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Abstract. In this article, we introduce two community-contributed commands,
rddensity and rdbwdensity, that implement automatic manipulation tests based
on density discontinuity and are constructed using the results for local-polynomial
density estimators in Cattaneo, Jansson, and Ma (2017b, Simple local polyno-
mial density estimators, Working paper, University of Michigan). These new
tests exhibit better size properties (and more power under additional assump-
tions) than other conventional approaches currently available in the literature.
The first command, rddensity, implements manipulation tests based on a novel
local-polynomial density estimation technique that avoids prebinning of the data
(improving size properties) and allows for restrictions on other features of the
model (improving power properties). The second command, rdbwdensity, imple-
ments several bandwidth selectors specifically tailored for the manipulation tests
discussed herein. We also provide a companion R package with the same syntax
and capabilities as rddensity and rdbwdensity.
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1 Introduction

McCrary (2008) introduced the idea of manipulation testing in the context of regression
discontinuity (RD) designs. Consider a setting where each unit in a random sample from
a large population is assigned to one of two groups depending on whether one of their
observed covariates exceeds a known cutoff. In this context, the two possible groups
are generically referred to as control and treatment groups. The observed variable, de-
termining group assignment, is generically referred to as the score, index, or running
variable. The key idea behind manipulation testing in this context is that in the absence
of systematic manipulation of the unit’s index around the cutoff, the density of units
should be continuous near this cutoff value. Thus, a manipulation test seeks to formally
determine whether there is evidence of a discontinuity in the density of units at the
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known cutoff. Presence of such evidence is usually interpreted as empirical evidence of
self-selection or nonrandom sorting of units into control and treatment status.

Manipulation testing is useful for falsification of RD designs: see Cattaneo and Es-
canciano (2017) for an edited volume with a recent overview of the RD literature; see
Cattaneo, Titiunik, and Vazquez-Bare (2017c) for a practical introduction to RD de-
signs with a comparison between leading empirical methods; see Calonico, Cattaneo,
and Titiunik (2015a) for a discussion of graphical presentation and falsification of RD

designs; and see references therein for other related topics. In addition to providing a
formal statistical check for RD designs, a manipulation test can be used substantively
whenever the empirical goal is to test for self-selection or endogenous sorting of units
exposed to a known hard threshold-crossing assignment rule. Thus, flexible data-driven
implementations of manipulation tests with good size and power properties are poten-
tially very useful for empirical work in economics and related social sciences.

To implement a manipulation test, the researcher must estimate the density of units
near the cutoff to conduct a hypothesis test about whether the density is discontin-
uous. Three distinct manipulation tests have been proposed in the literature. First,
McCrary (2008) introduced a test based on the nonparametric local-polynomial den-
sity estimator of Cheng, Jianqing, and Marron (1997), which requires prebinning of the
data and hence introduces additional tuning parameters. Second, Otsu, Xu, and Mat-
sushita (2014) proposed an empirical likelihood method using boundary-corrected ker-
nels. Third, Cattaneo, Jansson, and Ma (2017b) developed a set of manipulation tests
based on a novel local-polynomial density estimator, which does not require prebinning
of the data and is constructed in an intuitive way based on easy-to-interpret kernel func-
tions. The latter procedures are shown to also provide demonstrable improvements in
both size and power under appropriate assumptions and relative to the other approaches
currently available in the literature. Finally, Frandsen (2017) recently proposed a ma-
nipulation test in the context of RD designs with a discrete running variable.

In this article, we discuss data-driven implementations of manipulation tests follow-
ing the results in Cattaneo, Jansson, and Ma (2017b). We introduce two commands
that together give several manipulation test implementations, which depend on i) the
restrictions imposed in the underlying data-generating process, ii) the method for bias
correction, iii) the bandwidth selection approach, and iv) the method to estimate stan-
dard errors (SEs), among many other alternatives. Specifically, our command rddensity

implements two distinct manipulation tests given a choice of bandwidth and SE estima-
tor: one test is constructed using the basic Wald statistic, which requires undersmooth-
ing, while the other test uses robust bias-correction (Calonico, Cattaneo, and Farrell
Forthcoming) to obtain valid statistical inference. This command also allows for both
unrestricted and restricted models, where the cumulative distribution function and
higher-order derivatives are assumed to be equal for both groups (thereby increasing the
power of the test). These methods can also be used under additional assumptions in the
context of RD designs with a discrete running variable. We review the main aspects of
these different approaches to manipulation testing in section 2 below, but we refer the
reader to Cattaneo, Jansson, and Ma (2017b) and its supplemental appendix for most
of the technical and theoretical discussion.
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The command rddensity also offers a plot of the manipulation test. To implement
this plot, a density estimate must be constructed not only at the cutoff point but also at
nearby evaluation points, which may also be affected by boundary bias. Thus, to con-
struct this plot in a principled way, rddensity uses the package lpdensity, which im-
plements local-polynomial–based density estimation methods. This density estimation
package must be installed to construct the density plot; see Cattaneo, Jansson, and Ma
(2017a) for further details. If lpdensity is not installed, then rddensity issues an
error message when trying to construct a manipulation test plot.

To complement the command rddensity, and because in empirical applications
researchers often want to select the bandwidth entering the manipulation test in a data-
driven and automatic way, we introduce the companion command rdbwdensity, which
provides several bandwidth selection methods based on asymptotic mean squared error
(AMSE) minimization. Our implementation accounts for whether the unrestricted or the
restricted model is used for inference, and it also allows for both different bandwidths
on either side of the cutoff (whenever possible) and a common bandwidth for both
sides. By default, rddensity uses the companion command rdbwdensity to estimate
the bandwidth(s) whenever the user does not provide a specific choice, thereby giving
fully automatic and data-driven inference procedures implemented by rddensity.

The commands rddensity and rdbwdensity complement the recently introduced
Stata community-contributed commands and R functions rdrobust, rdbwselect, and
rdplot, which are useful for graphical presentation, estimation, and inference in RD de-
signs and use nonparametric local-polynomial techniques. For an introduction to the lat-
ter commands, see Calonico, Cattaneo, and Titiunik (2014a, 2015b) and Calonico et al.
(2017). Together, the five commands offer a complete toolkit for empirical work us-
ing RD designs. In addition, see Cattaneo, Titiunik, and Vazquez-Bare (2016) for Stata
commands and R functions (rdrandinf, rdwinselect, rdsensitivity, rdrbounds)
implementing randomization-based inference methods for RD designs under a local ran-
domization assumption.

The rest of this article is organized as follows. In section 2, we provide a brief review
of the methods implemented in our two commands. In sections 3 and 4, we describe the
syntax of rddensity and rdbwdensity, respectively. In section 5, we illustrate some
of the functionalities of our commands using real data from Cattaneo, Frandsen, and
Titiunik (2015). In section 6, we report results from a small-scale simulation study,
tailored to investigate the performance of our testing procedure. We also provide a
companion R package with the same functionalities and syntax.

The latest version of this software, as well as other related software for RD designs,
can be found at https://sites.google.com/site/rdpackages/.

https://sites.google.com/site/rdpackages/


M. D. Cattaneo, M. Jansson and X. Ma 237

2 Methods overview

This section offers a brief overview of the methods implemented in our commands
rddensity and rdbwdensity. We closely follow the results in Cattaneo, Jansson, and
Ma (2017b), including those in their supplemental appendix. Regularity conditions and
most of the technical details are not discussed here to conserve space and ease the
exposition.

