (w1, wo; 0)|| < 2(E[||x1]|?|w1] + E[||x2]|?|wz]) and the fourth display follows from
(E[llx[1[w] + 1) fw(w) < C and E[|[x]|"] < cc.

Assumption 2(iv) The bound |e1(z1,22;0,t,7)| < 7||t|?||x1 — x2||? implies the first and second

displays. Similarly, |ea(w1, wa;0,t,7)| < 7||t||PE[||x1 — x2||*|w1, 2] implies the third display.
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For the fourth display, we have
HPLL(WLWQ% 9)
= /P(X17W1,X27W2))\(X/19 —x50)(x1 — x2)(x1 — X2)/fx|w(xl‘Wl)fx\w(XQ’WQ)dP(Xl)dp(XQ)
where
P(x1, W1, X2, W2) = A(x100 + g(w1))A(=x500 — g(W2))} + A(=x100 — g(w1))A(x500 + g(W2))
is uniformly bounded and continuous in ws. We have
[Hprr (w1, wi + u;0) — Hppp (w1, wi; )] < / |P(x1, W1, X2, Wi + u)fx|w(X1\W1)
X fx|w(x2‘wl + u) - P(Xh Wi, X2, Wl)fx\w(xl’wl)fx|w(x2|wl)Hxl - X2H2dp(X1)dp(X2)

where the dominating function does not depend on 8. Under the maintained hypothesis, the last
integral goes to zero as u — 0 by the dominated convergence theorem. Thus, the fourth display
holds.

For the fifth display, the dominated convergence theorem implies 6 +— Hpry (w1, wi;0) is contin-

uous with probability one. d

5.3 Partially Linear Tobit Model

Let x12 = x; — %2 and y12 = y1 — y2. In this example, we have
s(21,22;0) = sprr(z1,22;0) = —x121{y12 — X190 > 0} 1{y1 > 0} + x121{y12 — X156 < 0}1{y> > 0}.

Below, we assume the existence of conditional density f,|,, with respect to the Lebesgue measure.

Define p(x,w) = x'0y + g(w) and
(21, 22;0) = 2 /OOO feiw(u+ X150 — p(x1, Wi)[w1) fojw (u — pu(x2, Wa) | wW2)du
g — s, w)iwn) [ ol o
We take

H(wi,wo;0,t) = Hppr(wy, wo; 0,t) = E[{n(zl,ZQ; 0)(1{x50 > 0} + 1{x],0 = 0,x),t > 0})
+ 1(2z2,21; 0) (1{x]50 < 0} + 1{x]50 = 0,x]yt < 0}) }x12%]5| W1, Wa].

Under the conditions stated below, Hppr(w1, w1; 0, t) does not depend on t. In this case, we drop
the last argument.

To verify Assumption 2, we impose the following conditions.
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Assumption 7. Let §,C > 0 be some fixed finite constants.
(i) With probability one (E[||x||*|w] + 1) fw(w) < C, and E[||x||*] < oo.
(ii) The matrix Ho = [ Hppr(w, w; 0) fw(W)?dw is positive definite.

(iii) E[x12X)o|W1 = w,wa = w] is invertible for almost all w. Conditional on w, £ and x are

statistically independent.
(iv) w +— g(w) is continuous.

(v) The conditional distribution of ¢ given w has a Lebesgue density, denoted by f.s,. For
almost all (e,w), fiw(elw) < C, and (e,w) = f.w(e|w) is continuous. For each x,w in

their support,

/ sup fs|w(u_X/00_Q(W)"i"U’W-i-V)dUS C.
R [v],||lv]|<é

(vi) The conditional distribution of x given w has a density with respect to some measure p.
Denoting the conditional density by fyjw, [(1 4+ [|x][?) SUP||v||<s fxlw (XIW + v)dp(x) is finite

for almost all w. Also, w — fy|w (x|w) is continuous almost surely.

Proposition 5. Under Assumptions 1(i)(iii) and 7, Assumptions 1(iv) and 2 hold for the partially

linear Tobit example.

