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Abstract

Density estimation and inference methods are widely used in empirical work. When
the underlying distribution has compact support, conventional kernel-based density es-
timators are no longer consistent near or at the boundary because of their well-known
boundary bias. Alternative smoothing methods are available to handle boundary points
in density estimation, but they all require additional tuning parameter choices or other
typically ad hoc modifications depending on the evaluation point and/or approach con-
sidered. This article discusses the R and Stata package lpdensity implementing a novel
local polynomial density estimator proposed and studied in Cattaneo, Jansson, and Ma
(2020, 2022), which is boundary adaptive and involves only one tuning parameter. The
methods implemented also cover local polynomial estimation of the cumulative distri-
bution function and density derivatives. In addition to point estimation and graphical
procedures, the package offers consistent variance estimators, mean squared error optimal
bandwidth selection, robust bias-corrected inference, and confidence bands construction,
among other features. A comparison with other density estimation packages available in
R using a Monte Carlo experiment is provided.

Keywords: kernel-based nonparametrics, local polynomial, density estimation, bandwidth se-
lection, bias correction, robust inference, boundary carpentry, R, Stata.

1. Introduction

Nonparametric estimation of a probability density function (PDF), as well as its associated
cumulative distribution function (CDF) or higher-order derivatives thereof, plays an impor-
tant role in empirical work across many disciplines. Sometimes these quantities are the main
objects of interest, while in other cases they are useful ingredients in forming more complex
nonparametric or semiparametric statistical procedures. See Wand and Jones (1995) and
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Fan and Gijbels (1996) for classical textbook introductions to kernel-based density and local
polynomial methods.
This article discusses the main methodological and numerical features of the software package
lpdensity, available in both R (R Core Team 2021) and Stata (StataCorp 2019), which imple-
ments the local polynomial smoothing approach proposed and studied in Cattaneo, Jansson,
and Ma (2020, 2022) for estimation of and inference on a smooth CDF, PDF, and derivatives
thereof. In a nutshell, the idea underlying this estimation approach is to first approximate
the discontinuous empirical CDF using local polynomial methods, and then employ that
smoothed approximation to construct estimators of the distribution function, density func-
tion, and higher-order derivatives.
The resulting local polynomial density estimator is intuitive and easy to implement, and ex-
hibits several interesting theoretical and practical features. For example, it does not require
pre-binning or any other complicated pre-processing of the data, and enjoys all of the cele-
brated features associated with local polynomial regression estimation (Fan and Gijbels 1996).
In particular, it automatically adapts to the (possibly unknown) boundaries of the density’s
support, a feature that is unavailable for most other density estimators in the literature. See
Karunamuni and Albert (2005) for a review on this topic. Two exceptions are the local poly-
nomial density estimators of Cheng, Fan, and Marron (1997) and Zhang and Karunamuni
(1998), which require pre-binning of the data or, more generally, pre-estimation of the density
near the boundary, thereby introducing additional tuning parameters that need to be chosen
for implementation. In contrast, the density estimator implemented in the lpdensity package
requires choosing only one tuning parameter: the bandwidth entering the local polynomial
approximation, for which the package also offers data-driven selectors. Furthermore, following
the results in Calonico, Cattaneo, and Farrell (2018, 2022), robust bias-corrected inference
methods are also implemented, which allow using mean squared error (MSE) optimal or the
integrated mean squared error (IMSE) optimal bandwidth choices when forming confidence
intervals or conducting hypothesis testing.
The software implementation covers smooth estimation of the distribution and density func-
tion, and derivatives thereof, for any polynomial order at both interior and boundary points.
Cattaneo, Jansson, and Ma (2020, 2022) give formal large-sample statistical results for these
estimators, including (i) asymptotic expansions of the leading bias and variance, (ii) asymp-
totic pointwise and uniform normal approximations, (iii) consistent standard error estimators,
(iv) consistent data-driven bandwidth selection based on asymptotic MSE expansions of the
point estimators, and (v) asymptotically valid uniform inference and confidence bands. Im-
portantly, all these results apply to both interior and boundary points simultaneously. We
briefly summarize these results in the upcoming sections, and illustrate them numerically,
including a comparison with other methods available in R.
In the remaining of this article, we focus on the R implementation of the software package
lpdensity available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/package=lpdensity, but all functionalities are also available in Stata. See
Appendix B for more details. The R package includes the following two main functions.

• lpdensity(): This function implements the local polynomial approximation to the
empirical distribution function for a grid of evaluation points, and offers smooth point
estimators of the CDF, PDF, and derivatives thereof. The function takes the bandwidth
for each evaluation point as given, and employs the companion function lpbwdensity()
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for data-driven bandwidth selection whenever the bandwidth is not provided. Inference
is implemented by using robust bias correction methods (Calonico, Cattaneo, and Farrell
2018, 2022), and both pointwise confidence intervals and uniform confidence bands are
supported. Standard inference methods assuming undersmoothing or ignoring smooth-
ing bias are also available.

• lpbwdensity(): This function offers pointwise and integrated MSE-optimal bandwidth
selectors for the local polynomial CDF, PDF, and higher-order derivatives estimators
implemented in lpdensity(). The selectors are rate-optimal for both interior and
boundary evaluation points. Under an additional condition on the local polynomial
fit discussed below, they are also consistent and hence (I)MSE-optimal. Both rule-of-
thumb and direct plug-in implementations are available.

In addition, the methods coef(), confint(), plot(), print(), summary() and vcov() are
supported for objects returned by lpdensity(), and the methods coef(), print() and
summary() are supported for objects returned by lpbwdensity(). In particular, the function
plot(), building on the ggplot2 package in R (Wickham 2016), can be used to plot the esti-
mated CDF, PDF, or higher-order derivatives for graphical illustration. This function takes
the output from lpdensity(), and plots both point estimates and confidence intervals/bands
for a collection of grid points.
There are several other packages and functions available for kernel-based density estimation
in R. Table 1 gives a summary of their functionalities. As shown in that table, the package
lpdensity is the first to offer consistent estimation of the CDF, PDF and density derivatives
for both interior and boundary points, higher-order bias reduction, and valid inference both
pointwise (confidence intervals) and uniformly (confidence bands). Section 4 compares the
numerical performance of these packages in a simulation study.
This article continues as follows. Section 2 provides a brief, self-contained overview of the
main ideas underlying the local polynomial estimators implemented in the package lpdensity.
Section 3 illustrates the main features of our package. Section 4 showcases its finite-sample
performance and compares it with other R packages implementing kernel-based density es-
timators. Section 5 concludes. We also include two appendices. Appendix A discusses in
more detail our data-driven bandwidth selectors, and Appendix B illustrates the Stata im-
plementation of the lpdensity package. Installation details, scripts replicating the numerical
results reported herein, links to software repositories, and other companion information, can
be found in the package’s website: https://nppackages.github.io/lpdensity/.

