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Summary
In two influential contributions, Rosenbaum (2005, 2020a) advocated for using the distances 15

between component-wise ranks, instead of the original data values, tomeasure covariate similarity
when constructingmatching estimators of average treatment effects.While the intuitive benefits of
using covariate ranks for matching estimation are apparent, there is no theoretical understanding
of such procedures in the literature.Wefill this gap by demonstrating that Rosenbaum’s rank-based
matching estimator, when coupled with a regression adjustment, enjoys the properties of double 20

robustness and semiparametric efficiencywithout the need to enforce restrictive covariatemoment
assumptions. Our theoretical findings further emphasize the statistical virtues of employing ranks
for estimation and inference, more broadly aligning with the insights put forth by Peter Bickel in
his 2004 Rietz lecture (Bickel, 2004).

Some key words: Average treatment effect; Matching estimator; Rank-based statistic; Regression adjustment; Semi- 25

parametric efficiency.

1. Introduction
Consider the problem of estimating the average treatment effect (ATE),

τ ≡ E(Y (1) − Y (0)),

based on an observational study encompassing n observations of a binary treatment D ∈ {0, 1},
some measured pre-treatment covariates X ∈ Rd, and an outcome Y ≡ Y (D) ∈ R that is realized 30

from the two potential outcomes (Y (0),Y (1)). Among the techniques employed to estimate τ,
nearest neighbor (NN) matching stands as one of the most widely adopted and comprehensible
approaches; see Stuart (2010) and references therein. These estimators aim to impute the missing
potential outcome of each unit in one treatment group by finding units from the opposite treatment
group whose covariate profile closely resembles that of the unit with the missing potential 35
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outcome. The quantification of covariate similarity relies on the user-specified distance metric
between the (distributions of the) covariates of different units (from different treatment groups).

Abadie & Imbens (2006) laid out the mathematical groundwork to study NN matching esti-
mators employing the Euclidean distance metric, while Abadie & Imbens (2011) established a
root-n central limit theorem for a bias-corrected version of those NN matching estimators. More40

recently, Lin et al. (2023) established connections between NN estimators and augmented inverse
probability weighted (AIPW) methods (Robins et al., 1994; Scharfstein et al., 1999), thereby
establishing double robustness and semiparametric efficiency theory for NN matching estimators
when the number of matches diverges to infinity with the sample size.

The aforementioned theoretical work, however, centers around the Euclidean distance metric45

for determining NN matches. This approach may exhibit sensitivity to alterations in scale and to
the presence of extreme outliers or heavy-tailed distributions. Indeed, all the existing theoretical
results on matching assume covariates with compact supports, which is theoretically hard to
alleviate, if not impossible. On the other hand, in practice, distance metrics are often derived
from a “standardized” representation of the data, and the selection of a distance metric is an50

important factor in causal inference because various metrics can lead to different conclusions
(Rosenbaum, 2020a, Chapter 9).

This paper focuses on a particular standardization approach that identifies NNs by measuring
the Euclidean distance between the component-wise ranks of the covariates X , as proposed for
the celebrated Rosenbaum’s rank-based matching estimator (Rosenbaum, 2020a, Chapter 9.3).55

The concept of rank-based standardization is straightforward to interpret, easy to implement,
and computationally efficient, while also being scale-invariant and insensitive to heavy-tailed
distributions. Furthermore, due to their data adaptivity, rank-based methods are often used in
treatment effect settings such as for analysis of experiments (Rosenbaum, 2020a), regression
discontinuity plots (Calonico et al., 2015), and binscatter regressions (Cattaneo et al., 2024).60

The challenge in formally studying rank-based methods lies on the theoretical side, as the
transformation of the covariates into their ranks disrupts the independence structure of the original
data, and thus complicates the subsequent statistical analysis. Our main theorem, Theorem 1,
offers the first theoretical analysis of Rosenbaum’s rank-based matching estimator, elucidating its
appealing properties when combined with regression adjustments. In particular, our theory not65

only confirmsRosenbaum’s intuition that the rank-based distance can limit the influence of outliers
and heavy-tailed distributions (Rosenbaum, 2020a, page 210), but also demonstrates that the rank-
based matching estimator can be doubly robust and semiparametrically efficient, particularly
without imposing restrictive moment assumptions on the distribution of the covariates. More
broadly, our results align with Peter Bickel’s 2004 Rietz lecture advocating for “standardization70

by ranks” when performing statistical and machine learning related tasks (Bickel, 2004).
Our paper also offers two technical contributions, which may be of independent interest. First,

