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a b s t r a c t

This paper investigates the large sample properties of local regression distribution
estimators, which include a class of boundary adaptive density estimators as a prime
example. First, we establish a pointwise Gaussian large sample distributional approx-
imation in a unified way, allowing for both boundary and interior evaluation points
simultaneously. Using this result, we study the asymptotic efficiency of the estimators,
and show that a carefully crafted minimum distance implementation based on ‘‘redun-
dant’’ regressors can lead to efficiency gains. Second, we establish uniform linearizations
and strong approximations for the estimators, and employ these results to construct
valid confidence bands. Third, we develop extensions to weighted distributions with
estimated weights and to local L2 estimation. Finally, we illustrate our methods with two
applications in program evaluation: counterfactual density testing, and IV specification
and heterogeneity density analysis. Companion software packages in Stata and R are
available.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Kernel-based nonparametric estimation of distribution and density functions, as well as higher-order derivatives
hereof, play an important role in econometrics. These nonparametric estimators often feature both as the main object of
nterest and as preliminary ingredients in multi-step semiparametric procedures (Newey and McFadden, 1994; Ichimura
nd Todd, 2007). Whitney Newey’s path-breaking contributions to non/semiparametric econometrics employing kernel
moothing are numerous.1 This paper hopes to honor his influential work in this area by studying the main large sample
roperties of a new class of local regression distribution estimators, which can be used for non/semiparametric estimation
nd inference.
The class of local regression distribution estimators is constructed using a local least squares approximation to the

mpirical distribution function of a random variable x ∈ X ⊆ R, where the localization at the evaluation point x ∈ X is

✩ Prepared for ‘‘Celebrating Whitney Newey’s Contributions to Econometrics’’ Conference at MIT, May 17–18, 2019. We thank the conference
participants for comments, and Guido Imbens and Yingjie Feng for very useful discussions. We are also thankful to the handling co-Editor, Xiaohong
Chen, an Associate Editor and two reviewers for their input. Cattaneo gratefully acknowledges financial support from the National Science Foundation,
United States of America through grant SES-1947805, and Jansson gratefully acknowledges financial support from the National Science Foundation,
United States of America through grant SES-1947662 and the research support of CREATES, Denmark.

∗ Corresponding author.
E-mail address: cattaneo@princeton.edu (M.D. Cattaneo).
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mplemented via a kernel function and a bandwidth parameter. The local functional form approximation is done using
finite-dimension basis function. When the basis function contains polynomials up to order p ∈ N, the associated least
quares coefficients give estimators of the distribution function, density function, and higher-order derivatives (up to
rder p − 1), all evaluated at x ∈ X . If only a polynomial basis is used, then the estimator reduces to the one recently
roposed in Cattaneo et al. (2020b).
We present two main large sample distributional results for the local regression distribution estimators. First, in

ection 3, we establish a pointwise (in x ∈ X ) Gaussian distributional approximation with consistent standard errors.
ecause these estimators have a U-statistic structure with an n-varying kernel, where n denotes the sample size, we
onstruct a fully automatic Studentization given a choice of basis, kernel, and bandwidth. Furthermore, we show that when
he basis function includes polynomials, the associated density and its higher-order derivatives estimators are boundary
daptive without further modifications. This result generalizes (Cattaneo et al., 2020b) by allowing for arbitrary local basis
unctions, which is particularly useful for efficiency considerations.

To be more precise, for the special case of local polynomial density estimation, Cattaneo et al. (2020b) showed that
he asymptotic variance of the estimator is of the ‘‘sandwich’’ form, which does not reduce to a single matrix (up to a
roportional factor) by a choice of kernel function. This finding indicates that more efficient estimators can be constructed
ia a minimum distance approach based on ‘‘redundant’’ regressors, following well-known results in econometrics (Newey
nd McFadden, 1994). In Section 3.3, we present a novel minimum distance construction for estimation of the density
nd its derivatives, and obtain an efficiency bound for the new minimum distance density estimator. Furthermore, we
how that the efficiency bound coincides with the well-known asymptotic variance lower bound for kernel-based density
stimation (Granovsky and Müller, 1991; Cheng, Fan, and Marron, 1997). We also show that this efficiency bound is tight:
e construct a feasible minimum distance procedure exploiting carefully chosen redundant regressors, which leads to an
stimator with asymptotic variance arbitrarily close to the theoretical efficiency bound. These results offer not only a novel
heoretical perspective on efficiency of classical nonparametric kernel-based density estimation, but also a new class of
ore efficient boundary adaptive density estimators for practice. We also discuss how these results generalize to other

ocal regression distribution estimators in the supplemental appendix.
Our second main large sample distributional result, in Section 4, concerns uniform estimation and inference over a

egion I ⊆ X , based on either the basic local regression distribution estimators or the associated more efficient estimators
btained via our proposed minimum distance procedure. More precisely, we establish a strong approximation to the
oundary adaptive Studentized statistic, uniformly over x ∈ I, relying on a ‘‘coupling’’ result in Giné et al. (2004);

see also Rio (1994) and Giné and Nickl (2010) for closely related results, and Zaitsev (2013) for a review on strong
approximation methods. This approach allows us to deduce a distributional approximation for many functionals of the
Studentized statistic, including its supremum, following ideas in Chernozhukov et al. (2014b). For further discussion and
references on strong approximations and their applications to non/semiparametric econometrics see Chernozhukov et al.
(2014a), Belloni et al. (2015, 2019), and Cattaneo et al. (2020a, 2021a), and references therein.

We employ our strong approximation results for local regression distribution estimators to construct asymptotically
valid confidence bands for the density function and derivatives thereof. Other applications of our results, not discussed
here to conserve space, include specification and shape restriction testing. As a by-product, we also establish a linear
approximation to the boundary adaptive Studentized statistic, uniformly over x ∈ I, which gives uniform convergence
rates and can be used for further theoretical developments. See the supplemental appendix for more details.

In addition to our main large sample results for local regression distribution and related estimators, we briefly discuss
several extensions in Section 5. First, we allow for a weighted empirical distribution function entering our estimators,
where the weights themselves may be estimated. Our results continue to hold in this more general case, which is
practically relevant as illustrated in our empirical applications. Second, we present and study an alternative class of
estimators that employ a non-random L2 smoothing, instead of the more standard least squares approximation underlying
our local regression distribution estimators. These alternative estimators enjoy certain theoretical advantages, but require
ex-ante knowledge of the boundary location of X . In particular, we show in the supplemental appendix how these
alternative estimators can be implemented to achieve maximum asymptotic efficiency in estimating the density function
and its derivatives. Third, we also discuss incorporating shape restrictions using the general local basis function entering
the local regression distribution estimators.

Finally, in Section 6, we illustrate our methods with two applications in program evaluation (for a review see
Abadie and Cattaneo, 2018). First, we discuss counterfactual density analysis following DiNardo et al. (1996); see
also Chernozhukov et al. (2013) for related discussion based on distribution functions. Second, we discuss specification
testing and heterogeneity analysis in the context of instrumental variables following Kitagawa (2015) and Abadie (2003),
respectively; see also Imbens and Rubin (2015) for background and other applications of nonparametric density estimation
to causal inference and program evaluation. In all these applications, we develop formal estimation and inference methods
based on nonparametric density estimation using local regression distribution estimators implemented with weighted
distribution functions. We showcase our new methods using a subsample of the data in Abadie et al. (2002), corresponding
to the Job Training Partnership Act (JTPA).

From both methodological and technical perspectives, our proposed class of local regression distribution estimators
is different from, and exhibits demonstrable advantages over, other related estimators available in the literature. For
the special case of density estimation (i.e., when the basis function is taken to be polynomial), our resulting kernel-
based density estimator enjoys boundary carpentry over the possibly unknown boundary of X , does not require
2
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reliminary smoothing of the data and hence avoids preliminary tuning parameter choices, and is easy to implement
nd interpret. Cattaneo et al. (2020b) gave a detailed discussion of that density estimator and related approaches in the
iterature, which include the influential local polynomial estimator of Cheng et al. (1997) and related estimators (Zhang
nd Karunamuni, 1998; Karunamuni and Zhang, 2008, and references therein). The class of estimators we consider here
an be more efficient by employing minimum distance estimation ideas (Section 3), easily delivers intuitive estimators of
ensity-weighted averages (Section 5.1), and allows for incorporating shape and other restrictions (Section 5.3), among
ther features that we discuss below. Last but not least, some of the technical results presented herein for the general
lass of estimators, such as asymptotic efficiency (Section 3.3) and uniform inference (Section 4) are new, even for the
pecial case of density estimation in Cattaneo et al. (2020b).
The rest of the paper proceeds as follows. Section 2 introduces the class of local regression distribution estimators.

ection 3 establishes a pointwise distributional approximation, along with a consistent standard error estimator, and
iscusses efficiency focusing in particular on the leading special case of density estimation. Section 4 establishes uniform
esults, including valid linearizations and strong approximations, which are then used to construct confidence bands.
ection 5 discusses extensions of our methodology, while Section 6 illustrates our new methods with two distinct
rogram evaluation applications. Section 7 concludes the paper. The supplemental appendix (SA) includes all proofs of our
heoretical results as well as other technical, methodological and numerical results that may be of independent interest.
oftware packages for Stata and R implementing the main results in this paper are discussed in Cattaneo et al. (2021b).

