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SA1 Introduction

We describe the setup of dyadic density estimation, define the dyadic kernel density estimator, give some
notation and state our assumptions.

SA1.1 Setup and estimator

Fix n > 2 and suppose there is a probability space carrying the latent random variables A, = (4; : 1 <1i <n)
and V,, = (V;; : 1 <i < j <n). Suppose that the A; are i.i.d., the V;; are i.i.d., and that A, is independent
of V,,. Define the observable dyadic random variables W;; = W (A;, A;,V;;) where W is some unknown
real-valued function. There are %n(n — 1) such variables; one for each unordered pair of distinct indices i < j.
Note that if ¢ < j and ¢ < j” are all distinct, then W;; is independent of W/ ;.. However, W;; is not in general
independent of W;j/, as they may both depend on the latent variable A;. This data generating process is
justified by the Aldous—Hoover representation theorem for exchangeable arrays (Aldous, 1981; Hoover, 1979).

Denote the kernel weight of the data point W;; at the evaluation point w with bandwidth h (see

Section SA1.3 for details) by kj(W;;,w). Then the dyadic kernel density estimator is defined as

SA1.2 Notation
SA1.2.1 Norms

For real vectors, || - ||, is the standard L” norm defined for p € [1,00]. For real square matrices, || - ||,
is the operator norm induced by the corresponding vector norm. In particular, || - ||; is the maximum
absolute column sum, || - ||s is the maximum absolute row sum, and || - ||z is the maximum singular
value. For real symmetric matrices, || - |2 coincides with the maximum absolute eigenvalue. We use
| - [lmax to denote the largest absolute entry of a real matrix. For real-valued functions, || - || denotes the
(essential) supremum norm. The total variation norm of a real-valued function of a single real variable is

—1
lgllTv = sup,>q sup,, <...<po >oimy [9(xig1) — glai)]-

SA1.2.2 Inequalities

For deterministic non-negative sequences a,, and b,,, write a,, <
a positive constant C' which does not depend on n (although might depend on other quantities, depending
on context) satisfying a,, < Cb, for all sufficiently large n. Write a,, < b,, or a,, = o(b,) to indicate that

< by, or a, = O(by,) to indicate that there exists

an /by, — 0. If a,, < by, < ay, write a,, < by,. For random non-negative sequences A,, and B,,, write A4,, <p B,
or A, = Op(B,,) to indicate that for any £ > 0 there exists a deterministic positive constant C. satisfying
P(A, < C.B,) > 1 — ¢ for all sufficiently large n. Write A,, = op(B,,) if A,/B, — 0 in probability.

SA1.2.3 Sets

For z € R and a > 0, we use [x £ a] to denote the compact interval [z — a,z + a]. For a bounded set X C R
and a > 0 we use [X £ a] to denote the compact interval [inf X — a, sup X + a]. For measurable subsets of
R? we use Leb to denote the Lebesgue measure, and for finite sets we use | - | for the cardinality.

SA1.2.4 Sums

We use ), to indicate )" | when clear from context. Similarly we use 3, _; for st di—ippand > o

n—2 n—1 n
for >, Zj:i-i,—l r=j41°



SA1.2.5 Function classes

Let & C R be an interval and 8 > 0. Define g as the largest integer which is strictly smaller than 8. Let
C8(X) be the class of functions from R to R which are 3 times continuously differentiable on X'. Note that
C%(Xx) is the class of functions which are continuous on X. For C' > 0, define the Hélder class with smoothness
8 >0 by

HE(X) = {g eCl(x): max |g(T)(a:)| < C and |g(§)(z) - g(@)(x’)| < Clz—2'|P78, forall z,2' € X}.
Note that H{(X) is the class of functions which are C-Lipschitz on X, and observe that the functions in
’Hg(é\’ ) are not uniformly bounded on X.