Theorem 1 establishes consistency, asymptotic linearity, and semiparametric efficiency of Rosen-
baum’s Rank-based Matching Estimator under generic high-level conditions on the regression
adjustment. The proof of that theorem relies on a careful combination of empirical process theory75

for rank-based statistics and tools established in Lin &Han (2022) and Lin et al. (2023) for match-
ing estimators involving a growing number of nearest neighbors, which are generalized herein
to accommodate standardization/transformation functions, of which component-wise ranking is
one particular example. Second, Theorem 2 presents novel mean square and uniform convergence
rates for series estimators when the covariates are generated via possibly unknown functions of80

the original independent variables, of which component-wise ranking is one particular example.
Those results are proven for general series estimators (Newey, 1997; Belloni et al., 2015) with
covariate-generated conditioning variables, and thus lead to suboptimal uniform approximation
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results, but we also discuss how they may be upgraded to deliver optimal uniform convergence
rates for partition-based series estimators (Huang, 2003; Cattaneo& Farrell, 2013; Cattaneo et al., 85

2020, 2024).

2. Setup
We adopt the standard potential outcomes causal model for a binary treatment, where

it is assumed that there are n independent and identically (i.i.d.) distributed realizations
{Xi,Di,Yi(0),Yi(1)}ni=1, of a quadruple (X,D,Y (0),Y (1)). In practice, we are only able to ob- 90

serve a part of the data, i.e., {Xi,Di,Yi ≡ Yi(Di)}
n
i=1. The goal is to conduct estimation and

inference for the population ATE,

τ = E(Y (1) − Y (0)),

based only on the observed data.
Rosenbaum’s rank-based matching approach estimates τ by plugging the component-wise

ranks of Xi’s, instead of the original values, into the NN matching mechanism, with each unit 95

matched to M units in the opposite treatment group with replacement. It proceeds in three steps
as follows.

Step 1. Given a sample {(Xi,Di,Yi)}ni=1 with Xi = (Xi,1, . . . , Xi,d)
>, introduce the vector of

component-wise (scaled) ranks such that for any i ∈ {1, . . . , n},

Ûi ≡ (Ûi,1, . . . , Ûi,d)
>, with Ûi,k ≡

1
n

n∑
j=1

1(Xj,k ≤ Xi,k), k ∈ {1, . . . , d}. 100

Here 1(·) stands for the indicator function. The vector of marginal population CDFs is F(·) :
Rd → [0, 1]d, such that for any input x = (x1, . . . , xd) ∈ Rd,

F(x) ≡ (F1(x1), . . . , Fd(xd))>, with Fk(xk) ≡ pr(X1,k ≤ xk), k ∈ {1, . . . , d}.

Define U ≡ F(X) ∈ [0, 1]d and for each i ∈ {1, . . . , n}, Ui ≡ F(Xi) ∈ [0, 1]d.

Step 2. Employ regression adjustment to correct for the estimation bias from matching. Let µ̂0(·) 105

and µ̂1(·) be mappings from [0, 1]d to R such that they separately estimate the conditional means
of the outcomes,

µ0(u) ≡ E(Y | U = u,D = 0) and µ1(u) ≡ E(Y | U = u,D = 1).

We obtain µ̂0 and µ̂1 by regressingYi’s in either the treatment or control group on the correspond-
ing {Ûi}’s, respectively.

Step 3. Implement bias-corrected nearest neighbor matching on (Ûi,Di,Yi)’s. Specifically, let 110

J(i) represent the index set of the M-NNs of Ûi in {Ûj : Dj = 1 − Di}
n
j=1, measured using the

Euclidean metric ‖ · ‖ with ties broken in arbitrary way. The resulting rank-based matching
estimator is

τ̂ ≡
1
n

n∑
i=1

(
Ŷi(1) − Ŷi(0)

)
, (1)

where, for ω ∈ {0, 1}, 115

Ŷi(ω) ≡

{
Yi, if Di = ω,

1
M

∑
j∈J(i)

(
Yj + µ̂ω(Ûi) − µ̂ω(Ûj)

)
, if Di = 1 − ω

.
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3. Main Result
Following the notation system of Abadie & Imbens (2006, 2011), let K(i) represent the number

of matched times for each unit i, i.e.,

K(i) ≡
n∑

j=1,Dj=1−Di

1
(
i ∈ J( j)

)
.

