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Abstract

This Supplemental Material contains general theoretical results encompassing those discussed in
the main paper, includes proofs of those general results, and discusses additional methodological
and technical results.
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SA-1 Notation

For a sequence of real-valued random variables X,,, we say X,, = pr (rn) if there exists N € N
and M > 0 such that || X,|y, < Mry, for all n > N, where ||-||y, is the Orlicz norm w.r.p ¢, (z) =
exp(zP) — 1. We say X, = Oy, tc(7n), tc stands for tail control, if there exists N € N and M > 0
such that for all n > N and t > 0, P(|X,,|> t) < 2nexp(—(t/(Mry,))P) + Mn~1/2,

SA-2 Berry-Esseen Results for Curie-Weiss magnetization with In-
dependent Multipliers

For B > 0, the Curie-Weiss model of ferromagnetic interaction at inverse temperature § and zero
external field is given by the following Gibbs measure on {—1,+1}":

Pg(w) = —exp szw] , w=(wy,-,wy) € {-1,1}", (SA-1)

z<]

where Z3 is the normalizing constant.

Suppose W = (Wy,---,W,) is a random vector with law Pg. Then E[W;] = 0 and m =
n~! >y Wi. The Curie-Weiss model has a phase transition phenomena between regimes. The
case 0 < 8 < 1 is called the high temperature regime, where m concentrates around 0. The case
B > 1is called the low temperature regime, where m concentrates on the set {—m,, 7.}, 7, being the
unique positive solution to x = tanh(Sx). The case § =1 is called the critical temperature regime.

Suppose X = (X1, -+, X,,) has i.i.d components such that E [|X1|3] < oo independent to W.
The goal is to study the limiting distribution and the rate of convergence for

n
= n_l Z WzXz
=1

The magnetization n=* > | W; has been studied using Stein’s method [5], [3]. Due to the multi-
pliers, the Stein’s method can not be directly applied for g,,. We use a novel strategy based on the
following de Finetti’s lemma to show Berry Essseen results.

Lemma SA-1 (de Finetti’s Lemma). There ezists a latent variable U, with density

fu, (u) = J: exp < — %u2 + nlog cosh <\/§u>>,

where Iy, = f exp(— u +nlog COSh(\[ ))du, such that Wy, ---, W, are i.i.d condition on U,.

Lemma SA-2. Take U, to be a random variable with density function fy, (u) = IU exp(— u +
nlog Cosh(\/gu + h)) where Iy, = [ exp (—%uQ + nlog cosh (Wu + h)) du. Take W,, =
nfiUn. Then

1. High-temparature case: Suppose h #0 or h =0, < 1. Then [|U, — E[U,]||y, S1

2. Critical-temparature case: Suppose h =0 and 8 = 1. Then ||Up ||y, < n'/4.



3. Low-temparature case: Suppose h =0 and > 1. Then condition on U,, € Cy, ||U,—E[U,|U,, €
Cilllg, S 1.

~

4. Drifting sequence case: Suppose h =0, 3 =1— cn_%,c € RT. Then ||Up|ly, < cnt/? for large
enough n with C not depending on .

Fix B > 0. We characterize the limiting distribution of n~! o, WiX; and the rate of conver-
gence as n — oo in the following lemma. In particular, we will see that the limiting distribution
changes from a Gaussian distribution under high temperature, to a non-Gaussian distribution under
critical temperature, to a Gaussian mixture under low temperature.

Lemma SA-3 (Fixed Temperature Berry-Esseen). Then
1. When g < 1,
B

sup|P(n? (E[X?] + E[X;]?

1 1
“2g,<t)—® t)|= O(n~2).
p 25 R <) - @x(Bl= 00 H)

B fioo exp(—2%/12)dz

2. When 8 =1, denote Fy(t) = T (21 /12)dz

t € R, then

sup|P(nE[X;] " g, <) — Fo(t)|= O((logn)*n"2).
teR

3. When 8 > 1, denote gy, ¢ = %2?21 Xi(W; —myp), C4 =1[0,00) and C_ = (—00,0), then

1— 72 -3
B( 7) )) 29n,£ <tlm € Cp) — Pno,1)(t)]

sup]]P’(n% (E[Xf](l — 72 + E[Xi]Qm

teR
:O(TL_%), te {_7+}

Lemma SA-4 (Size-Dependent Temperature Berry-Esseen). Suppose Z is a standard Gaussian
random variable. (1) Suppose B, =1+ cn_%, where ¢ < 0 does not depend on n. Then

sup
teR

1
P(nig, <t) — P(n 1E[X22Z + B2 E[Xi]W, < t)‘ = O((logn)*n"2),
where O(-) is up to a universal constant.
(2) Suppose B, =1+ cnfé, where ¢ > 0 does not depend on n. Then

1
sup sup P(n%gn <tlmeZ.,)— P(n_%E[XiZ]%Z + B8R E[Xi]Wepn < Wy, € Zey)

ceR+ teR

= O((logn)*n"2),

with Loy, — = (=00, Kep—) and Ly + = (Kep4,00) such that E[\We,|Wen € Ze o] = wene for
e {—,+}.

Lemma SA-5 (y/n-sequence is knife-edge). (1) Suppose |5, — 1|= o(n_%), then

sup |P(n g, < t) — P(E[Xi]Wo < t)| = o(1).
teR



(2) Suppose 1 — (3, > n*%, then

sup

sup [P(Vlg.] 20 < 1) - @(t)\ —o(1).

(3) Suppose B, — 1> n=3, then fort e {—,+},

sup
teR

where Ty = [0,00) and Z_ = (—00,0).

P(V[gn\m € Zg])fé(gn —Elgn|m € Z)]) < t) — @(t)‘ = o(1),

SA-3 Pseudo-Likelihood Estimator for Curie-Weiss Regimes

Lemma SA-1 (No Consistent Variance Estimator). Suppose Assumptions 1,2,3 hold. Then there
is no consistent estimator of nV|[7, — 7,].

The pseudo-likelihood estimator for Curie-Weiss regime with no external field is given by

B = arg max Z log Pz (W;|W_;)

i€[n]
Witanh(Bn= 1> . W) +1
:argmaxZ—log( ‘ (8 22#1 i) >
B 1€[n]

Lemma SA-2 (Fixed Temperature Distribution Approximation). (1) If 8 € [0,1), then
~d 1-p
8 — max{l — ,0}.
x*(1)
(2) If B =1, then

~ 1 W3
n%(l - p) 4 max{ - }
(3) If B > 1, we define an unrestricted pseud-likelihood estimator,

~ 1 1
B8 = argmaxlogPg (W; | W_;) = —lo (Witanh Bm; +>.
UR = arg maxlog s (Wi [ W)= —log ( 5 (Broi) + 5

i€[n]

Then

sup|P(n1/2(BUR —pB) <tlmeIy) — P((M)lﬂz <t)|=o0(1).

2
teR 1- 4y

Lemma SA-3 (Drifting Temperature Distribution Approximation). For any 8 € [0,1], define
cgn = v/n(l —B), and suppose

P(zpn <t)=P(Z+niW,, <t), teR
then

~ 1
sup sup|P(1 -8 <t)— IP’(min{rna,x{z/g?1 — —zén, 0},1} <t)|=o(1).
Belo,1] teR o 3n



SA-4 Stochastic Linearization

Throughout this section, we prove under a more generic setting. We assume W; = 27; — 1, and
(Wi)ie[n) satisfies a Curie-Weiss model with a possibly non-zero external field, that is,

Assumption 1 (Curie-Weiss). Suppose W = (W;)1<i<pn are such that for some Cgp, € R,
P(W =w) = Bhexp< Z W;W; +hZW>
1<i<j<n
where Cgp, is a normalizing constant.

Morever, for the ease of proof, we let g; to be the function such that

11 1
+ 2, ze{-1,1},y € [-1,1].

1
gi(x,y) - fl(ix 2 2y 9

We denote MZ = Z];ﬁz Ez’jWi; Nz = Z];éz Ezg Then

> j#i LT
Zj;éi L

Define 7 = E[W;], m =n"t>" W, and for 1 <i <n, m; =n~! >_j2i Wj. Define the following
rates that will be used in the convergence analysis:

9:(T;, T_;) = fi(13, ) = 9:(W5,

n2, iff#£1orf=1h#0, n/2, ifB#£1orf=1h#0,
a - r =
PR\ 034 it g=1,h=0, PRT\ 04 it B=1,h=0.

1/2, ifB#1orB=1,h+#0, exp(z?) —1, ifB#1lorB=1h#0,
Poh = . Yp.n(x) = . .

1/4, i pB=1,h=0, exp(z*)—1, ifg=1h=0.
SA-4.1 The Unbiased Estimator

Denote p; = P(W; = 1; W_;) = (exp (—=28m; — 2h) +1)"'. We propose an unbiased estimator
given by

Y, (1-T)Y;
_z[p =

Lemma SA-1 (Unbiased Estimator). 7, yp is an unbiased estimator for 7, in the sense that,
E[?m UB|E7 (fl)ze[n]] = Tn.
We will show the followings have weak limits:

n "3k i [TZYZ _ 1-T)Y: —

— L pi 1 —pi



W.l.o.g, we analyse the error for treated data, the error for control data follows in the same way.
First, decompose by

n

_ Y, (1-T)Y;

n aBth[pi _ 1_pi :A1+A2,
i=1

n

T; 1-1T;
Ay =n2h Z [%Yi(l,w) -1 %gi(—l,ﬂ)} ;
i=1 pl pZ

st 3 B (1 48) - a(m) - 1 (1) (- 1m))]

Lemma SA-2. Suppose Assumption 1,2, and 3 hold. Then

Ay — E[AE, (fi)igp] = n~ 2" ; (gi(j_’ ? + gii__l,ﬂ') - Bd> (Wi — )
+0y, te(y/log nn™51),
where d = (1 — m)E[g;(1,7)] + (1 + m)E[g:(—1, 7)].
Now consider As. Since % = % + 1, we have the decomposition,
Ag =n~28h ,Z1 1792 [gi (1, %:) - gi (1, W)} = Qg1+ A9+ A (SA-2)
where

Agy =mn—20" nglﬂf) <NZ - 77);
i=1 !

n

_ T; — pi M;
Ag o =mn 20 -4, <—7T ,
n 2
;Y (1,n;) (Mi )
A — n 2Bk B 2 Sk B A i
. ; 2p; N,

where 1 is some random quantity between AJ\% and 7. Define b; = >, 1]“3\;; Y/ (1,7). Then by
reordering the terms,

A271 = n_aﬁ’h sz (VVZ — 7T) .
=1

Lemma SA-3. Suppose Assumption 1,2,3 hold. Then condition on U such that A(U) € A = {A €
R™™ s minepy 30, Aij > 32logn},

Agy = 0¢2,t0<1ognm?>]<E[Ni\U]1/2> + Oy, te(V/lognn ™80,
€N ’
For the term Aj 3, we further decompose it into two parts:

Aoz =ANg31+ As3o,



where
M;

—a g M; ’
A2,3,1 =N ﬁ’hz |:g7, <1’]Vz> — i (177T) —9; (1777) <N'L _7T>:| )

1=1
e N1 W; - E[W W M, M,
Ag 30 =n"2F" Z 3 [p | ] [g (1 N) —gi(l,m) —gl(1,7) <N — 7T):| .

i=1
Lemma SA-4. Suppose 1,2,3 hold. Then condition on U such that A(U) € A = {A € R™"
minie[n} Z];ﬁz Aij > 32 IOg n},
Azz1 — E[A231|E, (fi)iepn]
=0y, 2(077) + Oy 4e(max E[NG[U]H2) + Oy, ge(n1/2)

+ Oy, 1e(n2 20 max E[N;[U]1/2).
Lemma SA-5. Suppose 1,2,3 hold. If g;(1,-) and gi(—1,-) are 4-times continuously differentiable,

then condition on U such that A(U) € A,

Az32 = E[A232[E, (fi)icn)]
_0%5 h/27tc((]og n)—l/PB,hn—2r,3,h) + 0¢1,tc((10g n)—l/pg,h (min E[N;|U])™))

—a max; E[N;[U]3 /2 ] . -
FOu (”1/2 - (IHIHE[[N”U]]‘L> + Opy) iy e <” 6’h(milnE[Ni|U] (p+1)/2)> :

SA-4.2 Hajek Estimator
Lemma SA-6. Suppose Assumption 1, 2 and 8 hold. Then
Elg:i(1, 5] Elgi(—1, 5]
= _ > — _ [ 7 1_ 1_ 2 _ 721‘,&;1.
o= A = =S = ) (1 (1= @)= )+ O (n72500)

SA-4.3 Stochastic Linearization
Lemma SA-7. Suppose Assumptions 1, 2, and 3 hold. Define

;= ! ! , =E & L1, m) — gi(—1 il
R Tl Bl Q= Bl 61 — g (L))
Then,
1 logn
sup |P — ngt — + 3 <)) = + 1, )
sup [P(7, — 7 n;:lj QWi =) < 0] = O( Z2% + x05)

where r,, g = {*/ﬁ\/logn(npn)_pT if 6=1,h=0; and \/nlog n(npn)_p*ﬂ?Ll if <1 orh#0.
Lemma SA-8. Define Assumptions 1, 2, and 3 hold with h =0, 8 € [0,1]. Define

i = : : i =E r g L1, — gl(—1, il
R v T, @ [E[G(Ui’Uj)|Uj](gj( ™) — g;(—1,7))|Us]
Then,
1 n
sup sup[P(7, — 7, <t) = P(= > (R; — B[R] + Qi) (Wi — m) < t)| = o(1).
Be[0,1] teR i

8



SA-5 Jacknife-Assisted Variance Estimation

Lemma SA-1. Suppose Assumptions 1,2,3.4 hold, and npn —> o0 as n — o0. Suppose the
non-parametric learner f satisfies f(€,-) € Ca([0,1]), and |f(L, 3) — f(€, )= op(1), ]82f( ,3) —

O f(l, )= op(1), for £ € {0,1}, where the rate in op(-) does not depend on B. Suppose K, is the
jacknife estimator from Algorithm 2. Then

K. = E[(Ri — E[R}] + Qi)°] + 0p(1),
where the rate in op(1) also does not depend on .

Here we give a local-polynomial based learner ]? that satisfies requirements of Lemma SA-1
(hence Theorem 4 in the main paper.)

