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Abstract

Uncertainty quantification in causal inference settings with random network in-
terference is a challenging open problem. We study the large sample distributional
properties of the classical difference-in-means Hajek treatment effect estimator, and
propose a robust inference procedure for the (conditional) direct average treatment ef-
fect, allowing for cross-unit interference in both the outcome and treatment equations.
Leveraging ideas from statistical physics, we introduce a novel Ising model capturing
interference in the treatment assignment, and then obtain three main results. First,
we establish a Berry-Esseen distributional approximation pointwise in the degree of
interference generated by the Ising model. Our distributional approximation recov-
ers known results in the literature under no-interference in treatment assignment, and
also highlights a fundamental fragility of inference procedures developed using such a
pointwise approximation. Second, we establish a uniform distributional approximation
for the Hajek estimator, and develop robust inference procedures that remain valid
regardless of the unknown degree of interference in the Ising model. Third, we propose
a novel resampling method for implementation of robust inference procedure. A key
technical innovation underlying our work is a new De-Finetti Machine that facilitates
conditional i.i.d. Gaussianization, a technique that may be of independent interest in
other settings.
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1 Introduction

We study the large sample distributional properties of the classical Hajek average treatment
effect estimator, and propose a robust inference procedure for the (conditional) direct average
treatment effect, in the presence of cross-unit interference in both the outcome and treatment
equations. This causal inference problem arises in a variety of contexts such as (online)
social networks, medical trials, and socio-spatial studies, and has received renewed attention
in recent years. Recent contributions include [1], [11], [10], [12], [18], [20], and references
therein. See [8] for a modern textbook introduction to causal inference.

The key challenge in causal inference settings with interference is that units can affect
each other in arbitrary ways, making statistical inference difficult without disciplining the
degree of cross-unit interference: it is common to assume that units correspond to vertices in
a network, typically represented as a graph, such that only when units are connected by an
edge, they may influence each other. Early literature assumed that the underlying network
was fixed, or otherwise known, but more recent advances have considered estimation and
inference methods allowing the network to be a random (unobserved) graph (see Assumption
1 below). Furthermore, due to the challenges introduced by the presence of the latent
random graph structure, it is common in the literature to restrict the degree of interference
entering the outcome and treatment equations: prior work has focused on the special case
where the potential outcomes exhibit restricted interference in the form of annonymity or
exchangability (see Assumption 2 below), but the treatment assigment mechanism does not
exhibit interference. We contribute to this emerging causal inference literature by allowing
for the treatment assignment mechanism to also exhibit restricted cross-unit interference,
while retaining the other semiparametric modelling assumptions imposed in previous work.

Leveraging ideas from statistical physics [7], we introduce a class of Ising equiprobable
treatment assignment mechanisms described by

Ps(T = t) o exp (g S (2t - 1)(2t - 1)), (1)

1#]
where T = (T3,...,T,)" € {0,1}" denote the vector of binary treatment assignments for n
units, t = (¢;...,t,)", and the unknown parameter 3 > 0 controls the degree of cross-unit

interference in their treatment assignments (see Assumption 3 below). This model explicitly
accounts for the stochastic nature of network formation in the treatment equation, and
reduces to the classical independent equiprobable treatment assignment rule when g = 0
(i.e., random assignment with equal probability). Thus, the Ising equiprobable treatment
assignment model allow us to investigate how prior conclusions in the literature change as
a function of the degree of cross-unit interference in treatment assignment as controlled by
the unknown parameter 3.

To streamline the presentation, and due to some technical issues, we focus on the mod-
erate cross-unit interference regime § € [0,1]. See Section 8 for more discussion. Our first
contribution concerns the large sample distributional properties of the classical difference-in-
means Hajek estimator (see (3) below). Theorem 3.1 establishes a Berry-Esseen bound for
the estimator, that is, a distributional approximation in Kolgomorov distance with explicit
convergence rates. The closest antecedent is [12], who considered the same causal model



with network interference but under the assumption 5 = 0 (random treatment assignment),
and established a Gaussian distributional approximation for the Hajek estimator. Theorem
3.1 establishes a precise distributional approximation with explicit convergence rates and,
more importantly, shows that: (i) for 5 € [0,1), the limiting distribution continues to be
Gaussian, but the asymptotic variance exhibits an additional term that captures the cross-
unit interference in the treatment equation; (ii) for g € [0,1), the new asymptotic variance
coincides with the one obtained in [12] when § = 0 but is increasing and unbounded as a
function of 5; and (iii) for 5 = 1, the limiting distribution is non-Gaussian. These findings
have an important implication for the robustness of inference procedures developed under
the assumption of no-interference in the treatment assignment (8 = 0): the distribution
approximation changes as a function of § > 0, exhibiting a discontinuity at 5 = 1, thereby
invalidating inference procedures obtained from distributional approximations that only hold
pointwise in f3.