In this paper, however, K(i) denotes the matched times according to the rank-based distance, not120

the original Euclidean distance. Following Lin &Han (2022) and Lin et al. (2023), the rank-based
bias-corrected matching estimator in (1) can be represented as an AIPW estimator:

τ̂ = τ̂reg +
1
n

n∑
i=1
(2Di − 1)

(
1 +

K(i)
M

)
R̂i, (2)

where

τ̂reg ≡
1
n

n∑
i=1

(
µ̂1(Ûi) − µ̂0(Ûi)

)
and R̂i ≡ Yi − µ̂Di (Ûi), for i ∈ {1, . . . , n}.

We employ this insight throughout our large sample distributional analysis of τ̂.125

To establish our main theorem we impose some assumptions. The first assumption is posed
to regulate basic features of the data generating distribution, in particular making the estimation
problem identifiable. Conceptually, the main difference with prior literature is that the assumption
concerns the triple (Ui,Di,Yi)’s, that is, Xi is replaced by Ui, the scaled population rank.

Assumption 1. (i) For almost all u ∈ [0, 1]d, D is independent of (Y (0),Y (1)) conditional130

on U = u, and there exists a fixed constant c > 0 such that c < e(u) ≡ pr(D = 1 | U = u) <
1 − c.

(ii) [(Xi,Di,Yi)]ni=1 are i.i.d. following the joint distribution of (X,D,Y ).
(iii) E{(Y (ω) − µω(U))2 | U = u} is uniformly bounded for almost all u ∈ [0, 1]d and ω = 0, 1.
(iv) E(µ2

ω(U)) is bounded for ω = 0, 1.135

The second assumption ensures that the regression adjustment procedure is, at least, well-
posited in the sense that the estimator µ̂ω(x) is uniformly consistent for some well-behaved
(possibly misspecified) conditional expectation. Let ‖ · ‖∞ be the L∞ function norm.

Assumption 2. For ω = 0, 1, there exists a deterministic, possibly changing with n, continuous
function µ̄ω(·) : [0, 1]d → R such that E(µ̄2

ω(U)) is uniformly bounded and the estimator µ̂ω(x)140

satisfies ‖ µ̂ω − µ̄ω ‖∞ = oP(1).

The next assumption regulates the population rank-transformed random vector U, which iden-
tifies the copula distribution for X (Joe, 2014). This assumption requires X to be continuous, but
discrete components of X can be easily handled by conditioning (Stuart, 2010).

Assumption 3. The Lebesgue density of U exists and is continuous over its support.145

The next three assumptions concern the case of consistent population regression functions
µ0(U) and µ1(U), and will be used in contrast to Assumption 2, where the regression adjustment
procedure is allowed to be inconsistent for the population ranked-based regression functions.
More precisely, Assumption 2 vis-á-vis Assumptions 4–6 are used for establishing the double
robustness and semiparametric efficiency of τ̂, respectively. Using standard multi-index notation,150

let Λk be the set of all d-dimensional vectors of nonnegative integers t = (t1, . . . , td) such that
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|t | =
∑d

i=1 ti = k with k any positive integer, and ∂t µω denotes the corresponding partial derivative
of µω.

Assumption 4. Forω = 0, 1, µω is continuous and the estimator µ̂ω(x) satisfies ‖ µ̂ω − µω ‖∞ =
oP(1). 155

Assumption 5. (i) E{(Y (ω) − µω(U))2 | U = u} is uniformly bounded away from zero for
almost all u ∈ [0, 1]d and ω = 0, 1.

(ii) There exists a constant c > 0 such that E(|Y (ω) − µω(U)|2+c | U = u) is uniformly bounded
for almost all u ∈ [0, 1]d and ω = 0, 1.

(iii) maxt∈Λmax{bd/2c,1}+1 ‖∂
t µω ‖∞ is bounded, where b·c stands for the floor function. 160

Assumption 6. For ω = 0, 1, the estimator µ̂ω(x) satisfies

max
t∈Λmax{bd/2c,1}+1

‖∂t µ̂ω ‖∞ = OP(1)

and

max
t∈Λ`

‖∂t µ̂ω − ∂
t µω ‖∞ = OP(n−γ` ) for all ` ∈ {1, . . . ,max{bd/2c, 1}},

with some constants γ`’s satisfying γ` > max{1/2 − `/d, 0} for ` = 1, 2, . . . ,max{bd/2c, 1}.