2.1 Setup and notation

We assume that {X1, X2, . . . , Xn} is a random sample of size n from the random variable
X with the cumulative distribution function (c.d.f.) and probability density function
given by F (x) and f(x), respectively. The random variable Xi denotes the score, index,
or running variable of unit i in the sample. Each unit is assigned to control or treatment
depending on whether its observed index exceeds a known cutoff denoted by x. That
is, treatment assignment is given by

unit i assigned to control group if Xi < x
unit i assigned to treatment group if Xi ≥ x

where the cutoff point x is known and, of course, we assume enough observations for each
group are available (for example, f(x) > 0 near x and the sample is large enough). In the
specific case of RD designs, manipulation testing can be used for sharp RD designs (where
treatment assignment and treatment status coincide) and for fuzzy RD designs (where
treatment assignment and treatment status differ). In the latter case, of course, the
test applies to the intention-to-treat mechanism because units can select into treatment
or control status beyond the hard-thresholding rule for treatment assignment (that is,
assigned to control group if Xi < x and assigned to treatment group if Xi ≥ x).

A manipulation test in this context is a hypothesis test on the continuity of the
density f(·) at the cutoff point x. Formally, we are interested in the testing problem

H0 : lim
x↑x

f(x) = lim
x↓x

f(x) versus Ha : lim
x↑x

f(x) �= lim
x↓x

f(x)

To construct a test statistic for this hypothesis testing problem, we follow Cattaneo,
Jansson, and Ma (2017b) and estimate the density f(x) using a local-polynomial den-
sity estimator based on the c.d.f. of the observed sample. This estimator has several
interesting properties, including the fact that it does not require prebinning of the data
and is quite intuitive in its implementation (for example, simple second-order kernels
can be used). Importantly, this estimator also permits incorporating restrictions on
the c.d.f. and higher-order derivatives of the density, leading to new manipulation tests
with better power properties in applications. For an introduction to conventional local-
polynomial techniques, see, for example, Fan and Gijbels (1996).

The manipulation test statistics implemented in rddensity take the form

Tp(h) =
f̂+,p(h)− f̂−,p(h)

V̂p(h)
V̂ 2
p (h) = V̂

{
f̂+,p(h)− f̂−,p(h)

}
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where Tp(h)
a
∼ N (0, 1) under appropriate assumptions, and the notation V̂{·} is meant

to denote some plug-in consistent estimator of the population quantity V{·}. The
parameter h is the bandwidth(s) used to localize the estimation and inference procedures
near the cutoff point x. The statistics may be constructed in several different ways, as
we discuss in more detail below. In particular, given a choice of bandwidth(s), two
main ingredients to construct the test statistic Tp(h) are i) the local-polynomial density

estimators f̂+,p(h) and f̂−,p(h), and ii) the corresponding SE estimator V̂p(h). These
estimators also depend on the choice of polynomial order p, the choice of kernel function
K(·), and the restrictions imposed in the model, among other possibilities. The SE

formulas V̂p(h) could be based on either an asymptotic plug-in or a jackknife approach,
and its specific form will depend on whether additional restrictions are imposed to the
model. A crucial ingredient is, of course, the choice of bandwidth h, which determines
which observations near the cutoff x are used for estimation and inference. This choice
can either be specified by the user or be estimated using the available data. Our
commands allow, when possible, for different bandwidth choices on either side of the
cutoff x. A common bandwidth on both sides of the cutoff is always possible.

In the following two subsections, we discuss the alternatives for estimation and
inference: i) unrestricted inference, ii) restricted inference, iii) SE estimation in both
cases, and iv) bandwidth selection in both cases. In closing this section, we also offer
a brief review of the different data-driven inference methods implemented in our Stata
(and R) commands.

2.2 Unrestricted testing

In unrestricted testing, the manipulation test becomes a standard two-sample problem
where the estimators f̂+,p(h) and f̂−,p(h) are unrelated. Thus, the SE formula reduces

to V̂ 2
p (h) = V̂{f̂+,p(h)− f̂−,p(h)} = V̂{f̂+,p(h)}+ V̂{f̂−,p(h)}. To be more concrete, the

density estimators take the form

f̂−,p(h) = e′1β̂−,p(h) and f̂+,p(h) = e′1β̂+,p(h)

with

β̂−,p(h) = arg min
β∈Rp+1

n∑
i=1

1(Xi < x)
{
F̂ (Xi)− rp(Xi − x)′β

}2
Kh(Xi − x)

β̂+,p(h) = arg min
β∈Rp+1

n∑
i=1

1(Xi ≥ x)
{
F̂ (Xi)− rp(Xi − x)′β

}2
Kh(Xi − x)

where F̂ (Xi) denotes the (leave-one-out) c.d.f. estimator for the full sample, rp(x) =
(1, x, . . . , xp)′, e1 = (0, 1, 0, 0, . . . , 0)′ ∈ Rp+1 is the second unit vector, Kh(u) =
K(u/h)/h with K(·) being a kernel function, h is a positive bandwidth sequence, and
1(·) denotes the indicator function. Following the results in Cattaneo, Jansson, and Ma

(2017b), it can be shown that β̂−,p(h) and β̂+,p(h) roughly approximate, respectively,
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[F−, f−, (1/2!)f
(1)
− , . . . , {1/(p + 1)!}f (p)− ] and [F+, f+, (1/2!)f

(1)
+ , . . . , {1/(p + 1)!}f (p)+ ],

where we use the notation

f
(s)
− = lim

x↑x
∂s

∂xs
f(x) and f

(s)
+ = lim

x↓x
∂s

∂xs
f(x)

s = 1, 2, . . . , p. Thus, the second elements of β̂−,p(h) and β̂+,p(h) are used to construct
consistent, boundary-corrected density estimators at the cutoff point x entering the
numerator of the manipulation test statistic. Notice that this estimation approach
avoids prebinning of the data and may be constructed using simple and easy-to-interpret
kernels K(·), such as the uniform or triangular kernels.

Consistency, asymptotic normality, and moment approximations for the estimators
f̂−,p(h) and f̂+,p(h) are derived in Cattaneo, Jansson, and Ma (2017b), where these re-
sults are also used to study the asymptotic properties of the unrestricted manipulation
tests implemented in our main command, rddensity. We discuss the exact implemen-
tations at the end of this section.

2.3 Restricted testing

The approach described above treats manipulation testing as a traditional two-sample
problem, where the left and right approximations to the density f(x) at the cutoff x are
done independently. However, in the context of manipulation testing, it may be argued
that the c.d.f. F (x) and higher-order derivatives f (s)(x), s ≥ 1, are equal for both groups
at the cutoff even when f− �= f+ (that is, H0 is false). In this case, researchers may
wish to incorporate these restrictions to construct a more powerful testing procedure.

A restricted manipulation test is constructed by solving the above weighted (local)
least-squares problem with the additional restrictions ensuring that all but the second
element in β are equal in both groups. It follows that this restricted problem can be
represented as a single regression problem,

β̂
R

p(h) = arg min
β∈Rp+2

n∑
i=1

{
F̂ (Xi)− rRp(Xi − x)′β

}2
Kh(Xi − x)

where rRp(x) = {1, x · 1(x < x), x · 1(x ≥ x), x2, x3, . . . , xp}′. In words, this estima-
tion approach incorporates the restrictions ensuring that the estimated c.d.f. and the
estimated higher-order derivatives are equal on both sides of the cutoff point x. This
problem involves estimating only p+ 2 parameters, rather than 2p+ 2 parameters as is
the case for the unrestricted method discussed above. The main advantage of imposing
these restrictions is related to power improvements, provided the restrictions are indeed
satisfied in the underlying data-generating process.