The lack of uniform validity demonstrated in Theorem 3.1 poses a major challenge for
developing robust inference procedures in the presence of potential interference in the treat-
ment assignment because (3 is unknown in practice. Moreover, [16] showed that no consistent
estimator exists for 5 € [0, 1), making plug-in inference procedures infeasible, even pointwise
in 8 € [0,1). To address these challenges, Theorem 4.1 establishes a uniform in g € [0, 1]
distributional approximation for the Hajek estimator and, as a necessary by-product, also
establishes a uniform distributional approximation in g € [0, 1] for its Maximum Pseudo-
Likelihood estimator (MPLE); see [17]. The resulting distributional approximations are
indexed by a localization parameter offering a smooth transition between the discontinuous
limit laws established in Theorem 3.1, as well as for those corresponding to the MPLE of 5.

Building on Theorem 4.1, and employing a Bonferroni-correction procedure that works
by creating hierarchical confidence intervals for different [g-regimes, we present uniformly
valid uncertainty quantification for the (conditional) direct average treatment effect 7,, (see
: we develop infeasible (Theorem 4.2) and feasible (Theorem 5.1) prediction intervals C,(«)
satisfying

liminf inf Pglr, € Co(a)] >1—a,
minf inf slT (@) 21—«

for o € [0, 1], where C,, () is based on the Hajek estimator and a novel resampling procedure
aimed to capturing sampling uncertainty coming from the underlying network. To the best of
our knowledge, our proposed feasible inference procedure is new for § = 0. More importantly,
our proposed inference procedure is the first to offer robust (uniform) validity across all values
of B € [0,1]. Section 6 presents a simulation study demonstrating the performance of our
proposed methods.

1.1 Summary of Methodological and Technical Contributions

From a methodological perspective, our paper contributes to the literature on causal inference
under cross-unit interference. Classical contributions include [9], [19], [15], and references
therein. The closest antecedent to our work is [12], who studied distribution theory for the
same casual inference model with network interference considered in this paper except for



assuming random treatment assignment (i.e., without interference in the treatment assign-
ment mechanism). Thus, our first methodological contribution is to propose a novel Ising
equiprobable treatment assignment model to capture the possible interdependency between
treatment assignments when units can interference with each other. The model covers the
equiprobable experimental design, as well as a class of dependent treatment assignments as
indexed by  in (1). Furthermore, our second main methodological contribution is to present
a novel, feasible robust inference procedure for the (conditional) direct average treatment
effect, which is uniformly valid for all 5 € [0, 1]. This procedure relies on a Bonferroni correc-
tion together with a uniform distributional approximation for the Hajek estimator, taking
into account the different [S-regimes, and also leverages a new resampling-based variance
estimator developed herein. Our proposed inference procedure appears to be new even in
the special case of 5 = 0 (no-interference in treatment assignment).

From a technical perspective, our paper also offers a contribution to the applied probabil-
ity literature, particularly in the context of statistical mechanics [7]. Allowing for interference
in treatment assignment leads to major technical challenges for establishing distribution the-
ory for the Hajek estimator, since the Ising equiprobable treatment model introduces new
sources of dependence that need to be taken into account. For example, as shown in Theo-
rem 3.1, the Hajek estimator exhibits different concentration rates around 7,, depending on
whether 8 = 1 or not, in addition to having different limit laws. Our first technical contri-
bution is to develop a new De-Finetti Machine that leverages the exchangeability structure
in the treatment vector induced by Ising model, which we then use to establish a Berry-
Esseen bound under the different S-regimes. This new technique is based on a carefully
crafted conditioning argument that renders the elements of T conditionally i.i.d., thereby
reducing the problem to establishing a Berry-Esseen bound for conditionally i.i.d. random
variables. Our new technical approached generalizes [5] and [6] by considering a multiplier
Curie-Weiss magnetization statistic, without relying on variants of Stein’s method [5], and
instead using a novel conditional i.i.d. Gaussianization approach. Our new technique may
be of independent interest in other settings considering establishing a Berry-Esseen bound
for sum of exchangeable random variables. To address the uniform inference problem, we
further establish uniform in 8 € [0, 1] distributional approximations: our results cover both
the Hajek estimator and the MPLE for 5. Thus, a second technical contribution of our work
is to the literature on distributional properties of the Ising model.