Several remarks on the above assumptions align with our conceptual discussion. First, as the
quantile transformation preserves all information, Assumption 1 is either equivalent to, or weaker 165

than, the standard assumptions in the matching estimation literature. Second, Assumption 2
accommodates regression model misspecification, and its validity may be verified by leveraging
the fundamental projection principles underlying regression techniques (see, also, the discussions
in Section 4). Third, Assumption 3 constitutes a mild condition, notably satisfied by distribution
families such as the Gaussian (copula) and Cauchy (copula). Lastly, Assumptions 4 through 6 170

merit more discussion: due to the shift from using Xi’s as inputs to Ûi’s in the regression function,
direct verification using standard results from the nonparametric smoothing estimation literature
is no longer possible. We return to this technical issue in Section 4 by considering explicitly least
squares series estimation (Newey, 1997; Huang, 2003; Cattaneo & Farrell, 2013; Belloni et al.,
2015; Cattaneo et al., 2020) to illustrate verification of Assumption 2 and Assumptions 4–6. 175

Weare now ready to present ourmain theorem for Rosenbaum’s rank-basedmatching estimator.

Theorem 1 (Main Theorem). (i) (Double robustness of τ̂) If either Assumptions 1, 2, 3,
M log n/n→ 0, and M →∞ as n→∞ hold, or Assumptions 1 and 4 hold, then

τ̂ − τ converges in probability to 0.

(ii) (Semiparametric efficiency of τ̂) Assume Assumptions 1, 3, 5, 6 hold. Define

γ = max
{(

1 −
1
2

d
max{bd/2c, 1} + 1

)
, min
`∈{1,...,max{ bd/2c,1}}

{
1 −

(1
2
− γ`

) d
`

}}
,

where the (γ` : ` = 1, 2, . . . ,max{bd/2c, 1}) are introduced in Assumption 6. If M →∞ 180

and M/nγ → 0 as n→∞, then

n1/2(τ̂ − τ) converges in distribution to N(0, σ2),

where

σ2 ≡ E
{
µ1(U) − µ0(U) +

D(Y − µ1(U))
e(U)

−
(1 − D)(Y − µ0(U))

1 − e(U)
− τ

}2
.
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(iii) (Variance Estimation) If the conditions in part (ii) and Assumption 4 hold, then

σ̂2 − σ2 converges in probability to 0

where

σ̂2 ≡
1
n

n∑
i=1

{
µ̂1(Ûi) − µ̂0(Ûi) + (2Di − 1)

(
1 +

KM (i)
M

)
R̂i − τ̂

}2
.

This theorem establishes three main results. Part (i) shows that the generic bias-corrected185

Rosenbaum’s rank-based matching estimator is doubly robust for a fairly large class of regression
estimators based on estimated ranks of the covariates. The result in part (ii) gives general regularity
conditions guaranteeing asymptotic normality of the estimator. It follows directly from the second
result that the estimator is semiparametrically efficient for estimating the ATE (Hahn, 1998).
Finally, part (iii) establishes consistency of the plug-in variance estimator under nearly the same190

conditions as required for consistency and asymptotic normality.

4. Regression Adjustment using Series Least Squares
The only remaining issue concerning Theorem 1 revolves around the use of pairs (Ûi,Yi) for

bias correction, as opposed to (Xi,Yi), or the idealized oracle (Ui,Yi) pairs. The dependence among
the estimated rank-adjusted Û1, . . . , Ûn poses a challenge, making it hard to apply existing results195

in nonparametric statistics for the direct verification of Assumption 2 or Assumptions 4–6. This
section illustrates how these assumptions can be verifiedwhen using series least squares regression
estimation, covering both canonical approximating functions (e.g., power series, fourier series,
splines, wavelets, and piecewise polynomials) as well as general covariate transformations (e.g.,
high-dimensional least squares regression with structured regressors).200

The main result in this section concerns general estimated transformations of the independent
variables, based on the underlying regressors only, and allowing for possible misspecification
in both fixed-dimension and increasing-dimension least squares regression settings. Thus, we
consider a more general setup where we either observe or have approximate information about n
i.i.d. pairs (Y1,W1), . . . , (Yn,Wn) of (Y,W), and the goal is to estimate the conditional expectation205

ψ(w) ≡ E(Y | W = w),

using only the outcome variables {Yi}ni=1 and the generated covariates {Ŵi}
n
i=1 that are “approxi-

mately close” to {Wi}
n
i=1, where Ŵi’s are measurable with respect to some sigma field Fn, n ≥ 1.