2. Methodology and implementation
This section offers a brief overview of the main methods implemented in the R and Stata
package lpdensity. For formal results, including assumptions, proofs and any other technical
details see Cattaneo, Jansson, and Ma (2020, 2022, hereafter CJM).
We assume that X1, X2, . . . , Xn is a random sample from the random variable X ∈ X , where
F (x) denotes its smooth CDF, f(x) denotes its smooth PDF, and X ⊆ R denotes its (possibly
restricted) support, which can be bounded or unbounded. As it is well known, conventional
kernel density estimators will be biased at or near boundary points, and other density es-
timators must be used if the goal is to estimate a density function on a compact support

https://nppackages.github.io/lpdensity/
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Package Density Valid for Higher-order Standard Valid Confidence
Function derivative boundary bias reduction error inference bands
KernSmooth (Wand and Ripley 2021)

bkde × × × × × ×
locpoly ✓ ✓ ✓ × × ×

ks (Duong 2007, 2021)
kdde ✓ × × × × ×
kde × × × × × ×

np (Hayfield and Racine 2008; Racine and Hayfield 2021)
npudens × × × ✓ − ×
npuniden.boundary × ✓ × ✓ − ×

nprobust (Calonico, Cattaneo, and Farrell 2019, 2020)
kdrobust × × × ✓ ✓ ×

plugdensity (Herrmann and Mächler 2011)
plugin.density × × × × × ×

stats::density × × × × × ×
lpdensity

lpdensity ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of R packages and functions. ✓ indicates the feature is available,
× indicates the feature is not available, and − indicates that inference is available and valid
if undersmoothing is used but that is not the default in the package (and hence inference is
invalid by default).

(Karunamuni and Albert 2005, and references therein). The package lpdensity implements a
simple, easy-to-interpret and boundary adaptive density estimator based on local polynomial
methods. As a by-product, the package also offers a smooth local polynomial estimate of
the CDF as well as density derivatives. To cover all cases in an unified way, we employ the
notation g(ν)(x) = ∂νg(x)/∂xν and g(x) = g(0)(x) for any smooth function g(·), and define
F (x) = F (0)(x), f(x) = F (1)(x), and derivatives of the density function as f (ν−1)(x) = F (ν)(x)
with ν = 1, 2, . . ., with f(x) = f (0)(x).

2.1. Local polynomial distribution and density estimation

To describe the estimators implemented in the package lpdensity, consider first the weighted
empirical distribution function

F̂ (x) = 1
n

n∑
j=1

Wj1(Xj ≤ x),

where 1(·) is the indicator function, and the weights Wj are introduced for empirical ap-
plications such as missing data or counterfactual comparison (see CJM for examples). We
assume these weights are normalized so that

∑n
j=1 Wj/n = 1. The package lpdensity allows

for a possibly estimated weighting scheme embedded in F̂ (x), although for simplicity we will
assume that each Wi = 1 throughout this article. That is, F̂ (x) is taken to be the standard
root-n consistent empirical distribution function estimator of F (x).
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As an alternative to conventional kernel density estimators, consider an estimator that first
smooths out F̂ (x) using local polynomials, and then constructs an estimator of f(x) (and its
derivatives). For x ∈ X , the estimator implemented in the lpdensity package is

β̂p(x) = arg min
b∈Rp+1

n∑
i=1

(
F̂ (Xi) − rp(Xi − x)⊤b

)2
K

(
Xi − x

h

)
=

[
1
0! F̂p(x) 1

1! f̂p(x) 1
2! f̂

(1)
p (x) · · · 1

p! f̂
(p−1)
p (x)

]⊤
,

where rp(u) = (1, u, u2, . . . , up)⊤ is the p-th order polynomial expansion, K(·) is a kernel
function such as the uniform or triangular kernel, and h is a positive vanishing bandwidth
sequence. The estimator approximates the discontinuous empirical CDF F̂ (x) by a smooth lo-
cal polynomial expansion using the weighting scheme implied by the kernel function, localized
around the evaluation point x according to the bandwidth h. CJM showed that

β̂p(x) P→ βp(x) =
[

1
0!F (x) 1

1!f(x) 1
2!f

(1)(x) · · · 1
p!f

(p−1)(x)
]⊤

,

as h → 0 and nh2p−1 → ∞, where P→ denotes convergence in probability. This implies that
the least squares coefficients β̂p(x) are consistent estimators of the CDF, PDF, and derivatives
thereof at the evaluation point x.
Therefore, the generic local polynomial distribution estimator takes the form:

F̂ (ν)
p (x) = f̂ (ν−1)

p (x) = ν!e⊤
ν β̂p(x), 0 ≤ ν ≤ p,

where eν denotes the conformable unit vector that extracts the (ν+1)-th estimated coefficient.
This estimator is implemented in the function lpdensity(), given a choice of evaluation point
x, polynomial degree p, derivative order ν, kernel function K, and bandwidth h. In particular,
the local polynomial density estimator is f̂p(x) = F̂

(1)
p (x) = e⊤

1 β̂p(x), which is implemented
via the default lpdensity(..., p = 2, v = 1), employing a quadratic approximation to the
empirical distribution function to construct the density estimator f̂2(x). Similarly, higher-
order derivatives of the CDF can be estimated through f̂

(ν−1)
p (x) = F̂

(ν)
p (x) = ν!e⊤

ν β̂p(x)
for 2 ≤ ν ≤ p. We recommend using a local polynomial that is one order higher than the
derivative to be estimated, p = ν + 1, or more generally to set p − ν odd. Of course, it is
possible to achieve more bias reduction by increasing the local polynomial order p.
The lpdensity() function employs the triangular kernel by default. Other available options
include the uniform kernel and the Epanechnikov kernel. Generally speaking, the uniform
kernel delivers a smaller asymptotic variance but a larger asymptotic bias for the resulting
point estimator. It is possible to reduce its asymptotic bias by using a kernel that is more
concentrated around the origin, such as the triangular kernel, at the cost of increasing the
asymptotic variance. The choice of the kernel, however, does not affect the orders of the bias
and the variance, and hence this is less of a concern compared to bandwidth selection, which
we discuss in more detail below. In addition, Cattaneo, Jansson, and Ma (2022) show that
more efficiency gains can be achieved by first including a higher-order polynomial term and
then partialling out this term using a minimum distance approach.
The rest of this section outlines the main properties, both statistical and numerical, of the
estimator F̂

(ν)
p (x), and discusses other related issues such as bandwidth selection, variance
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estimation, and valid (robust bias-corrected) inference. While the smooth CDF estimator
F̂p(x) = F̂

(0)
p (x) is useful, the density and higher-order derivatives estimators are perhaps

more relevant for empirical work. In particular, as mentioned before, the density estimator is
intuitive and very easy to implement, while also being boundary adaptive. Thus, the estimator
f̂p(x) can be computed for all evaluation points on the (possibly restricted) support of X in
an automatic and straightforward way. This explains why the main functions in the package
lpdensity refer to density estimation.