1.2 Organization

Section 2 formalizes the setup. Section 3 presents pointwise in 8 € [0, 1] distribution the-
ory for the Hajek estimator. Section 4 presents uniform in g € [0, 1] distribution theory,
and discusses an infeasible uniformly valid inference procedure. Section 5 proposes a fea-
sible inference procedure based on resampling methods. Section 6 presents simulation evi-
dence. Section 7 overviews our technical contributions, including Berry-Esseen bounds for
Curie-Weiss magnetization with independent multipliers, and Section 8 concludes with open
questions and future research directions.



2 Setup

We consider a random potential outcome framework under network interference. For each
unit ¢ € [n] = {1,2,---,n}, let Y;(¢;t_;) denote its random potential outcome when assigned
to treatment level ¢ € {0,1} while the other units are assigned to treatment levels t_; €
{0,1}"1. The vector of observed random treatment assignments for the n units is T = (T :
i € [n]), and T_; denotes the associated random treatment assignment vector excluding 7;.
Thus, the observed data is (Y;,7; : i € [n]) with Y; = (1 — T;)Yi(0; T_;) + T;Y;(1; T_;) for
each i € [n].

Interference among the n units is modelled via a latent network characterized by an
undirected random graph G(V,E) with vertex set V = [n] and (random) adjacency matrix
E = (E; : (4,5) € [n] x [n]) € {0,1}"*". The following assumption restricts this random
graph structure.

Assumption 1 (Network Structure). The random network E satisfies: For all 1 < i <
Jj<nandp, € (0,1, E; =0, E;; = Ej;, and E;; = 1(§; < min{1, p,G(U;,U;)}), where
G : 0,1 — Ry is symmetric, continuous and positive on [0,1]*, U = (U; : i € [n]) are
i.i.d. Uniform|0, 1] random variables, & = (&; : (i,7) € [n] X [n],i < j) are i.i.d Uniform[0, 1]
random variables. Finally, U and E are independent.

This assumption corresponds to the sparse graphon model of [3]. The parameter p,
controls the sparsity of the network, and will play an important role in our theoretical
results. The variable U; is a latent heterogenous property of the ¢th unit, and G(U;,U;)
measures similarity between traits of U; and U;. This allows for a stochastic model for the
edge formation.

Building on the underlying random graph structure, the following assumption imposes
discipline on the interference entering the outcome equation.

Assumption 2 (Exchangable Smooth Potential Outcomes Model). For alli € [n], Y;(T;; T_;)
fi(Ty; %) where My =3 Eij Ty, Ny =3, T;, and £ = (f; 1 i € [n]) are i.i.d random func-

tions. In addition, for alli € [n] and some integer p > 4, maxi<;<, maxte{(]’l}]@ép)fi(t, )< C
for some C' not depending on n and (. Finally, f is independent to E.

This second assumption imposes two main restrictions on the potential outcomes. First,
a dimension reduction is assumed via the underlying network structure (Assumption 1),
making the potential outcomes for each unit ¢ € [n] a function of only their own treatment
assignment and the fraction of other treated units among their (connected) peers. Second,
the potential outcomes are assumed to be smooth as a function of the fraction of treated
peers, thereby ruling out certain types of outcome variables (e.g., binary or similarly limited
dependent variable models). Assumption 2 explicitly parametrizes the smoothness level
p because, together with the the sparsity parameter p, in Assumption 1, it will play an
important role in our theoretical results.

To close the causal inference model, the following assumption restricts the treatment
assignment distribution. We propose an Ising model from statistical physics [7].



Assumption 3 (Ising Equiprobable Treatment Assignment). The treatment assignment
mechanism follows a Curie-Weiss distribution:

Ps(T =t) = Ciﬁ exp (é > (2t —1)(2t; - 1)), (2)

"
where t € {0,1}", 5 € [0,1], and Cj is determined by the condition ), Ps(T =t) = 1.