Lemma SA-2. Use a local polynomial estimator to fit the potential outcome functions: Take

F(1,2) =3 + F1z,

n

o~ . M; M;

(F0,71) = ar%ﬁln E (Y M0~ NR ) Kh(Nl
’ =1

where Kp(-) = h™ 1K( -/h) where K is a kernel function, h is the optimal bandwidth. Then f(l 0) =
f(1,0) + op(1), agf(l 0) = 02f(1,0) + op(1), the same for control group. Moreover, the rate of
convergence can be made not depending on (3.

SA-6 Proof of Main Theorems

SA-6.1 Proof of Theorem 1

The conclusion follows from the stochastic linearization result in Lemma SA-6, and the Berry-Esseen
result for Curie-Weiss magnetization with independent multipliers in Lemma SA-3.

SA-6.2 Proof of Theorem 2

The conclusion follows from the stochastic linearization result in Lemma SA-6, and the (uniform in
B) Berry-Esseen result for Curie-Weiss magnetization with independent multipliers in Lemma SA-4.

SA-6.3 Proof of Theorem 3
The uniform approximation for \/E(Bn — 1) established in Lemma SA-3 implies

iIﬂlf]P)ﬁ(/B €Z(aq)) > i%f}P’g(\/ﬁ(l —B)>q)>1—a1+op(l).

where ¢ is the oy quantile of min{maX{Tc_ﬁan - Tzﬁ o/ (3n),0}, 1}
Then by a Bonferroni correction argument, the second step coverage can be lower bounded by

Bél[lofl] Ps(m, € C(al,ag)) > Bél&)fu Ps(ry, € C(al,ag) BeI(n)) —Ps(B ¢ I(cn)).



Observe that the event 7,, € C (a1, ) conincides with the event 7, — 7, € [inf.cr(a,) lawe, (1 —
G35, ”)7SUPceI(a1) lawe, (1 — %2;5,n)], where 5 = (IA(n, IA{%) Hence

o~

inf Ps(r, € C(a1,2), 8 € I(a1))

Bel0,1]
. - o a
Z/Bél[lofﬂ Ps(Ty — T € [lawe, (1 — > 5,m), lawe, (1 — > s,m)], B € I(a1))
a9 a2

> inf Pg(7 — 7 € [lawe, (1 —

L. . 1 _ 7;/\7 —]P) I .
_56[0,1} 187n)7law 6( 2 S n)]) 13(6 E (Oél))

2

Theorem 2 shows that the quantiles of the distributions of 7,, — 7,, can be uniformly approximated by
quantiles from law, , , if k1 and k2 are correctly specified, and the confidence interval is conservative,
if we use upper boundds for k1 and k9. The conclusion then follows.

SA-6.4 Proof of Theorem 4

The conclusion follows from Theorem 3 and Lemma SA-1.

SA-7 Proofs

SA-7.1 Proofs for Section SA-2
SA-7.1.1 Proof of Lemma SA-2

Our proof is divided according to the different temperature regimes.
The High Temperature Regime.

We introduce the handy notation given by F(v) := —%02 + log cosh(y/Bv + h). For the high
temperature regime, we note that the term in the exponential can be expanded across its global
minimum v* (which satisfies the first order stationary point condition given by v* = /3 tanh(y/Bv*+

h)) by
F(v) = F(v") + F'(v") (v —v") + %F(z) (V") (v —v*)* + O((v — v*)?)

= F(v*) — =(1 — Bsech?(y/Bv* + h)) (v — v*)? + O((v — v*)3).

1

2
Therefore, to obtain the limit of the expectation, we note that by the Laplace method given similar
to the proof of Lemma SA-3 and the definition of V,, := n~1/2U,,;:

_ Jz vexp (—nF(v)) dv
Jg exp(—nF(v))dv

Then, we note that for £ € N, when h = 0 and § < 1 we use the Laplace method again to obtain
that for all £ € N,

E[Va] = (1+0(n™")).

_ fR(U —v*)% exp(—n(F(v) — F(v*)))dv
Jr exp(—n(F(v) — F(v*)))dv

E|[(v, - E[Vn])zﬂ (1+0(n™)

N \/1%<n<1 - Bsechg(\/ﬁv* - h>>>éF<%2+ :

)(1 +0(n™1)).

10



Then we can obtain that for all t € R, we have
E o0
Eexp(t(Vo — BNV )] = 37 5BV — BV, = 3 (Ve ~ BV, )]

(14 o(1))t?
< exp <2n(1 — Bsech?(y/Bv* + h))>

which alternatively implies that
1
IUn = EUn]llyo=n"?|IVs = E[Va]llyo < (14 0(1))(1 = Bsech®(v/Bo* + h))2. (SA-3)
The Critical Temperature Regime.

Then we study the critical temperature regime with 5 = 1. Note that one has E[U,] = 0 and for
all £ € N we have

Fv) = F(0) + F'(0)v + %F(Q)(O)UQ + éF@ (0)0° + iF(”‘)(O)v“ + O
_ 1 5
Then we can obtain that £ € N,

 Jev¥exp(—nF(v))dv 1T (5+9)
E {V"%} B RfRexP(—nF(v))dv = (1+o(1)) 2723 +427;

< (14 0(1))

RO

And we immediately obtain that

E [exp(tVy,) Z 1+£

i 14o(1) 1 (21/2. 33/4\/§r(3/4)>fF <2€+1> i

= SD+20 Va\ al2T(1/4) 2
1+ of1 23/2 .33/417(3/4
gexp< +2( )t2< n1/2r(1/(4)/ )>>7

which finally leads to

/2.33/
Nl <1+o<1>>\/21;f;;ff/(f>/4)- (sa-1)

The Low Temperature Regime.

We shall note that at the low temperature regime the function F'(v) has two symmetric global
minima v; > 0 > v9, satisfying

Fl(v))=F'(v5) =0 = vy =+/Btanh(y/Bvs+h) for £ e {1,2}.

Then we can check that by the Laplace method, for all ¢ > 0 (following the path given by the high
temperature regime) we have

f[o,oo) exp (t(v — v1) — nF(v)) dv
Ji0.00) EXP(=1F (v))dv

Elexp(t(Vy — E[Vy|Vy > 0))|Vp > 0] =

L (1+o(1))2
- (Qn(l - \/BsechQ(\/Bm)))'

11



Then we similarly obtain that Elexp(¢(V,, — E[V,|V, < 0]))|V, < 0] = exp (2n(1—%§e(3}2%t(i/ﬁm)))'

Hence we obtain that
[V = E[Vn|Vn < O]V, < OHzﬁz = [IVa = E[Va|Vy > 0][Vy, > 0||¢2
< (14 0(1))(1 — Bsech?(y/Bur))?. (SA-5)
The Drifting Sequence Case.

Then we consider the drifting case.

First consider B =1 —c¢n™2 with ¢ € R" and 8 > 0. We will show that for any fixed n, [|[W,]|y,
is increasing in § when € [0, 1]. This will imply that in the drifting case, ||W), ||, will be no larger
than its value at the critical regime.

For a comparison argument, denote Fg(v) = —%v2 +log cosh(y/Bv). Let 0 < 81 < 2 < 1. Then

exp(nfi, (v))

oxp(nFy (o)) ~ CP(nlogcosh(y/Bzv) — nlogcosh(y/rv)).

where

d cosh(vBav) _ (/B2 — V/B1)sinh((v/B2 — vVB1)v)

= > 0.

dv cosh(v/B1v) cosh?(y/B1v)

Hence for any n € N and ¢t > 0,

ftoo exp(nFg(v))dv
Jo " exp(nFp(v))dv

increases as (3 € [0, 1] increases. This shows that ||}, ||y, increases as 3 € [0, 1] increases. Together
with Equation (SA-4), we have under 5, =1 — ﬁ, 0<e<+/n,

Pg(|Wn|=t) =2

/2 .33/
IVallg, < (1+ o(1))\/21 ;1/2;?5/(5)/4)’

where o(-) is by an absolute constant.

Then we consider =1+ en~3. We shall note that under this situation it is not hard to check
that

Elexp(tV,)] = = (E[exp(tV,)|Vy > 0] + E[exp(tV,,)|Vy < 0])

N — DN

(E[exp(t(Vn — v4))|Vn > 0] exp(tvy) + Elexp(t(Vy, — v-))|Vy, < 0] exp(tv_)).

Then, under this case we have by Taylor expanding F at 0 and the fact that sup,cg|F®) (v)|< oo,

fv, (v) o Z 1(v € C))exp < - cn%(v —)? -

le{—,+}

Before we start to upper bound the moments, we first use the fact that vy = O(n~'/4) to obtain
that

/ v? exp (—\/?;”US) dv < n*iv?f exp(—v3en Y4 =0 <n71/4*€/2) .
(7U+70)
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Then we obtain that

¢ f(fm_ ,400)

E[(Vy — v3)2Vy > 0] = n~% ’ 2

f(—v+,+00) exp <—c1)2 — \/52 Lot dv
Jg v** exp(—3cv?)dv + f(fv+,+oo) v exp(—v/3cv?)dv + [ v** exp(—Fv*)dv
Sy ooy €XP (—cv2 — @03 — %U‘l) dv
Jg v* exp(—3cv?)dv + [g, v*¢ exp(—v/3cv®)dv + [g v* exp(—vt)dv
f(_v+7+oo) exp (—cv2 ‘/3??1)3 121)4) dv

(1+0(1 ))<83<310>£1“<€+ ;) +Cu(3c)” 3F<2; + ;) +G52ZF<§ + i))

with Cg = (3¢)71/2 C,L= 1

3 1 ’
3f<7v+7+oo) exp<fcv27§v3fﬁv4>dv 9f(7U+7+OO> exp<7cv2,

v2 exp (_CUQ _ VBe,3 1 )

1—|—0

<n 3(1+o(1))

M\r\

n 2(1+4o(1)) +O(n~ VA2

w\m

n-

V3c,3_ 1,4 ?
SfvS—15v dv

and C; = JCuy oo XD (201’32/2*/3711311;4)51 . Therefore, we can simply use the definition of the m.g.f.
to obtain that
— 04)?V > 0]

20
Elexp(t*(Va — v4)?) [V > 0] = > t E[(Vnr(% +1)
P

(1 +Fo((21)) “;/Qt% <e3 <3lc>er (z + ;) + (94(30)_31“(2; ;) +C52'T (5 + i))
(1 +F0((212)+_§/ s (03(30)—1r(;> +Ca(36)7T(1) + 2e5r<z>>ér<%2“)
0

< (1-22nY2/62)72, o= <Gg(3c)—1r<?2’> + C4(3¢)713r(1) + 265F<i>> %.

IN

NERRNIL

IA
Il
=)

Then we use the fact that E[V,|V,, > 0] = v4 to obtain that (here we use proposition 2.5.2 in [7])
Elexp(t(Vy, — v4))|Va > 0] < exp (186277,71/20'2752) .
Similarly one obtains that E[exp(t(V,, — v_))|V, < 0] < exp(18e?n~1/2¢%t?). And hence

1
Elexp(tVy,)] < = (exp(tvy ) + exp(—tv, ) exp(18e*n~2521%) < exp <2t2vi> .

N —

SA-7.1.2 Proof for Lemma SA-3 High Temperature

Throughout the proof, we denote by C an absolute constant, and K a constant that only depends on
the distribution of X;.

Take U,, to be a random variable with density

exp <—5u2 + nlog cosh (\/EU))
75 exp <—%112 + nlog cosh <\/§v)> dv

13

fu, (u) =

, u € R. (SA-6)



By Lemma SA-3, condition on U,, W; are i.i.d Bernouli with

1
P(W; =1|U,) = 2(tanh(\/§Un) +1).
We characterize the conditional mean and variance as

e(Un) = E[X;Wi|Up] = E[X] tanh (\/EUn)

v(Up) = V[X;W;|U,) =E [X?] - E [X;])? tanh? (\/EUn> (SA-7)

Moreover, we have E [| X2 (W; — 77)3‘ Un] <E[|X:].
Step 1: Conditional Berry-Esseen.