Therefore, a restricted manipulation test uses the density estimators

f̂R−,p(h) = e′1β̂
R

p(h) and f̂R+,p(h) = e′2β̂
R

p(h)

That is, the density estimators from the left and from the right of the cutoff point x

are given by the second and third elements in the least-squares vector β̂
R

p(h); e2 =
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(0, 0, 1, 0, 0, . . . , 0)′ ∈ Rp+1 denotes the third unit vector. Furthermore, the SE formula
is different because now cross-restrictions are incorporated in the estimation procedure,
leading to a different asymptotic variance for {f̂R−,p(h), f̂

R
+,p(h)} and, consequently, for

f̂R+,p(h) − f̂R−,p(h) as well. This is exactly the source of the power gains of a restricted

manipulation test relative to an unrestricted one. In this case, the SE formula V̂p(h) =

V̂{f̂R+,p(h)− f̂R−,p(h)} �= V̂{f̂R+,p(h)}+ V̂{f̂R−,p(h)}.
Formal asymptotic properties for restricted local-polynomial density estimation and

inference are also discussed in Cattaneo, Jansson, and Ma (2017b), where these results
are then used to propose an asymptotically valid restricted manipulation test. We also
discuss the exact implementations at the end of this section.

2.4 Standard errors

As mentioned above, the asymptotic variance entering the denominator of the manip-
ulation test statistic Tp(h) will be different depending on whether an unrestricted or a
restricted model is used. Our commands rddensity and rdbwdensity allow for both
cases. In addition, for each of these cases, the commands provide two distinct consistent
SE estimators: i) a plug-in estimator based on the asymptotic variance of the numera-
tor of Tp(h), and ii) a jackknife estimator based on the leading term of an expansion of
asymptotic variance of the numerator of Tp(h).

The plug-in estimator is faster because it essentially requires no additional estima-
tion beyond the quantities entering the numerator of Tp(h), but it relies on asymptotic
approximations. On the other hand, the jackknife estimator is slower because it requires
additional estimation and looping over the data, but according to simulation evidence in
Cattaneo, Jansson, and Ma (2017b), it appears to provide a more accurate approxima-
tion to the finite-sample variability of the numerator of Tp(h) in both cases (unrestricted
model and restricted model). Therefore, our implementations use the jackknife SE esti-
mator by default, but we also offer the plug-in estimator for cases involving relatively
large sample sizes.

2.5 Bandwidth selection

rddensity requires the specification of bandwidths for estimation; otherwise, it uses
rdbwdensity to construct data-driven bandwidth choices specifically tailored for the
manipulation tests discussed in this article. In this subsection, we briefly outline the
data-driven implementations provided in rdbwdensity for automatic bandwidth selec-
tion.

In the unrestricted model, the user has the option to specify two distinct bandwidths:
hl for left estimation and hr for right estimation. Of course, one such choice may be
equal bandwidths: h = hl = hr. In the restricted model, however, only a common
bandwidth h can be specified because estimation is done jointly by construction. For
each of these cases, whenever possible, Cattaneo, Jansson, and Ma (2017b) develop
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three distinct approaches to select the bandwidth(s) using the mean squared error (MSE)

criterion function, generically denoted by MSE(θ̂) = E{(θ̂ − θ)2}, where θ̂ denotes some
estimator and θ denotes its target estimand.

For the specific context considered in this article, Cattaneo, Jansson, and Ma (2017b)
develop valid asymptotic expansions of several MSE criterion functions. These results
can be briefly summarized as

MSE

{
θ̂(h)
}
≈ AMSE

{
θ̂(h)
}

where

AMSE

{
θ̂(h)
}
= hp+1B2

p(θ) + hp+2B2
p+1(θ) +

1

nh
Vp(θ)

with, for the unrestricted model,

θ̂(h) representing one of
{
f̂−,p(h); f̂+,p(h); f̂+,p(h)− f̂−,p(h); f̂+,p(h) + f̂−,p(h)

}
and with, for the restricted model,

θ̂(h) representing one of
{
f̂R+,p(h)− f̂R−,p(h); f̂

R
+,p(h) + f̂R−,p(h)

}
and, of course, with

θ representing one of {f−; f+; f+ − f−; f+ + f−}

as appropriate according to the choice of θ̂(h). Crucially, for each combination of es-

timator θ̂(h) and estimand θ, the corresponding bias constants {Bp(θ), Bp+1(θ)} and
variance constant Vp(θ) are different. In all cases, as is usual in nonparametric problems,
these constants involve features of both the data-generating process and the nonpara-
metric estimator.

Given a choice of estimator and estimand, and provided that preliminary estimates
of the leading asymptotic constants in the associated MSE expansion are available, it
is straightforward to construct a plug-in bandwidth selector. In our implementations,
we consider the five alternative plug-in rules for bandwidth selection mentioned above,
which use simple rules of thumb to approximate the leading constants in the MSE ex-
pansions. Technical and methodological details underlying these choices are given in
Cattaneo, Jansson, and Ma (2017b) and not reproduced here to conserve space.

Specifically, rdbwdensity allows for the following alternative bandwidth selectors.
We do not introduce additional notation to reflect the estimation of the leading AMSE

constants only to ease the exposition, but our implementations are automatic because
they rely on preliminary rule-of-thumb estimators to approximate those constants.

• Unrestricted model with different bandwidths: when no restrictions are imposed
on the model and (hl, hr) are allowed to be different, the bandwidths are chosen
to minimize the AMSE of the density estimators separately, that is,

ĥl,p = argminh>0AMSE

{
f̂−,p(h)

}
and ĥr,p = argminh>0AMSE

{
f̂+,p(h)

}
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• Unrestricted model with equal bandwidth: when no restrictions are imposed on
the model but (hl, hr) are forced to be equal, the common bandwidth may be
chosen in two distinct ways:

1. Difference of densities:

ĥdiff,p = argminh>0AMSE

{
f̂+,p(h)− f̂−,p(h)

}
2. Sum of densities:

ĥsum,p = argminh>0AMSE

{
f̂+,p(h) + f̂−,p(h)

}
• Restricted model: when the restrictions are imposed on the model, then h = hl =
hr by construction. Also in this case, the common bandwidth may be chosen in
two distinct ways:

1. Difference of densities:

ĥRdiff,p = argminh>0AMSE

{
f̂R+,p(h)− f̂R−,p(h)

}
2. Sum of densities:

ĥRsum,p = argminh>0AMSE

{
f̂R+,p(h) + f̂R−,p(h)

}
All the bandwidth selectors above have closed-form solutions, and their specific

decay rates (as a function of the sample size) depend on the specific choices. This is
an important point because Bp(θ) or Bp+1(θ) may be 0 depending on the choice of

θ and p. For example, if θ = f+ − f− then Bp(θ) ∝ f
(p)
+ − f

(p)
− when p = 2, but

Bp(θ) ∝ f
(p)
+ + f

(p)
− when p = 3, which implies that Bp(θ) = 0 under the plausible

assumption that f
(p)
+ = f

(p)
− . Following the discussion in Cattaneo, Jansson, and Ma

(2017b), we also implement two simple “regularization” approaches that avoid these
possible degeneracies:

• Unrestricted model with different bandwidths:

ĥl,comb,p = median
(
ĥl,p, ĥdiff,p, ĥsum,p

)
ĥr,comb,p = median

(
ĥr,p, ĥdiff,p, ĥsum,p

)
• Unrestricted model with equal bandwidth:

ĥcomb,p = min
(
ĥdiff,p, ĥsum,p

)
• Restricted model:

ĥRcomb,p = min
(
ĥRdiff,p, ĥ

R
sum,p

)
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2.6 Overview of methods

We have discussed how the density point estimators and corresponding SEs are con-
structed to form the test statistic Tp(h). As mentioned above, these estimators depend
on whether the unrestricted or the restricted model is considered. In addition, the
bandwidth h = (hl, hr) may be chosen in different ways, including both cases where the
two bandwidths are assumed equal and cases where they are allowed to be different. In
this section, we close the discussion of manipulation testing by briefly addressing the
issue of critical value (or quantile) choice to form the testing procedure.