This model naturally encodes a class of equiprobable, possibly dependent treatment as-
signment mechanisms. Assumption 3 implies Pg(T; = 1) = % for i € [n] and all 3 > 0, but
allows for correlation in treatment assignment as controlled by . When 5 = 0, treatment
assignment becomes independent across units, and thus the assignment mechanism reduces
to the canonical (equiprobable) randomized allocation. For § € [0, 1], the Ising mechanism
induces positive pairwise correlations, capturing social interdependence phenomena like peer
influence [14] characteristic of observational settings.

We propose a robust inference procedure based on the popular Hajek estimator

D v D v )¢
Yo YL(0-T)
This classical estimator is commonly used in causal inference, both with and without in-

terference. In particular, [12] studied the asymptotic properties of 7,, when $ = 0, under
Assumptions 1-3, and showed that

(3)

V(T = Ta) ~ N(0, ka), ks = E[(R; — E[R;] + Qy)°], (4)

where ~» denotes weak convergence as n — oo, the standard target is the (conditional) direct
average treatment effect given by

=SBV T - YO T 1), B )

and R; = f;(1,2)+ f;(0,3) and Q; = E[%(ﬂ(l, 3)— f1(0,2))|U;]. The (conditional)
direct average treatment effect in (5) is a predictand, not an estimand, in the sense that
it is a random variable that needs not to settle to a non-random probability limit under
the assumptions imposed. Consequently, our uncertainty quantification methods can be
regarded as prediction intervals for the classical target predictand 7,, in the causal inference

literature.

3 Pointwise Distribution Theory

Our first main result is a Berry-Esseen bound for the Hajek estimator, pointwise in 8 € [0, 1],
that is, the degree of treatment assignment interference. We provide a proof sketch in
Section 7, with full technical details deferred to the supplementary material.



Theorem 3.1 (Pointwise Distribution Theory). Suppose Assumptions 1, 2, and 3 hold.
Then,

logn
sup |[P[7, — 7, < t| — L, (t; 5, k1, Kk :O( +r, ),
teﬂlg| [ ] (t; B, k1, i2)| N 8

where Ly (+; B, k1, k) and T, 5 are as follows. Then: (1) High temperature: if 5 € [0,1),

L,(t; B, k1, ko) = Py [n’l/Z (/12 + K2 1 f 5>1/ZZ < t} (6)

with Z ~ N(0,1), and r,, 3 = /nlog n(np,)~"= .
(2) Critical temperature: if B =1,

L (t; B, k1, ko) = Paln~ Y4k Wy < 1] (7)

1

. ¥ exp(—2z%/12)dz 3 _1 4 _ptl
with PIWy < w] = == w e R, and r, 3 = (logn)’n~1 + /ny/logn(np,)” = .

[ exp(—z%/12)dz’

In the high temperature regime (5 € [0,1)), v/n(7,, — 7,,) is asymptotically normal with
variance /12—1—/%%. Thus, when 5 = 0, our result recovers (4), but for g € (0, 1), the asymp-
totic variance is strictly increasing unless k1 = 0 (i.e., no randomness from the underlying
network). In the Critical temperature regime (5 = 1), the limiting distribution is non-
Gaussian. The distinct asymptotic behaviors of 7,, across these regimes mirror the phase
transition phenomena observed in the Ising model’s magnetization m = £ 37" | (2T; — 1).
The first term in the Berry-Esseen bound, log n(npn)_l/ 2 is not improvable beyond the ex-
tra logarithmic factor because log(n)n~/2? when p, < 1. For the second term, r, s, the
bound depends on the smoothness p of the potential outcome function and the temperature
regime.

Theorem 3.1 highlights key challenges in uncertainty quantification, with unknown quan-
tities k1 and kg, and the unknown regime parameter S € [0,1]. Furthermore, [2] es-
tablished an impossibility result showing that no consistent estimator for § exists in the
high-temperature regime. In the following section, we address the estimation of g and the
complications arising from the discontinuous transition between Gaussian and non-Gaussian
laws.

4 Infeasible Robust Inference

This section addresses inference on the treatment effect when the regime parameter [ is
unknown, but assuming that x; and ko are known.