In practice, as it is the case in the rank-based transformation we consider in this paper, a useful
choice is Fn = S(W1,W2, . . . ,Wn), where S(Z) denotes the sigma field generated by the random
variable Z .210

Let pK (w) = (p1K (w), . . . , pKK (w))
> be a K-dimensional vector of basis functions so that their

linear combination may approximate ψ(·) well when K is sufficiently large, at least under some
specific assumptions. However, a good approximation is not strictly required, as we also consider
misspecified regression adjustments. This is important in the context of this paper because
Theorem 1 established a double-robust property of the regression adjusted Rosenbaum’s rank-215

based matching estimator, thereby allowing for misspecified or inconsistent estimators (µ̂0, µ̂1)
of the regression functions (µ0, µ1). Furthermore, we also allow for the possibility of W having
a Lebesgue density that may not be bounded away from zero, as it occurs when its support is
unbounded. In our application, due to the rank transformation, the support of the rank-based
covariates is bounded but their density may not be bounded away from zero in, e.g., the Gaussian220

copula case.
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The following assumption summarizes our setup. Let λmin(·) be the smallest eigenvalue of the
input matrix.

Assumption 7. (i) (Y1,W1), . . . , (Yn,Wn) are i.i.d. draws from (Y,W) ∈ Y ×W ⊆ R × Rd.
(ii) E(Y2) is bounded, and λmin

(
E(pK (W)pK (W)>)

)
> 0 for all K and n. 225

(iii) There exists a sequence of sigma fields {Fn} such that (Ŵ1, Ŵ2, . . . , Ŵn) is measurable
with respect to Fn for all n, supi≤n E{(Yi − ψ(Wi))

2 |Fn} is bounded uniformly in n, and
E{(Yi − ψ(Wi))(Yj − ψ(Wj))|Fn} = 0 for all i , j and n.

The series estimator with generated covariates is

ψ̂K (w) = pK (w)> β̂K, β̂K ∈ argmin
b∈RK

1
n

n∑
i=1
(Yi − pK (Ŵi)

>b)2,

which gives β̂K ≡ ( ®P>n ®Pn)
− ®P>n ®Y , where ®Pn = (pK (Ŵ1), . . . , pK (Ŵn))

> ∈ Rn×k , ®Y ≡ (Y1, . . . ,Yn)>, 230

and ®A− denotes a generalized inverse of the matrix ®A. Let ®P ≡ (pK (W1), . . . , pK (Wn))
> be what

®Pn shall approximate, and

βK ≡ argmin
b∈RK

E{(Y1 − pK (W1)
>b)2} = argmin

b∈RK
E{(ψ(W1) − pK (W1)

>b)2}

be what β̂K shall approximate. It follows that ψK (w) ≡ pK (w)>βK is the best L2 approximation of
ψ(w) based on pK (w), where βK = ®Q−E(pK (W1)ψ(W1)) with ®Q ≡ E(pK (W1)pK (W1)

>) ∈ RK×K .
Our results rely on the following quantities characterizing different aspects of the series esti- 235

mator and the approximation errors:

λK ≡ λmin( ®Q), ζq,K ≡ max
t∈Λq

sup
w∈W

‖∂tpK (w)‖,

ξ2
K ≡ E{(ψ(W1) − ψK (W1))

2}, ϑq,K ≡ max
t∈Λq

‖∂tψ − ∂tψK ‖∞,

and

Rn ≡ ‖ ®Ψ − ®Ψn‖
2/n, Bn ≡ ‖( ®P − ®Pn) ®Q−1/2‖22/n, 240

where ®Ψ ≡ (ψ(W1), . . . , ψ(Wn))
> ∈ Rn, ®Ψn ≡ (ψ(Ŵ1), . . . , ψ(Ŵn))

> ∈ Rn, and ‖ · ‖2 denotes the
matrix spectral norm.