2.2. Mean squared error

The estimator F̂
(ν)
p (x) can be written in the familiar weighted least squares form: β̂p(x) =

(X⊤WX)−1(X⊤WY) with X the usual polynomial design matrix and W a diagonal matrix
consisting of kernel weights. The only difference relative to standard local polynomial regres-
sion is that here the “dependent variable” is estimated: Y = [F̂ (X1), F̂ (X2), . . . , F̂ (Xn)]⊤,
where F̂ (x) is the possibly weighted empirical CDF. Unlike other local polynomial density
estimators proposed in the literature (e.g., Cheng, Fan, and Marron 1997; Zhang and Karuna-
muni 1998), the estimator F̂

(ν)
p (x) does not require pre-binning or any other pre-processing of

the data beyond constructing the empirical distribution function. As a result, this estimation
approach removes the need of choosing the number, position, and length of the bins in a
preliminary histogram estimate.
CJM obtained a general stochastic approximation to the bias and variance of the estimator
F̂

(ν)
p (x), ν = 0, 1, 2, . . . , p, for all evaluation points x ∈ X . Here we discuss the leading case

of density estimation and derivatives thereof. For any choice of polynomial order p, and
1 ≤ ν ≤ p, the variance and bias of F̂

(ν)
p (x) are approximately

Var[F̂ (ν)
p (x)] = 1

nh2ν−1 Vν,p(x),

Bias[F̂ (ν)
p (x)] = hp−ν+1

[
F (p+1)(x)B1,ν,p(x) + h · F (p+2)(x)B2,ν,p(x)

]
,

where Vν,p(x), B1,ν,p(x), and B2,ν,p(x) denote quantities that can be constructed directly
using only the data, choice of (preliminary) bandwidth, evaluation point, polynomial order,
derivative order, and kernel function. That is, all these quantities are in pre-asymptotic
form, which has been shown to offer higher-order distributional refinements in the context
of local polynomial regression (Calonico, Cattaneo, and Farrell 2018, 2022). Furthermore, it
can be shown that Vν,p(x), B1,ν,p(x), and B2,ν,p(x) converge (in probability) to well-defined
non-random limits.
Since the above approximations are in pre-asymptotic form and are valid for all evaluation
points, we can define a generic pointwise MSE-optimal bandwidth choice as

hMSE,p(x) = arg min
h>0

MSE[F̂ (ν)
p (x)] = arg min

h>0

{
Var[F̂ (ν)

p (x)] + Bias[F̂ (ν)
p (x)]2

}
.

The optimal bandwidth also depends on ν, but we suppress this in the notation to conserve
notation. Under standard regularity conditions, hMSE,p(x) is MSE optimal in rates for all
evaluation points and choices of p and ν; and is MSE-optimal in constants if either (i) p − ν
is odd or (ii) x is a boundary point. See Appendix A for more details.
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We also define the IMSE-optimal bandwidth choice as follows:

hIMSE,p = arg min
h>0

∫
MSE[F̂ (ν)

p (x)]w(x)dx,

where w(x) denotes a user-chosen weighting scheme. Dependence on ν is again suppressed to
ease notation. In practice, the integral will be approximated using the grid points specified
in lpdensity() or lpbwdensity(), allowing for both a uniform weighting (w(x) = 1) as well
as the empirical distribution weighting.
The MSE-optimal and IMSE-optimal bandwidth selectors, hMSE,p(x) and hIMSE,p, are carefully
developed so that they automatically adapt to boundary points, while also retaining their main
theoretical features (e.g., rate optimality). In practice, these bandwidths can be computed
after replacing the unknown quantities by estimates thereof. We discuss implementation
details below.

2.3. Point estimation and robust bias-corrected inference

Both hMSE,p(x) and hIMSE,p, as well as their feasible counterparts, denoted by ĥMSE,p(x) and
ĥIMSE,p, can be used to construct MSE-optimal or IMSE-optimal point estimators for the
PDF or its derivatives. The package lpdensity also allows for CDF estimation and computes
an (I)MSE-optimal bandwidth, though we do not provide the details here to conserve space:
some stochastic approximations change in non-trivial ways because the CDF estimator is√

n-consistent. See CJM for more details.
As it is well known in the nonparametric literature, standard Wald-type inference is not valid
when an (I)MSE-optimal bandwidth is used to construct the nonparametric point estimator.
To be specific, the following distributional approximation holds for the standard Wald-type
test statistic based on the local polynomial density estimator constructed using an (I)MSE-
optimal bandwidth:

Tν,p(x) = F̂
(ν)
p (x) − F (ν)(x)√

Var[F̂ (ν)
p (x)]

⇝ N (bias, 1), 1 ≤ ν ≤ p,

where⇝ indicates convergence in distribution, and N (µ, σ2) denotes the normal distribution
with mean µ and variance σ2. The bias term cannot be dropped in general: if the point
estimator F̂

(ν)
p (x) is constructed using an (I)MSE-optimal bandwidth, inference based on the

usual “point estimator ± z1−α/2 × standard error” confidence interval is invalid due to the
presence of an asymptotic bias (zα denotes the α quantile of the standard normal distribution).
The mechanical solution to this inferential problem is to undersmooth the point estimator
F̂

(ν)
p (x) using an ad hoc bandwidth h smaller than hMSE(x) or hIMSE. Of course, the function

lpdensity() allows for this approach by simply running bandwidth selection, estimation,
and inference in separate steps (see Section 3 for an illustration).
Calonico, Cattaneo, and Farrell (2018, 2022) showed that undersmoothing is suboptimal for
inference under the same assumptions employed to construct an (I)MSE-optimal bandwidth.
Instead, it is demonstrably better, in terms of higher-order distributional approximations
and asymptotic coverage properties, to employ robust bias correction (RBC). The idea is to
bias correct the point estimator and then adjust the variance accordingly. Heuristically, and
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abusing notation for simplicity, this leads to the Wald-type test statistic

TRBC
ν,p (x) = F̂

(ν),BC
p (x) − F (ν)(x)√

Var[F̂ (ν),BC
p (x)]

⇝ N (0, 1), F̂ (ν),BC
p (x) = F̂ (ν)

p (x) − Bias[F̂ (ν)
p (x)],

which has a valid standard normal distribution even when an MSE, IMSE or a cross-validation-
type bandwidth for F̂

(ν)
p (x) is used. Confidence intervals with correct asymptotic coverage

can be constructed by inverting the test statistic TRBC
ν,p (x). In particular, it can be shown that

a RBC confidence interval is equivalent to employing the test statistic Tν,p+1(x) = TRBC
ν,p (x)

for a particular choice of parameters/implementation. Therefore, the function lpdensity()
employs an RBC test statistic by default, assuming an (I)MSE-optimal or cross-validation-
based bandwidth for the p-th order point estimator is used, denoted generically by hp, and
therefore forms the test statistic

TRBC
ν,p (x) ≡ Tν,p+1(x; hp) =

F̂
(ν)
p+1(x; hp) − F (ν)(x)√

Var[F̂ (ν)
p+1(x; hp)]

,

and associated confidence intervals

CIRBC
ν,p (x) ≡ CIν,p+1(x; hp) =

[
F̂

(ν)
p+1(x; hp) ± z1−α/2

√
Var[F̂ (ν)

p+1(x; hp)]
]

.