4.1 Maximum Pseudo-Likelihood Estimator (MPLE) for Tempera-
ture

Due to the existence of the normalizing constant Cg in (2), maximum likelihood estimation
is not computationally efficient. However, the conditional distribution of 7} given the rest



of treatments adopts a closed form solution and can be optimized efficiently [17]. Define

W, =21, —1, W_, ={W, : j € [n],j # i}, and m; = Z]#W The MPLE for S is

~

1
fn = arg max Z log Pg[W;|W_;] = arg max Z} —log (§Wz tanh(Sm;) + 5)

B€0,1] icln] pe[0,1] i€ln

We show in Lemma 6 in the supplementary appendix that the limiting distribution of B\n
also depends on the regime 3 € [0,1]. For 8 € [0,1), 1 — 8, ~ (1 — B)max{(x3)~',0},
thereby ruling out consistent estimation. For 8 = 1, y/n(53, — 1) ~ mm{W /3 —1/W3 1},
where Wy is given in Theorem 3.1. For fixed n, the distribution of ﬁn — 1 exhibits the same
discontinuity at 8 = 1 as 7,, — 7,,, highlighting the need for a distributional approximation
that is uniform in 3 for valid inference across all regimes.

4.2 Robust Distribution Theory

We develop valid large sample inference for all values of B € [0,1]. From Theorem 3.1, for all
B € [0,1), the limiting variance of \/n(7, —7,) is ko + K125 5 Thus, when k; # 0, the asymp-
totic variance diverges as [ approaches the critical value § = 1. In contrast, Theorem 3.1
shows that when 8 = 1 the limiting variance of n'/4(7, — 7,,) is finite. This discrepancy
indicates a lack of uniform validity in the distributional approximations in Theorem 3.1. To
address this issue, we establish a uniform distributional approximation based on the drifting
sequence [, = 1 + \/Lﬁ This sequence follows the knife-edge rate, ensuring that the law of
T, — Tn smoothly interpolates between the pointwise distributional approximations indexed
by 5 € [0, 1].

Theorem 4.1 (Robust Distribution Theory). Suppose Assumptions 1, 2 and 3 hold. Define
cgn = /n(1 —B). Then,

1
lim sup sup ‘Pg[ﬂ — 7, < t] — Pg[n’%rﬁz + ﬁ%n’i/ﬁwcﬁn < t]) =0
n—00 0<B<1 teR '

I

2

fj exp(—%5 — < )dzx

Loo®Cip=5 )4 ) ¢ R, Purther-
X

ffo eXp(figfclz )d

with Z ~ N(0,1) independent of W, and PIW,. < w] =

more,

lim sup sup ‘]P’B[l — B, < t] — ]P’g[rnin{max{T;B — TZB 2/ (3n),0},1} < t]’ 0

n—00 0< <1 teER
1
where Tep, =2 +niW,.

Theorem 4.1 establishes that H,(t; k1, ke, Cgn) = Pg[n’%@%z + B%n’imw%n < t] uni-
formly approximates the distribution of 7,, — 7, in both the high-temperature and critical-
temperature regimes. Under the knife-edge scaling, the leading term n~="/ 2/@5/ *Z becomes neg-
ligible, and the typical knife-edge representation retains only the second term 8Y/2n=4x;W..
However, when § € [0,1) is fixed and ¢z, = /n(l — 3) — oo, W, approximates
n~/4N(0, (1 — 8)~1), making both terms comparable in order. Consequently, we retain both
terms in the distributional approximation. In Lemma 4 in the supplementary , we show that
when [ is fixed and ¢g,, = \/n(1— ), we have sup,cp|H,(t; K1, k2, ¢g.n) — Ln(t; K1, k2, B)|— 0.
The same ideas apply to the uniform approximation of 1 — B\n

8



4.3 Infeasible Uniform Inference

We can now propose a conservative prediction interval based on the following Bonferroni-
correction procedure. In particular, in the first step, a uniform confidence interval for
is constructed under the knife-edge approximation, and in the second step, we choose the
largest quantile for 7,, — 7,, among all 8’s in the confidence interval. The quantile chosen is
also based on the knife-edge approximation.

Algorithm 1: Infeasible Uniform Inference

Input: Treatments and outcomes (73, Y;)icjn), MPLE-estimator En, an upper bound

1
K, such that k2 < K, confidence level parameters ay, s € (0,1).
Output: An (1 — a; — ay) prediction interval C'(ay, ay) for 7,.