Apply Berry-Esseen Theorem conditional on U,,,

t— ViB[XiWilUp = u] || _ E Xl 1)
TV | (T R
V[X;Wi|Up = 4] v(Up)

sup sup
u€R teR

P(gn§t|Un:u)—<I><

Since v(Uy,) > V[X;] + E[X;]? sech?(/B/nU,,), and be Lemma SA-2, ||Uy 4, < Cn'/4. Hence

dis (90, 0(Un)"/Z + VVe(U,))

/_Z(P (gn <t|Up =u) — @ <W))fun(u)du

=sup
teR

SKnil/z.
Step 2: Approximation for U,.

Take U ~ N(0, (1 — 8)~!) independent to Z. Consider V,, = n~%/2U,,. Then
L o
fv,, (v) x exp —gm + nlog cosh (\/Bv) =: exp (—no(v)),

where ¢(v) = —%02 + log cosh(v/Bv). And ¢ is maximized at 0 with ¢”(0) =1 - > 0.
We will approximate the integral of fy, by Laplace method. By Equation (5.1.21) in [2],

[ et do = |2 e (nofo)) + 0 (220O)

= \/E exp (—n¢(0)) [L+O0(n" )],

where the O(n~!) term only depends on n and ¢. It follows that

Fu®) = ) "2 exp (ni(v) + n0(0)) [1 + O]
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Then by a change of variable and the fact that O(n~!) term does not depend on v,

¢"(0)

fu,(u) = Y

exp <—n¢(n_1/2u) n n¢(0)) 1+ 0. (SA-8)

Taylor expanding ¢ at 0, we get
-1/2 _ d’”( ) 2
—ng(n~“u) +ne(0) = — tanh(/Bvy + h) sech fv* (SA-9)
1
—5 (1=8) (u? — tanh(v/Bvs) sechQ(\/Bv*)ﬁ, (SA-10)
where v, is some quantity between 0 and n~='/2u. Then

dry(Up, U) = / fun (W) — fur(w)| du

<[ V% ( )

: [exp( tanh(y/Bu.(u)) sech?(v/Bu. (u) \/Sﬁ) - 1} du[1+0(n )],

where v*(u) is some random quantity between 0 and n~'/2u. We will show that we can restrict
the analysis to the region [—cgy/logn, cgy/logn], which is where the bulk of mass lies, with cg =
(1 —B3)"Y2 Since U ~ N(0,(1 - 8)1), P (JU| > cgvlogn) < n~!. By Lemma SA-2, we also

have P (|Un\ > c%\/log n) < n~ !, where c’ﬂ is a constant that only depends on . Take dg =

max{cg, cg }, and use the boundedness of tanh and sech and the Lipschitzness of exp when restricted
o [—1,1], we have

SV ) L
drv(Un,U) S/—dg\/@ 5 OXP <—2(1 — Bu >
: [exp <— tanh(y/Bus(u)) sech?(y/Buy (1)

dgvlogn 1
S/ 29 <—1(1—ﬁ)u2>
,dﬁ\/m 2

:O(n_l/Q).

f

Juf’

f

> - 1] du[1+0(n ] +0(n™)

edu[1+0(m™ Y] +0m ™)

Step 3: Data Processing Inequality.

We can use data processing inequality to get

dks (v(Un)l/zz +v/ne(U),0(U)*Z + \/ﬁe(u)) < dpy (Up, U) = O(n~1/2).

Step 4: Stabilization of Variance.

15



By independence between U and Z, we have

dics (U(U)l/zz + /ne(U)), Ep(U)] Y22 + me<u>)
—supe [0 (o) - (e )|

<supE Hqﬁ < ‘f)‘fEQ )> (t — vne(V)) <’U(U)_1/2 - E[U(U)]—W)

teR

|\

where v*(U) is some quantity between E[v(U)] and v(U), and by Equation SA-7, v*(U) > c~1V[X;].
It follows from boundedness of v(U) and Lipshitzness of tanh in the expression of v(U) that

dis (v(V)'72Z + Vie(U)), E[o(U)]/2Z + v/ie(U)

6 (t - ﬁe(“)) (t - re(w))

2E[X?

<supsup
teR ueR

—F
2 C_1V[XZ']
=0(n"1?).

Step 5: Gaussian Approximation for \/ne(U).

In this step, we will show that \/ne(U) can be well-approximated by v/SU and hence y/ng, can
be well-approximated by a Gaussian.

dis (E[0(U)]/2Z + v/ne(U), Elo(U)]/2Z + /BU)
— Vne(U) — VBU
sepk [‘D <tE[v<u>1l/2 ) -° (Ié[vw)]l/?ﬂ

SIE[WHOT/? E ||vie(V) - VAU |

Taylor expanding tanh at 0,

Vne(U) = E[X \Ftanh< )
\fu+0< 2) O(n~1/?)

NG
_ . ﬁ n-1/2
= E[X;]\/BU+ O <\/ﬁ ) +O( ),
It follows that E [|/ne(U) — v/BU|] = O(n~1/2) and hence
dis (E[0(U))2Z + vne(U), Elo(U)]/°Z + E[X,]\/BU) = O(n™"/2).
Recall U ~ N(0, (1 — 8)7"), hence E[X,]y/BU ~ N(0, E[X*125). Moreover,
Elv(U)] = EE[X7IE[W?|U]] — E[E[XE[W;|U]?]
= E[X7] - E[X,]’E[W;[U]?
=E[X7]+O(n™'7?),
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where the last line is because E[W;|U] = tanh(1/3/nU) and U is sub-Gaussian. Since Z_ Il U,
dks (E[U(U) 1Y/2Z + E[X,]\/BU, N(0,E[X?] + E[X;]? - fﬁ> = 0(n~Y?).

Combining the previous five steps, we get

1—

dks <\/ﬁgn, N (O,E[XE] + ]E[Xf%) ) =0(n~1?).

SA-7.1.3 Proof for Lemma SA-3 Critical Temperature

Throughout the proof, we denote by C an absolute constant, and K a constant that only depends on
the distribution of X;. The proofs for the critical temperature case will have a similar structure as
the proof for the high temperature case, based the same U,, defined in Equation (SA-6).

Step 1: Conditional Berry-Esseen.

The same argument as in the high-temperature case gives

dks (gn, v(U)?Z + \/ﬁe(Un)) <Kn /2.
Step 2: Approximation for U,.

Take W to be a random variable with density function
2 1
fw(z) = \[)exp (—12 4) , z€R,

independent to Z. Take W,, = n~'/4U,, and V,, = n=1/2U,,. Again fy,(v) o exp(—nd(v)), where
P(v) = —50? —|— log cosh(v). In particular, ¢(*)(0) = 0 for all 0 < v < 3, and ¢ (0) = -2 < 0,
#®)(0) =0, $(®(0) = 16 > 0. Example 5.2.1 in [2] leads to

Fua®) = ¥ 2 exp(nd(e) — né(O))(1 + o(1)),
310(7)

which implies fiy, (w) = fw(w)(1 4 o(1)). Results in [2] do not give a rate, however. We will use a
more cumbersome approach to obtain a sligl(ltl)y sub-optimal rate.
hn(w

By a change of variable, fyy, (w) = T h()du’ where h,, can be written as

1
hn(w) = exp (—\/jwz + nlog cosh (niw)> = exp <—12w +g(w )n5w6> .

The last equality follows from Taylor expanding the term in exp(-) at w = 0, and ¢ is some bounded
function.

10VIogn 1 10VIogn 1
/ ho(w)dw = I,(1+ O((logn)*n"2)), I, := / exp ( - w4> dw
~10y/Togn ~10VTogn 12
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Moreover, f[—lo\/@ 10y/Tog ] h(w)dw = O(n=/2) = I,[1 + O(nfé)] Hence for denominator, we
have [* hy(w)dw = I,[1+ O((log n)3n=2)]. It follows that

drv (Wp, W)
10y/logn 1 ) 10ylogn L
5/ I texp ( — w4> n~2wdw + / I;7'0((logn)>n™2)dw
—10+/logn 12 —10+/logn

+ P(|W,|> 104/logn) + P(|W|> 104/logn)

—0((logn)3n"2).

Step 3: Data Processing Inequality.

We can use data processing inequality to get

dics (U(Un)l/ZZ + vne(Un), v(nYAW) 127 + \/ﬁe(n1/4W)> < dry (Wy, W) = O(n~1/2).

Step 4: Non-Gaussian Approximation for n%e(n%W)

nV4e(n'/*W)) = E[X,]n1 tanh <n*iW) = E[X] [W 0 (3{?”

where we have use the fact that tanh(Q)(O) = 0. Hence there exists C' > 0 such that for n large
enough, for any ¢ > 0,

P (E[Xi} [vv + C\\//v;] < t> <P <n1/46(n1/4W)) < t) <P <IE[X¢] [w - CV\V;} < t) . (0)

n

We have showed that there exists ¢ > 0 such that

P(W[> cy/logn) < n~V/2, (1)

in which case W2/,/n < 1 for large enough n. Hence for large enough n if t/E[X;] > cy/Iogn + 1,
then

t t
(W—l—C’\F E[X,] W< \/logn> —P<W§ m,|W|§ c\/logn> = 0. (2)
If 0 < t/E[X;] < c\/logn + 1, then

’P( f E[ T W< chogn) —]P’(W<E[ X W< c\/logn>
SIP( t gng_‘/1_4n_1/2t/E[ i |W\<c\/logn>.

2n—1/2

Now we study g(z;a) = (1 — /1 —4za)/(2x),z > 0. Then SUP,< 1 sup0§x§%|9'(x;a)!§ 2 and
9(0; &) = a.. Since for large enough n, 0 < t/E[X;] < cy/logn + 1 < % and 0 < n 12 < %7 we have
L= y/1dn” L2t RG] < t/E[X;] 4+ 2n~ /2. Hence if 0 < t/E[X;] < cy/logn + 1,

oan—1/2

( vag—E[ﬁm’ < eviogn ) =2 (W = ger. WIS eviogn )| =002 (3

18



Combining (1), (2), (3),
e t t
sup|P(W+ —= < —P(WL = 0(n~ V3.
>0 ( N E[Xi]> < - E[XA) e
By similar argument, we can show
w2 t ) < t > ,
supP(W——=<—— ) -P(W< —— || =0n"?).
ioh ( vn T E[X] ~ E[X] ( )

Noticing that W and —W have the same distribution, the above two inequalities also hold for ¢ < 0.
Hence it follows from (0) that

dics (n1/4e(n1/4W)),E[Xi]W) = O(n~1/?).

Step 5: Vanishing Variance Term. Denote by fy,-1/17 the density of W + n~14Z. Then

> V2 1 exp(—y/na?/2
jVV+nU4z(y):=l/ia331/4r(i)exp <12(yx)4>]i2k:2_lﬂz)dx.

We will use Laplace method to show fiy,-1/47 is close to fiy. However, to get uniformity over
y, we need to work harder than in the high temperature case. Define p(z) = 22/2 and g,(t) =
exp(—(t —y)*/12). Consider

I (V) = /0 T exp(—Ap®)dt, I, (N) = | aesn-re)a

Following Section 5.1 in 2], take 7 > 0 such that ¢(¢) = 7, by a change of variable,

OO X exp(— — )4
I, +(\) = exp(—Ap(0)) /0 [i@jgg exp(—AT)dr = /0 p( (% y)*/12)

To get rate of convergence uniformly in y, we follow the proof of Watson’s Lemma but consider only
up to first order term. Taylor expanding = + exp(—xz?) /12 up to first order at y, we have

exp(— —y)t exp(—y* T*
p( (\/\27? y) /12) _ p(\/g?/12) +%exp(—y4/12)y3+ hy(z )@7

where 7* is some quantity between 0 and +/27 and

exp(—A7)dr.

twl(TJ

() = — exp(—(u — 9)*/12) 0~ 9)* + 5 exp(~(u — ) /12)(u — )"

In particular, we have sup,cg sup,eg|hy(u)|< C for some absolute constant C. Then

¢ r<3> A2 wa > 0.

sup
yeR

/00 y(7) \/Eexp(—)\r)dT
0

< —
2 =2 \2

Evaluating the first two terms, we get

sup
yER

Iy+ (M) — \/gexp(—y‘L/lQ) - /OOO %exp(—y“/l?)y?’ exp(—A7)dr

C /3
< —T(2)A32,vA>0.
V2 <2>
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Similarly, for I, _, change of variable by taking 7 < 0 such that ¢(t) = 7, we have

—I'( - A , VA > 0.
\f

sup
yER

I~ (\) - \/gexp(—y‘*/l?) +/OOO %exp(—f/l?)y?’ exp(—A7)dr

Combining the two parts, we get

/_: gy(t) exp(=Ap(t))dt — ﬁ exp(—y4/12>‘ < 0\/§F(2> W0,

sup
yeR
Now take A = y/n and multiply both sides by 31/4F1( 77 We get
V2 4 V2l (%) 1/2
SUp | fvn-1/12(Y) =m0y @P(—y*/12)| < C g o=n /2.
yer | T 31/40(3) BUIT(L)
By a truncation argument, we have
dis(W 4+ n~V4Z, W) < dpy (W + n~/4Z, W)
Viogn
= [ lwsncia®) = fw@)ldy + BOW + 07 42]> flogn)
—+/logn

L P(W|> /Iogn)
< Cv/n~llogn.