As mentioned in passing before, we rely on large-sample approximations to justify
a result of the form Tp(h)

a
∼ N (0, 1) provided that an appropriate choice of bandwidth

h and polynomial order p is used. Specifically, the command rddensity implements
three distinct methods for inference. Each of these methods takes a different approach
to handle the potential presence of a first-order bias in the statistic Tp(h) when a large
bandwidth h is used (for example, when any of the MSE-optimal bandwidth choices
discussed above are used).

To briefly discuss the three alternative manipulation tests, we let hMSE,p denote
any of the bandwidth choices given above when pth order local-polynomial density
estimators are used. The following discussion applies to all cases, whether they are
unrestricted or restricted models with equal or unequal bandwidths chosen by any of
the methods mentioned before. Let α ∈ (0, 1) and χ2

1(α) denote the αth quantile of
a chi-squared distribution with 1 degree of freedom. The three methods for inference
implemented in rddensity are as follows:

• Robust bias-correction approach. This approach uses ideas in Calonico, Cattaneo,
and Titiunik (2014b) and Calonico, Cattaneo, and Farrell (Forthcoming), which
are based on analytic bias-correction coupled with variance adjustments, leading
to testing procedures with improved distributional properties in finite samples. In
particular, letting q ≥ p+ 1, the manipulation test takes the form

An α-level test rejects H0 iff T 2
q (hMSE,p) > χ2

1(1− α)

In words, the construction of T 2
q (hMSE,p) ensures an asymptotically valid distribu-

tional approximation because q ≥ p+1. Thus, in this case, the possible first-order
bias of the statistic T 2

p (hMSE,p) (note the change from q to p in the subindex) is
removed by using a higher-order polynomial in the estimation of the densities and,
of course, adjusting the SE formulas accordingly.

This approach to manipulation testing is the default option in rddensity because
it is always theoretically justified and leads to power improvements asymptotically.
For example, see the simulations presented in section 6.

• Small bias approach/undersmoothing approach. A second approach to inference
would be to ignore the impact of a possibly first-order bias in the distributional
approximation for the statistic T 2

p (hMSE,p). In some specific cases, such an ap-
proach may be justified [for example, if Bp(θ) happens to be exactly 0 for a choice
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of p and θ] and the bandwidth was chosen in an ad-hoc manner, but this cannot
be justified in general. Alternatively, this approach is valid if the user uses an
undersmoothed bandwidth choice relative to the MSE-optimal bandwidth hMSE,p.

For completeness, rddensity also implements a conventional Wald test without
bias correction. To describe this procedure, let’s suppose h is the bandwidth used.
Then the command implements the conventional testing procedure

Reject H0 iff T 2
p (h) > χ2

1(1− α)

which delivers a valid α-level test only when the smoothing bias in approximating
f(x) at the cutoff point x is indeed small. In practice, this requires choosing an
undersmoothed bandwidth; for example, an ad hoc choice is h = s · hMSE,p for
some user-chosen scale value s ∈ (0, 1). This testing procedure is also reported
when the option all is specified.

3 The rddensity command

This section describes the syntax of the command rddensity, which implements the
manipulation tests for a choice of bandwidth(s).

3.1 Syntax

rddensity runvar
[
if
] [

in
] [

, c(cutoff) p(pvalue) q(qvalue)

fitselect(fitmethod) kernel(kernelfn) h(hlvalue hrvalue)

bwselect(bwmethod) vce(vcemethod) all plot plot range(xmin xmax)

plot n(nl nr) plot grid(gridmethod) genvars(varname) level(#)

graph options(graphopts)
]

runvar is the running variable (also known as the score or index variable).

3.2 Options

c(cutoff) specifies the RD cutoff. The default is c(0).

p(pvalue) specifies the order of the local polynomial used to construct the density point
estimators. The default is p(2) (local quadratic approximation).

q(qvalue) specifies the order of the local polynomial used to construct the bias-corrected
density point estimators. The default is q(p(#)+1) (local cubic approximation for
the default p(2)).
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fitselect(fitmethod) specifies whether restrictions should be imposed. fitmethod may
be one of the following:

unrestricted for density estimation without any restrictions (two-sample, unre-
stricted inference). This is the default option.

restricted for density estimation assuming equal c.d.f. and higher-order deriva-
tives.

kernel(kernelfn) is the kernel function K(·) used to construct the local-polynomial
estimator(s). kernelfn may be triangular, uniform, or epanechnikov. The default
is kernel(triangular).

h(hlvalue hrvalue) are the values of the main bandwidths hl and hr, respectively. If
only one value is specified, then hl = hr is used. If not specified, they are computed
by the companion command rdbwdensity. If two bandwidths are specified, the first
bandwidth is used for the data below the cutoff, and the second bandwidth is used
for the data above the cutoff.

bwselect(bwmethod) specifies the bandwidth selection procedure to be used. bwmethod
may be one of the following:

each specifies bandwidth selection based on the MSE of each density separately, that
is, ĥl,p and ĥr,p. This is available only when the unrestricted model is used.

diff specifies bandwidth selection based on the MSE of the difference of densities,
that is, ĥdiff,p.

sum specifies bandwidth selection based on the MSE of the sum of densities, that is,
ĥsum,p.

comb specifies bandwidth selection as a combination of the alternatives above, that
is, either (ĥl,comb,p, ĥr,comb,p), ĥcomb,p, or ĥ

R
comb,p, depending on the model chosen.

This is the default option.

vce(vcemethod) specifies the procedure used to compute the variance–covariance matrix
estimator. vcemethod may be one of the following:

plugin for asymptotic plug-in SEs.

jackknife for jackknife SEs. This is the default option.

all reports two different manipulation tests (given choices fitselect(fitmethod) and
bwselect(bwmethod)): the conventional test statistic (not valid when using the
MSE-optimal bandwidth choice) and the robust bias-corrected statistic (the default
option).

plot plots the density around the cutoff (this feature depends on the companion package
lpdensity). Note that additional estimation (computing time) is needed.

plot range(xmin xmax) specifies lower (xmin) and upper (xmax) endpoints for the
manipulation test plot. By default, it is three bandwidths around the cutoff.
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plot n(nl nr) specifies the number of evaluation points below (nl) and above (nr) the
cutoff to be used for the manipulation test plot. The default is plot n(10 10).

plot grid(gridtype) specifies the location of evaluation points, whether they are evenly
spaced (es) or quantile spaced (qs), to be used for the manipulation test plot. The
default is plot grid(es).

genvars(varname) specifies that new variables should be generated to store estimation
results for plotting. See the help file for details.

level(#) specifies the level of confidence intervals for the manipulation test plot. #
must be between 0 and 100. The default is level(95).

graph options(graphopts) are graph options passed to the plot command.

3.3 Description

rddensity provides an implementation of manipulation tests using local-polynomial
density estimators. The user must specify the running variable. This command permits
fully data-driven inference by using the companion command rdbwdensity, which may
also be used as a standalone command.

4 The rdbwdensity command

This section describes the syntax of the command rdbwdensity. This command imple-
ments the different bandwidth selection procedures for manipulation tests based on the
local-polynomial density estimators discussed above.