Get the maximum pseudo-likelihood estimator Bn of £;

Define the (1 — ay)-confidence region given by I(a;) ={s € [0,1]:1— B, € [q,00)},
where q = inf{q : P[mm{max{‘l’cﬁ o TQM ./ (3n), 0} 1} < q] > aq};

Take U = supgez(ay) Hy(1 — % Ky, K,y cgn), L= infgera) Hn( 5 Kn, Kn, can).
return C'(ay, ) = [7, + L, 7, + U]

Theorem 4.2 (Infeasible Uniform Inference). Suppose Assumptions 1, 2 and 3 hold, and

let K, be a sequence such that k2 < K,.. Then, the prediction interval given by Algorithm 1
satisfies lim inf,,_, o infgepo 1 Pg(Tn €Cllal, o)) >1—0a; — .

Theorem 4.2 gives a lower bound on the coverage of the proposed confidence region. Algo-
rithm 2 can be implemented without the knowledge of the parameter of the Ising treatment
model, but requires knowledge of k; and ks. A fully feasible implementation is discussed
next.

5 Implementation

The unknown parameters k; and ks capture moments of the underlying random graph struc-
ture. Building on [13|, we propose a resampling method for consistent estimation of those
parameters under an additional nonparametric assumption on the outcome equation.

Assumption 4. Suppose fi(-,-) = f(-,-) + &;, where f(t,-) is 4-times continuously differen-
tiable on [0,1] fort € {0,1}, and (&, : 1 <1i <mn) are i.i.d and independent of E and T, with
Ele;] = 0 and E||g;|*™] < oo for some v > 0.

This assumption allows for nonparametric learning the regression function f. In Section
4 in the supplementary material, we provide one example of such learner, but here we
remain agnostic and thus present high-level conditions. This step aims to find a consistent
estimate for both the function f and its derivative f(gx’ which can be achieved through the
introduction of Assumption 4. We propose the followmg novel algorithm for estimating xo
based on resampling methods.



Algorithm 2: Estimation of ks

Input: Treatments and outcomes (75,Y;);cjn), realized graph E, non-parametric

learner fof f. R
Output: An upper bound K, for xs.

Generate a new sample (77 : 1 <1i <n) with § = 0;

Take M; = Zl#j ]lfrl*u N* = Zl;ﬁj E M7(7,) Zl;ﬁzg ]lﬂ*, .7 zl7él] s
Takeé\i:Yi—Tif(l M)_( )f(07 Z]#E”T 2);
2(

Z;ﬁT
— * My *
Take 76y =n 1Zj¢i2Tj(f(1,N*)+€j) 1—T)( (0

M
ly = 17 e 205 (F(L ) +8) = 200 = T (F0, 22 +8));
sz\ke T = nil Zlé[n] (3)° Tb il - ZZG[TL] (bl) and
Ko =3 i (Tl =7 + 76, = 7%

return K,,.

%’i)%j), and
]

Our procedure consists of three steps. In step 1, we estimate f non-parametrically by fA
In step 2, we construct two types of plug-in and leave-one-out estimator, denoted by {T&)}ie[n]

and {T(bi)}ie[n] respectively. 7(;) accounts for the randomness from flipping i-th unit’s own

treatment. T(bi accounts for randomness from flipping j-th unit’s treatment, where j is a

neighbor of 7. In Step 3, we form our final variance estimator using the resampling based
treatment effect estimators similar to the i.i.d. case. Formal results on the guarantees given
in Lemma 16 in the supplementary material.

Algorithm 3: Feasible Uniform Inference

Input: Treatments and outcomes (7}, Y;)ic[n), realized graph E, non-parametric
learner fof f. R
Output: A fully data-driven (1 — a; — ay) prediction interval C(ay, ) for 7,.
Get K, from Algorithm 2 using the treatments and outcomes (75, Y;)ic[n), the
realized random graph E, a non-parametric learner ]?for f;
Get 5(0[1,0(2) from Algorithm 1 given (73,Y;);cn and K.
return CA(al, as).