. Setup

Suppose x1, x2, . . . , xn is a random sample from a univariate random variable x with absolute continuous cumulative
istribution function F (·), and associated Lebesgue density f (·), over its support X ⊆ R, which may be compact and not
ecessarily known. We propose, and study the large sample properties of a new class of nonparametric estimators of F (·),
(·), and derivatives thereof, both pointwise at x ∈ X and uniformly over some region I ⊆ X .
Our proposed estimators are applicable whenever F (·) is suitably smooth near x and admits a sufficiently accurate

inear-in-parameters local approximation of the form:

ϱ(h, x) = sup
|x−x|≤h

⏐⏐⏐F (x) − R(x − x)′θ (x)
⏐⏐⏐ is small for h small, (1)

where R(·) is a known local basis function and θ (x) is a parameter vector to be estimated. As an estimator of θ (x) in (1),
we consider the local regression estimator

θ̂ (x) = argmin
θ

n∑
i=1

Wi

(
F̂i − R′

iθ

)2
, (2)

where Wi = K ((xi − x)/h)/h for some kernel K (·) and some bandwidth h, Ri = R(xi − x), and

F̂i =
1
n

n∑
j=1

1(xj ≤ xi) (3)

is the empirical distribution function evaluated at xi, with 1(·) denoting the indicator function.
The generic formulation (1) is motivated in part by the important special case where F (·) is sufficiently smooth, in

hich case

F (x) ≈ F (x) + f (x)(x − x) + · · · + f (p−1)(x)
1
p!

(x − x)p for x ≈ x, (4)

and f (s)(x) = dsf (x)/dxs|x=x are higher-order density derivatives. Of course, the approximation (4) is of the form (1) with
R(u) = (1, u, . . . , up/p!)′, and hence θ (x) = (F (x), f (x), . . . , f (p−1)(x))′. In such special case, the estimator θ̂ (x) corresponds
to one of the estimators introduced in Cattaneo et al. (2020b). But, as further discussed below, other choices of R(·) and/or
θ (·) can be attractive, and as a consequence we take (1) as the starting point for our analysis. Section 5 discusses other
extensions and generalization of the basic local regression distribution estimator θ̂ (x) in (2).

The class of estimators defined in (2) is motivated by standard local polynomial regression methods (Fan and Gijbels,
1996). However, well-known results for local polynomial regression are not applicable to the local regression distribution
estimator, θ̂ (x), because the empirical distribution function estimator, F̂i, which plays the role of the ‘‘dependent’’ variable
n the construction, depends not only on xi but also on all of the ‘‘independent’’ observations x1, x2, . . . , xn. This implies
that, unlike the case of standard local polynomial regression, θ̂ (x) cannot be studied by conditioning on the ‘‘covariates’’
x1, x2, . . . , xn. Instead, we employ U-statistic methods for analyzing the statistical properties of θ̂ (x). This observation
explains the quite different asymptotic variance of our estimator: see Section 3.3 for details. Furthermore, as discussed in
Section 5.1, when a weighted distribution function is used in place of F̂i in (2), the resulting (weighted) local regression
distribution estimators are consistent for a density-weighted regression function, as opposed to being consistent for the
regression function itself (as it is the case for standard local polynomial regression methods). Finally, the SA highlights
other technical differences between the two types of local regression estimators.
3
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. Pointwise distribution theory

This section discusses the large sample properties of the estimator θ̂ (x), pointwise in x ∈ X . We first establish
asymptotic normality, and then discuss asymptotic efficiency. Other results are reported in the SA to conserve space.
We drop the dependence on the evaluation point x whenever possible.

3.1. Assumptions

We impose the following assumption throughout this section. We do not restrict the support of X , which can be a
compact set or unbounded, because our estimator automatically adapts to boundary evaluation points.

Assumption 1. x1, . . . , xn is a random sample from a distribution F (·) supported on X ⊆ R, and x ∈ X .
(i) For some δ > 0, F (·) is absolutely continuous on [x− δ, x+ δ] with a density f (·) admitting constants f (x−), ḟ (x−),

f (x+), and ḟ (x+) such that

sup
u∈[−δ,0)

|f (x + u) − f (x−) − ḟ (x−)u|
|u|2

+ sup
u∈(0,δ]

|f (x + u) − f (x+) − ḟ (x+)u|
|u|2

< ∞.

(ii) K (·) is nonnegative, symmetric, and continuous on its support [−1, 1], and integrates to 1.
(iii) R(·) is locally bounded, and there exists a positive-definite diagonal matrix Υh for each h > 0, such that

hR(u) = R(u/h).
(iv) Let Xh,x =

X−x
h . For all h sufficiently small, the minimum eigenvalues of Γh,x and h−1Σh,x are bounded away from

zero, where

Γh,x =

∫
Xh,x

R(u)R(u)′K (u)f (x + hu)du,

Σh,x =

∫
Xh,x

∫
Xh,x

R(u)R(v)′
[
F (x + hmin{u, v}) − F (x + hu)F (x + hv)

]
K (u)K (v)f (x + hu)f (x + hv)dudv.

Part (i) imposes smoothness conditions on the distribution function F (·), separately for the two regions on the left and
n the right of the evaluation point x. In most applications, the distribution function will also be smooth at the evaluation
oint, in which case f (x−) = f (x+) and ḟ (x−) = ḟ (x+). However, there are important situations where F (·) only has
ne-sided derivatives, such as at boundary or kink evaluation points. Part (ii) imposes standard restrictions on the kernel
unction, which allows for all commonly used (compactly supported) second-order kernel functions. Part (iii) requires
hat the local basis R(·) can be stabilized by a suitable normalization. Parts (iv) give assumptions on two (non-random)
atrices which will feature in the asymptotic distribution.
The error of the approximation in (1) depends on the choice of R(·) and θ , and is quantified by ϱ(h), where we suppress

he dependence on the evaluation point x to save notation. The approximation error will be required to be ‘‘small’’ in the
ense that nϱ(h)2/h → 0. In the cases of main interest (i.e., when R(·) is polynomial), we have either ϱ(h) = O(hp+1) or
(h) = o(hp) for some p. The condition can therefore be stated as nh2p+1

→ 0 and nh2p−1
= O(1), respectively, in those

ases.
We do not discuss how to choose the bandwidth h, or the order p if R(·) contains polynomials, as both choices can be

eveloped following standard ideas in the local polynomial literature. We focus instead on distributional approximation
Section 3.2) and asymptotic variance minimization (Section 3.3), given a choice of bandwidth sequence and polynomial
rder. Bandwidth selection can be developed by extending the results in Cattaneo et al. (2020b) and polynomial order
election can be developed following Fan and Gijbels (1996, Section 3.3). In particular, a larger p can lead to more bias
eduction whenever the target population function is smooth enough at the expense of a larger asymptotic variance. We
iscuss this trade-off explicitly in our efficiency calculations (Section 3.3).

.2. Asymptotic normality

We show that, under regularity conditions and if h vanishes at a suitable rate as n → ∞, then

Ω̂−1/2(θ̂ − θ ) ⇝ N (0, I), Ω̂ = Γ̂ −1Σ̂Γ̂ −1, (5)

here

Γ̂ =
1
n

n∑
i=1

WiRiR′

i, Σ̂ =
1
n2

n∑
i=1

ψ̂iψ̂
′

i , ψ̂i =
1
n

n∑
j=1

WjRj(1(xi ≤ xj) − F̂j).

t follows from this result that inference on θ can be based on θ̂ by employing the (pointwise) distributional approximation
ˆ

a
∼ N (θ, Ω̂). The three matrices, Γ̂ , Σ̂ and Ω̂ , depend on the evaluation point x, but such dependence is again suppressed

or simplicity. This distributional result will rely on the ‘‘small’’ bias condition nϱ(h)2/h → 0 mentioned above, which
4
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akes the asymptotic approximation (or smoothing) bias of θ̂ negligible relative to the standard error. From an inference
erspective, such bias condition can be achieved by employing undersmoothing or robust bias correction: see Calonico
t al. (2018, 2020) for discussion and background references. The SA includes more details on the bias of the estimator.
To provide some insight into the distributional approximation (5), and to see why it cannot be established using

tandard results for local polynomial regression, first observe that

θ̂ − θ = Γ̂ −1S, S =
1
n

n∑
i=1

WiRi(F̂i − R′

iθ ),

assuming Γ̂ is invertible with probability approaching one. The statistic S can be written as

S = U + B, U =
1

n(n − 1)

n∑
i,j=1,i̸=j

WjRj

(
1(xi ≤ xj) − F (xj)

)
, (6)

where B consists of a leave-in bias term and a smoothing bias term. Since S is approximately a second-order U-statistic,
result (5) should follow from a central limit theorem for (n-varying) U-statistics under suitable regularity conditions,
including conditions ensuring that the approximation errors are negligible. More specifically, result (5) follows if U is
asymptotically mean-zero Gaussian V[U]

−1/2U ⇝ N (0, I), where V[U] denotes the variance of U , V[U]
−1/2B →P 0, and if

the variance estimator Σ̂ is consistent in the sense that V[U]
−1(Σ̂ − V[U]) →P 0. Moreover, the projection theorem for

U-statistics implies that, under appropriate regularity conditions,

V[U] ≈
1
n
E[ψiψ

′

i ], ψi = E[WjRj1(xi ≤ xj) − F (xj)|xi],

which motivates the functional form of the variance estimator Σ̂ used to form Ω̂ .
The following theorem formalizes the above intuition with precise sufficient conditions.