Proof. Let yf = x,600+ g(w;) +¢;. Since the conditional distribution of € given x, w has a Lebesgue

density, we can write
fy*|x,w(y*|xv W) = f5|x,w(y* - XIOO - g(W)|X7 W) = f5|w(y>I< - XIOO - g(W)‘W)

Assumption 1(iv) Since |mprr(2z1,22;0)| < (||x1]]+||%2])]|0], E[merr(2Z1,22;0)] < 00 for 6 € O.
Also, E[m(z1,29;0)|w1, wWa| fw(w2) < C||0]|(E[||x1|||w1] + 1), which implies the second display.
For the first display, letting y12 = y1 — y2 and X153 = X1 — Xo,

mprr(21,22;0) = —1{y1 > 0,52 > 0} 1{sgn(y12 — x1,0) = sgn(y12) }x1,0 sgn(y12)
+ 1{y1 > 0,42 > 0}1{x}50 < y12 < 0} (2512 — X))
+ 1{y1 > 0,52 > 0}1{0 < y12 < X150} (x]20 — 2y12)
— Uy > 0,52 = 0} (1{y1 > x1,0}x1,0 + 1{0 < y1 < x|,0}y1)
+ 1{y1 = 0,52 > 0} (1{y2 > —x1,0}x120 — 1{0 < y2 < —x1,0}y»).

Then, E[mprr(21,22; 0)|w1, W] is an integral with respect to

Ty xow (Y1 1%, W1) Fpw (X2 [ W1) i, w (U312, W2) frjw (X2| W2 ) dyi dys dx dxo
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and the first display follows from the dominated convergence theorem under the maintained hy-
pothesis.

6y being a unique minimizer can be proven following the arguments in Honoré (1992) with
appropriate modifications.

Assumption 2(i) We have ||sprr(z1,22;0)| < ||x1|| + ||x2|, and we can take b(z) = 1 + ||x]|.

Assumption 2(ii) Note

e SPL
E[SPLT<Z1,Z2;9>‘21,W2] =-E [Xu/ f5|w( (XQ,WQ)‘WQ)dU‘Zl,WQ] ]l{y1 > 0} (5.2)
0

0
- E[Xlﬂ{yl > X’12‘9}/ feiw (U — pu(x2, wa)|wa)du 217W2] {y1 > 0}

+E|:X12/ fg‘w( (X27W2)’W2)du)zlaw2:|
0V(y1—x/,0)

Using that f.|y is bounded,

[Elsera(z21, 723 0) 21, wa] — Elspux (21,22 00) |21, 2|
< O(aa|* + Ellxal* [ wa]) 18 — 60l| +E [[x12/|1{x126 < 1 < x{o80} |z, wa] 1{un > 0)
+ E[xizl|1{x1560 < y1 < x156} |z, wo] 1{yn > 0)

and the terms after the inequality goes to zero almost surely as @ — 6y by the dominated conver-
gence theorem, using [ (1 + [|x]|) sup|vj<s fxjw(X|W 4 v)dp(x) < oo with probability one.

Now we verify w — E[sprr(21,22; 00)|21, wo = w]| is continuous almost surely.

Y1 X129()
E [Xw / fepw(u = p(xa, W2)|W2)dU‘Z1, W2}
0

y1—(x1—%) 90
://O — X) fejw (v — p(x, Wo)|[Wa)du fyjw (X|W2)dp(x)

and the integrand is continuous by the hypothesis. Thus the dominated convergence theorem

implies the desired continuity. Doing similar calculations for each of the terms in (5.2), we see that
hm ‘E [sprT(2Z1,22; 00)|21, W2 = W1 + u] — E[sprr(21, 22;00)|21, Wwo = wi]| =0

almost surely. Thus, the first display holds.
Letting f(ya X, W) = f6|w(y - ﬂ(Xv W)‘W)fx\w(x|w)> we have

E[SPLT(ZL Z3; O)SPLT(Zla Z3; 19),’W1, Wz]
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- / / / / 19Xy F (5 X1, W1) F (5 X, wa)dyldysdp(c: ) dp(x2)
OV(maX{y2 ,O}+max{x’120,x’1219})

y2+x12 - -
/ / / / X120 F (5 %1, W1) F (55 X, wa) 1{0 < (8 — 8)}dydyidp(x1)dp(xz)
Y.

5 +x1,0

Y5 +x7,0 . .
/// / x19X19.f (U1, X1, W1) f (3, X2, W2) 1{0 > x5 (9 — 0) }dy] dysdp(x1)dp(x2)
Y.