Let ‖g‖2
L2 ≡

∫
|g(w)|2dFW (w), and consider first the L2 rate of approximation of the series-

based least squares estimator:

‖ψ̂K − ψ‖
2
L2 ≤ 2‖ψ̂K − ψK ‖2L2 + 2‖ψK − ψ‖2L2, 245

where it follows immediately that ‖ψK − ψ‖2L2 = ξ
2
K ≤ ϑ

2
0,K , implying that the best mean square

approximation ψK (w) = pK (w)>βK will approximate ψ(w) well if ϑ0,K → 0, or at least ξK → 0,
which in turn requires K →∞ in general. However, in many applications the series estimator
may be misspecified or inconsistent in the sense that ξK 6→ 0. In those cases, it is natural to take
ψK (w) as the target “parameter”. The following theorem establishes two distinct L2 convergence 250

rates for the series estimator relative to the latter quantity.

Theorem 2 (L2 Convergence). Let Assumption 7 hold, λ−1
K ζ2

0,K log(K)/n = o(1), and Bn =

oP(1). Then,

‖ψ̂K − ψK ‖
2
L2 = OP

(K
n
+ An

)
,
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where the approximation error term can be taken to be either255

An = min
{
Bn + ξ

2
K , Rn + ϑ

2
0,K

}
,

or

An = Bn + Bn min
{
Bn + ξ

2
K , Rn + ϑ

2
0,K

}
+min

{
λ−1
K ζ2

0,Kξ
2
K/n , Kϑ2

0,K/n
}
.

This theorem provides new results relative to previously known mean square convergence rates
for series estimation. More specifically, it allows for generated regressors based on covariates260

with a possibly vanishing minimum eigenvalue of the expected scaled Gram matrix (λK ), as it
may occur when the Lebesgue density of W is positive but not bounded away from zero onW.
Furthermore, the second rate estimate allows for a non-vanishing L2 approximation error (ϑ0,K ≥
ξK 6→ 0), thereby offering L2 consistency results for general least squares approximations.
It is easy to deduce (suboptimal) uniform rates of approximation using Theorem 2 because265

max
t∈Λq

‖∂t ψ̂K − ∂
tψ‖∞ ≤ max

t∈Λq

‖∂tp>K (β̂K − βK )‖∞ + max
t∈Λq

‖∂tψK − ∂
tψ‖∞,

≤ ζq,Kλ
−1/2
K ‖ψ̂K − ψK ‖L2 + ϑq,K,

where, as noted before, the first term characterizes the error in approximation when perhaps
ϑq,K 6→ 0, in which case the target “parameter” can be taken to be ∂tψK (w) = ∂tpK (w)>βK ,
regardless of whether K →∞ or not.270

Underlying the assumptions imposed in Theorem 2, there are several parameters that need
further discussion. From the standard series estimation literature, ζq,K = O(K1+q) for power
series and ζq,K = O(K1/2+q) for fourier series, splines, compact supportedwavelets, and piecewise
polynomial regression. Lower bounds for λK need to be established on a case-by-case basis when
the density of W is not assumed to be bounded away from zero, so we illustrate one such275

verification further below for the case of rank transformations and a Gaussian copula. As already
mentioned, the parameter ξK ≤ ϑ0,K captures the degree of approximation (or misspecification)
of the series regression estimator, and needs not to vanish, in which case the second rate result in
Theorem 2, and the implied uniform convergence rate, must be used. If ψ is s-times differentiable
and other regularity conditions hold, then ξK = O(K−s/d) for all the usual approximation basis280

functions if appropriately specified. In general, however, the difference between the L2 and
L∞ approximaton errors, ξK and ϑ0,K , depends on the basis functions employed and the data
generating features. In particular, for instance, when employing locally supported basis functions,
it can be verified that ξK � ϑ0,K , in which case ϑq,K = O(K−(s−q)/d) under regularity conditions.
See Newey (1997), Huang (2003), Cattaneo & Farrell (2013), Belloni et al. (2015), Cattaneo et al.285

(2020), and references therein, for more details.
An important feature of Theorem 2 is that it allows for generated regressors based on the

covariates, which introduces two additional quantities characterizing the approximation rate: Rn

and Bn. For example, if ψ satisfies the Lipschitz condition |ψ(a) − ψ(b)| ≤ L‖a − b‖ for some
constant L, then290

Rn =
1
n

n∑
i=1

(
ψ(Ŵi) − ψ(Wi)

)2
≤ L2 max

i=1,2,...,n
‖Ŵi −Wi ‖

2 = OP(rn),

and therefore the convergence rate of Rn is determined by the uniform convergence rate of the
transformation of the covariates. Recall that in our application, we consider the empirical rank
transformation (Wi, Ŵi) = (Ui, Ûi), and therefore rn = 1/n. A similar calculation can be done to
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bound Bn when pK (·) is smooth, because

Bn ≤ λ
−1
K

1
n

n∑
i=1
‖pK (Ŵi) − pK (Wi)‖

2 ≤ λ−1
K L2

K max
i=1,2,...,n

‖Ŵi −Wi ‖
2 = OP(bn), 295

provided that the basis functions are Lipschitz with constant LK , and where L2
K = O(ζ2

1,K ). Thus,
in the particular case of the empirical rank transformation, bn = λ−1

K ζ2
1,K/n.