Theorem 1 (Pointwise Asymptotic Normality). Suppose Assumption 1 holds. If nϱ(h)2/h → 0 and nh2
→ ∞, then (5) holds.

This theorem establishes a (pointwise) Gaussian distributional approximation for the Studentized statistic Ω̂−1/2(θ̂−θ ),
which is valid for each evaluation point x ∈ X . For example, letting c be a vector of conformable dimension and α ∈ (0, 1),
this result justifies the standard 100(1 − α)% confidence interval

CIα(x) =

[
c ′θ̂ (x) − q1−α/2

√
c ′Ω̂(x)c , c ′θ̂ (x) − qα/2

√
c ′Ω̂(x)c

]
,

where qa = inf{u ∈ R : P [N (0, 1) ≤ u] ≥ a}. The above confidence interval is asymptotically valid for each evaluation
oint x, which is reflected by the notation CIα(x). That is,

lim
n→∞

P
[
c ′θ (x) ∈ CIα(x)

]
= 1 − α, for all x ∈ X .

Section 4 develops asymptotically valid confidence bands, which will be denoted by CIα(I) for some region I ⊆ X .

3.3. Efficiency

As it is well known in the literature (Fan and Gijbels, 1996), the standard local polynomial regression estimator of
E[y|x = x], for dependent variable y and independent variable x, has a limiting asymptotic variance of the ‘‘sandwich
form’’ e′

0Γ
−1AΓ −1e0, where eℓ denotes the (ℓ+ 1)th standard basis vector, and

Γ = f (x)
∫ 1

−1
R(u)R(u)′K (u)du, A = V[y|x = x]f (x)

∫ 1

−1
R(u)R(u)′K (u)2du.

his variance structure implies that setting K (·) to be the uniform kernel makes Γ proportional to A (i.e., K (u) = K (u)2
henever K (u) = 1(|u| ≤ 1)), and hence minimizes the above asymptotic variance, at least in the sense that Γ −1AΓ −1

≥
−1. See also Granovsky and Müller (1991) for a more general discussion on the optimality of the uniform kernel for
ernel-based estimation.
Unlike the case of the asymptotic variance of local polynomial regression, however, our local regression distribution

stimators exhibit a more complex and uneven asymptotic variance formula due to their construction. As a result,
mploying the uniform kernel may not exhaust the potential efficiency gains. For example, in the case of local polynomial
ensity estimation (Cattaneo, Jansson, and Ma, 2020b), R(u) is polynomial of order p ≥ 1 and the asymptotic variance of
he density estimator f̂ (x) = e′

1θ̂ (x) takes the form e′

1Γ
−1ΣΓ −1e1 with

Σ = f (x)3
∫ 1 ∫ 1

min{u, v}R(u)R(v)′K (u)K (v)dudv,

−1 −1

5
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hich implies that Γ is no longer proportional to Σ even when the kernel function is uniform. (To show this result, one

irst recognizes that the asymptotic variance of f̂ (x) is h−1e′

1Γ
−1
h ΣhΓ

−1
h e1, where the matrices are defined in Assumption 1.

Then the expression reduces to e′

1Γ
−1ΣΓ −1e1 after taking the limit h → 0, provided that x is an interior evaluation point.

See the SA for omitted details.) This observation applies to the general case where the local basis function R(·) need not
be of polynomial form, or when higher-order derivatives are of interest. See the SA for further discussion and detailed
formulas.

In this section we employ a minimum distance approach to develop a lower bound on the asymptotic variance of the
local regression distribution estimators, and also propose more efficient estimators based on the observation that their
asymptotic variance is of the sandwich form Γ −1ΣΓ −1 but with Γ not proportional to Σ even when the uniform kernel
is used.

To motivate our approach, notice that in many cases it is possible to specify R(·) in such a way that θ can be partitioned
as θ = (θ ′

1, θ
′

2)
′, where θ2 = 0. In such cases several distinct estimators of θ1 are available. To describe some leading

candidates and their salient properties, partition θ̂ , Γ̂ , Σ̂ , and Ω̂ conformable with θ as θ̂ = (θ̂ ′

1, θ̂
′

2)
′ and

Γ̂ =

(
Γ̂11 Γ̂12

Γ̂21 Γ̂22

)
, Σ̂ =

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)
, Ω̂ =

(
Ω̂11 Ω̂12

Ω̂21 Ω̂22

)
.

The ‘‘short’’ regression counterpart of θ̂1 obtained by dropping R2(·) from R(·) = (R1(·)′, R2(·)′)′ is given by

θ̂R,1 = θ̂1 + Γ̂ −1
11 Γ̂12θ̂2,

while an optimal minimum distance estimator of θ1 is given by

θ̂MD,1 = argmin
θ1

(
θ̂1 − θ1

θ̂2

)′

Ω̂−1
(
θ̂1 − θ1

θ̂2

)
= θ̂1 − Ω̂12Ω̂

−1
22 θ̂2. (7)

As a by-product of results obtained when establishing (5), it follows that

Ω̂
−1/2
11 (θ̂1 − θ1) ⇝ N (0, I),

Ω̂
−1/2
R,11 (θ̂R,1 − θ1) ⇝ N (0, I), Ω̂R,11 = Γ̂ −1

11 Σ̂11Γ̂
−1
11 ,

and Ω̂
−1/2
MD,11(θ̂MD,1 − θ1) ⇝ N (0, I), Ω̂MD,11 = Ω̂11 − Ω̂12Ω̂

−1
22 Ω̂21,

under regularity conditions. Since Ω̂ is of ‘‘sandwich’’ form, the estimators θ̂1 and θ̂R,1 cannot be ranked in terms of
(asymptotic) efficiency in general. On the other hand, θ̂MD,1 will always be (weakly) superior to both θ̂1 and θ̂R,1. In fact,
because

θ̂1 = argmin
θ1

(
θ̂1 − θ1

θ̂2

)′ (
Ω̂−1

11 0
0 Ω̂−1

22

)(
θ̂1 − θ1

θ̂2

)
,

and

θ̂R,1 = argmin
θ1

(
θ̂1 − θ1

θ̂2

)′

Γ̂

(
θ̂1 − θ1

θ̂2

)
,

each estimator admits a minimum distance interpretation, but only θ̂MD,1 can be interpreted as an optimal minimum
distance estimator based on θ̂ . See Newey and McFadden (1994) for more discussion on minimum distance estimation.

As a consequence, we investigate whether an appropriately implemented θ̂MD,1 can lead to asymptotic efficiency gains
relative to θ̂1 and θ̂R,1. More generally, as a by-product, we obtain an efficiency bound among minimum distance estimators
and show that this bound coincides with those known in the literature for kernel-based density estimation at interior
points (Granovsky and Müller, 1991; Cheng, Fan, and Marron, 1997).