Together with the fact that
n~ Y4 W) = nmVYE[X?] — E[X;])? tanh?(y/Bn~4W)) /2
= n VIR 21+ Oy (n1)),
we know
dKS(n*1/4v(nl/4W)1/ZZ 4 n1/4e(n1/4W),W) _ O(\/@n’l/z).
Putting together all previous steps, we have
dis(n** g, E[X;]W) = O((log n)*n="/2).

SA-7.1.4 Proof for Lemma SA-3 Low Temperature

Throughout the proof, we denote by C an absolute constant, and K a constant that only depends
on the distribution of X;. The proofs are based on essentially the same argument as in the high
temperature case.

Instead of using sub-Gaussianity of U,,, here we use U,, is sub-Gaussian condition on U, € Z,,
¢ € {—,+}. In particular, the previous step 2 by:

Step 2: Approximation for U,.

In case 8 > 1, ¢(v) = %UQ — log(cosh(y/Bv)) has two global minimum vy and v_, which are the
two solutions of v — /B tanh(y/Bv) = 0. We want to show ¢?(vy) = @ (v_) =1 - +02 > 0.
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It sufffices to show vy > /B — 1. Since ¢'(v) < 0 for v € (0,v4+) and ¢'(v) > 0 for v € (v4,00), it
suffices to show ¢'(v/8 —1) < 0. But

¢(VB-1) <0 B —1-/Btanh(\VBE 1) <0« f> 1.

Hence ¢ (vy) = P (v_) > 0. Observe that on T_ = (—0c0,0) and T, = (0, 00) respectively, the
absolute minimum of ¢ occurs at v_ and vy, and ¢’ is non-zero on Z_ and Z, except at v_ and v.
Hence we can apply Laplace method (Equation 5.1.21 in [2]) sperarately on Z_ and Z; to get

0 Y
| esp(enoto)a - mf)() exp(—no(v-))(1+O0(n~)),
o 2T _
|| exptnotin = || expl-nov.))(1 + 0.

It follows from the definition of fy, and a change of variable that the density of U, = y/nV,, can
be approximated by

¢ (v-) —-1/2 —-1/2 -1
fu, (u) = Z 1(u € &) BT exp(—no(n~“u) + np(n™“u))(1+0(n ")),
I=+,—

where u; = v/nv;, 1 € {+,—}. Since P(U,, € Z,) = P(U,, € Z_) = £, condition on U, € T,

@) (v
funu,ez, (v) = ¢22(7T+) exp(—ng(n~?u) + np(n~?ui))(1 4+ O(n™1)).

It then follows from Equation SA-9 that if we define Uy to be a random variable with density

_ v2
o) = | G ({1 = B4 o) = s 2)

then by Taylor expanding ¢ at vy = n~1/ 2uy and a similar argument as in the proof for high
temperature case,

drv(Un|Up, € T, Ug) = O(n~ V2.

The rest follows from the same argument as in the proof for high temperature case and is sub-
Gaussianity of U,, condition on U,, € Z, £ € {—, +}.

SA-7.1.5 Proof for Lemma SA-4 Drifting from High Temperature

Throughout the proof, we denote by C an absolute constant, and K a constant that only depends on
the distribution of X;.
Let Uy(c), e(Un(c)), v(U,(c)) be the latent variable, conditional mean, and conditional variance

as previously defined when 3, = 1+ c¢n™ 2, ¢ < 0. For notational simplicity, we abbreviate the c,
and call them U, e(Uy,),v(Uy,) respectively. By Lemma SA-2, ||U, ||y, < Cn'/4.

Step 1: Conditional Berry-Esseen.
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Apply Berry-Esseen Theorem conditional on U,, in the same way as in the high temperature
case, we get

s (90, 0(Un)'7Z 4 Viie(Un)) < Kn 2
Step 2: Non-Normal Approximation for n_iUn.
Consider W,, = n~'/4U,,. Then fw, (w) = I,(c) " hn(w), with I,,( =7

2
hp(w) = exp < vn w? + nlog cosh (n i ,an>> = exp <—§w2 - fzw +g(w )Bgnéw6> ,

where by smoothness of log(cosh(+)), ||0]lcc < K. Then

cviogn cvlogn c B,
/ By (w)dw = / exp(—=w? —

hy(w)dw, and

) dw(1 + O(CO(logn)>n 2)] (SA-11)
—cViogn —cViogn 2 12
= I(c)[1 + O(c®(log n)3n75)]. (SA-12)
Moreover, by a change of variable and the fact that 5, <1,
00 00 2
I,(c) := / b (w)dw = no1 / exp ( - n(% —log cosh(\/ﬁnv)))dv
1 [ v?
< m~1 _nl = _
<n 4/_ooexp< n<2 logcosh(ﬁ)))dvgc.
Since [|Wy(¢)|lyy < C, In(c)™? f(—c\/@c\/loﬁ)c h(w)dw < Cn~1/2. Tt follows that
/ B (w)dw < Cn~Y2. (SA-13)
(—Cy/1og n,Cy/log n)°

Combining Equation SA-11 and SA-13, we have I,(c) = I(c)[1 + O(c%(logn)

3n=1/2)]. Tt follows
that

droy (W, W)
ovlogn
S/ f(w) _ h(w) ‘deP IW,,|> Cy/logn) + P(|W|> Cy/log n)
_cyiogn | In(c)  I(c)
cvlogn _
g/ m(w)h(w)’—i—hn(w)‘l—’dw+0(n—§)
—cyiogn I(c) I(c)  In(c)
C\/@ c ,62 w6 C\/@
< ex —*wQ_—”’w‘l +/ 700610nn2dw+0n2
_/c\/@ p( 2 )\F]() Cm]()((g) ) ( )

<C(logn)3n~1/2
Step 3: A Reduction through TV-distance Inequality.
Since Z_ (U,,, W,,), we can use data processing inequality to get
1 1 1 1 1 1 1 1
dks (n—m(un)az +nie(Uy),n 1v(n1W)2Z + nZe(nZW)) < dry (Wp, W)
< c(logn)>n~1/2.
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Step 4: Non-Gaussian Approximation for n%e(niW).

This is essentially the same as the proof for step 4 from the critical temperature case in
Lemma SA-3.

dics <n1/4e(n1/4W),E[Xi]W> < Kl‘)\/g;.

Step 5: Stabilization of Variance.

Using the same argument as Step 4 in the high temperature case for Lemma SA-3, and ||W|| <K,

logn

N

ds(n~To(niW)2Z + nie(niW),n 1E[X2|2Z + E[X,]W)) < K
The conclusion then follows from putting together the previous five steps.

SA-7.1.6 Proof for Lemma SA-4 Drifting from Low Temperature

Consider the same U,, defined in Equation (SA-6). Recall ¢(v) = % — log cosh(v/Bnv), ¢'(v) =
v — v/Bn tanh(v/Bpv), ¢ (v) = 1 — B, sech?(v/Bpv). And we take v, > 0, v_ < 0 to be the two
solutions of v — /[, tanh(y/Brv) = 0.

Step 2’: Non-Normal Approximation for nfiUn.

Take V,, = n=%2U,,. Then v, (v) x exp(—np(v)). Taylor expanding ¢’ at 0, we know there
exists some function g that is uniformly bounded such that ¢'(v) = (1 — 8,)v + %ﬁ%v?’ + B3g(v)v°.
Hence

vy = 3(%;1) +0(Bn —1) = V3en M/ + O(n~1/?).

Taylor expand tanh and sech at 0,
O (v4) =1— fn + 03
= —en Y2 4 3en Y214 O(en™V2)) 72 + O((en™Y/?)5/?)
= 2en 12 (1 4 O(en™Y?)),
¢ (vy) = 2(B — 7)o}
= 23/2 sech?(\/Bnvy ) tanh(y/Brvs)
=2(1+O(en™ %)) (1 + O(w}))(v/Buvs + O(v}))
=2vBen™ (1 + O(en™1/?2)),
6 (04) = 28— v2)(8 - 302)
= 232 sech?(\/Bnvy) — 482 sech?(v/ vy ) tanh?(v/Buvy)
= 2(1 4 O(en™1?)).
Take W,, = n'/4V,, = n=1/4U,,, wy = n'*vy = V3c+ O(n‘1/4), and w_ = nY/4y_. Define
hen(w)
Ve (vy)

= - f(w - wsgn(w)) -

oW (vy)

n'/1¢B) (vy)
- sgn(w)) - T(w - ngn(w))4'

6

(w—w
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By a change of variable and Taylor expansion, the density for W,, satisfies

(w — ngn(w))G). (SA—14>

NG

By Lemma SA-2, for £ € {—,+}, condition on W), € Z.,, o, W,, — wy is sub-Gaussian with 1-norm
bounded by C. Let W, , be a random variable with density at w proportional to exp(h¢n(w)). By
similar argument as Equations SA-11 and SA-13,

fut (1) % Gy () = ex (e (w) + O(1|6@ o /61)

dks(Wp W, € Tpnt, Wen|Wep € C)) < C(logn)>n=1/2).

The other steps, conditionall Beq‘ry—Esseen, reduction through TV-distance inequality, and non-
Gaussian approzimation for nie(niW,,) can be proceeded in the same way as in the proof for
Lemma SA-3, with W,, — w; sub-Gaussian condition on W,, € Z.,, , with 1-norm bounded by C,
and respectively for W ,,.

SA-7.1.7 Proof for Lemma SA-5 Knife-Edge Representation

Again we take U,, to be the latent variable from Lemma SA-1, and W,, = n~1/4U,,. From Step 2 in
the proof of Lemma SA-4, f, (w) = In(c) " hn(w), with I, (c) = [* hyp(w)dw, and

2
hp(w) = exp(—\/jw2 + nlog cosh(n_% Brw)) = exp(—%ﬁbw2 — %w4 + g(w)ﬁgn_%wfi),

where by smoothness of log(cosh(+)), ||0]|cc < K.

Case 1: When /n(8,—1) = o(1). We can apply Berry-Esseen conditional on U,, the same way as
in the proof of Lemma SA-4, and its Step 2 can also be applied here to show that if we take YVC to
be a random variable with density proportional to exp(—c2 /2w? — 52 /12w?), then diks(W,,, W,) =
O((logn)3n="/2). Moreover, ¢, = o(1) and 8, = 1 — o(1). Hence dgs(W,, Wo) = o(1). The rest of
the proof then follows from Step 3 to Step 5 in the proof for the critical regime case in Lemma SA-3.

Case 2: When /n(1 — 3,) > 1. Again we still have |Uy,[ly, = O(n'/*). Similarly as in the
previous case, the first two steps in the proof of Lemma SA-4 implies dKS(Wn,V~VC) = o(1), where
the density of W, is proportional to exp(—c2/2w? — 82 /12w?). Since ¢, > 1, the first term in the
exponent dominates, and we can show dis(W,, W!) = o(1), where W} has density proportional

to exp(—c2/2w?). Again, we can Taylor expand to get n'/4e(n'/*W)) = E[Xi]ni tanh (nfiW> =

E[X;][W — O(%)], and show dis(n*/4e(n'/*W), E[X;]W}) = o(1). Combining with stablization

of variance as in the proof of Lemma SA-2 (high temperature case), we can show
dxs (gn, n~"EIXF]2Z + ELXW]) = o(1).
Since Z and W/ are independent Gaussian random variables, we also have dxs (9n/\/Vign], Z) = o(1).

Case 3: When /n(8, — 1) > 1. By Lemma SA-4 (2),

1
sup [P(n gy, < tlm € Ipy) — P(n” TE[X?]2Z + BAE[Xi|We, i < HWe, n € Zog)| = 0(1), (SA-15)
teR
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where W, ,, has density proportional to exp(hcn(w)), with

hen(w)
vng® (vy)

= - f(w - ngn(w)) -

ne® (v, ) oW (vy)

6 24
and Z. - = (=00, Kep,—) and Ze 4 = (Kep4,00) such that EW. ,|Wey € ey o] = wen,e for
¢ € {—,+}. Now we calculate the order of the coefficients under /n(3, — 1) > 1. First, suppose
Brn =14 cn? for some v € (0,00) and ¢ not depending on n. Then vy = (552_1 +0(Bn—1) =
V3en~=7/2 + O(n~7). Taylor expand tanh and sech at 0,

(U) - ngn(w))3 - (w - ngn(w))47

¢(2)(v+) =1-78,+ vi =—cn T +en T 73(1+ cnf'y)*2 + O((cn*'y)‘r’/z)
=2en" (14 O(en™7)),

o3 (vy) = 2632 sech?(\/Bnvy ) tanh(y/Brvs)
=2(14 O(en M) (1 + O(W2))(\/Bavs + O(v3))
= 2v3en™2(1 + O(en™)),

o™ (vy) = =281 sech? (\/Bnv) + 4sech?(y/Bpv) tanh?(\/B,v)
=—-2(14+0(en™)).