The notation makes the bandwidth explicit to distinguish the two polynomial degrees used
in constructing the point estimator and the RBC confidence interval/test statistic: (i) a p-th
order polynomial is used for point estimation (and bandwidth selection), and (ii) a (p + 1)-th
order polynomial is used for inference.
More generally, the package lpdensity implements confidence intervals of the form:

CIRBC,q
ν,p (x) ≡ CIν,q(x; hp) =

[
F̂ (ν)

q (x; hp) ± z1−α/2

√
Var[F̂ (ν)

q (x; hp)]
]

,

with q determining the inference approach. The above confidence interval is thus based on
inverting the statistic TRBC,q

ν,p (x) ≡ Tν,q(x; hp), and by default we set q = p + 1. CJM formally
showed that the RBC confidence intervals have asymptotically correct coverage:

lim
n→∞

P
[
F (ν)(x) ∈ CIRBC,q

ν,p (x)
]

= 1 − α, ∀x ∈ X .

In addition to pointwise confidence intervals, the lpdensity package also offers uniform con-
fidence bands for the CDF, PDF, or derivatives thereof. The uniform confidence band for
F (ν)(x) takes a similar form,

CBRBC,q
ν,p (G) ≡ CBν,q(G; hp) =

{[
F̂ (ν)

q (x; hp) ± zG,1−α/2

√
Var[F̂ (ν)

q (x; hp)]
]

, x ∈ G
}

,

with two noticeable differences. First, the confidence band no longer depends on the eval-
uation point, but rather on a collection of evaluation points, G. Second, the critical value
also changes, which is now denoted by zG,1−α/2. In practice, the new critical value can be
obtained by first simulating a suitable Brownian bridge on the grid G, and then computing the
upper α quantile of the supremum of the simulated process. The option CIuniform = TRUE
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enables estimation and reporting of the uniform confidence band, which is turned off by
default. CJM established a uniformly valid distributional approximation for the stochastic
process {TRBC,q

ν,p (x) : x ∈ G}, and proved that a nominal 1 − α level RBC confidence band is
asymptotically valid:

lim
n→∞

P
[
F (ν)(x) ∈ CIRBC,q

ν,p (G), ∀x ∈ G
]

= 1 − α.

See Cattaneo, Jansson, and Ma (2022) for technical details, regularity conditions, and addi-
tional discussions.
Robust bias correction methods lead to confidence intervals/bands that will not be centered
at the density point estimates because of the recentering introduced by the bias correction.
That is, different polynomial orders are used for constructing point estimates and confidence
intervals/bands. Setting q and p to be equal delivers confidence intervals/bands that are
centered at the point estimates, but requires undersmoothing for valid inference (i.e., an
(I)MSE-optimal bandwdith cannot be used). Hence the bandwidth would need to be specified
manually when q = p, and the point estimates will no longer be (I)MSE-optimal. Sometimes
the point estimates may even lie outside of the confidence intervals/bands, which can happen if
the underlying distribution exhibits high curvature at some evaluation point(s). One possible
solution in this case is to increase the polynomial order p or to employ a smaller bandwidth.

2.4. Bandwidth selection
The package lpdensity implements several bandwidth selectors through lpbwdensity(), in-
cluding MSE-optimal and IMSE-optimal plug-in rules, as well as rule-of-thumb bandwidth
selectors based on a normal reference model. We only outline the main aspects of bandwidth
selection here, but further details are given in Appendix A.
To introduce our bandwidth selectors, recall that the quantities Vν,p(x), B1,ν,p(x), and B2,ν,p(x)
are given in pre-asymptotic form, and hence they can be computed from the data directly
given a pilot/preliminary bandwidth. As a consequence, to construct the (I)MSE-optimal
bandwidth, the only unknown quantities are F (p+1)(x) and F (p+2)(x), which can be con-
sistently estimated using the local polynomial density derivative estimators implemented in
lpdensity() with a pilot/preliminary bandwidth. To be more precise, the MSE-optimal
bandwidth is estimated by

ĥMSE,p(x) = arg min
h>0

{
Var[F̂ (ν)

p (x)] + B̂ias[F̂ (ν)
p (x)]2

}
,

with B̂ias[F̂ (ν)
p (x)] constructed by replacing F (p+1)(x) and F (p+2)(x) with their estimated

counterparts. Similarly, the IMSE-optimal bandwidth selector is given by

ĥIMSE,p = arg min
h>0

∑
gj∈G

{
Var[F̂ (ν)

p (gj)] + B̂ias[F̂ (ν)
p (gj)]2

}
,

where G is the collection of grid points specified in the function (by default, G takes on
nineteen quantile-spaced values over the support of the data).

2.5. CDF estimation
While the estimator F̂

(ν)
p (x) is valid for all ν ≥ 0, our discussion so far focused on the case

ν ≥ 1 because the resulting estimators of the density (ν = 1) and its derivatives (ν ≥ 2)
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are the main focus of the package. Nevertheless, as a by-product, CJM developed analogous
estimation, bandwidth selection and RBC inference results for the smooth CDF estimator
F̂p(x) = F̂

(0)
p (x). These results are also implemented in the package lpdensity via the option

v = 0. For example, CDF estimation using a local constant approximation is obtained using
lpdensity(..., p = 0, v = 0), which employs the corresponding MSE-optimal bandwidth
(bwselect = "mse-dpi") and a local linear approximation for inference (q = p + 1) by de-
fault.

3. Implementation and numerical illustration
We showcase some of the main features of the lpdensity package. The data consists of 2 000
observations simulated from the normal distribution N (1, 1) truncated from below at 0. We
create a discontinuity in density at x = 0 to illustrate the performance of our procedure at
boundaries. Panel (a) of Figure 1 plots a histogram estimate and the true density function.

R> set.seed(42)
R> data <- rnorm(4000, mean = -1)
R> data <- data[data < 0]
R> data <- -1 * data[1:2000]

3.1. Function lpdensity()

The function lpdensity() provides both point estimates as well as RBC inference (confidence
intervals and bands) employing the local polynomial density estimator, given a grid of points
and a bandwidth choice. If the latter are not provided, then by default the function chooses
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(b) Density plot.

Figure 1: Histogram of the simulated data and the density plot.
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nineteen quantile-spaced grid points over the support of the data and computes ĥMSE,p(x) at
each point.
The following command estimates the density function (v = 1, the default) with fixed band-
width bw = 0.5 at points 0, 0.5, . . . , 4, using a local quadratic approximation (p = 2, the
default) to the empirical distribution function. RBC confidence intervals over the grid are
also computed, in this case using a local cubic approximation (q = 3, the default).