In the remaining of this section we focus on the case of local polynomial density estimation at an interior point
for concreteness, but the SA presents more general results. Consequently, we assume that F (·) is p-times continuously
differentiable in a neighborhood of x. Then, (4) is satisfied and a natural choice of R(·) is

R(u) =

(
R1(u)′, R2(u)′

)′

=

(
1, P(u)′,Q (u)′

)′

, (8)

where P(u) = (u, u2/2, . . . , up/p!)′ is a polynomial basis, and Q (·) represents redundant regressors. Therefore, in our
minimum distance construction, the parameters are

θ =

(
F (x)

intercept

, f (x), . . . , f (p−1)(x)  
slope, P(·)

, 0, . . . , 0  
redundant, Q (·)

)′

, (9)

with smoothing error of order ϱ(h) = o(hp).
6
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With (8) and (9), we define the minimum distance density estimator as f̂MD(x) = e′

1θ̂MD,1. Similarly, we have f̂ (x) = e′

1θ̂1
and f̂R(x) = e′

1θ̂R,1. Of course, if it is known a priori that the distribution function is p+q times continuously differentiable,
then one can specify Q (·) to include higher order polynomials: Q (u) = (up+1/(p + 1)!, . . . , up+q/(p + q)!)′. By redefining
he parameters as θ = (F (x), f (x), . . . , f (p+q−1)(x))′, the smoothing error will be of order ϱ(h) = o(hp+q). Notice
hat, in this case, f̂ (x) and f̂R(x) correspond to the density estimator introduced in Cattaneo et al. (2020b) implemented
ith R(u) = (1, u, . . . , up+q/(p + q)!)′ and R(u) = (1, u, . . . , up/p!)′, respectively. Since the purpose of this section is to

nvestigate the efficiency gains of incorporating additional redundant regressors, we do not exploit the extra smoothness
ondition, and we will treat Q (·) as redundant regressors even if Q (·) contains higher order polynomials.
As both f̂ (x) and f̂R(x) are (weakly) asymptotically inefficient relative to f̂MD(x) for any choice of Q (·), we consider the

symptotic variance of the minimum distance estimator, which can be obtained by establishing asymptotic counterparts
f Γ̂ and Σ̂ after suitable scaling. Under regularity conditions (e.g., lack of perfect collinearity between P and Q ), the
symptotic variance of the minimum distance ℓth derivative density estimator, f̂ (ℓ)MD (x) = e′

ℓ+1θ̂MD,1 with 0 ≤ ℓ ≤ p − 1, is

AsyVar[f̂ (ℓ)MD (x)] = e′

ℓ

[
ΩPP −ΩPQΩ

−1
QQΩQP

]
eℓ,

here(
Ω11 Ω1P Ω1Q
ΩP1 ΩPP ΩPQ
ΩQ1 ΩQP ΩQQ

)
= Γ −1ΣΓ −1.

Therefore, the objective is to find a function Q (·) that minimizes the asymptotic variance AsyVar[f̂ (ℓ)MD (x)]. Taking Q (·)
calar and properly orthogonalized, without loss of generality, we have

∫ 1
−1 P(u)K (u)du = 0 and

∫ 1
−1(1, P(u)

′)′Q (u)K (u)du
0. It follows that the problem of selecting an optimal Q (·) to minimize AsyVar[f̂ (ℓ)MD (x)] is equivalent to the following

ariational problem:

sup
Q∈Q

[∫ 1
−1

∫ 1
−1 Pℓ(u)Q (v)min{u, v}K (u)K (v)dudv

]2
∫ 1

−1

∫ 1
−1 Q (u)Q (v)min{u, v}K (u)K (v)dudv

(10)

here

Q =

{
Q (·) :

∫ 1

−1
Q (u)K (u)du = 0,

∫ 1

−1
P(u)Q (u)K (u)du = 0

}
,

ith Pℓ(u) = e′

ℓ

(∫ 1
−1 P(u)P(u)

′K (u)du
)−1

P(u) and ℓ = 1, 2, . . . , p−1. The objective function is obtained from the fact that,
fter proper orthogonalization, the matrix Γ becomes block diagonal. See the SA for all other omitted details.
The following theorem characterizes a lower bound for the asymptotic variance of the minimum distance density

stimator among all possible choices of redundant regressors.

heorem 2 (Efficiency: Local Polynomial Density Estimator at Interior Points). Suppose the conditions of Theorem 1 hold. If
∈ X is an interior point, then

inf
Q∈Q

AsyVar[f̂ (ℓ)MD (x)] ≥ νℓ, νℓ = f (x)e′

ℓ

(∫ 1

−1
Ṗ(u)Ṗ(u)′du

)−1

eℓ, 0 ≤ ℓ ≤ p − 1,

here Ṗ(u) = (1, u, . . . , up−1/(p − 1)!)′ is the derivative of P(u).

This theorem establishes a lower bound among minimum distance estimators. Importantly, it is shown in the SA that
his bound coincides with the variance bound of all kernel-type density (and derivatives thereof) estimators employing
he same order of the (induced) kernel function (Granovsky and Müller, 1991). Therefore, our minimum distance approach
heds new light on minimum variance results for nonparametric kernel-based estimators of the density function and its
erivatives.
This lower bound can be (approximately) achieved by setting the redundant regressor Q (·) to include a certain

igher order polynomial function. By direct calculation for each p = 1, 2, . . . , 10, it is also shown in the SA that
imj→∞ AsyVar[f̂ (ℓ)MD,j(x)] = νℓ, where the minimum distance estimator f̂ (ℓ)MD,j(x) = e′

ℓθ̂MD,j is constructed with

Q (u) = u2j+1
− P(u)′

(∫ 1

−1
P(u)P(u)′du

)−1 ∫ 1

−1
P(u)u2j+1du, for ℓ = 0, 2, 4, . . . ,

r

Q (u) = u2j+2
− P(u)′

(∫ 1

P(u)P(u)′du
)−1 ∫ 1

P(u)u2j+2du, for ℓ = 1, 3, 5, . . . ,

−1 −1

7
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Fig. 1. Equivalent kernels of the minimum distance density estimators. Notes. We set P(u) = u or P(u) = (u, u2/2)′ , and K uniform. The redundant
regressor is Q (u) = u2j+1 for j = 1, 2, . . . , 30. The initial equivalent kernel is quadratic (black solid line), and the minimum variance kernel is uniform
(red solid line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and K (·) being the uniform kernel. While we found that other kernel shapes can also be used, we chose the uniform kernel
in this construction for three reasons. First, this choice is intuitive and coincides with the optimal choice in standard local
polynomial regression settings. Second, when p ≥ 3 the other allowed kernel shapes overweight observations near the
boundary of the kernel’s support. Third, the uniform kernel makes the asymptotic variance calculation more tractable.
See the SA for further details.

The resulting recipe for implementation is simple: it proposes a specific choice of Q (·) so that the corresponding
minimum distance estimator approximately achieves the variance bound for j large enough. Interestingly, Q (·) is scalar
and known, but the larger j the closer the asymptotic variance of the minimum distance density estimator will be to
the efficiency bound. We assume Q (·) is orthogonal to P(·) for theoretical convenience. To implement this estimator,
one only needs to run a local polynomial regression of the empirical distribution function on a constant, the polynomial
basis P(·), and one additional regressor, either u2j+1 or u2j+2 (depending on the choice of ℓ), and then apply (7) with the
corresponding estimated variance–covariance matrix.

In Fig. 1, we consider the local linear/quadratic density estimator (ℓ = 0) with the redundant regressor being a higher
order polynomial (i.e., P(u) = u or P(u) = (u, u2/2)′, and Q (u) = u2j+1), and plot the corresponding equivalent kernel
f our minimum distance density estimator for j = 1, 2, . . . , 30. As j increases, the equivalent kernel converges to the
niform kernel, which is well-known to minimize the (asymptotic) variance among all density estimators employing
econd order kernels (Granovsky and Müller, 1991). The asymptotic variance of our proposed minimum distance density
stimator converges to the optimal asymptotic variance as j → ∞.
Finally, in this paper we focus on minimizing the asymptotic variance of the estimator θ̂ and its variants because our

ain goal is inference. However, our results could be modified and extended to optimize the asymptotic mean square
rror (MSE). We do not pursue point estimation optimality further for brevity, but we do note that in the case of local
olynomial density estimation (Cattaneo, Jansson, and Ma, 2020b), the resulting estimator is automatically MSE-optimal
t interior points when p ≤ 2, because the induced equivalent kernel coincides with the Epanechnikov kernel (Granovsky
nd Müller, 1991; Cheng, Fan, and Marron, 1997).

. Uniform distribution theory

The distributional result presented in Theorem 1 is valid pointwise for x ∈ X . We now develop a uniform distributional
pproximation for the Studentized process⎧⎨⎩T (x) =

c ′θ̂ (x) − c ′θ (x)√
′ ˆ

: x ∈ I

⎫⎬⎭ ,

c Ω(x)c

8
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sing the notation in (5), where c is a conformable vector and I ⊆ X is some prespecified region. This stochastic process
is not asymptotically tight, and hence does not converge in distribution. Our approximation proceeds in two steps. First,
for a positive (vanishing) sequence, rL,n, we establish a uniform ‘‘linearization’’ of the process T (·) of the form:

sup
x∈I

|T (x) − T(x)| = OP(rL,n), (11)

where{
T(x) =

1
√
n

n∑
i=1

Kh,x(xi) : x ∈ I

}
with

Kh,x(xi) =

c ′ΥhΓ
−1
h,x

∫
Xh

R(u)
[
1(xi ≤ x + hu) − F (x + hu)

]
K (u) f (x + hu)du√

c ′ΥhΩh,xΥhc
,

nd Ωh,x = Γ −1
h,x Σh,xΓ

−1
h,x . In words, we show that the Studentized process T (·), which involves various pre-asymptotic

estimated quantities, is uniformly close to the linearized process T(·), which is a sample average of independent
observations. To obtain (11), we develop new uniform approximations with precise convergence rates, which may be
of independent interest in semiparametric estimation and inference settings. See the SA for more details.