SA1.3 Assumptions

Assumption SA1 (Data generation)

Fizn > 2 and let A, = (A; : 1 <i < n) be i.i.d. real-valued random variables supported on A C R. Let
V, = (Vi :1<i<j<n) beiid. real-valued random variables with a Lebesque density fy on R. Suppose
that A, is independent of V,,. Let W;; = W (A;, A;,Vi;) and W, = (Wy; : 1 < i < j < n), where W is
some unknown real-valued function which is symmetric in its first two arguments. Let VW C R be a compact
interval with positive Lebesgue measure Leb(W). Assume that the conditional distribution of W;; given A;
and A; admits a Lebesgue density denoted fyaa(w | Az, Aj), and define fyyja(w | a) =E [fW‘AA(w | Ai,a)]
and fw(w) = E [fiyjaa(w | Ay, Aj)]. Take Cu > 0 and 8 > 1, and suppose that fw € HgH (W) and that
fwiaa(- | a,a’) € HE (W) for all a,a’ € A. Assume that sup,,eyy || fwja(w | -)||lrv < oo.

Remark. It W(ay, as,v) is strictly monotonic and continuously differentiable in its third argument, we can give

the conditional density of W;; explicitly using the usual change-of-variables formula: with w = W (a1, as,v),

OW (a1,a2,v) |
ov

we have fW|AA(w | a1, a2) = fv(v)

Remark. By Lemma SA43, Assumption SA1 implies that the densities fi, fu/a and fy |44 are all uniformly
bounded by Cq := 24/Cy + 1/ Leb(W).

Assumption SA2 (Kernels and bandwidth)
Let h = h(n) > 0 be a sequence of bandwidths satisfying hlogn — 0 and 12%,7 — 0. For each w € W let

kn(-,w) be a real-valued function supported on [w + h]|NW. Let p > 1 be an integer and suppose that ky,
belongs to a family of boundary bias-corrected kernels of order p, which is to say that

=1 forallweW if r=0,
/ (s —w)"kp(s,w)ds =0 forallweWif 1<r<p-1,
w #£0 for some w € W if r =p.

Suppose also that for some Cy, > 0, the kernels satisfy kp(s,-) € chL/hQ (W) for all s € W.

Remark. The kernel functions required by Assumption SA2 can be constructed using polynomials on [w+h]NW,
solving a family of linear systems to find the coefficients.

Remark. By Lemma SA43, Assumption SA2 implies that if h < 1 then kj, is uniformly bounded by Cy/h
where Cy :=2C1, + 1+ 1/Leb(W).

SA2 Main results

SA2.1 Bias

Lemma SA1 is a standard result in kernel density estimation with boundary bias correction, and does not
rely on the dyadic structure of the data.



Lemma SA1 (Bias of fw)
Suppose that Assumptions SA1 and SA2 hold. For w € W define the leading bias term as

By(w) = fég;f“)) [ e (* h‘“) ds.

for 1 <p < B. Then we have the following bias bounds.

(i) Ifp<B—1,
B 2C:C | iy
SlelngE[fw ()] = fw(w) =W By(w)| < == A7
(ii) If p =8,
sup B[ (w)] ~ fur(w) ~ 1By (w)] < 220
(iti) If p = B+1,
sup [E[Jiw ()] — fi ()] < 29Ty
wew /@
Noting that supy, |Bp(w)| < 2C«Cu/p!, we deduce that for h <1,
sup [B[fw(w)] = fw(w)] < cZEgh? S hY

SA2.2 Uniform consistency

In this section we demonstrate uniform consistency of the dyadic kernel density estimator. Lemma SA2
provides a U-statistic decomposition of the estimator and Lemma SA4 employs this decomposition to establish
uniform concentration. Theorem SA1 then combines this with the bias result from Lemma SA1 to show
uniform consistency. Lemma SA3 provides a useful trichotomy for interpreting our results in various classes
of data distributions.