Theorem 5.1 (Feasible Robust Confidence Interval) Suppose Assumptions 1, 2, 3, and
4 hold. Suppose the non-parametric learner f satisfies f( ) € Cy([0,1)), and |f(€ Te) —
f(€77r*)|_ OP( )7 |82f(€7 7T*) - an(€77T*)|: ( )7 fOT’ S {071} [f np?m — 90, then the

prediction interval given by Algorithm 3 satisfies

liminf sup Pg[r, € 5(011,0(2)] >1— o) — ao.
n—oo ,BE[O,].]

6 Simulations

We study the finite sample performance of our robust inference procedure. Take (U; : 1 <i <
n) i.i.d Uniform([0, 1})-distributed, graph function G(-,-) = 0.5 and density p, = 0.5. The
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Ising-treatments satisfy Assumption 3 with various n and . Y; has data generating process
Y= 1T = ) f(1, )+ 1T = 0)£(0, §)+e4, with f (a1, 25) = 2f+a1(22+1)%, (21, 75) € R?
and (g; : 1 <4 < n)areiid N(0,0.05) noise terms independent to ((U;,T;) : 1 <1i <mn). The
Monte-Carlo simulations are repeated with 5000 iterations and look at the 1 — « confidence
interval with ao = 0.1.

Figure 1 (a) and (b) demonstrate the empirical coverage and interval length against
B, while fixing n = 500. To compare multiple methods, conserv stands for Algorithm 3,
" = 0" stands for using the formula from Theorem 3.1, Oracle stands for using the law
nY2R7 + n~4%W,, , from Theorem 4.1 with cg, = /n(1 — ) assumed to be known,
and Onestep stands for Algorithm 1 but taking the first step confidence interval I(ay) to be
the full range [0, 1] instead. For interval length, Simulated stands for the true interval length
from Monte-Carlo simulations. Conservative and Onestep remain conservative except when
B is close to 1, due to the second step in Algorithm 1 taking maximum quantile from
[ € I(ay); Oracle has empirical coverage close to 1 — a and interval length close to the true
interval length from Monte-Carlo simulation; the approach of plugging in f = 0 becomes
invalid as 8 deviates from zero. Figure 1 (¢) and (d) demonstrate log-log plots of interval
length against sample size, fixing S = 0. While the Monte-Carlo interval length Simulated
interval length oc n~%%2 consistent with the \/n-convergence with 3 = 0, Conserv has
interval length oc n=93% an effect of taking the maximum quantile among 3 € I(ay).

7 Main Technical Contribution

This section reports the main novel technical result in our paper: a Berry-Esseen distri-
butional approximation for Curie-Weiss magnetization with independent multipliers. This
section is self-contained, but omitted details are given in the supplemental appendix.

Lemma 7.1 (Ising Berry-Esseen Bound). For 5 > 0, suppose PIW = w| exp(g D inj Wi5)
where W = (Wi, - W,)T, w = (wy,--,w,)" € {=1,1}", and (X1,---, X,,) are i.i.d. with
E[| X;|?] < oo, and independent of W. Then:
(1) Fiz p € [0,1], then supyea|P(; 320, XiWi < 1) — La(t; (E[X:], E[XT]), B)|= O(xnp),
where t, 5 = n~Y? for B € [0,1], r,5 = n"%(logn)? for B = 1, where L, is given in
Theorem 3.1.
(2) 5Dy e [P(E SIy XiWs < €)= ot LX), BLXZ], c0) = O(n/2(log n)?), where
csn = /n(B —1), and H,, is given immediately after Theorem 4.1.

These result generalize the Berry-Esseen bounds for Curie-Weiss magnetization % Yo Wi

with multiplers set to X; = 1 for i € [n] obtained by [5] and [6]. Our generalized result differs
from theirs only in a logarithmic term, allowing for fairly general weights with third moment

bounded.
7.1 Proof Sketch of Lemma 7.1

The magnetization n=* " W, has been studied using Stein’s method [6, 4]. Due to the
multipliers, the Stein’s method can not be directly applied for n=' >~  X;W;. We use a
novel strategy based on the following de Finetti’s lemma.
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Figure 1: (a) and (b) are empirical coverages and interval lengths of four methods across 3 € [0, 1]:
Conservative and Onestep remain conservative except when f is close to 1; Oracle has empirical coverage
close to 1 — « and interval length close to the true interval length from Monte-Carlo simulation; the approach
of plugging in 3 = 0 becomes invalid as 3 deviates from zero. (c) shows Conserv interval length oc n=9-34.
(d) shows Simulated interval length oc n =952,

de Finetti’s Lemma. There exists a latent variable U,, such that Wl, , W, are i.i.d condition
on U,. Moreover, the density of U, satisfies fy, (u) o exp(—3u’*+n log cosh(\/ﬁ/nu)), ueR.