R> model1 <- lpdensity(data, bw = 0.5, grid = seq(0, 4, 0.5))
R> summary(model1)

Call: lpdensity

Sample size (n=) 2000
Polynomial order for point estimation (p=) 2
Density function estimated (v=) 1
Polynomial order for confidence interval (q=) 3
Kernel function triangular
Bandwidth selection method user provided

===========================================================================
Point Std. Robust B.C.

Index Grid B.W. Eff.n Est. Error [ 95% C.I. ]
===========================================================================
1 0.0000 0.5000 355 0.2908 0.0436 0.1413 , 0.4121
2 0.5000 0.5000 799 0.3986 0.0147 0.3525 , 0.4402
3 1.0000 0.5000 919 0.4822 0.0160 0.4572 , 0.5545
4 1.5000 0.5000 820 0.4116 0.0150 0.3767 , 0.4675
5 2.0000 0.5000 564 0.2946 0.0137 0.2662 , 0.3465
---------------------------------------------------------------------------
6 2.5000 0.5000 320 0.1475 0.0099 0.1071 , 0.1626
7 3.0000 0.5000 147 0.0674 0.0069 0.0438 , 0.0821
8 3.5000 0.5000 59 0.0259 0.0045 0.0120 , 0.0369
9 4.0000 0.5000 15 0.0065 0.0022 -0.0027 , 0.0151
===========================================================================

The first part of the output provides basic information on the options specified in the function.
For example, the default estimand is the density function, indicated by Density function
estimated (v=) 1. The rest of the output gives estimation results, including (i) Grid: the
grid points; (ii) B.W.: the bandwidths; (iii) Eff.n: the effective sample size for each grid
point; (iv) Point Est.: the point estimates using polynomial order p, and the associated
standard errors under Std. Error; (v) Robust B.C.[95% C.I.]: robust bias-corrected 95%
confidence intervals. Point estimates, standard errors, and other information can be easily
extracted for further statistical analysis. The output is stored in a standard matrix, and can
be accessed with the following:

R> model1$Estimate
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When the argument grid is suppressed, the evaluation points will be the 0.05, 0.1, . . . , 0.9, 0.95
quantiles computed from the data. Conventional inference results (i.e., without robust bias
correction) can be obtained by setting q = p. For example (output is suppressed):

R> summary(lpdensity(data, bw = 0.5, p = 2, q = 2))

It is also possible to suppress the argument bw, and the function will select the bandwidth
automatically by minimizing (an estimated approximation to) the mean squared error, em-
ploying lpbwdensity(). Other bandwidth selection methods are available; we will illustrate
data-driven bandwidth selection procedures in an upcoming subsection.
The method summary() takes six additional arguments. The first one, alpha, specifies the
(one minus) nominal coverage of the confidence interval, with default being 0.05. Another
argument is sep, which controls the horizontal separator. The default value is 5, and hence
a dashed line is drawn after every five grid points. This feature can be suppressed by setting
it to 0. Sometimes it may be desirable to report only a subset of the estimates, which can
be done by using either the grid or the gridIndex option. The grid option allows reporting
results for a selected set of grid points originally specified in the lpdensity() function, while
gridIndex helps achieve the same goal by specifying the indices of the grid points. The
last two options are related to confidence bands. By setting CIuniform = TRUE, a uniform
confidence band, instead of pointwise confidence intervals, will be reported. Because the
critical values have to be simulated in this case, the number of simulations used is controlled
by the option CIsimul (its default value is 2 000). The following example produces the 99%
confidence band for four grid points 0, 0.5, 1 and 2, with dashed lines appearing after every
three grid points. (Fixing the random seed allows reproducing the simulated critical values
and the confidence intervals.)
R> set.seed(123)
R> summary(model1, alpha = 0.01, sep = 3, grid = c(0, 0.5, 1, 2),
+ CIuniform = TRUE)

Call: lpdensity

Sample size (n=) 2000
Polynomial order for point estimation (p=) 2
Density function estimated (v=) 1
Polynomial order for confidence interval (q=) 3
Kernel function triangular
Bandwidth selection method user provided

===========================================================================
Point Std. Robust B.C.

Index Grid B.W. Eff.n Est. Error [ Unif. 99% C.I. ]
===========================================================================
1 0.0000 0.5000 355 0.2908 0.0436 0.0606 , 0.4927
2 0.5000 0.5000 799 0.3986 0.0147 0.3263 , 0.4664
3 1.0000 0.5000 919 0.4822 0.0160 0.4283 , 0.5835
---------------------------------------------------------------------------
5 2.0000 0.5000 564 0.2946 0.0137 0.2423 , 0.3704
===========================================================================
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Another important argument in lpdensity() is scale, which scales the point estimates and
standard errors. This is particularly useful if only part of the data is used. For example,
assume one would like to estimate the PDF using the two subsamples {Xi : Xi < 1.5} and
{Xi : Xi > 1.5} separately. Simply splitting the data will not give consistent estimates, as it
produces conditional (rather than marginal) density estimates:

R> lpdensity(data[data < 1.5], bw = 0.5, grid = 1.5)$Estimate[, "f_p"]
R> lpdensity(data[data > 1.5], bw = 0.5, grid = 1.5)$Estimate[, "f_p"]
R> dnorm(1.5, mean = 1, sd = 1) / pnorm(0, mean = 1, sd = 1,
+ lower.tail = FALSE)

[1] 0.6755464
[1] 1.222052
[1] 0.4184555

The previous commands give point estimates 0.676 and 1.222, which are far from the true
value 0.418. To have consistent estimates, we need to scale the estimates by the proportion
of the data used for estimation:

R> lpdensity(data[data < 1.5], bw = 0.5, grid = 1.5,
+ scale = sum(data < 1.5)/2000)$Estimate[, "f_p"]
R> lpdensity(data[data > 1.5], bw = 0.5, grid = 1.5,
+ scale = sum(data > 1.5)/2000)$Estimate[, "f_p"]

[1] 0.4303231
[1] 0.443605

3.2. Function plot()

The function plot(), along with many other methods, is supported. This function takes the
output from lpdensity() and produces plots of point estimates and robust bias-corrected
confidence intervals/bands over the grid of evaluation points selected. Panel (b) of Figure 1
shows how plots can be easily generated.

R> model2 <- lpdensity(data, bw = 0.5, grid = seq(0, 4, 0.05))
R> plot(model2) + theme(legend.position = "none")

The confidence intervals/bands are not centered at the point estimates in general. As de-
scribed in Section 2, by default the point estimates are constructed using MSE-optimal band-
widths, which implies the smoothing bias is non-negligible and hence valid inference should
be based on robust bias-corrected confidence intervals.
The function plot() allows for customization: Figure 2 illustrates some of the features. For
Panel (d), we again fix the random seed to reproduce the simulated critical values and the
confidence band.

R> plot(model2, CItype = "line") + theme(legend.position = "none")
R> plot(model2, type="points", CItype="ebar", grid = seq(0, 4, 0.5)) +
+ theme(legend.position = "none")
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(d) 90% uniform confidence band.