Lemma SA2 (Hoeffding-type decomposition for fw)
Suppose that Assumptions SA1 and SA2 hold. Define the linear term (Hdjek projection), quadratic term and
error term of fw(w) as

n n—1 n n—-1 n
:%Zli(w)7 Q”(w):ﬁz Z gij(w),  En(w) nn—1) Z Z
respectively, where
lz(w) =E [k:h(Wij,w ‘ A] — [k:h(Wij,w)]
qij(w) = E[kn(Wij, w) | Ai, Aj] = E [kn(Wij, w) | Ai] = E[kn(Wij, w) | Aj] + E [kn(Wij, w)],

eij(w) = kn(Wij, w) — E [kn(Wij, w) | Ai, Aj].
Then the following Hoeffding-type decomposition holds:
Fw (w) = E[fw ()] + Ln(w) + Qu(w) + En(w).
Further, the stochastic processes L,,, @, and E, are all mean-zero, since
E[Ln(w)] = E[Qn(w)] = E[Ep(w)] =0
for allw e W. Also they are mutually orthogonal in LQ(]P’)
E[Ln(w)Qn(w )] —E[L (w)Ep (u} )] = [Qn( ) En(w I)] =0
for all w,w" € W.



Lemma SA3 (Trichotomy of degeneracy)
Suppose that Assumptions SA1 and SA2 hold, and define the non-negative upper and lower degemeracy
constants

Dﬁp = sup Var [fW|A(w | AZ)] , DIQO = inf Var [fW|A(w | Al)}
weW weW

respectively. Then precisely one of the following three statements must hold.

(1) Total degeneracy: Dyp = Do = 0. Then L,(w) =0 for all w € W almost surely.

(ii) No degeneracy: Dy, > 0. Then inf,eyy Var|L, (w)] > 22 for all large enough n.

n

(iti) Partial degeneracy: Dy, > Dio = 0. There ezists w € W with Var [ fyrja(w | A;)] = 0; such a point
is labelled degenerate and satisfies Var[L,(w)] < 64CxCuCql. There also exists a point w' € W
with Var [ fysa(w’ | 4;)] > 0; such a point is labelled non-degenerate and satisfies Var[L,(w')] >
%Var [fW|A(w' | Al)] for all large enough n.

Remark. The trichotomy of total/partial/no degeneracy given in Lemma SA3 is useful for understanding
the asymptotic behavior of the dyadic kernel density estimator. Note that our need for uniformity in w
complicates the simpler degeneracy/no degeneracy dichotomy observed for pointwise results by Graham et al.
(2022).

Lemma SA4 (Uniform concentration of ]?W)
Suppose Assumptions SA1 and SA2 hold. Then with Ly, Q, and E, defined as in Lemma SA2, we have

D 1 logn
E | sup |L,(w)|]| < ==, E[su nw}g, E{su Enw]§ ,
sup [La(w)]] < 22 sup [Qu ()] < 1 sup |Eaw)]| < /25

where < is up to constants which depend on the underlying data distribution and the choice of kernel. Note
that the Q,, term is dominated by the L,, term uniformly in the bandwidth h. Therefore by Lemma SA2

—~ -~ D, 1
E [sggvvw(w) —E[fw(w)H] S \/ﬁp + \/ﬁ'

Theorem SA1 (Uniform consistency of fW)
Suppose Assumptions SA1 and SA2 hold. Then

E [sup | Fuw (w) - fw<w>@ <oy Due  flogn
weWw

vn n2h’
where < is up to constants which depend on the underlying data distribution and the choice of kernel.

Remark. In light of the degeneracy trichotomy in Lemma SA3, we interpret Theorem SA1.

(i) Partial or no degeneracy: when D, > 0, any bandwidth sequence satisfying 10% Sh<n~ ) gives
the bandwidth-independent “parametric” rate noted by Graham et al. (2022):

~ R 1
E {Sggv | fw (w) —]E[fw(w)]@ < Nk

1
2(pAB)+1

(ii) Total degeneracy: when D, = 0, minimizing the upper bound by setting h =< (1‘;#) yields

PAB
—~ logn ]ogn 2(pAB)F+1
E —_ < pPAB =R =R
{sggv!fw(w) fw(w)@ < +\ oz, S5z ,



SA2.3 Minimax optimality

In this section we demonstrate minimax optimality of our estimator under uniform convergence by providing
upper and lower bounds in expectation uniformly over some classes of dyadic distributions.