We see when v = 1/2, all of fgzﬁ D(vy), n'/*¢®) (vy) and ¢ (v, ) are of order 1. And when ¢, =
Vi(Bn—1) > 1, we have /ng® (vy) > n'/4¢B) (v1) > @ (vy). Since wy = n'*vy = /3e, > 1,
and similarly, \w_|>> 1, condition on W, € [n], We,, — E[W,,|We,, € [n]] is C-sub-Gaussian,
¢ € {—,+}. By similar concentration arguments as in the proof for Step 2 in Lemma SA-4 (1), we
can show the second order term in h., dominates, and for ¢ € {—, +},

SUp[P(Wep, — EWen W € Zo] < HWep € Iy) — B(y/n(1 — B + v2)t)|= o(1).
teR

The conclusion then follows from pluggin the (conditional) Gaussian approximation for W, , back
into Equation (SA-15), and the fact that Z is independent to W, ,, and also Gaussian.

SA-7.2 Proof of Section SA-3

SA-7.2.1 Proof of Lemma SA-1

Our proof is constructive. We show that consistent estimate of nV[7,,] would imply that one can
distinguish between two constructed hypotheses easily. Let &, be the class of distributions of random
vectors (W = (Wy,---,W,,), Y = (Y1,---,Y,)) taking values in R?" that satisfies Assumptions 1,2,3.
Consider the following two data generating processes:

DGPy: B=0, G(,-)=
DGP,: fB=u, G(,-)=

y P =1, YZ—(?) fi('v')+5i7 fz(7 )
y  Pn = 1, Yi('a'):fi('f)"i'gia fz( ’ )

where 0 < u < 1, and in both cases (g; : 1 <i < n) are i.i.d N(0, 1) random variables, independent
to W. Denote by Py, and Py, the laws of (W,Y) under DGPy and DGP;. Then

dxr(Po,n(W,Y), Py ,(W,Y)) = dxr(Po,n (W), P1n(W)) + dxL(Pon (YIW), Py, (YIW))
= dkL(Po,n (W), Py ,(W)),
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the first line uses chain rule of dkp,, the second line uses
dkr,(Pon(YIW),P1 (Y |W)) = dkr,(Pon(Y),P1,(Y)) = 0.
From Theorem 2.3 (and its proof) in [1],
M := lim dkr,(Pon(W),P1,(W)) < 0.

n—o0

Hence for large enough n,
1
drv(Pon(W,Y), P n(W,Y)) <1- 3 exp(—dkL(Po,n(W,Y),P1,(W,Y)))
1
<1- iexp(—M).

Le Cam’s method (Section 15.2.1 in [8]) gives for large enough n,

inf sup Ep, [n(V[F — 7] — V[7 — 7])]
V PnePn

>n|Vp, [T = 7] = Vi, [T = 7]|(1 = dov (Pon(W, Y), P1n (W, Y)))
>eexp(—M)/2,

in the last line we used Theorem 2 (1) to get nVp, ([T — 7] —nVp, [T — 7] = (1 + o(1)).

SA-7.2.2 Proof of Lemma SA-2

The following discussions will be organized according to the three different cases: (1) When 5 < 1.
(2) When g > 1, m concentrates around 0. (3) When f > 1 and m concentrates around two
symmetric locations wy > 0 and w_ < 0 with |wy|= |w_]|.

We have required B\ € [0,1]. For analysis, consider an unrestricted pseud-likelihood estimator,

By = argmax(8; W),
UR = &g

where [(3; W) is the pseudo log-likelihood given by
1 1
1(B; W) = ;} logPs (W; | W_;) = ;} —log <2Witanh(ﬁmi) + 2>.
€e|n en

We show that [(3; W) is concave.

n - 2
71(57 ) _E Z ( : ZJ#Z )W sech (/Bn ' 237@ )

op — Witanh(Bn=1 37, Wj) + 1
_ 15 -1
__nz< ZW) Wi — tanh(8n~1 3 W5)).

i=1 J#i J#i

and
123w Z ( ZW) sech? (5 ZW]> > 0.
i=1 J#i J#i
Hence I(-; W) is concave everywhere in R. This shows 3 = min{maX{B\UR, 0},1}. Now we study
limiting distribution of BUR
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1. High and critical temperature regime.

To obtain a more precise distribution for BUR? we use Fermat’s condition to obtain that

=5 () (v (o S

=1 J# J#
== Z <m — ) ( - tanh(BURm) + sechQ(BURm) ﬁUSVVi + O(n_2)>

- Z <m _ > <<1 + sech?(Byrm) BITJLR> W; — tanh(ByRm) + O(n_2)>

(1 + BUR sech (ﬁURm)> ( 2 _ ;)

here O(-)’s are all up to an absolute constant. By Lemma SA-4 with X; = 1, we can show
E[|(nm)~Y] < cn~Y/2. By Markov inequality, (nm)~! = Op(n~'/?). Taylor expanding tanh, we
have

-1
m tanh(BURm) +O0(n H)m,

~ n 1
Pur (n—1)m an (m nm)

n L1 1\° L0 1\’
=—|m——+-|m-— m——
(n—1)m nm 3 nm nm

1 2
o 5 T ? + Op(n~ ), (SA-16)

=1-

where in the above equation, both O(-) and Op(:) are up to absolute constants. The rest of the
results are given according to the different temperature regimes.
(1) The High Temperature Regime. Using Lemma SA-2 with X; = 1, our result for the high

temperature regime with 8 < 1 implies that nim % N(0, ﬁ) = (1 - B)nm? 4 x%(1). Therefore

we conclude that - L8 4 x2(1). The conclusion then follows from B = min{maX{BUR, 0},1}.
UR
(2) The Critical Temperature Regime Using Lemma SA-2 with X; = 1, we have dkg (n%m, Wop) =
o(1). This implies nz(ﬂUR —1) 4 Law(— - —) Since Wy = Op(1), P(B\UR < 0) =o(1). The
conclusion then follows from 3 = mln{maX{BUR, 0}, 1}.

2. The low temperature regime.

When m concentrates around 71 and 7_ we have when m > 0, use the fact that 7, = tanh(Sm,) for
te{+, -},
(1 —0O(n=Y))(m — tanh(Bm))
m sech?(Bm)
_ (1—0(n™1Y) ((m — ) — (tanh(Bm) — tanh(Bm,)))
7¢ (sech? (Bmy) — 2(m — ) tanh(Bm) sech? (Bm,) + O(m — mp)?2) (1 + %)
+mO(6*) +O(n™ 1)

(11— O(n-! (1-— 6sech2(ﬁ7rg))(m — 7p)
={1=0t7) mg sech?(Bmy)

BUR —-fB= +mO(6%) + O(n™1)

(1+O0(m — 7)) + mO(6*) + O(n™ ).

27



and the similar argument gives

1 — f*sech?(f*m))

m(BuR = B) = a7

(m — ) + Oy, (n71).

The conclusion then Lemma SA-3 (3) and the convergence of m to w4 or m_.

SA-7.2.3 Proof of Lemma SA-3

Again we consider the unrestricted PMLE given by

BUR = argmax[(S; W),
BER

where [(8; W) is the pseudo log-likelihood given by

(B W) =) logPs (W; |[W_;) = > —log <;Witanh(5mi) + ;)

i€[n] i€[n]

For 5 € [0,1], that is ¢ = \/n(8 — 1) < 0, Equation (SA-16) and the approximation of m by
n~12Z + n=1/*W, from Lemma SA-4 gives

sup sup|P(1 — B <) — P(252 — 223, < t)|=o(1).
Belo,1] teR n

The conclusion follows from the fact that x — max{min{x,0}, 1} is 1-Lipschitz.

SA-7.3 Proofs for Section SA-4
SA-7.3.1 Preliminary Lemmas

Lemma SA-1. Suppose m = E[W;] where W = (W;)1<i<p takes value in {—1,1}" and

1 n
P(WZW)ZEeXp SZWZW]JthWZ , B=1h=0.

i<j i=1
Suppose either h #0 or h = 0,0 < 3 <1 holds. Then © = tanh(37 + h) + O(n™1).

Proof. First, if h = 0, then 7 = tanh(S7 + h) = 0. Now, consider m # 0. Using concentration of
m = % Yo, W; towards 7 from Lemma SA-3,

™= IE[IE[WAW,%]] = E[tanh(ﬁmi + h)}

=E[tanh(B7 + h) + sech?(B7 + h)(m; — ) — sech?(Bm* + h) tanh(Bm* + h)(m; — 7)?]

=tanh(Bm + h) + O(n™1).

Lemma SA-2. Suppose Assumption 1, and Assumption 2, 3 hold. Then (1)

= Oy, (N758R) + Oy, (N; /7).

)
™ %

max
N;

i€[n]
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(2) Define A(U) = (G(U;,Uj))1<i j<n. Condition on U such that A(U) € A = {A € R™*":
min;epy, Z#i A;j > 32logn}, for large enough n, for each i € [n] and t > 0,

M.
P < — — 7| > AE[N;|U] V242 4 O TP U) < 2exp(—t) +n~%,

Ni

where Cgp, is some constant that only depends on 3, h.
(3) When h =0, and B € [0,1], then there exists a constant K that does not depend on (3, such
that for large enough n, for each i € [n] and t > 0,

P(%—W

N > AR[N;|U]~V2Y2 4 g ~mong
K3

U) < 2exp(—t) + n~%,

Proof. Take U, to be a random variable with density

exp (—;u2 + nlog cosh (\/Eu + h))
75 exp <—%v2 + n log cosh <\/§v + h)) dv

Condition on U,, W;’s are i.i.d. Decompose by

L —
NN
JFi

fu,(u) =

(W — E[W;|Un]) + E[W;|Uy] — .

Condition on U,, W;’s are i.i.d. Berry-Esseen theorem condition on U,, and E gives,

P(% < t)E) - IP’( U%")Z Fe(Uy) < t‘E)' — O(n"?), (SA-17)

7 7

sup
teR

where e(Uy,,) := E[W;|U, | —7 = tanh(y/5/nU,+h)—=, and v(U,,) := V[W;—=x|U,]. By McDiarmid’s
inequality,

FEi; _
P15 52 (07 ~ EIW; U] [ 287
gt

E> < 2exp(—t?).

Plugging into Equation (SA-17), we can show (1) holds.
Next, we want to show condition on U such that A(U) € A, P(N; < E[N;|U]/3|U) < n~100;
Notice that for any U such that p, min;ep, >_,.; Aij(U) — oo, Condition on A such that
A e A, B = pAijij, 1 <@ < j < n are iid Bernouli random variables, and for each 1, j,
Zk#j Ag; > 32logn — 1 > 31logn for n > 3. By bounded difference inequality, for all ¢ > 0,

]P)< Z Ey; — Z PrnAki| = pn Z Aijt> < 2€Xp(—2t2)-
\/ ki

k#i,j k#i,j
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Hence condition on A, with probability at least 1 — n =109,

Z By > Z PnAii — 8+/lognpy, Z A?j > Pn Z Ap; — 8+/lognpy, Z A
k#i,j ki, k#i,j k#i,j kit

> pn ZAki ZAki_8 logn

k#i,j ki,
> pn [ Ak > A —8 3171 > Ay
ki, ki, ki,
1
> pp Z Aij/3 > %logn, (SA-18)
ki,

and since pp4;; = E[E;[U] € [0,1], >, ; By + 1 > E[N;[A]/3. By Equation SA-18, condition
on U such that A(U) € A, P(N; < E[N;|U]/3|U) < n~1%,
Hence we can disintegrate over the distribution of E to get

P ’Z N7 (W; — E[W;|Uy)) |> 4E[N;[U] 24| U | < 2exp(—t2) +n =100,
g#i

By Equation SA-7 and Lemma SA-2, and the Lipschitzness of tanh that
E[WilUn] = 7 = Oy, ,, (n7751).

Plugging into Equation (SA-17), we can show (2) holds.

Under the setting of (3), the only part that depends on § in our proof is U,. Since we show in
Lemma SA-2 ||Uy]y, < Knl'/4 for some absolute constant K, which is essentially the 8 = 1 rate, the
conclusion of (3) then follows. O

SA-7.3.2 Proof of Lemma SA-1

Since we use the conditional probability p; in the inverse probability weight, we have

_ I~ [TY: (1-T)Y
Bl el (e Bl = 5 3B ot - ST 1),y B
i=1 ! !
1 ¢ TY; (1-T)Y; ” ]
= - EE - T—ia iinvE iin?Ea
n; [ {pi - (fidietm), E||(fi)ierm)

and the conclusion follows from E[T;|T—;, (fi)ic[n), E] = pi-

SA-7.3.3 Proof of Lemma SA-2

First consider the treatment part.

n

T i T —pi
n_a/&h Z igz (17 7T) — n_aB’h Zgl (1’ ﬂ') + n—aﬂ,h Z Zingl (1’ 7() .

i=1 i i=1 i P

30



For the second term, taylor expand p;” L p; as follows:

-1
p; ' =1+ exp(—2Bm; —2h) = 1+ exp (—QBn T — 2h>
n

—1 —1 1 -1\°
— exp (—QBn T = 2h> 23 <mi _n - 7r> + 3 exp(—&7)43? <mi _n - 7'[') ,

(SA-19)

where £ is some random quantity that lies between 4% > ki W; and 4% Zj 2 T Taking the pa-
rameters ¢; = g; (1,7) (1 + exp(—287 — 2h)), dT = B(1 — tanh(B7 + h))E[g;(1, 7)]. Then

n

T4 —m.
2Bk Z i 'ngi (1777)

i=1 v
Wh=2on ST, — pi)gi (1,7) (1 + exp (—287 — 2h) — exp (=287 — 2h) 28(m; — 7))
=1
+ Owg,h,t0<n_r5’h)

G200 37 (T3 — pi) + Oy el (log m) /20~ 500)

=1
(3_) —agp n + o 1 B 25exp(2/87f+2h) o
+ Owg,h,tC«lOg n>1/2n_r’8’h)
no_+
—n 3Bk Zz; % (W; — tanh(B7 + h))
_ "\ 2Bexp(2B87 +2h) 1 N o
_ a3k 1 ' - ( .
n ; (1+eXp(25W+2h))2(n;% )(W 7T)+Owﬂ,h7t (( Ogn) n )

Dnm2in 3 [gs (1,m) + (¢f /2 = dF) (Wi = m)] + Oy el (log m) /2720,
=1

Proof of (1): By Lemma SA-3, m — 7 = Oy, , (n"*%"). The claim follows from Equation SA-19
and a union bound argument.