Figure 2: Density plots with different specifications.

R> plot(model2, hist = TRUE, histData = data, histBreaks = seq(0, 4, 0.2)) +
+ theme(legend.position = "none")
R> set.seed(123)
R> lpdensity.plot(model2, alpha = 0.1, CIuniform = TRUE) +
+ theme(legend.position = "none")

3.3. Function lpbwdensity()

The function lpbwdensity() implements four bandwidth selectors, (i) MSE-optimal plug-in
bandwidth selector, denoted by "mse-dpi" (this is the default option), (ii) IMSE-optimal
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plug-in bandwidth selector, denoted by "imse-dpi", (iii) rule-of-thumb bandwidth selector
with a normal reference model, denoted by "mse-rot", and (iv) integrated rule-of-thumb
bandwidth selector, denoted by "imse-rot". We illustrate some of the main features of
lpbwdensity() with the same simulated data used previously.
By default, lpbwdensity() computes the MSE-optimal bandwidth for estimating the PDF
with a local quadratic regression and triangular kernel, on 19 quantile-spaced grid points:
lpbwdensity(..., p = 2, v = 1, bwselect = "mse-dpi", kernel = "triangular").
The output resembles that of lpdensity(), and provides basic information for the data
and options specified, as well as a matrix with three columns: (i) Grid for grid of evaluation
points, (ii) B.W. for estimated bandwidths, and (iii) Eff.n for effective sample size at each
grid point given the estimated bandwidth. The following is an example with a user-chosen
grid of evaluation points.

R> model1bw <- lpbwdensity(data, grid = seq(0, 4, 0.5))
R> summary(model1bw)

Call: lpbwdensity

Sample size (n=) 2000
Polynomial order for point estimation (p=) 2
Density function estimated (v=) 1
Kernel function triangular
Bandwidth selection method mse-dpi

================================
Index Grid B.W. Eff.n
================================
1 0.0000 0.4064 287
2 0.5000 0.6266 933
3 1.0000 0.4721 872
4 1.5000 0.6474 1048
5 2.0000 1.0662 1216
--------------------------------
6 2.5000 0.5835 385
7 3.0000 0.5991 175
8 3.5000 0.6458 80
9 4.0000 0.6170 22
================================

The estimated bandwidths from this function can be used as input for lpdensity(), but
constructing bandwidths in a separate step is redundant: bandwidth selection can be speci-
fied directly through the option bwselect in lpdensity(). For example, the following first
computes the IMSE-optimal bandwidth and then estimates the density function:

R> model5 <- lpdensity(data, grid = seq(0, 4, 0.5), bwselect="imse-dpi")
R> summary(model5)
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Figure 3: Density plot with IMSE-optimal bandwidth and under-smoothing.

It may be helpful to estimate bandwidths in a separate, first step so that they can be modified
prior to estimation and inference (e.g., to implement ad hoc undersmoothing). To show this
procedure, we reproduce Panel (b) of Figure 1 with the estimated IMSE-optimal bandwidth
as well as ad hoc under-smoothing (where the IMSE-optimal bandwidth is divided by 2). See
the following code and Figure 3.

R> model6bwIMSE <- lpbwdensity(data, grid = seq(0, 4, 0.05),
+ bwselect = "imse-dpi")
R> model6 <- lpdensity(data, grid = seq(0, 4, 0.05),
+ bw = model6bwIMSE$BW[, "bw"])
R> plot(model6) + theme(legend.position = "none")
R> model7 <- lpdensity(data, grid = seq(0, 4, 0.05),
+ bw = model6bwIMSE$BW[, "bw"] / 2)
R> plot(model7) + theme(legend.position = "none")

To prevent the estimated bandwidth from being too small, the default implementation in
the lpbwdensity() function requires the local neighborhood around the evaluation point to
contain at least 20 + p + 1 (unique) observations. If the resulting neighborhood is not large
enough, then the bandwidth is enlarged until the minimum number of observations is met.
The default values can be changed through the options nLocalMin, controlling the minimum
number of observations in each local neighborhood, and nUniqueMin, controlling the mini-
mum number of unique observations in each local neighborhood. This minimal local sample
size checking feature can be turned off by setting regularize=FALSE. Finally, the package
lpdensity also includes checks and adjustments for repeated observations of the variable X in
the data. This feature can be turned off by setting massPoints=FALSE.
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4. Simulation evidence and comparison with other R packages

We illustrate the finite-sample performance of our lpdensity package in a simulation study, and
compare it with other R packages implementing kernel-based density estimation procedures.
The functions/packages we consider are: bkde() and locpoly() in the KernSmooth package
(Wand and Ripley 2021), kdde() and kde() in the ks package (Duong 2007, 2021), npudens()
and npuniden.boundary() in the np package (Hayfield and Racine 2008; Racine and Hayfield
2021), kdrobust() in the nprobust package (Calonico, Cattaneo, and Farrell 2019, 2020),
plugin.density() in the plugdensity package (Herrmann and Mächler 2011), as well as the
built-in density estimator stats::density().

Table 1 provides a brief summary of their main features. First, three packages offer valid
density estimates at (or near) boundaries, including KernSmooth, np and our lpdensity.
However, only KernSmooth and lpdensity provide automatic boundary carpentry, while np
requires specifying boundary kernels. Second, only two packages, KernSmooth and lpdensity,
support higher-order bias reduction. Third, statistical inference is available in np, nprobust,
and lpdensity. However, among these three packages, only nprobust and lpdensity account
for the possibly leading smoothing bias when constructing test statistics/confidence intervals
using (I)MSE-optimal bandwidths, and nprobust is not valid at or near boundary points. In
addition, our lpdensity package is the only one that supports constructing uniform confidence
bands. Fourth, only three packages, KernSmooth, ks and lpdensity, offer density derivative
estimation. In summary, the lpdensity package provides valid density and derivatives esti-
mation for both interior and boundary evaluation points, allows higher-order bias reduction
through the use of higher-order local polynomial approximations, and offers several (I)MSE-
optimal bandwidth selection methods. For statistical inference, lpdensity takes into account
the possibly leading smoothing bias, and hence delivers (asymptotically) valid testings and
confidence intervals/bands, both pointwise and uniformly over evaluation points.

We now describe our simulation design. The data consists of a random sample of size n =
1 000, generated either from the normal distribution N (1, 1) truncated below at 0 (column
“Truncated Normal”), or the exponential distribution with a scale parameter of 1 (column
“Exponential”). We consider the estimation of the PDF at three evaluation points: x =
1.5, x = 0.2 and x = 0, corresponding to interior, near boundary and boundary regions,
respectively. We employ 2 000 Monte Carlo repetitions. Simulation results are reported in
Table 2. For the point estimate, we report its bias (column “Bias”), standard deviation
(column “SD”) and root mean squared error (column “RMSE”). Whenever available, we also
report the empirical coverage probability of a nominal 95% confidence interval (column “EC”)
as well as its average length (column “IL”).