4.1 Syntax

rdbwdensity runvar
[
if
] [

in
] [

, c(cutoff) p(pvalue) fitselect(fitmethod)

kernel(kernelfn) vce(vcemethod)
]

runvar is the running variable (also known as the score or index variable).

4.2 Options

c(cutoff) specifies the RD cutoff. The default is c(0).

p(pvalue) specifies the order of the local polynomial used to construct the point esti-
mator. The default is p(2) (local quadratic approximation).
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fitselect(fitmethod) specifies the model used for estimation and inference. fitmethod
may be one of the following:

unrestricted for density estimation without any restrictions (two-sample, unre-
stricted inference). This is the default option.

restricted for density estimation assuming equal c.d.f. and higher-order deriva-
tives.

kernel(kernelfn) specifies the kernel function K(·) that is used to construct the local-
polynomial estimator(s). kernelfn may be triangular, uniform, or epanechnikov.
The default is kernel(triangular).

vce(vcemethod) specifies the procedure used to compute the variance–covariance matrix
estimator. vcemethod may be

plugin for asymptotic plug-in SEs.

jackknife for jackknife SEs. This is the default option.

4.3 Description

rdbwdensity implements several bandwidth selection procedures specifically tailored
for manipulation testing based on the local-polynomial density estimators implemented
in rddensity. The user must specify the running variable.

5 Illustration of methods

We illustrate our community-contributed commands using the same dataset already
used in Calonico et al. (2017) and Cattaneo, Titiunik, and Vazquez-Bare (2016), where
related RD commands are introduced and discussed. This facilitates comparison across
the Stata and R packages available for analysis and interpretation of RD designs; the
package introduced herein discusses a falsification approach to RD designs via manipu-
lation testing, while the other packages discuss graphical presentation and falsification,
estimation, and inference.

rddensity senate.dta contains the running variable from a larger dataset con-
structed and studied in Cattaneo, Frandsen, and Titiunik (2015), focusing on party
advantages in U.S. Senate elections for the period 1914–2010. Thus, the unit of obser-
vation is a state in the United States. In this section, we focus on the running variable
used to analyze the RD effect of the Democratic party winning a U.S. Senate seat on the
vote share obtained in the following election for that same seat. This empirical illustra-
tion is analogous to the one presented by McCrary (2008) for U.S. House elections. The
variable of interest is margin, which ranges from −100 to 100 and records the Demo-
cratic party’s margin of victory in the statewide election for a given U.S. Senate seat,
defined as the vote share of the Democratic party minus the vote share of its strongest
opponent. This corresponds to the index, score, or running variable. By construction,
the cutoff is x = 0.
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First, we load the dataset and present summary statistics:

. use rddensity_senate

. summarize margin

Variable Obs Mean Std. Dev. Min Max

margin 1,390 7.171159 34.32488 -100 100

The dataset has a total of 1,390 observations, with an average Democratic party margin
of victory of about 7 percentage points.

We now conduct a manipulation test using the command rddensity with its default
options.

. rddensity margin
Computing data-driven bandwidth selectors.

RD Manipulation Test using local polynomial density estimation.

Cutoff c = 0 Left of c Right of c Number of obs = 1390
Model = unrestricted

Number of obs 640 750 BW method = comb
Eff. Number of obs 408 460 Kernel = triangular

Order est. (p) 2 2 VCE method = jackknife
Order bias (q) 3 3

BW est. (h) 19.841 27.119

Running variable: margin.

Method T P>|T|

Robust -0.8753 0.3814

The output contains a variety of useful information. First, the upper-left panel gives
basic summary statistics on the data being used, separate for control (Xi < x) and
treatment units (Xi ≥ x). This panel also reports the value of the bandwidth(s) cho-
sen. Second, the upper-right panel includes general information regarding the overall
sample size and implementation choices of the manipulation test. Finally, the lower
panel reports the results from implementing the manipulation test. In this first execu-
tion, the test statistic is constructed using a q = 3 polynomial, with different bandwidths
chosen for an unrestricted model with polynomial order p = 2. Specifically, the band-
width choices are (ĥl,comb,p, ĥr,comb,p) = (19.841, 27.119), leading to effective sample sizes
of N− = 408 and N+ = 460 for control and treatment groups, respectively. The final

manipulation test is Tq(ĥl,comb,p, ĥr,comb,p) = −0.8753, with a p-value of 0.3814. There-
fore, in this application, there is no statistical evidence of systematic manipulation of
the running variable.

rddensity also offers an automatic plot of the manipulation test. This plot is im-
plemented using the package lpdensity for local-polynomial–based density estimation
in Stata and R. If the user does not have this package installed, rddensity will issue an
error and will request the user to install it. (In R, the package lpdensity is declared
as a dependency, so no error ever occurs.) The following command installs the package
lpdensity in Stata:
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. net install lpdensity,
> from(https://sites.google.com/site/nppackages/lpdensity/stata) replace

To obtain the default manipulation test plot, you just need to add the plot option
to rddensity, as follows:

. rddensity margin, plot
Computing data-driven bandwidth selectors.

RD Manipulation Test using local polynomial density estimation.

Cutoff c = 0 Left of c Right of c Number of obs = 1390
Model = unrestricted

Number of obs 640 750 BW method = comb
Eff. Number of obs 408 460 Kernel = triangular

Order est. (p) 2 2 VCE method = jackknife
Order bias (q) 3 3

BW est. (h) 19.841 27.119

Running variable: margin.

Method T P>|T|

Robust -0.8753 0.3814

The resulting default plot is given in figure 1:

0
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margin

point estimate 95% C.I.

rddensity plot (p=2, q=3)

Figure 1. Manipulation test plot (default options)



250 Manipulation testing based on density discontinuity

The basic manipulation test plot can be improved using user-specified options. For
example, the following command changes the plot’s legends and general appearance.
The resulting plot is given in figure 2:

. rddensity margin, plot
> graph_options(graphregion(color(white))
> xtitle("Margin of victory") ytitle("Density") legend(off))
Computing data-driven bandwidth selectors.

RD Manipulation Test using local polynomial density estimation.

Cutoff c = 0 Left of c Right of c Number of obs = 1390
Model = unrestricted

Number of obs 640 750 BW method = comb
Eff. Number of obs 408 460 Kernel = triangular

Order est. (p) 2 2 VCE method = jackknife
Order bias (q) 3 3

BW est. (h) 19.841 27.119

Running variable: margin.

Method T P>|T|

Robust -0.8753 0.3814
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Figure 2. Manipulation test plot (with user options)

To further illustrate some capabilities of rddensity, we consider a few additional
runs. We can obtain two distinct statistics, conventional and bias-corrected, by including
the option all. This gives the following output:
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. rddensity margin, all
Computing data-driven bandwidth selectors.

RD Manipulation Test using local polynomial density estimation.

Cutoff c = 0 Left of c Right of c Number of obs = 1390
Model = unrestricted

Number of obs 640 750 BW method = comb
Eff. Number of obs 408 460 Kernel = triangular

Order est. (p) 2 2 VCE method = jackknife
Order bias (q) 3 3

BW est. (h) 19.841 27.119

Running variable: margin.

Method T P>|T|

Conventional -1.6506 0.0988
Robust -0.8753 0.3814

This second output still uses all the default options, but now it reports two test
statistics. The first statistic, labeled Conventional, will exhibit asymptotic bias and
hence will overreject the null hypothesis of no manipulation when the MSE-optimal or
another large bandwidth is used. This is confirmed in the simulation study reported
in section 6. The second statistic, labeled Robust, implements inference based on ro-
bust bias-correction and is the default and recommended option for implementing a
manipulation test.