Second, in a possibly enlarged probability space, we show that there exist a copy of T(·), denoted by T̃(·), and a centered
Gaussian process {B(x) : x ∈ I}, with a suitable variance–covariance structure, such that

sup
x∈I

⏐⏐T̃(x) − B(x)
⏐⏐ = OP(rG,n), (12)

where rG,n is another positive (vanishing) sequence. This type of strong approximation result, when established with
suitably fast rate rG,n → 0, can be used to deduce distributional approximations for statistics such as supx∈I |T (x)|, which
re useful for constructing confidence bands or for conducting hypothesis tests about shape or other restrictions on the
unction of interest. To obtain (12), we employ a result established by Rio (1994), and later extended in Giné et al. (2004);
ee also Giné and Nickl (2010, Proof of their Proposition 5).
In this section we consider a fixed linear combination c for ease of exposition, but in the SA we discuss the more

eneral case where c can depend on both the evaluation point x and the tuning parameter h, which is necessary to
stablish uniform distribution approximations for the minimum distance estimator introduced in Section 3.3. All the
esults reported in this section apply to the latter class of estimators as well.

.1. Assumptions

In addition to Assumption 1, we impose the following conditions on the data generating process. In the sequel,
ontinuity and differentiability conditions at boundary points should be interpreted as one-sided statements (i.e., as in
art (i) of Assumption 1).

ssumption 2. Let I ⊆ X be a compact interval.
(i) The density function f (x) is twice continuously differentiable and bounded away from zero on I.
(ii) There exist some δ > 0 and compactly supported kernel functions K †(·) and {K ‡,d(·)}d≤δ , such that (ii.1)

upu∈R |K †(u)| + supd≤δ,u∈R |K ‡,d(u)| < ∞, (ii.2) the support of K ‡,d(·) has Lebesgue measure bounded by Cd, where C
s independent of d; and (ii.3) for all u and v such that |u − v| ≤ δ,

|K (u) − K (v)| ≤ |u − v| · K †(u) + K ‡,|u−v|(u).

(iii) The basis function R(·) is Lipschitz continuous in [−1, 1].
(iv) For all h sufficiently small, the minimum eigenvalues of Γh,x and h−1Σh,x are bounded away from zero uniformly

or x ∈ I.

The above strengthens and expands Assumption 1. Part (i) requires the density function to be reasonably smooth
niformly in I. Part (ii) imposes additional requirements on the kernel function. Although seemingly technical, it permits
decomposition of the difference |K (u) − K (v)| into two parts. The first part, |u − v| · K †(u), is a kernel function which
anishes uniformly as |u − v| becomes small. Note that this will be the case for all piecewise smooth kernel functions, such
s the triangular or the Epanechnikov kernel. However, difference of discontinuous kernels, such as the uniform kernel,
annot be made uniformly close to zero. This motivates the second term in the above decomposition. Part (iii) requires
he basis function to be reasonably smooth. Together, parts (i)–(iii) imply that the estimator θ̂ (x) will be ‘‘smooth’’ in x,
hich is important to control the complexity of the process T (·). Finally, part (iv) implies that the matrices Γh,x and Σh,x
re well-behaved uniformly for x ∈ I.
9
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.2. Strong approximation

We first discuss the covariance of the process T(·). It is straightforward to show that

Cov[T(x),T(y)] =
c ′ΥhΩh,x,yΥhc√

c ′ΥhΩh,xΥhc
√
c ′ΥhΩh,yΥhc

, Ωh,x,y = Γ −1
h,x Σh,x,yΓ

−1
h,y ,

where

Σh,x,y =

∫
Xh,y

∫
Xh,x

R(u)R(v)′
[
F (min{x + hu, y + hv}) − F (x + hu)F (y + hv)

]
· K (u)K (v)f (x + hu)f (y + hv)dudv,

and Σh,x,x = Σh,x.
Now we state the second main distributional result of this paper in the following theorem.

Theorem 3 (Strong Approximation). Suppose Assumptions 1 and 2 hold, and that h → 0 and nh2/ log(n) → ∞.

1. (11) holds with

rL,n =

√
n
h
sup
x∈I

ϱ(h, x) +
log(n)
√
nh2

.

2. On a possibly enlarged probability space, there exist a copy T̃(·) of T(·), and a centered Gaussian process, {B(x), x ∈ I},
defined with the same covariance as T(·), such that (12) holds with

rG,n =
log(n)
√
nh

.

The first part of this theorem gives conditions such that the feasible Studentized process T (·) is well approximated by
he infeasible (linear) process T(·), uniformly for x ∈ I. The latter process is mean zero, and takes a kernel-based form.
However, standard strong approximation results for kernel-type estimators do not apply directly to the process T(·), as
the implied (equivalent, Studentized) kernel Kh,x(·) depends not only on the bandwidth but also on the evaluation point
in a non-standard way. That is, due to the boundary adaptive feature of the local regression distribution estimators, the
shape of the implied kernel automatically changes for different evaluation points depending on whether they are interior
or boundary points.

Putting the two results together, it follows that the distribution of T (·) is approximated by that of B(·), provided the
following condition holds:√

n
h
sup
x∈I

ϱ(h, x) +
log(n)
√
nh2

→ 0.

o facilitate understanding of this rate restriction, we consider the local polynomial density estimation setting of Cattaneo
t al. (2020b), where the basis function takes the form R(u) = (1, u, u2/2, . . . , up/p!)′ for some p ≥ 1, and the second
lement of θ̂ (x) estimates the density f (x). That is, e′

1θ̂ (x) = f̂ (x) →P f (x) under Assumption 1, where c = e1. By a Taylor
xpansion argument, it is easy to see that the smoothing bias has order hp+1 as long as the distribution function F (·) is
uitably smooth. Then, the above rate restriction reduces to

√
nh2p+1 +

log(n)
√

nh2
→ 0.

Finally, if the goal is to approximate the distribution of supx∈I |T (x)|, then an extra
√
log(n) factor is needed in the

ate restriction, as discussed in Chernozhukov et al. (2014a). A formal statement of such result is given below, after we
iscuss how we can further approximate the infeasible Gaussian process B(·).

.3. Confidence bands

Feasible inference cannot be based on the Gaussian process B(·), as its covariance structure is unknown and has to be
stimated in practice. For estimation, first recall from Sections 2 and 3 that Wi(x) = K ((xi − x)/h)/h, Ri(x) = R(xi − x), and
ˆ (x) =

1
n

∑n
i=1 Wi(x)Ri(x)Ri(x)′. Then, we construct the plug-in estimator of Ωh,x,y as follows:

Ω̂h,x,y = nΥ −1
h Γ̂ (x)−1Σ̂(x, y)Γ̂ (y)−1Υ −1

h , Σ̂(x, y) =
1
n2

n∑
i=1

ψ̂i(x)ψ̂i(y)′

here

ψ̂i(x) =
1
n

n∑
j=1

Wj(x)Rj(x)(1(xi ≤ xj) − F̂j).

The following theorem combines previous results, and justifies the uniform confidence band constructed using critical
values from sup |B̂(x)|. Let X = (x , x , . . . , x )′.
x∈I n 1 2 n

10
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heorem 4 (Kolmogorov–Smirnov Distance). Suppose Assumptions 1 and 2 hold, and that n supx∈I ϱ(h, x)2 log(n)/h +

log(n)5/(nh2) → 0. Then, conditional on Xn, there exists a centered Gaussian process {B̂(x), x ∈ I} with covariance

Cov
[
B̂(x), B̂(y)

⏐⏐ Xn
]

=
c ′ΥhΩ̂h,x,yΥhc√

c ′ΥhΩ̂h,xΥhc
√
c ′ΥhΩ̂h,yΥhc

,

such that

sup
u∈R

⏐⏐⏐⏐P[sup
x∈I

|T (x)| ≤ u
]

− P
[
sup
x∈I

|B̂(x)| ≤ u
⏐⏐⏐Xn

]⏐⏐⏐⏐ = oP(1).

From Theorem 4, an asymptotically valid 100(1 − α)% confidence band for {c ′θ (x) : x ∈ I} is given by

CIα(I) =

{[
c ′θ̂ (x) − q1−α

√
c ′Ω̂(x)c , c ′θ̂ (x) + q1−α

√
c ′Ω̂(x)c

]
, x ∈ I

}
,

here q1−α is the 1 − α quantile of supx∈I |B̂(x)|, conditional on the data. That is,

qa = inf
{
u ∈ R : P

[
sup
x∈I

|B̂(x)| ≤ u
⏐⏐⏐Xn

]
≥ a

}
,

hich can be obtained by simulating the process B̂(·) on a dense grid.
As an alternative to analytic estimation of the covariance kernel, it is possible to consider resampling methods as

n Chernozhukov et al. (2014a), Cheng and Chen (2019), Cattaneo et al. (2020a), and references therein. We relegate
esampling-based inference for future research.

. Extensions and other applications

We briefly outline some extensions of our main results. First, we introduce a re-weighted version of θ̂ , which is useful
n applications as illustrated in Section 6. Second, we discuss a new class of local regression estimators based on a non-
andom L2 loss function, which has some interesting theoretical properties and may be of interest in some semiparametric
ettings. Finally, we discuss how to incorporate restrictions into the estimation procedure, employing the generic structure
f the local basis R(·).