It remains to illustrate how to lower bound the minimum eigenvalue λK . It is well-known that
if W admits a Lebesgue density bounded and bounded away from zero over the supportW, then
λ−1
K is uniformly bounded in K , after possibly rotating the basis functions. The following lemma 300

considers the more interesting case when the density is not bounded away from zero, as it occurs
for example when the support of W is unbounded.

Lemma 1 (Lower Bound on λK ). Suppose that W admits a Lebesgue density fW , and
p1K, . . . , pKK are orthonormal with respect to the Lebesgue measure over the support of W .
If there exists a universal constant C > 0 such that, for all sufficiently small t > 0, the Lebesgue 305

measure Leb({w : 0 < fW (w) < t}) ≤ Ctρ for some ρ > 0, then λ−1
K = O(ζ2/ρ

0,K ).

As expected, the additional conditions in the previous lemma restrict the tail of fW . It remains
to illustrate how to verify the result for the case when Wi and Ŵi are taken to be Ui and Ûi as in
Section 2. This is done in the following proposition for the case of a Gaussian copula.

Proposition 1 (Sufficient Conditions for Gaussian Copula). Suppose U1,U2, . . . ,Un 310

follow a Gaussian copula distribution with an invertible parameter correlation matrix Σ.
Then, the conditions of Lemma 1 are satisfied with ρ = λ−1

max
(
Σ−1 − Id

)
/d, where Id is the

d-dimensional identity matrix and λmax(·) is the largest eigenvalue of the input matrix..

Using Theorem2 in general, or Lemma 1 and specific conditions on the underlying copula of the
population rank-based transformed covariates, it is possible to verify the conditions of Theorem 1. 315

To be more specific, Theorem 2 gives versatile (albeit suboptimal) uniform consistency rates for
series estimators (µ̂0, µ̂1) of either some approximate (misspecified) functions or the population
functions (µ0, µ1). It is worth noting that our verification aimed for generality in terms of high-level
conditions, but for the case of partition-based (locally supported) series estimators it is possible
to obtain better (in fact optimal in some cases) uniform convergence rates (Cattaneo & Farrell, 320

2013; Belloni et al., 2015; Cattaneo et al., 2020). Specifically, Cattaneo et al. (2024) studies the
case of rank-based transformations for B-splines when d = 1, and establishes optimal uniform
convergence rates on compact support. Their results could be extended to obtain sharper uniform
convergence rates with generated regressors based on the covariates as required by Theorem 1.

5. Discussion 325

Rank-based distance is extensively used in the matching literature due to its robustness against
various types of contaminations, and because of its computational simplicity. These benefits
have been discussed in Rosenbaum (2020a, Chapter 9.3) and Rosenbaum (2020b, Sections 4.5
and 4.6). Furthermore, rank-based matching methods have been applied in numerous studies,
including Kang et al. (2013), Keele et al. (2015), Kang et al. (2016), Keele & Morgan (2016), 330

and Yu et al. (2020), to just name a few. Our paper complements that literature by providing a
theoretical exploration of rank-based matching, and thereby offering insights into its underlying
foundational principles.
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More specifically, this paper studied the large sample properties of Rosenbaum’s rank-based
matching estimatorwith regression adjustment, and established its consistency, double robustness,335

asymptotic normality, and semiparametric efficiency. Consistency of a plug-in variance estimator
was also established. These results were obtained as a consequence of a more general theorem
given in the supplemental appendix, which allows for a class of transformations of the covariates,
a leading special case being the empirical rank transformation proposed by Rosenbaum (2005,
2020a). To provide primitive conditions for regression adjustment, novel convergence rates for340

series estimators with generated regressors and possibly covariate Lebesgue density not bounded
away from zero were derived, which may be of independent interest.
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