The following output showcases other features of rddensity. Here we conduct a
manipulation test using the restricted model and plug-in SEs:

. rddensity margin, fitselect(restricted) vce(plugin)
Computing data-driven bandwidth selectors.

RD Manipulation Test using local polynomial density estimation.

Cutoff c = 0 Left of c Right of c Number of obs = 1390
Model = restricted

Number of obs 640 750 BW method = comb
Eff. Number of obs 396 362 Kernel = triangular

Order est. (p) 2 2 VCE method = plugin
Order bias (q) 3 3

BW est. (h) 18.753 18.753

Running variable: margin.

Method T P>|T|

Robust -1.4768 0.1397

In this case, because the restricted model is being used, a common bandwidth for
both control and treatment units is selected. This value is ĥRcomb,p = 18.753 with the
choice p = 2 and is now using the plug-in SE estimator (instead of the jackknife method,
as used before). This empirical finding shows that we continue to not reject the null
hypothesis of no manipulation (p-value is 0.1397), even when the restricted model is
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used, which provides further empirical evidence in favor of the validity of the RD design
in this application.

To close this section, we report output from the companion command rdbwdensity.
This command was used all along implicitly by rddensity, but here we use it as a
standalone command to illustrate some of its features. The default output for the
empirical applications is as follows:

. rdbwdensity margin

Bandwidth selection for manipulation testing.

Cutoff c = 0.000 Left of c Right of c Number of obs = 1390
Model = unrestricted

Number of obs 640 750 Kernel = triangular
Min Running var. -100.000 0.011 VCE method = jackknife
Max Running var. -0.079 100.000

Order loc. poly. (p) 2 2

Running variable: margin.

Target Bandwidth Variance Bias^2

left density 19.841 0.109 0.000
right density 27.569 0.085 0.000

difference densities 27.119 0.194 0.000
sum densities 19.531 0.194 0.000

The output of rdbwdensity closely mimics the output from rddensity. Notice
that the defaults are all the same [for example, x = 0, p = 2, K(·) = triangular,
and unrestricted model]. The main results are reported in the lower panel, where now
the output includes different estimated bandwidth choices. These choices depend on the
MSE criterion function (and the model considered, as discussed previously): the first row

(labeled left density) reports ĥl,p, the second row (labeled right density) reports

ĥr,p, the third row (labeled difference densities) reports ĥdiff,p, and the fourth row

(labeled sum densities) reports ĥsum,p. Of course, ĥcomb,p may be easily constructed
using the above information.

A similar set of results may also be obtained for the restricted model. For this case,
the command is rdbwdensity margin, fitselect(restricted), but we do not report
these results here to conserve space.
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Finally, we briefly illustrate how the two commands can be combined:

. quietly rdbwdensity margin

. matrix h = e(h)

. local hr = h[2,1]

. rddensity margin, h(10 `hr´)

RD Manipulation Test using local polynomial density estimation.

Cutoff c = 0 Left of c Right of c Number of obs = 1390
Model = unrestricted

Number of obs 640 750 BW method = manual
Eff. Number of obs 251 464 Kernel = triangular

Order est. (p) 2 2 VCE method = jackknife
Order bias (q) 3 3

BW est. (h) 10.000 27.569

Running variable: margin.

Method T P>|T|

Robust -1.0331 0.3016

First, rdbwdensity is used to estimate the bandwidths quietly, but then the left band-
width is set manually (hl = 10) while the right bandwidth is estimated (hr = 27.569)
when executing rddensity.

The companion replication file (rddensity illustration.do) includes the syntax
of all the examples discussed above, as well as additional examples not included here to
conserve space. These examples are

1. rddensity margin, kernel(uniform)

Manipulation testing using uniform kernel.

2. rddensity margin, bwselect(diff)

Manipulation testing with bandwidth selection based on MSE of difference of den-
sities.

3. rddensity margin, h(10 15)

Manipulation testing using user-chosen bandwidths hl = 10 and hr = 15.

4. rddensity margin, p(2) q(4)

Manipulation testing using p = 2 and q = 4.

5. rddensity margin, c(5) all

Manipulation testing at cutoff x = 5 with all statistics.

6. rdbwdensity margin, p(3) fitselect(restricted)

Bandwidth selection for restricted model with p = 3.

7. rdbwdensity margin, kernel(uniform) vce(jackknife)

Bandwidth selection with uniform kernel and jackknife SE.
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6 Simulation study

This section reports the numerical findings from a simulation study aimed to illustrate
the finite sample performance of our new manipulation test.

We consider several implementations of the manipulation test Tp(h), which varies
according to the choice of polynomial order (p = 2 or p = 3) and choice of bandwidth.
We analyze the performance of the inference procedure using a grid of bandwidths
around the MSE-optimal choice, as well as a data-driven implementation of this optimal
bandwidth choice, allowing for both equal and difference bandwidth choices on either
side of the threshold. We also investigate the performance of robust bias-correction
because we report both the näıve testing procedure without bias correction and its
robust bias-corrected version. For implementation, in all cases, we also consider both
asymptotic plug-in or jackknife variance estimation.

We consider the data-generating process given by Xi ∼
√
3/5T (5), where T (k)

denotes a Student’s t distribution with k degrees of freedom and a cutoff point x = 0.5,
which induces an asymmetric distribution. We use a sample size n = 1000, and all
simulations were based on 2,000 replications with a triangular kernel to implement our
density estimators.

6.1 Point estimation and empirical size

In this section, we report simulation results concerning the point-estimation properties
of the underlying density estimator at the boundary point x as well as the average
rejection rate (empirical size) of our proposed manipulation test. All the numerical
results are given in table 1.
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Table 1. Density estimation and manipulation test (empirical size)

Bandwidth Density Estimators Plug-in SE Jackknife SE

left right bias− bias+ bias sd bias/sd mse mean size mean size

Grid h−, h+

0.5× 0.538 0.538 0.014 −0.001 −0.015 0.092 0.163 0.816 0.091 0.050 0.091 0.050

0.6× 0.645 0.645 0.021 −0.003 −0.024 0.084 0.292 0.721 0.083 0.056 0.083 0.059

0.7× 0.753 0.753 0.031 −0.005 −0.036 0.078 0.460 0.699 0.078 0.077 0.077 0.078

0.8× 0.861 0.861 0.042 −0.007 −0.049 0.073 0.666 0.735 0.073 0.107 0.072 0.112

0.9× 0.968 0.968 0.054 −0.010 −0.064 0.069 0.921 0.832 0.069 0.143 0.068 0.152

hMSE,p 1.076 1.076 0.067 −0.013 −0.080 0.065 1.223 1.000 0.066 0.208 0.064 0.232

1.1× 1.183 1.183 0.081 −0.016 −0.097 0.062 1.567 1.248 0.064 0.312 0.061 0.345

1.2× 1.291 1.291 0.095 −0.019 −0.114 0.059 1.939 1.565 0.061 0.468 0.059 0.497

1.3× 1.399 1.399 0.109 −0.023 −0.132 0.056 2.333 1.940 0.059 0.609 0.056 0.646

1.4× 1.506 1.506 0.121 −0.027 −0.148 0.054 2.737 2.363 0.057 0.747 0.054 0.785

1.5× 1.614 1.614 0.133 −0.031 −0.165 0.052 3.144 2.820 0.056 0.856 0.053 0.876

Est. ̂h−, ̂h+

Tp(̂hp) 0.618 0.710 0.023 −0.004 −0.027 0.089 0.303 0.827 0.083 0.084 0.083 0.091