Theorem SA2 (Minimax optimality of fw)

Fiz 8 > 1 and Cy > 0, and take W a compact interval with positive Lebesgue measure. Define P = P(W, 3, Ch)
as the class of dyadic distributions satisfying Assumption SA1. Define Py as the subclass of P containing
only those distributions which are totally degenerate on W in the sense that sup,,cyy Var [fW|A(w | Ai)] =0.
Then

. ~ 1
it sup B2 sup () ]| =

. ~ logn \ 28+t
inf sup Ep {Sup | fw (w) — fW(w)@ = ( g2 ) )
fw PePq weWw

where ]?W is any estimator depending only on the data W,, = (W;; : 1 <1 < j <n) distributed according to
the dyadic law P. The constants in =< depend only on W, B and Cy.

Remark. Theorem SA2 verifies that the rates of uniform consistency derived in Theorem SA1 are minimax-
optimal when using a kernel of sufficiently high order (p > §). It also shows that both the L,, and E,
terms are important in the consistency of fW, and that their relative magnitude in the supremum norm is
determined by the degeneracy type of the underlying distribution.

SA2.4 Covariance structure

Lemma SA5 (Covariance structure)
Suppose Assumptions SA1 and SA2 hold. Define the covariance function of the dyadic kernel density estimator

by
Y, (w,w") = Cov [fw(w), fw(w’)}
forw,w’" € W. Then X, admits the following representations.

2 _
Sn(w,w") = ——— Cov[kn(Wij, w), kn(Wij, w')| + —=

n(n—1) Cov [k (Wij, w), kn (Wi, w')]

= n(n — 1) COV[k‘h(Wij,’w),kh(Wij,’UJl)] + ’I’Li COV[]E[IC}L(WZ']‘,’IU) ‘ Ai},E[kh(Wij,'wl) | Az]];
where 1 <i<j<r<n.

Lemma SA6 (Variance bounds)
Suppose that Assumptions SA1 and SA2 hold. Then for all large enough n,

Dl L i () S inf Sulww) < sup Solww) § 22 4 L
—— in w inf 3, (w,w) < sup T (w,w) S —= + —.
n n2h wew " ~ wew w@l?v n n2h

SA2.5 Strong approximation

In this section we give a strong approximation for the empirical process fw. We begin by using the Kémlos—
Major-Tusnady (KMT) approximation to obtain a strong approximation for L,, in Lemma SA7. Since E,, is
an empirical process of i.n.i.d. variables, the KMT approximation is not valid. Instead we apply a conditional
version of Yurinskii’s coupling to obtain a conditional strong approximation for F, in Lemma SAS, and then
construct an unconditional strong approximation for £, in Lemma SA9. These approximations are combined
to give a strong approximation for fy in Theorem SA3. We do not need to construct a strong approximation
for the negligible @,,.



This section is largely concerned with distributional properties, and as such will frequently involve copies
of processes. We say that X’ is a copy of a random variable X if they have the same distribution, though
they may be defined on different probability spaces. To ensure that all of the joint distributional properties
of such processes are preserved, we also carry over a copy of the latent variables (A,,, V,,) to the new space.

Many of the technical details regarding the copying and embedding of stochastic processes are covered by
the Vorob’ev—Berkes—Philipp Theorem, which is stated and discussed in Lemma SA28. In particular, this
theorem can be used for random vectors or for stochastic processes indexed by a compact rectangle in R?
with a.s. continuous sample paths.

Lemma SAT (Strong approximation of L)
Suppose that Assumptions SA1 and SA2 hold. For each n > 2 there exists on some probability space a copy
of (An, V., Ly), denoted (Al,, V', L"), and a mean-zero Gaussian process ZL' indezed on W satisfying

t+Ch1
P ((sup VAL (w) - 28/(w)] > Dy OB < cenet
wew \/’H

for some positive constants Cy, Co, C3 and for all t > 0. By integration of tail probabilities,

Dy logn
E | su nL;w—Zﬁlw]gup.

Further, ZY' has the same covariance structure as /nL’, in the sense that for all w,w' € W,
E[Z) (w)Zy' (w")] = nE[L;, (w) L, (w")].