5 +x100

4 / / / / x12%s F (> %1, W) F (5, X2, wa)dyhdytdp(x1)dp(x2).
—oo J 0V (max{y;,0}—min{x},0,x|,9})

Then, the second display follows from the dominated convergence theorem.
Assumption 2(iii) Note

(ylz - Xizﬁ)ﬂ{ym > X/1219} - (y12 - x’120)]l{y12 > X/129} + X/12(19 - 9)1{912 > X/129}
= (y12 — x129) (1{0 < y12 — X109 < —X)5(9 — 0)} — I{—x,(9 — 0) < y12 — x),9 < 0})

and

(y12 — X129) 1{y12 < X190} — (y12 — X120) 1{y12 < X150} + x15(9 — 0)1{y12 < x],60}
= (Y12 — X/12'9)(]1{—X/12(‘9 —0) < y12 — x50 < 0} — 1{0 < y12 — X)p9 < —X5(0 — 9)})

These expressions imply

le1(z1,22: 0,8, 7)| < [X)at|L{|y12 — x15(60 + t7)| < [X)ot[7}(L{y1 > 0} + I{y2 > 0})  (5.3)
< (el (il + llzl])

and the first two displays hold.
Let v(u,v,x,w) = fow(u — pu(x,w) + v|w) — fw(u — p(x,w)|w). Following calculations in

Honoré (1992), we can show

o0
|e2(21,22;0,¢,7)| < |X'12t|2/ sup  |v(u+ X158, 0,%1, W1)| fojw (v — p(x2, wo)[wa)du  (5.4)
0

vl <[x}5t|T

+ x5 ]2 / sup (u — x/50,v, %2, W2)‘f5|w(u — p(x1, wi)|wi)du

|v|<\x12t|7

+|x’12t|2( sup }y(xue,v,xl,wl)‘qt sup ’y(—XQQO,v,Xg,Wg)D
v|<[xqot|T v| <)t

< Ol (lleall* + [x2]1?).

Then, the third display holds.
For the fourth display, note |7(z1,22;0)| < C with probability one, and ||[Hprr(w1, wo;0,t)|| <
C(E[||x1|/*|w1] + E[||x2]|?|w2]). Thus, the desired result holds.
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Assumption 2(iv) The first three displays follow from (5.3), (5.4), and the dominated conver-
gence theorem.

Let Af(u,x,w,v) = |fow(u — p(X, W+ v)|W + V) — fojw(u — pu(x, w)|w)|. For each x1,Xs, with
sufficiently small € > 0,

sup |7(x1, w1, X2, Wa + v; 0) — 1(x1, w1, Xg, W; 0)|

0o
00 0

< 2/ sup f8|w(u+v—M(XQ,Wl)\wl)Af(u,xQ,wQ,v)du+C’/ Af(u,x2,ws,Vv)du
0 |v<é —oo

where the terms after the inequality go to zero as v — 0 by the dominated convergence theorem.
Then, the fourth display follows from another application of the dominated convergence theorem.

The fifth display and H(w1, wi; 6, t) not depending on t follow from continuity of @ — 1(z1, z2; 6)
with probability one and 7(z1, z2; 6) = 1(2z2,21; 6y) on the event {x},600 = 0}. O

6 Conclusion

This paper developed robust distribution theory and bootstrap-based inference for a broad class
of convex pairwise difference estimators. First, we established a general Gaussian distributional
approximation based on small bandwidth asymptotics and debiasing via the generalized jackknife.
Second, we showed that the nonparametric bootstrap leads to conservative inference due to variance
inflation when localization is high (bandwidth is small). Third, we proposed a new bootstrap-based
inference method that is asymptotically valid, thereby offering more robust uncertainty quantifi-
cation for pairwise difference estimators. Our theoretical work carefully preserved and leveraged
convexity of the objective function, which led to improved sufficient high-level conditions. We
illustrated our robust inference methods with three examples in the context of partially linear
regression, Logit, and Tobit models.

Our results lay the groundwork for several promising avenues of future research. First, our
methods could be generalized to develop bandwidth selection based on higher-order stochastic ex-
pansions. Second, they could be expanded to allow for pairwise difference estimators based on
generated regressors, a class of estimators that sometimes arises in the context of control function
and related econometric methods. Third, when the objective function is smooth, plug-in vari-
ance estimation could be developed as an alternative to bootstrap inference. Finally, our current
results do not cover settings where the objective function is sufficiently non-smooth to result in
non-Gaussian distributional approximations. We plan to investigate these research directions in

upcoming work (Cattaneo et al., 2025Db).
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