Proof of (2):

n 1 n
n2on Z(E —pi)gi(1,m)(m; — ) :i(m —m)n~ 2N (W; — tanh(Bm + h))g;(1,7)
1=1 i=1
+ O(n™28nm).
By Lemma SA-3,

m—7 = Oy, 1e(n700).
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Taylor expand tanh(x) at x = 7 + h, we have
n= a6k Z gi(1, m)(W; — tanh(Sm + h))
i=1

=n = h Z gi(1,7)(W; — tanh(Bm + h) — Bsech?(Bm 4+ h)(m — ) + tanh(Bw + h) sech? (87 + h)(m — 7)?
i=1

+O0((m —7)%))
:Owﬂ,h,tc(l)'

hence

n

n=2n Ty = pi)gi(1, ) (mi — ) = Oy, re((log n) /20~ 780).
=1

Proof of (3): The first line follows from a Taylor expansion of p; = (1 + exp(28m; + 2h))~! at
7, and m; — 7 = Oy, , (n77%"), noticing that ¢;, |[¢"|l are bounded. The second line follows by
reordering the terms.

Proof of (4): By Lemma SA-1, tanh(87+h) = 7+ O(n~!). By boundedness and i.i.d of g;(1,7),
%Z#i ¢j =c+0n"Y) =Ele] + Op(n~'/?) + O(n™'). Similarly, for the control part, taking the
parameters ¢; = g; (—1,m) (1 +exp(267 + 2h)), d~ = B(1 — tanh(—pS71 — h))E[g;(—1, 7)].

n

1-T;
S S MR

prlt i
= =0y gi(=1m) 0Ty (e /2= dT) (Wi = ) + Oy ie((logn) /20 7on).
i=1 i=1

Using Lemma SA-1 again, we can show (1+exp(—28m—2h))/2 = 1/7+O0(n"') and (1+exp(267+
2h))/2 =1/(1—7)+O(n~1), tanh(—Br —h) = —7+O(n~1). The result then follows from replacing
these quantities in cj, (P d™,d™ by corresponding ones using 7.

SA-7.3.4 Proof of Lemma SA-3
We decompose by Ago = Ag o1+ Ag oo, where
T, — E[p; M;
Agoq =mn 20" ﬁgg(l,w) < - 7T> ;

E[p;] N;i

=1

M;
Aggo =mn 2" ZTz (p; " —Elp:] ") gi(1, ) <N - 77) :

Notice that the first term is a quadractic form. Define H such that H;; = %. Then Ag o1 =

n~26.n (W —m)TH(W —7). Take U, to be the latent variable from Lemma SA-1. Then we decompose

ANgo1=2~22914+A221p+A221c+ Ao214,

14y Ly
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where
Ngo1a=n""W —E[W|U,))"H(W — E[W|U,]),
Agp1p=n""(E[WI|U,] — 7) " H(W — E[W|U,]),
W - E[W|U,)"H(E[W|U,] - 7),
Ago14=n"2"E[W|U,] — 7)THE[WI|U,] — 7).

Since ||H|]2 < ||H||F < % n(min; N;)~1/2, we can apply Hanson-Wright inequality conditional on
U?’L? E’

As1.a = Oy, (n3 =25 (min N;)™/2),
(A

Since g.(1,7)’s are independent to W;, by Lemma SA-3,

n

n~a8n Z(Wz —m)gi(1,7) = Oyg te(1)-

i=1

By Equation SA-7, Lipschitzness of tanh and Lemma SA-2, E[W;|U,] — 7 = Oy, , (n"75"), hence

~ T; — Elp; Y-
Ao 91 = (E[W;|Uy] — m)n—260 Z 7@]9;(1 7) = Oyg p te ((log n)~2n Bﬁ) .

E[W;]U,] - M,
A ag,h § (1, _
’ 2,2,1 C’ 2E pz gl ﬂ— i
E[W;|U,] — M;
rgp | L V-0 /v
= 2E[p;] ie?rf]( N;

= Oyy te <1Ogmzi€1?n>}<E[Ni|U]—1/2> + OTZJﬁ,W,tc(n_rB‘h).

The bound for Ay 514 follows from the definition of H and U,

Agoqq=mnPh (tanh (\/EUH + h) — E [tanh <\/EU,L + h)
n n

SA-7.3.5 Proof of Lemma SA-4
Take U, to be the latent variable given in Lemma SA-1. We further decompose by

2
) = Oy, , (n7500).

2
n

- 1 (s . B
Aggy=n"2")" 591( '(1,m7) > ]\;] (Wi —m) | =A231a+ D316+ D231
i=1 g Tt
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where 7 is some value between 7 and M;/N;, and

2
_a = 1 (2) * EU
A 31,4 =mn 0" Z 59 (1,7;) Z N, (W; —EW;U.]) |
=1 j#i
— 36k ~1 (2) * Eij
Aggip=n"2")" 29 (L77) > v, Wi = E[W;[U]) | (E[W;[Un] =),
i=1 j#i "

1
Dpgie=n"" Y g (1) (E[W;|Ua) —)°.
1=1

Part I: A273717C.

E|[W;|U,,, U| = tanh gUn—i—h , hence E[W;|U,,] —7m = O n~T81) and (E[W;|U,] — )% =
n Ya.n

prﬁ . /Q(n_Qrﬁ«h). It then follows from boundness of gi(Q)(l, ny) that

A2731176 = prﬁ h/2 (n_rﬁ’h)'

Part II: A2,3,1,b°

Condition on Uy, W;’s are i.i.d. By Mc-Diarmid inequality conditional on Uy, for each 3, ; jJE\;Z (W, —
E[W;|U,]) and using a union bound over i € [n], for all ¢ € [n], for all ¢t > 0,

P <|A2,3,1,b| 2 2max Nfl/Q”rﬁ’”E[WﬂUn] — 7|Vt
7

Un,E> < 2nexp(—t).
The tails for n*#» (E[W;|U,] — m) are also controlled,

i (nrw IE[W;|U,] — 71| > Cip(log n)l/pﬁ,h) <n 12,
Integrate over the distribution of U,, and using a union bound, for large n, for all t > 0,

P <‘A2,3,1,b‘2 2Cg j, max N;l/Qtl/Pa,h
(2

E) < 2nexp(—t) + Cﬁ’hrflﬂ.

By Equation SA-18, condition on U such that A(U) € A, P(N; < E[N;|U]/3|U) < n 1% Hence
for such U,

P (mz,g,l,b

> 4Cg j, max E[N; ‘U]*l/Qtl/Pﬁ,h

U> < 2nexp(—t) + Cppn~ 2.

In other words, conditional on U s.t. A(U) € A,

Ag3z1p = 0wﬁ,h,tc(m?XE[Ni|U]_1/2)-

Part III: A2’3’1’a.
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For notational simplicity, we will denote

2
1 . E;;
A = 5952)(17771‘) Z Né (W — E[W;{Un])
g#
2
1 /M; E;;

and since we assume g;(¢,-) is C* for £ € {—1,1}, we know 6(¢,-) is C? for £ € {—1,1}. Then we
can decompose Ag 314 — E[A231,4|E] as

A273717a — E[A273717G|E] =n 2Bk Z (A, — E[AZ‘U,-L, E]) +nT2h Z (E[AZ‘UTL, E] — E[A,’E]) .
i=1 =1

where F' is a function that possibly depends on 3(U) and E.

First part of Ay 31 ,: The first two terms have a quadratic form in W; —E[W;|U,], except for
the term 6(M;/N;). We will handle it via a generalized version of Hanson-Wright inequality. Fix
U, and E, consider

2

a1, (M, Eij
W) =n 1/2259 <N> > N? (W, — E[W;|U,])
i=1 ! !

J#

Denoting by Dy H the partial derivative of H w.r.p to Wy, and Dy, ; the mixed partials, then

2

Dy H(W _n—l/QZ (z) i Z]]E\;‘Z(Wj_E[WjUn])

1#k j#i

+n—1/zze< ) Z;E\;?(Wj—E[ijun]) ?\7’“

itk j# "

Since we have assumed f is at least 4-times continuously differentiable, we can apply standard
concentration inequalities for ., %(W] — E[W;|Uy,]) to get

[E[DxH(W)|Uy, E)|< 072 By N, 22,
=1

Hence the gradient of H is bounded by

IE[DH(W)|Un, E]|3 <

n 2
n=1 (Z BN 2)
=1

- T

< ]116

S2Un ZEWN +ZZ N2 3/2

k=1 J1=1j27#51 ]1 Jz
A2

<max1Ni.

Nmini]\/f’
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Moreover, the mix partials are

2
1 M; Eij EirE;
Dy H(W) =n~12 3" ¢ <N> > Wi —EWi[U)) | =15"
ik, g gL " i

oY ()2 | 0 R0 - B | 2
=1 i g#i i

_1/229< z> zkEzl.

N;

~

Hence || Dy H(W)|loo Sn™V2300 EZ]’\“E” Hence

n n n n n n
INEFIFl £330 ( ‘1/2ZE““E“) T Y N S e
0~ 2 ‘ : ~ hin: N2
k=1 1=1 i=1 N i1=11=1 " k=1 " 12:1 Niy ™ min; N
Moreover, since HF' is symmetric,
z “ Ei,E; max; N;
HF <||[|HF —1/2 N7 Tkl < —1/2 7700 T
HF 2]l < HF 1]l S mgxlz;n Z N2 S,
Hence by Theorem 3 from [4], for all ¢ > 0,
n
IP’( n”2Y (A - E[Ai\Un,E])‘ >t Un,E>
i=1
< , t2 t
Sexp | —emin | e
min; NZ.3 min; N2 min; N;

By Equation SA-18 and a similar argument for upper bound, for each i € [n], conditional on U
such that A(U) € A, with probability at least 1 —n "1 E[N;|U]/2 < N; < 2E[N;]. Hence for each
t>0,

‘

that is

n~ 123 (A — E[4|Un, E])
=1

> 8max E[N;|U] V2Vt + 8Cj n /2t

U) <exp(—t)

+ n_99,

720 3 (As — ELA|Up, E]) = Oy, e (n372 max B[N [UI™Y2) 4 Oy e (n712) . (SA-20)

i=1
Second part of Ass31,: Next, we will show nl=2¢n (E[4;|U, U, E| — E [4;|E]), is small.
There exists a function F that possibly depends on 8 and E such that
2

1 M; E;;
! g#i
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Define p(u) = P(W; = 1|U,U). Then

E[A;|U = u, U,E] = E[F(W,U)|U = u] = Hp(u)wl(l — p(u)"UF (w, ).
we{-1,1}n I=1

Using chain rule and product rule for derivatives,

OE[A;|U = u, U]

= Z [ZHp(u)MS(l —p<u))1_ws (F((w_p,wy =1),u) = F(w_j,w; = —1),u))

we{—1,1}" L I=1 s#l
+ [ [ p(w)“ (1 = p(w) = 0u F (w, u) | p'(u)
=1
—ZEW (Woy, Wi =1),u) = F(W_i, Wi = —1),u)] p'(u) + Ew [0.F (W, u)] p'(u)

—ZOP( ) 1+ O (e ) 1 = O ),

where in the last line, we have used

2

Ey E;j E;j Ey

D F(w, )| 100 52 (}j 2 (WjE[WjU,U])) 118l | 32 (W5 — E[W;1U, U))| 22,
o\g# g

E;;
10uF (W, )| S (10]lco 17 ll0o | N? (W; — E[W;|U,0])],
j#i

and that fact that ||p/||c = O((28/n)%%) and Hoeffiding’s inequality for Z#Z ~ (W — E[W;|Un)),

0. [F(w,Up)|Up = u, E]| <E[|0,F(w,Uy,)||Up =u] = O (n_1/2 min Ni1/2> .