It also satisfies the following trajectory regularity property for any 6, € (0,1/2]:

E l sup | ZL (w) — Zﬁ’(w’)’] < Dupdny/1og1/6,,

|w_wl|§5n

and has continuous trajectories. The process ZL' is a function only of A/, and some random noise which is
independent of (Al ,V!]).

Lemma SA8 (Conditional strong approximation of E,,)

Suppose that Assumptions SA1 and SA2 hold. For each n > 2 and t,, > 0 with |logt,| < logn, there exists on
some probability space a copy of (A, Vy, Ey), denoted (AL, V1, E.), and a process Zf’ which is Gaussian
conditional on Al and mean-zero conditional on A’ , satisfying

n’

P <sup |Vn2hEl (w) — ZE' (w)| > t,
wew

A;l) < Cit; 223 4 (log n)?/4,

A’ -almost surely for some constant Cy > 0. Setting t, = n71/4h73/8(10g n)3/8Rn for any sequence R,, — oo
and taking an expectation gives

sup |Vn2hE] (w) — Zf’(w)‘ <pn~ Y 38 (logn)3/8R,,.
wew

Further, Zf’ has the same conditional covariance structure as n2hE!, in the sense that for all w,w' € W,
E [Zf’(w)if’(wﬂ | A;,] = n?hE [, (w)El(w') | AL].

It also satisfies the following trajectory regularity property for any 6, € (0,1/(2h)]:

~ ~ ) 1
sup | ZF(w) — ZF' (w)|| < 4 [log —,
LS 12w = 2] S 50 e 7

E

and has continuous trajectories.



Lemma SA9 (Unconditional strong approximation of E,,)

Suppose that Assumptions SA1 and SA2 hold. Let (A, V1, Z;E’) be defined as in Lemma SAS8. For each
n > 2 there exists (on some probability space) a copy of (A;L7V;L,Zf'), denoted (A;{,V;;Z;E"), and a
centered Gaussian process ZE" satisfying

E [sup |Zf”(w) — Zf”(w)|] < nil/ﬁ(logn)w‘g.
wew

Further, ZE" has the same (unconditional) covariance structure as ZE" and v/n?hE, in the sense that for
allw,w' e W,

E[ZE"(w)ZE" ()] = B | ZE" () ZE"(w')| = n*hE [En(w) En(w')]

It also satisfies the following trajectory regqularity property for any 6, € (0,1/(2h)]:

1) 1
su ZE"(w) — ZE"(w")|| < =4 /log —.
(2 w) - 28 >|] < fiow o

Finally, ZE" is independent of A" and has continuous trajectories.

E

Remark. Note that the process Zf’ , constructed in Lemma SAS8, is a conditionally Gaussian process but is
not in general a Gaussian process. The process Z2”, constructed in Lemma SA9, is a true Gaussian process.

Theorem SA3 (Strong approximation of fy)
Suppose that Assumptions SA1 and SA2 hold. For each n > 2 and any sequence R, — oo there exists on
some probability space a centered Gaussian process Z1' and a copy of fw, denoted fiv, satisfying

bg}/)v f{/v(w) — E[f{,v(w)] — Z,{’(w)’ <pn logn +n"*h" "8 (logn)* R, +n"T/°h1/2(logn)?/3.

Further, Z{' has the same covariance structure as f{,[,(w) in the sense that for all w,w’ € W,
B[ 2] (w)Z{!(w")] = Cov | Fy (w), fiy (@)] = Za(w,w).

It also has continuous trajectories satisfying the following trajectory regularity property for any d,, € (0,1/2]:

D 1 1 4 1
< 2wy Jlog = 4+ =" flog ——.
]”ﬁ V85, V% ha,

Remark. The interpretation of Theorem SA3 is deferred to Section SA2.6, in which we scale the processes by
their pointwise variance in order to better understand the role of degeneracy on strong approximation rates.