We provide a proof sketch of Lemma 7.1 (2). Rigorous proofs for the other regimes
given in Section 1 of the supplementary material. Denote by C an absolute constant, K a
constant that only depends on the distribution of X;, and O(-) is by an absolute constant.
Throughout, take ¢ = /n(8 — 1).

Step 1: Conditional Berry-Esseen. W;’s are i.i.d condition on U, Wlth e(U,)
E[X;Wi|U,] = J tanh(y/B/nU,,), and v(U,) = V [X,W;|U,] = E[X2]—E [X;]’ tanh? \/ﬁ/nU
Apply Berry-Esseen T heorem condltlonal on U,, and take Z ~ N(0, 1) independent to Uy,

sup|P(= ZXW < tUn) — P(v/0(U,)Z + vne(U,) < t|U,)|< CE [|X,[%] v(U,,)n Y2

teR

Lemma 2 in the supplementary material shows ||U,|l4, < Cn'/%, hence by concentration

12



arguments, sup,ep|P(2 >0, X;W; < 1) — P(y/v(U,)Z + /ne(U,,) < t)|< Kn~'/2,

Step 2: Non-Normal Approximation for n~ T Un. Consider Wn = n~Y*U,,. By a change
of variable from U,, and Taylor expand what is inside the exponent, we show W,, has density
satisfying

52

fu, (w) o< exp(=Fw? = st 4 g(w) Bin~Fu),

where ¢ is a bounded smooth function. We show based on sub-Gaussianity of W,,, with an
upper bound of sub-Gaussian norm not depending on /3, that the sixth order term is negligible
and sup,cg|P(W,, < t) — P(W < t)|= O((logn)*n~1/2), where W has density proportional to
exp(—§w? — %w‘l).

Step 3: Concentration Arguments. Since Z is independent to (U,, W,,), we use data pro-
cessing inequality and the previous two steps to show £ >~ | X;WW; is close to n_iv(niwc)%Z—i-
nie(niW,)). Lemma 2 in the supplementary appendix imply [Wly, < K. By Taylor ex-
panding e(-) and v(-) at 0, we show n'/*e(U,,) is close to E[X;]W and n~/*\/v(U,)Z is close

to n 1v(niW)zZ.

8 Discussion

This section discusses related results and future research directions.

8.1 Low Temperature Regime

The low temperature regime corresponds to 5 > 1, which was excluded from the main results
presented. In this case the Hajek estimator converges to a different (conditional) direct
treatment effect that also depends on which side of the half line sgn(m) = sgn(2 3" | T, — 1)
(m). Define

Tog = — ZIE (1, T-) = Yi(0; T_)|fi(-), Eysgn(m) = ], €€ {—,+},

which is a new causal predictand in the context of our causal inference model with interfer-
ence. In the supplemental appendix, and under the assumptions imposed in the paper, we
show that

nlogn logn

),

P(7, — e <t =/{)— L,(t; B, k1, =0
igﬂgzé?a)i}| (Tn — o < t|sgn(m) ) (t; B, K10, Kaz)| ( (npn)P+1 ion

where Rse = E[( il + Qz g)s] with Ri,g = fi(l, 71'4) - E[fi<1, Wﬁ)] + fi(077r€> - ]E[fi(oyﬂé)] and

Qiv = E[%w me) — £1(0,7))|U3], and

1/2
L, (t; B, k1, ko) = ]P’(n_m <ff2(1 —m2) + ’f%m) Z< t)

13



with Z ~ N(0, 1) independent of m, m, the positive root of x = tanh(fz), and 7, = % + %7‘('*,

mo=1i_ %ﬂ'*. Inference for the conditional estimand is left for future works, with a challenge

2
in a discontinuity in the estimand as we move from the critical regime to the low temperature

regime.

8.2 Generalized Ising Model

In this work we assumed treatments are dependent through a fully connected graph. It
is also of interest to study settings where the graph underlying treatment assignment has
a block structure, or depends on unit-level properties. In the structured Ising setting, we
might also consider estimation and inference for the block level or heterogenous direct aver-
age treatment effect.
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