]

Since U, = Owﬁ’h(naﬁyh_lﬂ), we have

n=2n Y (E[4|Un, U] ~ E[4;|U]) = Oy, <n1a5*hn1/2 min N, /2p2en= 1/2)

7
=1

— Oy, (mmN 1/2> : (SA-21)
Combining Equations SA-20 and SA-21, conditional on U such that A(U) € A,

no Aok zn: (A; — E[A|E]) = Oy, te (n%_aﬂ’h max]E[Ni|U]_1/2) + Oy, e (n—1/2>
i=1

+ Oy te (maxE[NZ-]l/Q) .

Combining the bounds for As 314,231, A231,c, We get the desired result.
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SA-7.3.6 Proof of Lemma SA-5
Recall

n

_ 1W; — E[W;|[W_] M; . M;
Aggp=mn"2nY = 1L, =) g (L) —gl (1,7 [ = — .

i=1 pi

First, we will consider the effect of fluctuation of p; and E[W;|W_;]. Recall
E[W;|W_;] = tanh (8n; + ), p; = (1 + exp (—28m; — 2h)) "
It follows from the boundeness of Bm; + h, m; — 7 = Oy, , (n"*#") that for each i € [n],

Wi — E[W;|W _j] W, —m _
—9 Toh).

Moreover for some 7} between M;/N; and =, using Lemma SA-2 we have

M; M;

1

(M, 2 o _
:igél(L i) <]\72 B 7T> - prg h/zﬂfc(n 2 Bh) + OTZJMC(N@‘ 1)‘
f :

Using a union bound over ¢ and an argument for the product of two terms with bounded Orlicz
norm with tail control, we have

n

Wi — M; M;
— 2Bk 2 . i R, _ 4 o
Baga = 30T o (1) it - i) (- ) |

i=1 v

+ Oy, , jptc((logn) " /Porn=200) 4 Oy o((logm) /P00 NG ).

Next, we will show n=28n %" nglﬂ {gi (17 A]\%) —gi(1,m) —gi(1,m) (1‘]\/2 - 77)} is small. Suppose

gi(1,) is p-times continuously differentiable. Define

n

—a Wl — T Ml p
dp=n WLZTHQZ@) (1,7) (N—ﬂ'> .
i=1 !

We will use the conditioning strategy to analyse d,: Decompse by
6p = 6p71 + 6p72 + 6 13

with

n

N W; — E[Wi|U,, M; p
gy = n-oen 3 W BT 0 1,y (36— mpwigu,] )
=1

7

"~ E[W;|U,] — M; b
by =n-en Y ERS TG0 1) (S~ B )

i=1 m+1 ' v
—a - Wl — T (p) Mz P Ml P
i=1 ¢ ¢



First, we will show §,, 2 and 6, 3 are small. By Hoeffding inequality, M;/N;—E[W;|U,] = Oy, (N, 1/2).
Moreover, E[W;|Up] — 7 = Oy, , (n"76"). Hence

092 = Oy te(max N 12y,

For 4,3, we have

(3 -mmiu) - (3 -n) =p (3 - £*>p_1 (BIWi|U,] 7).,

where £* is some quantity between E[W;|U,] and 7. Since  — xP~! is either monotone or convex
and none-negative, condition on E,

p—1

M; M; p-1
< L _EW,; o
~(p-1) g
= OTZJPB,h (n=P7reR) + Oy , (Nz 2.
-1 p—1

Combining with boundedness of gl(p )(1, m) and tail control of E[W;|U,], we have

1 1 _p1
0p3 = Oy, <(logn)p57h n(pl)rﬁﬁh> +0y , ((10g”)w’h N; ? > .
p—1

p—1

For 0,1, we will again use the generalized version of Hanson-Wright inequality. For each k € [n],

. W; — E[W;|U,, M; P~ By,
Obpy =n 213 7T+[1Hg§p>(1, m)p (N - E[wun]) —~
ik % %

M, 2
gl (1) (N’“ - E[Wi\un]> .
k
Hence condition on E,
IE[Vd,.1]| = O (n1/2faﬁ,hN;(p71)/z> '

(p)

Taking mixed partials w.r.p d,1 and using boundedness of g,"’, we have

FEi By Ei FEy
OL010 Sk E : +n 3 —= 4 nTh
H kC1 pJHoo ~ 2 Nl Nk
i#k,l ¢

It follows that

max; N? 1/2
Fess(3p.1) alloo S Il [Fess(Fp0) L rloe < /2250 (min;NQ .

It then follows from Equation SA-18 and Theorem 3 in [4] that conditional on U such that A(U) €

A,
3\ 1/2
o _ 1/2—agp M
5p,1 E[(sp,l’E] O¢1,tc (n (miniE[Ni\U]‘l :
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Trade-off Between Smoothness of g;(1,-) and Sparsity of Graph Assume g;(1,-) is p + 1-
times continuously differentiable. Then by the decomposition of Ag 32, condition on U such that
A(U) e A,

Ao 39— E[Ag35|E]

n

p (p+1) * p+1 (p+1) * p+1
_ V(L) (Mi > V(L) (Mi )
:§§—E5E+naﬁ,h§:¥ i — R B A Sl A 4 -
P = Bl —~| (@+1! (p+1)!

E
Ni Ni
+ Oy, ptel(logn)~Ho0in=200) 1 Oy 1o((log m) /P2 (min B[N [U]) 7).

Then by the concentration of M;/N; — m given in Lemma SA-2, we have
Az32 = E[Ag3:|E]
=0y, ptc((logn) /2o =250) 4 Oy, yo((log ) ~H/Po (min E[N;[U]) )
s (2

. (max; E[N;|U]3\ /2 o )
O <n1/2 . <H11HE[N\U]4 +sz/<p+1>,tc nﬁ,h(milnE[NﬂU] (p+1)/2) .

SA-7.3.7 Proof of Lemma SA-6

For notational simplicity, denote p = % S Ty and p = %tanh(ﬁw +h)+ 5= %77 + % Then

1
2

12":TY 12”:11-12_ 12”:%;)—/3
ni:l p ni:l ni:l p

P P
Taylor expand x — tanh(fBx + h) at = 7, we have

2(p — p) =m — tanh(Bm + h)
=71 +m — 7 — tanh(B7 + h) — Bsech?(Br + h)(m — 7)) + O((m — 7)?)
=(1 — Bsech?(Br + h))(m — 7) + O((m — 7)),

where O(-) is up to a universal constant. Together with concentration of 2 3% | T;Y; towards pE[Y],
we have

1 KTY;, 1TY, 1—B(1—7?) M; L
— e = — E[Y;(1, =5)] + O TBRY.,
DN PO T g1, 301+ O, (n720)

SA-7.3.8 Proof of Lemma SA-7

By Lemma SA-2 to Lemma SA-6, we show

an’h (7/:71, _ Tn) (SA—22)
=n"*n > (R; — E[R;] + b)) (W; — ) + ¢, (SA-23)
=1
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i(LEH) | gLyt
where R; = ’ (1+]7\r]") ’ (1_7:\”' ), and b; = Z#Z A}J gé (1,7), and ¢ is such that condition on U such

that A(U) € A ={A € R™" :minepy) ) ;4 Aij > 32logn},

€= Oy, e (lognmﬁ(E[NﬂU]l/Z) + Oy, te(v/lognn™"8:m)
€N

a max; E[N;| U3 1/2 r . _
e G 1) B R G ) BEC D

Following the strategy as in the proof of Theorem 4 in [6], we will show b; is close to R;: First,
decompose by

Eij
N] g;(la 7T) - Rz
J#i
E“
= z] / 1 / 1 i / 1 _Ri-
Z K Z UuU)\Uj]gJ( ’WHZnE[G(Ui,UJ)\Uﬂgﬂ( )
J#i G P
By Equation SA-18; condition on U such that A(U) € A,
‘Z z] / Z Eij g’-(l 7_()‘< Cn_l/2
i#i — nE[G(U:, Uy)|U]™

with probability at least 1 — n™9.

o0 Moreover, ngé(l,ﬂ'),j # 4 are i.i.d condition on
Ui, hence 3 ; s oy 95 (L m) — Ri = Oy, (ME[G(Us, Up|US] %) = Oy, (E[N;|X]71/2). 1t

follows that conditional on U such that A(U) € A,

max|y P g (1m) — Ril= Oy, te(max [N U] 71/2). (SA-25)
i J

Again using the conditional i.i.d decomposition, Hoeffiding inequality and U,’s concentration for
the two terms respectively,

n
a Lij
s SIS S gl (1, m) — R(Wi )|
i=1 j#£i
I Eij
<|n=30h Z[Z N] g5(L,m) = Ri](W; — E[W;|Uy])]
i=1 j#i
+ n™Ar | E[W;| Uy, ]—71”IH3X|Z N 1 ,m) — R

JF#i
=0y, (n2~* max E[N;[U] /) + Oy, , 1ol (log m) /20 max B[N, |U] /%) = &',
[ ’ A

Hence denote the term of stochastic linearization by G,,, i.e.

n

Gp=n""> (R —E[R)] + Qi) (Wi — 7).

i=1
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Since R; — E[R;] + Q;’s are i.i.d independent to W;’s with bounded third moment, we know from
Lemma SA-3 that GG, can be approximated by either a Gaussian or non-Gaussian law, that is order
1, this gives

sup P (7, — 7,[U) < t) — P (G < t|U)
teR

<supminP (G, <t+u) —P(G, <t)+Pe+e >u)
teR u>0

gsupmiBlIP’(Gn§t+u)—IP’(Gn§t+u)+P(s+8/2u)+P(t§Gn§t+u)
teR u>

<O(n™'/?) + minexp(—(u/r)?) + cu
=0((logn)*r(U)),

where O(+) does not depend on the value of U and

(E[N, U
r(U) =n"%8m + mlaxIE[Ni\U]*l/z 4 pl/2-as (W)

+ n"8h max E[N; | U]~ P+1)/2,
7
To analyse the second term, recall E[N;|U] = py, 3, , G(U;, Uj). Hence

B max (ELNU) 2 2(4(V) € 1)

-1/2
1
=(npp) /*E | max EZG(Ui,Uj) 1(A(U) € A)
' i

=0(+/log n(npn)*lﬂ),

the last line is because with probability at least 1 — n™%, E = {1¢(U;) < %Zj# G(U;,Uj) <
29(U;),V1 < i < n} happens, and by maximal inequality, max;|g(U;)|~'/2= O, (v/Iogn). And on
{A(U) € A} N E, max;(: Z]-;,,él-(J(Ui,U]~))_1/2 < (32logn/n)~1/2, since we assume G is positive.
By similar argument for the last two terms in r(U), we have

E [r(U)1(A(U) € A)] < n7=4 + y/logn(npp) "2 + /log nn*o (np,,) @72,

Recall that A = {A(U) : min; _; ,; 4;;(U) > 32logn}. Since ), ; Aij(U) ~ Bin(n—1, E[G(X1, X»)]),
we know from Chernoff bound for Binomials and union bound over i that P(A(U) ¢ A) < n™%.
The conclusion then follows.

SA-7.3.9 Proof of Lemma SA-8

Our proof for Lemma SA-2 to Lemma SA-6 relies on the following devices:
(1) Taylor expansion of tanh(-) in the inverse probability weighting for unbiased estimator, and
taylor expansion of Y;(¢,-) at E[T;] for £ € {0,1}. Then the higher order terms are in terms of m —

and %f —m. In Lemma SA-4 (taking X; = 1), we show

Iml, < KR4,
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and in Lemma SA-2, we show
M; _ _
”ﬁ”m < Kn~ Y4 4 K(np,) V2,
7

where K is some constant that does not depend on 3. This shows for the higher order terms, we
always have

m?> =m(1 +op(1)),  (M;/N;)? = (M;/N;)(1 + op(1)),

where the op(-) terms does not depend on g.

(2) Condition i.i.d decomposition based on the de-Finetti’s lemma (Lemma SA-1). Suppose U,
is the latent variable from Lemma SA-1, we use decompositions based on U,,: For Lemma SA-3 to
Lemma SA-5, we break down higher order terms in the form

F(W,E) — E[F(W,E)|E]|
—F(W,E) — E[F(W,E)|E,U,] + E[F(W,E)|E, U,] — E[F(W,E)|E].

For the first part F'(W,E)—E[F(W,E)|E, U,], we use the conditional i.i.d of W;’s given U,,. For the
second part, we use concentration from Lemma SA-2 that there exists a constant K not depending

on 3 or n, such that [|Up||y, < Kn'/* and the effective term Htanh(\/gUn)le < Kn~1/4,
In particular, the rate of concentration for conditional i.i.d Berry-Esseen and concentration of

tanh(\/gUn) does not depend on f.

By the same proof from Lemma SA-2 to Lemma SA-6, we can show in 7,, — 7,,, the second and
higher order terms in terms of W; — 7 can always be dominated by the first order terms, with a rate
that does not depend on S.

The conclusion then follows from the two devices and the same proof logic of Lemma SA-2 to
Lemma SA-6.