E[ sup | 2! (w) - 2} (w)

|w—w’[<dn

SA2.6 Infeasible uniform confidence bands

We use the strong approximation and bias results from Theorem SA3 and Lemma SA1 respectively to
construct uniform confidence bands for the true density function fy,. From now on we will drop the prime
notation for copies of processes in the interest of clarity. In this section we will assume oracle knowledge of
the true covariance function ¥,,, which is not typically available in practice. For feasible versions of these
results which use a covariance estimator, see Section SA2.9. We also assume that the true density fy is
bounded away from zero on the domain of inference, which is a standard assumption when constructing
confidence bands.

Lemma SA10 (Infeasible Gaussian approximation of the standardized t-statistic)
Let Assumptions SA1 and SA2 hold and suppose that fyw (w) >0 on W. Define for w € W

-~

Ty = W) ) Zf(w)

Yo(w,w En(w,w)'



Then with R,, — oo as in Theorem SAS3,

n~Y2logn +n=3/*h""/8(logn)3/8R,, + n=2/3h"1/2(logn 2/3+n1/2hW
sup [T, (w) — 27 (w)| <p B (logn) (logn)
wew D10 + 1/V

For the coverage rate error in the upcoming Theorem SA4 to converge to zero in large samples, we require
further restrictions on the bandwidth sequence. These restrictions depend on the degeneracy type of the
dyadic distribution, and are given as Assumption SA3.

Assumption SA3 (Rate restriction for uniform confidence bands)
Suppose that one of the following holds.

1
(i) No degeneracy: Dy, > 0 and n=5/7logn < h < (nlogn)™ 2wA5
1
(ii) Partial or total degeneracy: Dy, = 0 and n=2/3(logn)"/® < h < (n?logn)” 2@rm+,

Theorem SA4 (Infeasible uniform confidence bands)
Let Assumptions SA1, SA2 and SAS3 hold and suppose that fy (w) >0 on W. Let a € (0,1) be a confidence
level and define q1_o as the quantile satisfying

P (sup |Z;:f(w){ < qla) =1-q.
wew

Then
P (fw(w) € [fw(w) +qi_a En(w,w)} for all w € W) —1—-a.

Remark. By Theorem SA1, the asymptotically optimal bandwidth choice under uniform convergence is given
by h < (n"2log n)WlﬂHl This bandwidth satisfies Assumption SA3 only in the case of no degeneracy. Thus
in degenerate cases, one must undersmooth by choosing a bandwidth which is smaller than the optimal
bandwidth. This robust bias correction can be achieved in practice by selecting an approximately optimal

bandwidth for a kernel of order p, but then using a kernel of higher order p’ > p for constructing the confidence
bands.

SA2.7 Covariance estimation

In this section we provide a consistent estimator for the covariance function ¥,,. In Lemma SA11 we define
the estimator and demonstrate that it converges in probability in a suitable sense In Lemma SA12 we give an
alternative representation which is more amenable to computation.

Lemma SA11 (Covariance estimation)
Let Assumptions SA1 and SA2 hold and suppose that nh 2 logn and fw(w) >0 on W. For w,w’ € W
define

=~ 4 dn —6 -~ ~
En N=——— e e ijr ! P
(w,w") 2= 1)? ;kh Wij, w)kn(Wij,w') + 2l<jz;,,5j w,w') n(n—l)fW(w)fW(w)
where
1
Sijr(w, w') = g (kh(Wij, w)kn (Wi, w') + kn(Wig, w)kn (Wir, w') + ki (Wip, w)kp (Wig, w')

By (Wi 0) e (Wi w') + e (Wi, w) e (Wi ) + o (Wi, w) iy (Wi, u/)).

Then i” is uniformly entrywise-consistent in the sense that

S (w, w') — Sy (w, w') < Vlogn

sup ~
I (w,w) + S, (w,w) |

w,w’ EW




Lemma SA12 (Alternative covariance estimator representation)

Suppose that Assumptions SA1 and SA2 hold and let in be the covariance estimator defined in Lemma SA11.
Then the following alternative representation for X, holds, which may be easier to compute as it does not
involve any triple summations over the data.

- 4 & 4 4n—6 ~ ~
Yo (w,w') = 3 Zsi(w)si(wl) R Zkh(me)kh(Wi]ﬁw/) - ﬁfW(w)fW(w/)a
i=1 1<j
where

i—1 n

1

Si(w) = 1 Z kn (Wi, w) + Z kn(Wij, w)
J=1 j=it1

is an estimator of E[k,(W;j;,w) | A,].