At the interior evaluation point, all procedures perform similarly in terms of RMSE and
empirical coverage. Point estimates obtained using lpdensity() have relatively small RM-
SEs, and the corresponding RBC confidence intervals exhibit satisfactory coverage proper-
ties. When the evaluation point is close to or exactly at the boundary, most packages or
functions are no longer valid, and hence we only report simulation results for locpoly(),
npuniden.boundary(), and lpdensity(). In such cases, lpdensity() delivers points esti-
mates and confidence intervals with excellent finite-sample performance.
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Truncated Normal Exponential
h Bias SD RMSE EC IL h Bias SD RMSE EC IL

Interior (x = 1.5)
bkde 0.008 0.019 0.020 0.009 0.013 0.016
locpoly 0.172 0.004 0.023 0.023 0.100 0.001 0.024 0.024
kdde 0.172 0.004 0.023 0.023 0.100 0.001 0.024 0.024
kde 0.172 0.004 0.023 0.023 0.100 0.001 0.024 0.024
npudens 0.102 0.000 0.035 0.035 0.964 0.140 0.143 0.003 0.023 0.023 0.949 0.089
npuniden.boundary 0.231 0.008 0.023 0.024 0.948 0.091 0.147 0.003 0.021 0.021 0.962 0.084
kdrobust 0.609 0.011 0.016 0.019 0.936 0.081 0.633 0.009 0.013 0.016 0.941 0.063
plugin.density 0.144 0.003 0.026 0.026 0.071 0.000 0.029 0.029
density 0.179 0.004 0.022 0.023 0.185 0.004 0.017 0.018
lpdensity(hMSE) 0.785 0.008 0.021 0.022 0.957 0.102 0.680 0.006 0.015 0.017 0.949 0.083
lpdensity(hIMSE) 0.623 0.007 0.019 0.020 0.947 0.112 0.687 0.007 0.014 0.016 0.948 0.083

Near boundary (x = 0.2)
locpoly 0.172 0.033 0.024 0.041 0.100 0.020 0.045 0.049
npuniden.boundary 0.230 0.019 0.026 0.032 0.877 0.099 0.147 0.018 0.043 0.046 0.931 0.172
lpdensity(hMSE) 1.149 0.022 0.044 0.049 0.948 0.118 0.903 0.009 0.045 0.046 0.938 0.153
lpdensity(hIMSE) 0.621 0.001 0.030 0.030 0.950 0.117 0.687 0.001 0.040 0.040 0.944 0.156

Boundary (x = 0)
locpoly 0.172 0.139 0.016 0.140 0.100 0.548 0.034 0.549
npuniden.boundary 0.230 0.054 0.033 0.063 0.506 0.117 0.147 0.091 0.083 0.124 0.548 0.242
lpdensity(hMSE) 0.686 0.010 0.058 0.059 0.944 0.348 0.807 0.045 0.087 0.098 0.932 0.511
lpdensity(hIMSE) 0.621 0.007 0.055 0.055 0.955 0.343 0.687 0.026 0.082 0.086 0.952 0.514

Table 2: Simulation results. Empty cells correspond to features that are not readily available
without modifying the source code. For the case of “Near boundary” and “Boundary” we only
consider software packages/functions that are valid for those cases. Default options for each
package/function are used whenever possible. Results are based on 2 000 simulations with a
sample size of 1 000. Column “Truncated Normal”: The N (1, 1) distribution truncated from
below at 0. Column “Exponential”: The exponential distribution with a scale parameter 1.

5. Conclusion

We gave an introduction to the general purpose software package lpdensity, which offers local
polynomial regression based estimation and inference procedures for a cumulative distribution
function, probability density function, and higher-order derivatives thereof. This package
is available in both R and Stata statistical platforms, and further details can be found at
https://nppackages.github.io/lpdensity/.
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A. Details on bandwidth selection
We provide more methodological details on bandwidth selectors implemented thorough the
function lpbwdensity(). We continue to focus on the case of 1 ≤ ν ≤ p, and therefore do
not discuss bandwidth selection for CDF estimation. See CJM for details.

A.1. Rule-of-thumb bandwidths

Recall that, in the definition of Var[F̂ (ν)
p (x)] and Bias[F̂ (ν)

p (x)], we introduced pre-asymptotic
quantities Vν,p(x), B1,ν,p(x) and B2,ν,p(x). For the rule-of-thumb bandwidth selectors, we
consider a normal reference model, hence all evaluation points are interior. Then, those
quantities have well-defined limits, which can be computed using features of the underlying
distribution (such as normal densities and higher-order derivatives), p, ν, and the kernel
function. We denote the rule-of-thumb bandwidth by ĥROT,p. An integrated version can be
constructed accordingly, and is denoted by ĥIROT,p.
Given x, p and ν, the rate at which the MSE-optimal bandwidth hMSE shrinks to zero depends
on whether p − ν is even or odd, and whether x is interior or boundary. This is summarized
in Panel (a) of Table 3. We also include the rate at which the rule-of-thumb bandwidths
shrinks in Panel (b). (The notation ĥ ≍P n−1/γ indicates that both n1/γ ĥ and n−1/γ ĥ−1 are
bounded in probability.) Note that the (I)ROT-optimal bandwidths have the correct rate of
convergence, except when p − ν is even and x is near boundary.

A.2. (I)MSE-optimal bandwidths

We now discuss some implementation details of the MSE-optimal bandwidth, which will also
apply to the construction of the IMSE-optimal bandwidth. First, the unknown higher-order
derivatives F (p+1)(x) and F (p+2)(x) are replaced by consistent estimates, F̂

(p+1)
p+2 (x; ĥIROT,p+1,p+2)

and F̂
(p+2)
p+3 (x; ĥIROT,p+2,p+3), respectively. Here we augment the subscript of bandwidths with

one additional argument, since the bandwidth depends on both the polynomial order as well
as the order of derivative. For example, ĥIROT,p+1,p+2 is an estimated bandwidth using a nor-
mal reference model, which is IMSE-optimal for a local polynomial regression of order p + 2
when estimating the (p + 1)-th derivative of F (x).
The next step is to construct the pre-asymptotic quantities Vν,p(x), B1,ν,p(x) and B2,ν,p(x),
which require a preliminary bandwidth. We use ĥIROT,1,2, so those quantities are Vν,p(x; ĥIROT,1,2),
B1,ν,p(x; ĥIROT,1,2) and B2,ν,p(x; ĥIROT,1,2). Then, the MSE-optimal bandwidth is

ĥMSE,p = arg min
h>0

{
V̂ar[F̂ (ν)

p (x)] + B̂ias[F̂ (ν)
p (x)]2

}
,

with V̂ar[F̂ (ν)
p (x)] = 1

nh2ν−1 Vν,p(x; ĥIROT,1,2) and

B̂ias[F̂ (ν)
p (x)] = hp−ν+1

[
F̂

(p+1)
p+2 (x; ĥIROT,p+1,p+2)B1,ν,p(x; ĥIROT,1,2)

+ h · F̂
(p+2)
p+3 (x; ĥIROT,p+2,p+3)B2,ν,p(x; ĥIROT,1,2)

]
.