Tp(̂hp−1) 0.254 0.218 0.014 −0.001 −0.015 0.142 0.103 1.928 0.141 0.054 0.143 0.050

Tp+1(̂hp) 0.618 0.710 0.007 0.005 −0.002 0.130 0.017 1.593 0.130 0.052 0.131 0.046

Est. ̂h− = ̂h+

Tp(̂hp) 0.596 0.596 0.021 −0.002 −0.023 0.094 0.248 0.880 0.088 0.080 0.087 0.085

Tp(̂hp−1) 0.187 0.187 0.009 0.000 −0.008 0.159 0.053 2.395 0.157 0.059 0.160 0.052

Tp+1(̂hp) 0.596 0.596 0.005 0.005 −0.001 0.137 0.005 1.776 0.136 0.056 0.137 0.052

(a) p = 2

Bandwidth Density Estimators Plug-in SE Jackknife SE

left right bias− bias+ bias sd bias/sd mse mean size mean size

Grid h−, h+

0.5× 0.604 0.604 0.003 0.003 0.000 0.133 0.001 1.948 0.134 0.048 0.135 0.046

0.6× 0.725 0.725 0.001 0.004 0.004 0.121 0.030 1.607 0.122 0.045 0.124 0.047

0.7× 0.845 0.845 −0.004 0.005 0.009 0.112 0.082 1.378 0.113 0.052 0.114 0.048

0.8× 0.966 0.966 −0.007 0.007 0.013 0.105 0.128 1.219 0.106 0.048 0.107 0.044

0.9× 1.087 1.087 −0.007 0.008 0.015 0.099 0.153 1.103 0.100 0.050 0.101 0.046

hMSE,p 1.208 1.208 −0.006 0.009 0.015 0.094 0.156 1.000 0.095 0.052 0.095 0.049

1.1× 1.328 1.328 −0.003 0.009 0.012 0.090 0.139 0.903 0.090 0.056 0.091 0.054

1.2× 1.449 1.449 0.002 0.010 0.008 0.086 0.094 0.816 0.087 0.052 0.087 0.048

1.3× 1.570 1.570 0.008 0.010 0.002 0.083 0.020 0.746 0.084 0.048 0.083 0.053

1.4× 1.691 1.691 0.016 0.010 −0.007 0.080 0.082 0.697 0.081 0.050 0.080 0.050

1.5× 1.812 1.812 0.026 0.009 −0.016 0.077 0.211 0.676 0.079 0.048 0.077 0.053

Est. ̂h−, ̂h+

Tp(̂hp) 1.190 1.237 −0.006 0.008 0.014 0.098 0.140 1.077 0.095 0.051 0.097 0.050

Tp(̂hp−1) 0.610 0.705 0.010 0.005 −0.005 0.129 0.040 1.830 0.131 0.048 0.132 0.046

Tp+1(̂hp) 1.190 1.237 0.007 0.006 −0.001 0.129 0.007 1.818 0.134 0.044 0.135 0.040

Est. ̂h− = ̂h+

Tp(̂hp) 1.119 1.119 −0.006 0.008 0.014 0.100 0.136 1.124 0.099 0.048 0.100 0.051

Tp(̂hp−1) 0.590 0.590 0.009 0.001 −0.007 0.136 0.055 2.043 0.137 0.050 0.138 0.052

Tp+1(̂hp) 1.119 1.119 0.008 0.006 −0.002 0.134 0.016 1.960 0.140 0.043 0.140 0.038

(b) p = 3
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Notes: i) Columns “Bandwidth”: bandwidths for left and right density estimators. ii) Columns “Density

estimators”: bias of left and right density estimators, and bias, standard deviation, standardized bias, and

MSE of difference of density estimators. iii) Columns “Plug-in SE”: average of plug-in SE (“mean”) and

empirical size of corresponding manipulation test Tp(h) (“size”). iv) Columns “Jackknife SE”: average of

jackknife SE (“mean”) and empirical size of corresponding manipulation test Tp(h) (“size”). v) ĥp denotes

estimated MSE-optimal bandwidth for p-order density estimator.

We first describe the format of table 1. Starting with the columns, each table reports
the following:

i) the bandwidths used to construct the density estimators on the left and on the
right of the cutoff x (columns under the label “Bandwidth”);

ii) the average bias of the two density estimators and the difference thereof, simulation
variability, standardized bias of the difference of density estimators, and simulation
MSE of the difference of density estimators at the cutoff x (columns under the label
“Density estimators”);

iii) the average of the asymptotic plug-in SE estimator and the empirical size of the
associated feasible manipulation test (columns under the label “Plug-in SE”); and

iv) the average of the jackknife SE estimator and the empirical size of the associated
feasible manipulation test (columns under the label “Jackknife SE”).

Continuing with the rows, and to better understand the role of the bandwidth choice
hn on the finite sample performance of the density and SE estimators and of the ma-
nipulation test, table 1 reports:

i) a grid of fixed bandwidths constructed around the theoretical infeasible MSE-op-
timal bandwidth (rows under the label “Grid”);

ii) estimated bandwidths, which are allowed to differ on the two sides of the cutoff,

obtained as ĥl,comb,p and ĥr,comb,p (rows under the label “Est. ĥ−, ĥ+”); and

iii) estimated bandwidths, which are required to be the same on the two sides of

the cutoff, obtained as the smaller of ĥdiff,p and ĥsum,p (rows under the label

“Est. ĥ− = ĥ+”).

The simulation results allow us to explore the finite sample performance of the differ-
ent ingredients entering the manipulation test (density, SE, and bandwidth estimators)
and of the test itself (and by implication, the quality of the Gaussian distributional
approximation). Given the large amount of information, we offer only a summary of
the main results we observe from the Monte Carlo experiment.

We first look at nonrandom bandwidths, which help us separate the finite sample
performance of the main theoretical results in the article from the impact of bandwidth
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estimation. From the grid of bandwidths around the MSE-optimal hMSE,p, we find that
i) the simulation variability of the difference of density estimators (the column labeled
“sd”) is approximated very well by the jackknife SE estimator and reasonably well
by the asymptotic plug-in SE estimator (compare with the columns labeled “mean”),
and ii) the manipulation test exhibits some empirical size distortion when using the
MSE-optimal bandwidth hMSE,p, as expected, but exhibits excellent empirical size when
undersmoothing this bandwidth choice. These numerical findings indicate that our
main theoretical results concerning bias, variance, and distributional approximations,
as well as the consistency of the proposed SE formulas, are borne out in the Monte Carlo
experiment.

We now explore the impact of bandwidth selection on estimation and inference in the
context of the manipulation test. We focus on the last six rows of table 1. When looking
at the different bandwidth estimators, we find that i) our bandwidth estimator ĥp tends
to deliver smaller values than hMSE,p on average, a finding that actually helps control the
empirical size of the manipulation test, and ii) the robust bias-correction approach [that

is, inference based on Tp(ĥp−1)] delivers manipulation tests with very good empirical
size properties. Because the robust bias-correction approach is theoretically justified
and valid for all sample sizes, we recommend it as the best alternative for applications.

To summarize, based on the simulation evidence we obtained, we recommend for em-
pirical work the manipulation test based on the feasible statistic Tp(ĥp−1) constructed
using a pth-order local-polynomial density estimator, an MSE-optimal bandwidth choice
coupled with robust bias-correction, and the corresponding jackknife SE estimator. This
testing procedure exhibited close-to-correct empirical size across all designs we consid-
ered and performed as well as (if not better than) all the alternatives we explored. These
numerical findings agree with our main theoretical results.