Remark. The covariance estimator 3, is not necessarily almost surely positive semi-definite.

SA2.8 DPositive semi-definite covariance estimation

In this section we provide a positive semi-definite estimator EA];: which is uniformly entrywise-consistent for
Y- Define 3, as in Lemma SA11 and consider the following optimization problem over bivariate functions.

M(w7 ’LU/) B i\:n(’wv U)/)

minimize: sup over M : W xW —R
w,w’' EW \/En(w,w) + Zn(w’,w’) (1)
subject to: M is symmetric and positive semi-definite,

4
| M (w,w") — M(w,w")| < ?CkCL\w’ —w"| for all w,w’,w"” € W.
n

Lemma SA13 (Consistency of )
Suppose that Assumptions SA1 and SA2 hold and that nh 2 logn and fw(w) > 0 on W. Then the

optimization problem (1) has an approzimately optimal solution it which is uniformly entrywise-consistent
for ¥, in the sense that

SH(w, w') — Sy (w, w') < Vlogn
sup ~P :
ww €W |/ Sp(w, w) + Sy, (W, w') n

Remark. The optimization problem (1) is stated for functions rather than for matrices so is infinite-dimensional.
However, when restricting to finite-size matrices, Lemma SA13 still holds and does not depend on the size
of the matrices. Furthermore, the problem then becomes a semi-definite program and so can be solved to
arbitrary precision in polynomial time in the size of the matrices (Laurent and Rendl, 2005).

The Lipschitz-type constraint in the optimization problem (1) ensures that i;‘; is sufficiently smooth and
is a technicality required by some of the later proofs. In practice this constraint is readily verified.

Lemma SA14 (Positive semi-definite variance estimator bounds)
Suppose that Assumptions SA1 and SA2 hold and that nh 2 logn and fw (w) >0 on W. Then L.} (w,w) >0
almost surely for all w € W and

Dy 1 DI, 1

lo inf S S+
—2 4+ — <p inf X (w,w) < sup X (w,w) Sp — + ——.
n | n2h ~F wew n (W, w) < we}?\, n (w,w) Se n n2h



SA2.9 Feasible uniform confidence bands

Now we use the strong approximation derived in Section SA2.5 and the positive semi-definite covariance
estimator introduced in Section SA2.8 to construct feasible uniform confidence bands.

Lemma SA15 (Proximity of the standardized and studentized t-statistics)
Let Assumptions SA1 and SA2 hold and suppose that nh 2 logn and fy(w) >0 on W. Define for w € W

T (w) = fiw (w) — fuw (w)

i (w, w)

Then

-~ [logn /nhPN? 1
sup |1, (w 7an’§]p ( logn + .
wew (w) () n Dy, + 1/vnh/) Dy, + 1/vVnh

Lemma SA16 (Feasible Gaussian approximation of the infeasible Gaussian process)

Let Assumptions SA1 and SA2 hold and suppose that nh 2 logn and fyw (w) > 0 on W. Define a process
Zg(w) which, conditional on the data W, is conditionally mean-zero and conditionally Gaussian and whose
conditional covariance structure is

Then the following conditional Kolmogorov—Smirnov result holds.

n~1/%(logn)5/¢

sup _—
Dy + (nh)=1/6

teR

P (sup | Z (w)] < t) -P (sup \Z?(w)\ <t ’ Wn>’ <p
weW weW

Lemma SA17 (Feasible Gaussian approximation of the studentized t-statistic)
Let Assumptions SA1, SA2 and SAS3 hold and suppose that fy(w) >0 on W. Then

P ( sup
wew
Theorem SA5 (Feasible uniform confidence bands)

Let Assumptions SA1, SA2 and SAS3 hold and suppose that fy (w) >0 on W. Let a € (0,1) be a confidence
level and define q1_o as the conditional quantile satisfying

P (sup
weW

sup
teR

fn(w)) < t) -P (sup ‘Z{(w)‘ <t ‘ Wn>‘ <p 1.
weWw

ZEw)| < @a

Wn> =1-a.
Then
P <fw(w) € [fw(w) +q-a iﬁ(w,w)] for all w € W> —1—-oa.
Remark. In practice, suprema over W can be replaced by maxima over a sufficiently fine finite partition of W.