.1. Re-weighted distribution estimator

Suppose (x1, w1), (x2, w2), . . . , (xn, wn) is a random sample, where xi is a continuous random variable with a smooth
umulative distribution function, but now wi is an additional ‘‘weighting’’ variable, possibly random and involving
nknown parameters. We consider the generic weighted distribution parameter

H(x) = E[wi1(xi ≤ x)],

hose practical interpretation depends on the specific choice of wi.
We discuss some examples. If wi = 1, H(·) becomes the distribution function F (·), and hence the results above apply. If

i is set to be a certain ratio of propensity scores for subpopulation membership, then the derivative dH(x)/dx becomes
counterfactual density function, as in DiNardo et al. (1996); see Section 6.1. If wi is set to be a combination of the

reatment assignment and treatment status variables, then the resulting derivative can be used to conduct specification
esting in IV models, or if wi is set to be a certain ratio of propensity scores for a binary instrument, then the derivative
an be used to identify distributions of compliers, as in Imbens and Rubin (1997), Abadie (2003), and Kitagawa (2015);
ee Section 6.2. Other examples of applicability of this extension include bunching, missing data, measurement error, data
ombination, and treatment effect settings.
More generally, when weights are allowed for, there is another potentially interesting connection between the

stimand dH(x)/dx and classical weighted averages featuring prominently in econometrics because dH(x)/dx = E[wi|xi =

]f (x), which is useful in the context of partial means and related problems as in Newey (1994b).
Our main results extend immediately to allow for

√
n-consistent estimated weights wi or, more generally, to estimated

weights that converge sufficiently fast. Specifically, we let F̂w,i(x) =
1
n

∑n
j=1wj1(xj ≤ x) in place of F̂i, and investigate

he large sample properties of our proposed estimator in (2) when wi is replaced by ŵi = wi(β̂) with β̂ an an-consistent
estimator, for some an → ∞, andwi(·) a known function of the data. That is, when estimated weights are used to construct
the weighted empirical distribution function F̂w,i(x). Provided that a−1

n → 0 sufficiently fast, this extra estimation step
will not affect the asymptotic properties of our estimator of the density function or its derivatives (which will be true,
for example, in parametric estimation cases, where an =

√
n under regularity conditions). All the results reported in the

previous sections apply to this extension, which we illustrate empirically below.
11
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.2. Local L2 distribution estimators

The local regression distribution estimator is obtained from a least squares projection of the empirical distribution
unction onto a local basis, where the projection puts equal weights at all observations. That is, (2) employs an
2(F̂ )-projection

θ̂ (x) = argmin
θ

∫ (
F̂ (u) − R(u − x)′θ

)2
K
(
u − x

h

)
dF̂ (u).

his representation motivates a general class of local L2 distribution estimators given by

θ̂G(x) = argmin
θ

∫ (
F̂ (u) − R(u − x)′θ

)2
K
(
u − x

h

)
dG(u)

for some measure G. We show in the SA that all our theoretical results continue to hold for θ̂G, provided that G is absolutely
continuous with respect to the Lebesgue measure and the Radon–Nikodym derivative is reasonably smooth. (Note that G
does not need to be a proper distribution function.)

The estimator θ̂G involves only one average, while the local regression estimator θ̂ has two layers of averages (one from
the construction of the empirical distribution function, and the other from the L2(F̂ )-projection/regression). As a result,
ith suitable centering and scaling, the local L2 distribution estimator, θ̂G, can be written as the sum of a mean-zero

nfluence function and a smoothing bias term. Since θ̂G no longer involves a second order U-statistic (cf. (6)), or a leave-
n bias, pointwise asymptotic normality can be established under weaker conditions: it is no longer needed to assume
h2

→ ∞ (Theorem 1), and nh → ∞ will suffice. Similarly, for the strong approximation results we only need to restrict
og(n)/

√
nh as opposed to log(n)/

√
nh2 (part 1 of Theorem 3).

In addition, the local L2 distribution estimator θ̂G is robust to ‘‘low’’ density. To see this, recall that the local regression
estimator θ̂ involves regressing the empirical distribution on a local basis, which means that this estimator can be
numerically unstable if there are only a few observations near the evaluation point. More precisely, the matrix Γ̂ will
e close to singular if the effective sample size is small.
Although the local L2 distribution estimator θ̂G takes a simpler form, is robust to low density, and its large sample

properties can be established under weaker bandwidth conditions, it does have one drawback: it requires knowledge
of the support X . To be more precise, let G be the Lebesgue measure, then the local L2 distribution estimator may be
iased at or near boundaries of X if it is compact. In contrast, the local regression distribution estimator is fully boundary

adaptive, even in cases where the location of the boundary is unknown. See Cattaneo et al. (2020b) for further discussion
for the case of density estimation.

5.3. Incorporating restrictions

The formulation (2) is general enough to allow for some interesting extensions in the definition of the local regression
distribution estimator. The key observation is that the estimator has a weighted least squares representation with a generic
local basis function R(·), which allows for deploying well-known results from linear regression models. We briefly illustrate
his idea with three examples.

First, consider the case where the local basis R(u) incorporates specific restrictions, such as continuity or lack thereof,
on the distribution function, density function or higher-order derivatives at the evaluation point x. To give a concrete
example, suppose that F (x) and f (x) are known to be continuous at some interior point x ∈ X , while no information is
available for the higher-order derivatives. Then, these restrictions can be effortlessly incorporated into the local regression
distribution estimator by considering the local basis function

R(u) =

(
1, u,

u2

2
1(u < x),

u2

2
1(u ≥ x),

u3

6
1(u < x),

u3

6
1(u ≥ x), . . . ,

up

p!
1(u < x),

up

p!
1(u ≥ x)

)′

.

t follows that f̂ (x) = e′

1θ̂ (x) consistently estimates the density f (x) at the kink point x, while e′

2θ̂ (x) and e′

3θ̂ (x) are
consistent estimators of the left and the right derivative of the density function, respectively (and similarly for other
higher-order one-sided derivatives). In this example, the generalized formulation not only reduces the bias of f̂ (x) = e′

1θ̂ (x)
even in the absence of continuity of higher-order derivatives, but also provides the basis for testing procedures for
continuity of higher-order derivatives; e.g., by considering a statistic based on (e2 − e3)′θ̂ (x). This provides a concrete
illustration of the advantages of allowing for generic local basis. A distinct example was developed in Cattaneo et al.
(2018, 2020b) for density discontinuity testing in regression discontinuity designs.

As a second example, consider imposing shape constraints, such as positivity or monotonicity, in the construction of
the local regression distribution estimator. Such constraints amount to specific restrictions on the parameter space of
θ , which naturally leads to restricted weighted least squares estimation in the context of our estimator. To be concrete,
consider constructing a local polynomial density estimator which is non-negative, in which case R(u) is a polynomial basis
12
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f order p ≥ 1 and (2) is extended to:

θ̂ (x) = argmin
θ

n∑
i=1

Wi(F̂i − R′

iθ )
2 subject to Tθ ≥ 0,

where T denotes a matrix of restrictions; in this example, T = e′

1 to ensure that f̂ (x) = e′

1θ̂ (x) ≥ 0. This example showcases
the advantages of the weighted least squares formulation of our estimator. Local monotonicity constraints, for instance,
could also be easily incorporated in a similar fashion.

The final example of extensions of our basic local regression distribution estimation approach concerns non-identity
link functions, leading to a non-linear least squares formulation. Specifically, (2) can be generalized to θ̂ (x) =

argminθ
∑n

i=1 Wi(F̂i − Λ(R′

iθ ))
2 for some known link function Λ(·). For instance, such extension may be useful to model

distributions with large support or to impose specific local shape constraints.
All of the examples above, as well as many others, can be analyzed using the large sample results developed in this

paper and proper extensions thereof. We plan to investigate these and other extensions in future research.

6. Applications

We discuss two applications of our main results in the context of program evaluation (see Abadie and Cattaneo, 2018,
and references therein).

6.1. Counterfactual densities

In this first application, the objects of interest are density functions over their entire support, including boundaries
and near-boundary regions, which are estimated using estimated weighting schemes, as this is a key feature needed for
counterfactual analysis (and many other applications). Our general estimation strategy is specialized to the counterfactual
density approach originally proposed by DiNardo et al. (1996). We focus on density estimation, and we refer readers
to Chernozhukov et al. (2013) for related methods based on distribution functions as well as for an overview of the
literature on counterfactual analysis.

To construct a counterfactual density or, more generally, re-weighted density estimators, we simply need to set
the weights (w1, w2, . . . , wn) appropriately. In most applications, this also requires constructing preliminary consistent
estimators of these weights, as we illustrate in this section. Suppose the observed data is (xi, ti, z ′

i )
′, i = 1, 2, . . . , n, where

xi continues to be the main outcome variable, zi collects other covariates, and ti is a binary variable indicating to which
group unit i belongs. For concreteness, we call these two groups control and treatment, though our discussion does not
need to bear any causal interpretation.