6.2 Empirical power

To complement the numerical results presented above, we also investigate the power
of the manipulation test constructed using the local-polynomial density estimator. We
continue to use the same data-generating process, but now we scale the data so that
the true density satisfies

f+/f− ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5}

at the cutoff x = 0.5. Recall that the sample size is n = 1000 and that all simulations
are based on 2,000 replications.

The results are given in table 2.
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Table 2. Manipulation test (empirical power)

Bandwidth Rejection Rate H0 : f+/f− = 1 vs. Ha : value below

left right 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Plug-in SE

Tp(hMSE,p) 1.076 1.076 1.000 0.990 0.922 0.734 0.454 0.212 0.080 0.036 0.060 0.126 0.233

Est. ̂h−, ̂h+

Tp(̂hp) 0.615 0.712 0.888 0.715 0.498 0.284 0.154 0.072 0.064 0.078 0.134 0.218 0.330

Tp(̂hp−1) 0.254 0.215 0.478 0.316 0.202 0.122 0.074 0.056 0.049 0.060 0.072 0.094 0.130

Tp+1(̂hp) 0.615 0.712 0.474 0.313 0.191 0.112 0.074 0.053 0.050 0.065 0.100 0.143 0.187

Est. ̂h− = ̂h+

Tp(̂hp) 0.594 0.594 0.865 0.686 0.456 0.266 0.138 0.070 0.060 0.074 0.122 0.190 0.285

Tp(̂hp−1) 0.185 0.185 0.353 0.239 0.151 0.099 0.066 0.050 0.047 0.060 0.079 0.100 0.131

Tp+1(̂hp) 0.594 0.594 0.458 0.301 0.188 0.114 0.072 0.057 0.055 0.068 0.088 0.117 0.159

Jackknife SE

Tp(hMSE,p) 1.076 1.076 1.000 0.990 0.926 0.747 0.480 0.232 0.090 0.045 0.071 0.148 0.265

Est. ̂h−, ̂h+

Tp(̂hp) 0.615 0.712 0.866 0.700 0.490 0.288 0.155 0.076 0.067 0.082 0.136 0.231 0.352

Tp(̂hp−1) 0.254 0.215 0.459 0.309 0.196 0.114 0.063 0.047 0.044 0.055 0.070 0.098 0.139

Tp+1(̂hp) 0.615 0.712 0.450 0.305 0.196 0.118 0.068 0.051 0.047 0.062 0.104 0.143 0.200

Est. ̂h− = ̂h+

Tp(̂hp) 0.594 0.594 0.844 0.670 0.450 0.266 0.142 0.073 0.063 0.076 0.123 0.202 0.310

Tp(̂hp−1) 0.185 0.185 0.345 0.230 0.148 0.097 0.057 0.043 0.044 0.054 0.072 0.100 0.132

Tp+1(̂hp) 0.594 0.594 0.434 0.292 0.188 0.114 0.074 0.052 0.050 0.066 0.088 0.126 0.170

(a) p = 2

Bandwidth Rejection Rate H0 : f+/f− = 1 vs. Ha : value below

left right 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Plug-in SE

Tp(hMSE,p) 1.208 1.208 0.701 0.456 0.236 0.110 0.056 0.057 0.086 0.143 0.218 0.311 0.412

Est. ̂h−, ̂h+

Tp(̂hp) 1.205 1.259 0.680 0.455 0.264 0.138 0.076 0.057 0.090 0.141 0.210 0.306 0.409

Tp(̂hp−1) 0.617 0.712 0.472 0.291 0.168 0.098 0.064 0.050 0.055 0.078 0.108 0.152 0.190

Tp+1(̂hp) 1.205 1.259 0.478 0.280 0.149 0.078 0.051 0.050 0.060 0.076 0.106 0.137 0.179

Est. ̂h− = ̂h+

Tp(̂hp) 1.134 1.134 0.658 0.442 0.240 0.124 0.066 0.052 0.084 0.122 0.191 0.272 0.368

Tp(̂hp−1) 0.594 0.594 0.447 0.284 0.166 0.102 0.068 0.051 0.056 0.070 0.092 0.122 0.162

Tp+1(̂hp) 1.134 1.134 0.450 0.263 0.148 0.075 0.052 0.052 0.056 0.070 0.098 0.129 0.162

Jackknife SE

Tp(hMSE,p) 1.208 1.208 0.646 0.424 0.228 0.107 0.057 0.054 0.083 0.150 0.236 0.336 0.446

Est. ̂h−, ̂h+

Tp(̂hp) 1.205 1.259 0.624 0.430 0.256 0.134 0.074 0.053 0.086 0.142 0.232 0.336 0.448

Tp(̂hp−1) 0.617 0.712 0.444 0.286 0.174 0.102 0.063 0.041 0.054 0.072 0.112 0.152 0.208

Tp+1(̂hp) 1.205 1.259 0.444 0.274 0.152 0.080 0.047 0.040 0.055 0.080 0.110 0.154 0.204

Est. ̂h− = ̂h+

Tp(̂hp) 1.134 1.134 0.600 0.415 0.236 0.123 0.064 0.049 0.078 0.128 0.210 0.300 0.403

Tp(̂hp−1) 0.594 0.594 0.434 0.275 0.170 0.100 0.064 0.045 0.048 0.068 0.092 0.130 0.177

Tp+1(̂hp) 1.134 1.134 0.420 0.267 0.148 0.078 0.047 0.042 0.053 0.072 0.101 0.140 0.184

(b) p = 3
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Notes: i) Columns “Bandwidth”: bandwidths for left and right density estimators under the null hypoth-

esis f+/f− = 1. For other cases, the bandwidth for estimating f+ is adjusted proportional to f+/f−.

ii) ĥp: estimated MSE-optimal bandwidth for p-order density estimator.

We first describe the format of this table. The two main columns report the following:

i) the bandwidths used to construct the density estimators on the left and on the
right of the cutoff x (columns under the label “Bandwidth”); and

ii) the density discontinuity and the corresponding rejection rates (columns under
the label “Rejection rate”). Note that the column f+/f− = 1 corresponds to the
null hypothesis being true, and the rejection rate under that column is just the
empirical size of the test.

Continuing with the rows of table 2, we examine the empirical power with the
infeasible MSE-optimal bandwidth as well as the estimated bandwidths, with either the
plug-in or the jackknife SE used.

Based on the simulation evidence obtained, we find that using the infeasible MSE-
optimal bandwidth will lead to size distortion and the power curve does not attain
minimum when the null hypothesis is true (for example, in the p = 2 case in table 2, the
minimum rejection rate occurs when f+/f− = 1.2), which again confirms the finding
that without bias correction, the manipulation test will not only be inconsistent but
also lose power.

For the different bandwidth estimators, we again find that the robust bias-correction
approach delivers manipulation tests with very good empirical size properties, because
with either method, the power curve achieves minimum when the null hypothesis is
true. Also as expected, bias correction will lead to some power loss compared with the
Tp(ĥp) case.

7 Conclusion

In this article, we discussed the implementation of nonparametric manipulation tests
using local-polynomial density estimators, which are useful for falsification of RD de-
signs and for empirical research analyzing whether units are self-selected into a par-
ticular group or treatment status. We introduced two commands: rddensity and
rdbwdensity. These commands use ideas from Cattaneo, Jansson, and Ma (2017b).
In particular, the first command implements several nonparametric manipulation tests,
while the second command provides an array of bandwidth selection methods. Compan-
ion R functions are also available from the authors. The latest version of this and related
software for RD designs can be found at https://sites.google.com/site/rdpackages/.

https://sites.google.com/site/rdpackages/
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