SA-7.4 Proof for Section SA-5

SA-7.4.1 Proof of Lemma SA-1

Define g(U;) = E[G(U;,U;)|U;], for i # j. Reordering the terms,
-7

o n—1 T;
= %:]l/zhj(17Mj/Nj) —71C 1/2hj(_1’Mj/Nj)'
J n
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Hence T(“i) — 7% has the representation given by

Ok
=—L%M@%D+lg;¢h(§@ s ()
(SA-26)

M.
Cn2 Z 1/2 ( ’N;)
(1,0 — (1~ 1/2)Blh(~1,0)])

_ 1(5;h(10) l/%MhAL0ﬂ>*1(1_1/2
(SA-27)

+ Oy (0™ () ™2)
::_i<MS;D ﬁ_u;)a}_lﬂ)+0w@0fWM%Y5) (SA-28)
(SA-29)

“Ynpa)~2) + op(nY),
(1—1/2)(hi(~1,0) —

(T ST )T - Y2+ O

where the second to last line is due to —= 1/21/2( i(1,0)—E[h;(1,0)])+1

Ehi(—1,0)]) = —2¢; + 2¢; = 0.
Now we look at b-part. For representation purpose, we look at only the treatment part. The

control part can be analysized by in the same way. Reordering the terms

Z(z— > 4 21/2[ < ¥ >_hj<1’j\z\fj>}

i€ n] J€En

1
1-1/2

ze [n]

;;311/271£§% [ ( )> _'hj<1’?§:)}'

(b) — 7% has the representation given by

Hence 7/,
P IR EE P

7-(7,) — T
jE€n] L€[n]

ﬂ. (SA-30)

The analysis follows from a Taylor expansion of h;(1,-). For some §;; between N ; and 0 for each
’ 4

j7 /[:7
M; M 1 M 2
hj<1,44% ) :Jb(1,0)4—ébh(1,0)(7v% -0) +—§éb2h(1,0)<?v% —-0) (SA-31)
J () J (i) J (i)
1 o (M 3
+  O20h(1,6)) (ij 0), (8A-32)
where we have used da2hj(1,-) = Oa[h(1,-) +¢;] = O2h(1,-).
Part 1: Linear Terms
IR, T o T Y
o FZN " i 1 N, (SA-33)
- 1 Eij
_22 P NG ﬁ 2 NO)  N@T
J LEn] AL TG J



By a decomposition argument,

1 1 1 1 1 1 1 1
NO > w = ) -1 2. O >~

@ 6]

N; et Nj o N el it Nj el it Nj

1 Eji — B, 1 1
N e Y
_ 7 L _ (v)

ne b fa NN (=D S N
_1Eij — png(Uj) 1 1

— L (npy) 124 i)
AT TIPS

Hence

- 11 1
;Eljm<]vj@_n Z L)

LE[n] L;él N( )

_1Eij — pug(U; i1 EyiWi _3
=(npn) ' =L ZElJW+7-O¢ ((npn)~2)
(U () 2,tc
png(Uj)? N;
Z Zz 1ElJWl
Le[n] L#l 7’LN

Condition on Uj, (Ej;W; : I # j) arei.i.d mean-zero, hence Bernstein inequality gives - Zl 1 EiW, =
Oy, (/1 pn) + Oy, (n™1), which implies

1 Eij — png(U
(np) 1L zEljwl Oua((pn)”

3
2

) + Ow1(<npn> 2)7

ES EyW
.S lei(l)ﬂl_ow(n Hpn?) + 0y (n™2).

Le[n] 1#£l TZN
Putting back into Equation (SA—SS),

M\QO

Ly
- Z N z)W + Oy, ((npn) ™~
LE[n] J (L)

).

Looking at contribution from the first order term in Taylor expanding h;(1,-) to 7
tion (SA-30),

282h101/2{ ——Z (]

bz.) — 7% in Equa-

—~

]E
1 E;; T 3
- Z d2h(1,0)W, z) 1/2 + Oy, 4. ((npn) " 2)
je[n]
- B T E’L] npng(U) N]&
= Wi 3 2h(1,0) pngw 112 " I O gy 172
]6[71] G[n] J
_3
+Owuc((npn) 2)
E;; T}
=—-W,;,— Zagh 1 0)71 2+Ow1tc((npn)7%)'
n L= npng(Uj) 1/
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Since (E;;T5/9(Uj) : j € [n]) are independent condition on Uj;, standard concentration inequality

gives

M; 1« M
282h101/2[ —nZN;(LJ

" jem) Ni t€(n]
:-W’E%@hlmmi()SjH%m«WHg)
= — Wideh(1, o)ij%] Wﬁ(]) 11;2 + Oy o (npa) 2)
= — Ouh(1, 0)%%3 [pnf(’;]j) Ui] + Oy, o (npn)72).

Since we assumed 0s2h(1,0) = 02 f(1,0) + op(1) = 02 £;(1,0) + op(1) where

M, 1 M
—262 (1,0) [ e ]
jeln] 1/2 namNio
Wi [ Eij02f;(1,0) } _3 1
=— —E| ==L 2U;| + Oy, ,.((npn)~2) + op(n™").
e e (0203 + 030

Together with the leading term in Equation (SA-30), we have

Z( > Dahy( 1/2[Mj _izﬂj\%m]Jﬁé)_TG)

i€[n] Jj€[n] 7 (@) [n]
M;
> Oohj(1,0)2 [ ——Z— ]+T(C;)—Ta>
? jez, N; @ " L€[n] N; ()
o] + B -1

1/2

o] + 2 17)

[Ewan] (1,0)
png(U

[Eljﬁgfj (1,0)
png(U

w 1, fi(L0), sy,
(E[ png(U;) Ul}* 1/2 (7; 1/2)>]+0¢1,m(( po) ") + op(1)

=€, E[SeS Jeg + Oy, .. ((np) ™) + op(1).

54+ﬁ@®0%4ﬁ0+0mdmﬁVU+wm

:
SR

;

3

Part 2: Higher Order Terms For the second order terms, first notice that if I ¢ [n], then

(%) 2 (F)
Nj(i) n Nj(L)

LE[n], Al
1 (MJ M; ) M;(Ei; — Ejj) — (BEijW; — BE;W)N; + Eij B (Wi — W,)
" v€[n] £l Nj (2) Nj () N](Z)N](L)

_3
:sz,tc((npn) 2 )a
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where we have used (M;/Nj), = Oq/,Q((npn)*%) and Nj_1 = Oy, ((npn)™Y). If I € [n], then again

(Mj )21 3 <M )
Nj (@) n LE[n] L #l Nj ()

M; )2 1 <Mj )2 1
=~ - ~ +
<Nj(i) n—1 2 Nj (n—1)n

LE[n] L #l
_3
=0y, . ((nPn)~2)-

(5.)
Nj )

t€[n], £l

Hence
n3 (00 2 [(??: J & ))
i€[n] j€ln] 7@ eln) W
(20002 S 1| (5 ) -1 % (5 )]) = 0nutoui ™
1 jez, N; (%) LG[TL] J ()
For the third order residual, observe that (%ﬂ:(b))3 = Oy, ((npn)~%/%). Then
5 E ) (2 ) L meaa) (2 V)
icn] jeln] J(4) I (v)
(2 3 nfan.6) (2 L5 nan) (% Y])

1 jer, 7 (9) L€[n] 7 (0)

= Oy ((pd)7L),
The conclusion then follows from Equations (SA-26), (SA-30) and (SA-31).

SA-7.5 Proof of Lemma SA-2
Define r(x) = (1,2)". Denote 7 = E[W;] = 2E[T;] — 1. Then
Case 1: g <1

First, consider the gram-matrix. Take (; := | /npn(%—w). Then 1 < V[¢;] < 1. Take by, = \/npnhy.

b= 3= ()0 K (5)

where r : R — R? is given by r(u) = (1,u)". Take @Q to be the probability measure of ¢; given E.
Then

._ _ EK(E2)dQ(z) % £ K(E)dQ(z)
B._E[Bn]E]—[ o 5 K (o ( "o IE%) ]

S ERKGEAQ) [ () K (E)dQ()]

In particular, Apin(B) 2 1. Now we want to show each entry of B,, converge to those of B. Take

T
by
B

Fpy(W) = e Bye, = % Zn: (bQ)MK(bQ) p.q e {01}
n = \by n
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Denote 0; to be the partial derivative w.r.p to W;. Since K is Lipschitz with bounded support,

10 Fp.q(W)[S b2 Z‘ (7 —7T> S b12 ! Z ?\;] (SA-34)
i=1 ’
Condition on E,
Fyg (W) = ELFy (W)L + O, ( 310,Fg (W) = ] Be, + 0y (- 30 (30 29)7).
j=1 ng=1 =1 0t

Hence for all p,q € {0,1},
e;—Bneq = e;Beq + Oy, ((nb)™1).
Since both B,, and B are two by two matrices, |B,, — Bllop < Oy, ((nb})™1). By Weyl’s Theorem,
Amin(Bn) = Amin(B)[< [Bn = Bllop S (nby) ™", (SA-35)

and together with A\pin(B) 2 1, implies Apin(By,) = 1. Take

B e 3o ))&
Hence variance can be bounded by

VAo E, W] =elB,'Z,B, ey < (nb,) ! (SA-36)
VA E, W] = np,el B, '3, B, le; < (npn)(nb3) = pnby 3. (SA-37)

Next, consider the bias term. Since f(1,-) € C?, n = (npn)~/?b,,

10,0075 = 50,5+ o512 ) (2

i

= £0,m) + 0, m) (3~ 7) + Olmpn) 82).

7

Hence using the fourth and third lines above respectively,
- LS (S (G
EGo[B. W] = e B, [nb Zr(a)dbn)f(l Niﬂ
1 ¢ i i i\ " 1 _
=ef3! [ () K o) (<(5,) om0t
= f(Lm) + o¢2<<npn>-%>,

E[7|E, W] = /npneI B! [ r

1 n
npnei B [n Z T

SIS

)
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Putting together Equations (SA-36) and (SA-38),
~ 1 1L 1 _
Jo =70 = Op((npn) "2 + (nbn)"2), 31— = Op((npn) 2 + puby, ).

Hence any b, such that b, = Q(n~Y* + pl/B) will make (7p,71) a consistent estimator for (yo,71).
For any 0 < p,, < 1 such that np, — oo, such a sequence b, exists.

Case 2: §=1

~1/4 1/2

if np? = o(1). We

The order 1 isn if liminf,, oo np2 > ¢ for some ¢ > 0; and is (np,)~
consider these two cases separately.

Case 2.1: liminf, ., np? > c for some ¢ > 0 Take n; = n%(% — 7). Take d,, = n'/4h,,. And
with the same r defined in Case 1,

Do Sx()e(2) (%) D s

Under the assumption liminf,, . np2 < ¢ for some ¢ > 0, we have 1 < V[n;] < 1. Hence Apin(D) 2
1. To study the convergence between D,, and D, again consider for p,q € {0, 1},

GoaW) = ] Due, = - ; (2" (2 = i ; (5 =) K (h G = ).

Still let U,, be the latent variable from Lemma SA-1, W;’s are independent conditional on U,,. Hence
by similar argument as Equation (SA-34), we can show
GP,Q<W) = E[GP,Q(W)‘UW E] + OwQ ((ndi)_l)
Moreover, recall we denote by w; € [k] the block unit i belongs to, then
E[GP,(](W)‘Un>E] = Z Hp(Uwi)WS(l _p(Uwi))l_WSGP,q(W)a
Wwe{-1,1}mi=1

p(Uy) = P(W; = 1|U;) = 4 (tanh(\/Be/nUy, + he) + 1), i € Z,. Take the derivative term by term,

v, EGp(W)|Up, E] = ZEW_J pa(Wj =1L W_5) - Gp,q(Wj:—lanj)]p/(Uz)-
J€L,

Using Lipschitz property of x — (x/hy,)PT1K (x/hy,),

1 1 E;;
’Gpﬂ(Wj = 17W—j) - Gp,q(Wj = _17W—j)‘§ n5/4h, £ E Nj'
Hence for all £ € C,
1 &K 1E; 1
< ij <
|8U£E[GP,Q(W)|U7Z7E”N Z n5/4h h N H ||OO ~ 3/4h%'

JEL,
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Moreover, for all £ € C, ||Uy||,, < nt/%. Together, this gives
E[Gy.q(W)|Un, B] = E[Gyo(W)|E] = Op((n'2h7) ") = O(dy,”)-

Hence if we take d,, > 1 (which implies nd;; > 1), then G, ,(W) = E[G,, o(W)|E] +0p(1), implying

)

|D,, — DJl2 = op(1) and Apin(Dy) — Amin(D) = op(1), making Apin(D,) Zp 1. Take

e S () ()

Hence variance can be bounded by

V[o|E, W] = eg D, 'Y, D, "ep < (ndn) ™" (SA-39)
VA1 |E, W] = n'/2eID, 'Y, D, 'e; < n1/2(nd3) = n 1243, (SA-40)

By similar argument as in Case 1, assume d,, > 1, we can show
EFo[E] =70 = O(n~ " +n"2d2),  E[FI[E] -y = O(n~/dy).

Hence if we choose d,, such that 1 < d,, < n'/8, then (J0,71) is a consistent estimator for (yo,71).
The only assumption we made for the existence of such a d,, is liminf,,_, np2 > ¢ for some ¢ > 0.

Case 2.2: np? = o(1) Take n; := , /npn(%Z —7), dp, = \/npphy. By similar decomposition based
on latent variables, we can show if np,, — oo as n — oo, then there exists h,, such that (50,71) is a
consistent estimator for (yg,71).
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