The marginal distribution of the outcome variable xi for the full sample can be easily estimated without weights (that
is, wi = 1). In addition, two conditional densities, one for each group, can be estimated using w1

i = ti/P[ti = 1] for the
treatment group and w0

i = (1 − ti)/P[ti = 0] for the control group, and are denote by f̂1(x) and f̂0(x), respectively. For
xample, in the context of randomized controlled trials, these density estimators can be useful to depict the distribution
f the outcome variables for control and treatment units.
A more challenging question is: what would the outcome distribution have been, had the treated units had the same

ovariates distribution as the control units? The resulting density is called the counterfactual density for the treated,
hich is denoted by f1▷0(x). Knowledge about this distribution is important for understanding differences between f1(x)

and f0(x), as the outcome distribution is affected by both group status and covariates distribution. Furthermore, the
counterfactual distribution has another useful interpretation: Assume the outcome variable is generated from potential
outcomes, xi = tixi(1) + (1 − ti)xi(0), then under unconfoundedness, that is, assuming ti is independent of (xi(0), xi(1))′
conditional on the covariates zi, f1▷0(x) is the counterfactual distribution for the control group: it is the density function
associated with the distribution of xi(1) conditional on ti = 0.

Regardless of the interpretation taken, f1▷0(x) is of interest and can be estimated using our generic density estimator
f̂ (x) with the following weights:

w1▷0
i = ti ·

P[ti = 0|zi]
P[ti = 1|zi]

P[ti = 1]
P[ti = 0]

.

In practice, this choice of weighting scheme is unknown because the conditional probability P[ti = 1|zi], a.k.a. the
ropensity score, is not observed. Thus, researchers estimate this quantity using a flexible parametric model, such as
robit or Logit. Our technical results allow for these estimated weights to form counterfactual density estimators after
eplacing the theoretical weights by their estimated counterparts, provided the estimated weights converge sufficiently
ast to their population counterparts.

To be more precise, we can model P[ti = 1|zi] = G(b(zi)′β) for some known link function G(·), such as Logit or
Probit, and K -dimensional basis expansion b(zi), such as power series or B-splines. If the model is correctly specified for
some fixed K and basis function b(·), then max1≤i≤n |wi − ŵi| = OP(a−1

n ) with an =
√
n under mild regularity conditions,

and all our results carry over to the setting with estimated weights mentioned in Section 5.1. Alternatively, from a
nonparametric perspective, if K → ∞ as n → ∞, and for appropriate basis function b(·) and regularity conditions,
max1≤i≤n |wi − ŵi| = OP(a−1

n ) with an depending on both K and n. Then, as in the parametric case, our main results carry
over if a−1

→ 0 fast enough. The exact rate requirements can be deduced from the main theorems above.
n

13
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Table 1
Summary Statistics for the JTPA data.

Full JTPA offer JTPA enrollment

N Y N Y

Income 17949.20 17191.13 18321.59 17015.58 19098.44
HS or GED 0.72 0.71 0.72 0.70 0.74
Male 0.46 0.47 0.46 0.48 0.45
Nonwhite 0.36 0.36 0.36 0.36 0.37
Married 0.28 0.27 0.29 0.27 0.29
Work ≤ 12 0.44 0.43 0.44 0.44 0.44
AFDC 0.17 0.17 0.17 0.16 0.19
Age
22–25 0.24 0.25 0.24 0.24 0.25
26–29 0.21 0.20 0.21 0.21 0.21
30–35 0.24 0.25 0.24 0.24 0.25
36–44 0.19 0.19 0.19 0.20 0.19
45–54 0.08 0.08 0.08 0.08 0.07

Sample size 9872 3252 6620 5447 4425

Columns: (i) Full: full sample; (ii) JTPA Offer: whether offered JTPA services; (iii) JTPA Enrollment:
whether enrolled in JTPA. Rows: (i) Income: cumulative income over 30-month period post random
selection; (ii) HS or GED: whether has high school degree or GED; (iii) Male: gender being male; (iv)
Nonwhite: black or Hispanic; (v) Married: whether married; (vi) Work ≤ 12: worked less than 12 weeks
during one year period prior to random assignment; (vii) Age: age groups.

.1.1. Empirical illustration
We demonstrate empirically how marginal, conditional, and counterfactual densities can be estimated with our

roposed method. We consider the effect of education on earnings using a subsample of the data in Abadie et al. (2002).
he data consists of individuals who did not enroll in the Job Training Partnership Act (JTPA). The main outcome variable
s the sum of earnings in a 30-month period, and individuals are split into two groups according to their education
ttainment: ti = 1 for those with high school degree or GED, and ti = 0 otherwise. Also available are demographic
haracteristics, including gender, ethnicity, age, marital status, AFDC receipt (for women), and a dummy indicating
hether the individual worked at least 12 weeks during a one-year period. The sample size is 5447, with 3927 being
ither high school graduates or GED. Summary statistics are available as the fourth column in Table 1. We leave further
etails on the JTPA program to Section 6.2, where we utilize a larger sample and conduct distribution estimation in a
andomized controlled (intention-to-treat) and instrumental variables (imperfect compliance) setting.

It is well-known that education has significant impact on labor income, and we first plot earning distributions
eparately for subsamples with and without high school degree or GED. The two estimates, f̂1(x) and f̂0(x), are plotted in
anel (a) of Fig. 2. There, it is apparent that the earning distribution for high school graduates is very different compared
o those without high school degree. More specifically, both the mean and median of f̂1(x) are higher than f̂0(x), and f̂1(x)
eems to have much thinner left tail and thicker right tail.
As mentioned earlier, direct comparison between f̂1(x) and f̂0(x) does not reveal the impact of having high school

egree on earning, since the difference is confounded by the fact that individuals with high school degree can have very
ifferent characteristics (measured by covariates) compared to those without. We employ covariates adjustments, and
sk the following question: what would the earning distribution have been for high school graduates, had they had the
ame characteristics as those without such degree?
We estimate the counterfactual distribution f1▷0(x) by our proposed method, and is shown in panel (b) of Fig. 2. The

ifference between f̂1▷0(x) and f̂1(x) is not very profound, although it seems f̂1▷0(x) has smaller mean and median. On
he other hand, difference between f̂0(x) and f̂1▷0(x) remains highly nontrivial. Our empirical finding is compatible with
xisting literature on return to education: it is generally believed that education leads to significant accumulation of
uman capital, hence increase in labor income. As a result, educational attainment is usually one of the most important
‘explanatory variables’’ for differences in income.

.2. IV specification and heterogeneity

Self-selection and treatment effect heterogeneity are important concerns in causal inference and studies of socioeco-
omic programs. It is now well understood that classical treatment parameters, such as the average treatment effect or the
reatment effect on the treated, are not identifiable even when treatment assignment is fully randomized due to imperfect
ompliance. Indeed, what can be recovered is either an intention-to-treat parameter or, using the instrumental variables
ethod, some other more local treatment effect, specific to a subpopulation: the ‘‘compliers’’. See Imbens and Rubin (2015)
nd references therein for further discussion. Practically, this poses two issues for empirical work employing instrumental
ariables methods focusing on local average treatment effects. First, since compliers are usually not identified, it is crucial
o understand how different their characteristics are compared to the population as a whole. Second, it is often desirable
14
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Fig. 2. Earning distributions by education, JTPA. Notes: (i) Full: earning distribution for the full sample (n = 5447); (ii) HS or GED: earning distributions
or subgroups with and without high school degree or GED (n = 1520 and 3927, respectively); (iii) No HS or GED, Counterfactual: counterfactual
earning distribution. Point estimates are obtained by using local polynomial regression with order 2, and robust confidence intervals are obtained
with local polynomial of order 3. Bandwidths are chosen by minimizing integrated mean squared errors. All estimates are obtained using companion
R (and Stata) package described in Cattaneo et al. (2021b).

to have a thorough estimate of the distribution of potential outcomes, which provides information not only on the mean
or median, but also on its dispersion, overall shape, or local curvatures.

Motivated by these observations, and to illustrate the applicability of our density estimation methods, we now consider
two related problems. First, we investigate specification testing in the context of local average treatment effects based on
comparison of two (rescaled) densities as discussed by Kitagawa (2015). This method requires estimating two densities
nonparametrically. Second, we consider estimating the density of potential outcomes for compliers in the IV setting
of Abadie (2003), which allows for conditioning on covariates. The resulting density plots not only provide visual guides
on treatment effects, but also can be used for further analysis to construct a rich set of summary statistics or as inputs
for semiparametric procedures. Both methods require estimated weights.