Under regularity conditions, it can be shown that ĥMSE,p is rate consistent (see Panel (c) of
Table 3). Under the assumption that either (i) x is near boundary, or (ii) p − ν is odd, it
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x interior x boundary
p − ν odd γ = 2p + 1 γ = 2p + 1
p − ν even γ = 2p + 3 γ = 2p + 1

(a) hMSE,p ≍ n−1/γ

x interior x boundary
p − ν odd γ = 2p + 1 γ = 2p + 1
p − ν even γ = 2p + 3 γ = 2p + 3
(b) ĥROT,p ≍P n−1/γ and ĥIROT,p ≍P n−1/γ

x interior x boundary
p − ν odd γ = 2p + 1 γ = 2p + 1
p − ν even γ = 2p + 3 γ = 2p + 1

(c) ĥMSE,p ≍P n−1/γ

Table 3: Bandwidths rates for 1 ≤ ν ≤ p.

is possible to show a stronger result: ĥMSE,p/hMSE,p
P→ 1, so that the MSE-optimal bandwidth

selector is consistent both in rate and constant. What happens for interior x with p − ν even?
In this case B1,ν,p(x; ĥIROT,1,2) P→ 0, and B2,ν,p(x; ĥIROT,1,2) captures only part of the leading
bias. As a result, ĥMSE,p has the correct rate of convergence, but is not consistent for hMSE,p in
the strong sense.

B. Stata Implementation
We discuss the Stata implementation of our lpdensity package, which offers two commands,
lpdensity for estimation of and inference on the CDF, PDF, and their higher-order deriva-
tives, and lpbwdensity for data-driven bandwidth selection. The plotting features employ
the built-in command twoway.
The command lpdensity provides point estimation and robust confidence intervals/bands
employing the local polynomial density estimator, given a grid of points and a bandwidth
choice. We generate 2 000 observations from the normal distribution N (1, 1) truncated below
at 0. Although the same seed, 42, as in R is used, observations generated in Stata are generally
different due to the different random number generators used by the statistical platforms.
The following command estimates the density function (v(1), the default) with fixed band-
width bw(0.5) over the grid of evaluation points 0, 0.5, . . . , 4, using a local quadratic ap-
proximation (p(2), the default) to the empirical distribution function. Robust bias-corrected
confidence intervals over the grid are computed using a local cubic approximation (q(3), the
default).

. set seed 42

. set obs 4000

. gen data = rnormal(1, 1)

. drop if data <= 0

. drop if _n > 2000

. gen grid = -0.5 + 0.5 * _n if _n <= 9

. lpdensity data, grid(grid) bw(0.5)

Local Polynomial Density Estimation and Inference.
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Sample size (n=) 2000
Polynomial order for point estimation (p=) 2
Density function estimated (v=) 1
Polynomial order for confidence interval (q=) 3
Kernel function triangular
Bandwidth selection method mse-dpi

------------------------------------------------------------------------
Point Std. Robust B.C.

Index Grid B.W. Eff.n Est. Error 95% C.I.
------------------------------------------------------------------------

1 0.0000 0.5000 366 0.2815 0.0403 0.1064 0.3547
2 0.5000 0.5000 814 0.4230 0.0153 0.3899 0.4829
3 1.0000 0.5000 897 0.4680 0.0158 0.4455 0.5414
4 1.5000 0.5000 834 0.4056 0.0146 0.3594 0.4486
5 2.0000 0.5000 607 0.3209 0.0143 0.2981 0.3810

------------------------------------------------------------------------
6 2.5000 0.5000 307 0.1406 0.0100 0.1065 0.1632
7 3.0000 0.5000 117 0.0516 0.0061 0.0303 0.0642
8 3.5000 0.5000 43 0.0199 0.0038 0.0070 0.0292
9 4.0000 0.5000 12 0.0130 0.0077 -0.0006 0.0432

------------------------------------------------------------------------

Coverage of the robust confidence interval can be specified through level(). For example,
to report nominal 99% confidence intervals, one can use

. lpdensity data, grid(grid) bw(0.5) level(99)

When the argument grid() is suppressed, the evaluation points will be the 0.05, 0.1, . . . , 0.9, 0.95
quantiles computed from the data. Conventional inference results (i.e., without robust bias
correction) can be obtained by setting q() to be the same as p().

. lpdensity data, bw(0.5)

. lpdensity data, bw(0.5) q(2)

In Stata, graphical illustration of the estimates can be obtained using the option plot. The
following plots the estimated density function on a fine grid, which resembles Panel (b) of
Figure 1.

. capture drop grid

. gen grid = -0.05 + 0.05 * _n if _n <= 81

. lpdensity data, grid(grid) bw(0.5) plot

The same figure can be produced by first storing estimation results and then calling the
twoway command directly. For example,

. lpdensity data, grid(grid) bw(0.5) genvars(lpdTemp)

. twoway ///
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> (rarea lpdTemp_CI_l lpdTemp_CI_r lpdTemp_grid, sort color(red%30)) ///
> (line lpdTemp_f_p lpdTemp_grid, ///
> sort lcolor(red) lwidth("medthin") lpattern(solid)), ///
> legend(off) title("lpdensity (p=2, q=3, v=1)", color(gs0)) ///
> xtitle("data") ytitle("")
. drop lpdTemp_*

To further illustrate, the following generates analogues of Panel (c) and (d) of Figure 2.

. lpdensity data, grid(grid) bw(0.5) plot histogram

. lpdensity data, grid(grid) bw(0.5) plot ciuniform level(90)

Before closing this appendix, we illustrate the bandwidth selector lpbwdensity. By default,
this command computes the MSE-optimal bandwidth for estimating the PDF with a local
quadratic regression and triangular kernel:

. capture drop grid

. gen grid = -0.5 + 0.5 * _n if _n <= 9

. lpbwdensity data, grid(grid)

Bandwidth Selection for Local Polynomial Density Estimation.

Sample size (n=) 2000
Polynomial order for point estimation (p=) 2
Density function estimated (v=) 1
Kernel function triangular
Bandwidth selection method mse-dpi

--------------------------------
Index Grid B.W. Eff.n

--------------------------------
1 0.0000 0.3812 258
2 0.5000 0.6167 947
3 1.0000 0.5254 946
4 1.5000 0.7212 1168
5 2.0000 0.5599 667

--------------------------------
6 2.5000 0.4835 298
7 3.0000 0.4925 114
8 3.5000 1.1727 183
9 4.0000 0.7140 22

--------------------------------

Finally, the following computes the IMSE-optimal bandwidth for density estimation.

. lpbwdensity data, grid(grid) bwselect(imse-dpi)
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