We first introduce the notation and the potential outcomes framework. For each individual there is a binary indicator
of treatment assignment (a.k.a. the instrument), denoted by di. The actual treatment (takeup), however, can be different,
due to imperfect compliance. More specifically, let ti(0) and ti(1) be the two potential treatments, corresponding to di = 0
and 1, then the observed binary treatment indicator is ti = diti(1)+(1−di)ti(0). We also have a pair of potential outcomes,
xi(0) and xi(1), associated with ti = 0 and 1, and what is observed is xi = tixi(1) + (1 − ti)xi(0). Finally, also available are
some covariates, collected in zi. We assume that the observed data is a random sample {(xi, ti, di, z ′

i )
′
: 1 ≤ i ≤ n}.

There are three important assumptions for identification. First, the instrument has to be exogenous, meaning that
onditional on covariates, it is independent of the potential treatments and outcomes. Second, the instrument has to
e relevant, meaning that conditional on covariates, the instrument should be able to induce changes in treatment
akeups. Third, there are no defiers (a.k.a. the monotonicity assumption). We do not reproduce the exact details of those
ssumptions and other technical requirements for identification; see the references given for more details.
Building on Imbens and Rubin (1997), Kitagawa (2015) discusses interesting testable implications in this IV setting,

hich can be easily adapted to test instrument validity using our density estimator. In the current context, the testable
mplications take the following form: for any (measurable) set I ⊂ R,

P[xi ∈ I, ti = 1|di = 1] ≥ P[xi ∈ I, ti = 1|di = 0],
and P[xi ∈ I, ti = 0|di = 0] ≥ P[xi ∈ I, ti = 0|di = 1].

The first requirement holds trivially in the JTPA context, since the program does not allow enrollment without being
offered (that is, P[ti = 1|di = 0] = 0). Therefore we demonstrate the second with our density estimator. Let fd=0,t=0(x)
be the earning density for the subsample di = 0 and ti = 0, that is, for individuals without JTPA offer and not enrolled.
Similarly let fd=1,t=0(x) be the earning density for individuals offered JTPA but not enrolled. Then the second inequality in
the above display is equivalent to, for all x ∈ R,

P[ti = 0|di = 0] · fd=0,t=0(x) ≥ P[ti = 0|di = 1] · fd=1,t=0(x).

Thus, our density estimator can be used directly, where fd=0,t=0(x) is consistently estimated with weights wd=0,t=0
i =

(1 − di)(1 − ti)/P[di = 0, ti = 0], and fd=1,t=0(x) is consistently estimated with wd=1,t=0
i = di(1 − ti)/P[di = 1, ti = 0].

Abadie (2003) showed that the distributional characteristics of compliers are identified, and can be expressed as re-
weighted marginal quantities. We focus on three distributional parameters here. The first one is the distribution of the
15
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Fig. 3. Testing validity of instruments, JTPA. Notes: (i) JTPA: Not Offered & Not Enrolled: the scaled density estimate
∑

i 1(ti=0,di=0)∑
i 1(di=0) f̂d=0,t=0(x); (ii)

JTPA: Offered & Not Enrolled: the scaled density estimate
∑

i 1(ti=0,di=1)∑
i 1(di=1) f̂d=1,t=0(x). Point estimates are obtained by using local polynomial regression

with order 2, and robust confidence bands are obtained with local polynomial of order 3. Bandwidths are chosen by minimizing integrated mean
squared errors. All estimates are obtained using companion R (and Stata) package described in Cattaneo et al. (2021b).

observed outcome variable, xi, for compliers, which is denoted by fc . This parameter is important for understanding
the overall characteristics of compliers, and how different it is from the populations. The other two parameters are
distributions of the potential outcomes, xi(0) and xi(1), for compliers, since the difference thereof reveals the effect of
treatment for this subgroup. They are denoted by fc,0 and fc,1, respectively. The three density functions can also be
estimated using our proposed local polynomial density estimator f̂ (x) with, respectively, the following weights:

wc
i =

1
P[ti(1) > ti(0)]

·

(
1 −

ti(1 − di)
P[di = 0|zi]

−
(1 − ti)di

P[di = 1|zi]

)
,

w
c,0
i =

1
P[ti(1) > ti(0)]

· (1 − ti) ·
1 − di − P[di = 0|zi]

P[di = 0|zi]P[di = 1|zi]
,

w
c,1
i =

1
P[ti(1) > ti(0)]

· ti ·
di − P[di = 1|zi]

P[di = 0|zi]P[di = 1|zi]
.

ere, the weights need to be estimated in practice, unless precise knowledge about the treatment assignment mechanism
s available. As mentioned previously, our results allow for estimated weights such as those obtained by fitting a flexible
ogit or Probit model to approximate the propensity score P[di = 1|zi] so long as they converge sufficiently fast to their
opulation counterparts.

.2.1. Empirical illustration
The JTPA is a large publicly funded job training program targeting at individuals who are economically disadvantaged

nd/or facing significant barriers to employment. Individuals were randomly offered JTPA training, the treatment take-up,
owever, was only about 67% among those who were offered. Therefore the JTPA offer provides valid instrument to study
he impact of the job training program. We continue to use the same data as Abadie et al. (2002), who analyzed quantile
reatment effects on earning distributions.

Besides the main outcome variable and covariates already introduced in Section 6.1, also available are the treatment
ake-up (JTPA enrollment) and the instrument (JTPA Offer). See Table 1 for summary statistics for the full sample and
eparately for subgroups. As the JTPA offers were randomly assigned, it is possible to estimate the intent-to-treat effect
y mean comparison. Indeed, individuals who are offered JTPA services earned, on average, $1130 more than those not
ffered. On the other hand, due to imperfect compliance, it is in general not possible to estimate the effect of job training
i.e. the effect of JTPA enrollment), unless one is willing to impose strong assumptions such as constant treatment effect.

We first implement the IV specification test, which is straightforward using our density estimator f̂ (x). We plot the two
stimated (rescaled) densities in Fig. 3. A simple eyeball test suggests no evidence against instrumental variable validity.
formal hypothesis test, justified using our theoretical results, confirms this finding.
16
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Fig. 4. Earning distributions, JTPA. Notes: (a) earning distributions in the full sample and for compliers; (b) earning distributions by JTPA offer; (c)
earning distributions by JTPA enrollment; (d) distributions of potential outcomes for compliers. Point estimates are obtained by using local polynomial
regression with order 2, and robust confidence bands are obtained with local polynomial of order 3. Bandwidths are chosen by minimizing integrated
mean squared errors. All estimates are obtained using companion R (and Stata) package described in Cattaneo et al. (2021b).

Second, we estimate the density of the potential outcomes for compliers. In panel (a) of Fig. 4, we plot earning
distributions for the full sample and that for the compliers, where the second is estimated using the weightswc

i , introduced
earlier. The two distributions seem quite similar, while compliers tend to have higher mean and thinner left tail in the
earning distribution. Next we consider the intent-to-treat effect, as the difference in earning distributions for subgroups
with and without JTPA offer (a.k.a. the reduced form estimate in the 2SLS context). This is given in panel (b) of Fig. 4.
The effect is significant, albeit not very large. We also plot earning distributions for individuals enrolled (and not) in JTPA
in panel (c). Not surprisingly, the difference is much larger. Simple mean comparison implies that enrolling in JTPA is
associated with $2083 more income.

Unfortunately, neither panel (b) nor (c) reveals information on distribution of potential outcomes. To see the reason,
note that in panel (b) earning distributions are estimated according to treatment assignment, but potential outcomes
are defined according to treatment takeup. And panel (c) does not give potential outcome distributions since treatment
takeup is not randomly assigned. In panel (d) of Fig. 4, we use weighting schemes wc,0

i and wc,1
i to construct potential

earning distributions for compliers, which estimates the identified distributional treatment effect in this IV setting. Indeed,
treatment effect on compliers is larger than the intent-to-treat effect, but is smaller than that in panel (c). The result is
compatible with the fact that JTPA has positive and nontrivial effect on earning. Moreover, it demonstrates the presence of
self-selection: those who participated in JTPA on average would benefit the most, followed by compliers who are regarded
as ‘‘on the margin of indifference’’.
17
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. Conclusion

We introduced a new class of local regression distribution estimators, which can be used to construct distribution,
ensity, and higher-order derivatives estimators. We established valid large sample distributional approximations, both
ointwise and uniform over their support. Pointwise on the evaluation point, we characterized a minimum distance
mplementation based on redundant regressors leading to asymptotic efficiency improvements, and gave precise results
n terms of (tight) lower bounds for interior points. Uniformly over the evaluation points, we obtained valid linearizations
nd strong approximations, and constructed confidence bands. Finally, we discussed several extensions of our work.
Although beyond the scope of this paper, it would be useful to generalize our results to the case of multivariate

egressors xi ∈ Rd. Boundary adaptation is substantially more difficult in multiple dimensions, and hence our proposed
ethods are potentially very useful in such setting. In addition, multidimensional density estimation can be used to
onstruct new conditional distribution, density and higher derivative estimators in a straightforward way. These new
stimators would be useful in several areas of economics, including for instance estimation of auction models.

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.01.006.
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