The conditional quantile ¢;_,, can be estimated by Monte Carlo simulation, resampling from the Gaussian
process defined by the law of Z!' | W,,.

SA2.10 Counterfactual dyadic density estimation

As an application we provide methodology for estimation and inference on counterfactual dyadic density
functions, following the reweighting approach of DiNardo et al. (1996). We give the counterfactual data
generating process as Assumption SA4.

10



Assumption SA4 (Counterfactual data generation)

For each r € {0,1}, let W!, A" and V!, be as in Assumption SA1. Let X[ be finitely-supported variables,
setting XI = (X7,...,X}). Suppose that (AL, X!) are independent over 1 < i < n and that X is
independent of V. Assume that W[, | X[, X[ has a Lebesgue density f‘fleX(~ | z1,22) € HgH (W) and that
X! has positive probability mass functzon pX( ) on a common support X. Suppose that (A%, VO X%) and
(AL, VI X1) are independent.

The counterfactual density of W;; in population 1 had X;, X; followed the distribution in population 0 by
W) =B [ fpex (@ X0, X9)] = 30 3 w2, m)()b(e2)pk (21)pk (22)
r1EX T2€X

where ¢(z) = p& (z)/p% (z) for z € X. This counterfactual density can be estimated by the counterfactual
dyadic kernel density estimator

fir© (w) Z Z »(X Yen (W5, w)
1=1 j=i+1

with ¥(z) = {px (z) > 0}p% (x)/Px (x) and pk(x) = = >°" | I{X] = x}. Note that since p (x) > 0,

%
) — o) — PR ) plo) BA) k() | P () — k(o) PRk (x) — PR ek ()
vie) = vle) = PG e R Lok ()

1
Z (X0, X!, x) + Op ()
n
is an asymptotic linear representation where
w(X0. X1 gy = MV =2} = p%(@) (@) X = o} — ph(a)

P () P () P (x)
satisfies E[k(X?, X}, z)] = 0. We now establish uniform consistency and feasible strong approximation results
for the counterfactual density estimator.

Lemma SA18 (Bias of f,10)
Suppose that Assumptions SA1, SA2 and SAJ hold. Then

1
sup |E[fr®(w)] — fi%(w)] S WP + =
weWw n
Lemma SA19 (Hoeffding-type decomposition for f; 1'>0)

Suppose that Assumptions SA1, SA2 and SA4 hold. Writing k;; = kp(

W = (X}), define the projections

7,]7w)7 Rypq = K(X7(~)7X7})X'L1) and

u = E [kijpinhs]
= %ME [kijt; | Ai] + %E [kjrtpimir | X35 X7] = S0,
ui; = éw%E [kij | A}, AT + %wi]E [kirtor | A}] + lwi]E (ki | AL XD, X1 + %nji]E (it | Al
+ %%]E [kjribr | AJ] + %WE [kjrkar | X0, X1 AS] + éij [kjptbr | AJ] = ui — uj + u,

Wijr = éwi%E [kij | A}, AT + éwmm [kij | AL, AJ] + %ijE (ki | A}, A7) + %wm [kir | A}, Al]
b g0igeE [hir | AL AL+ 00 [k | AL AL+ 300K [k | A3, A1
+ %wjfm [kjr | A}, AL +§
Vijr = %kij (Vithj + Vikirj + Yjkri) +

ek [k | A, AL] = tij — wir — g + ui + uj + up — u,

1
skjr (Wbr + Yk + l/JrHij).

1
Skir (ithr + ikjr + Yrkji) + 3

3

11



With 11*°(w) = u; and e%ﬁ?(w) = Vjjr — Usjr, Set

n n—2 n—1

(o) = %Zlim(w) and - B;(w) = m ; > Z eff? (w)

=1 +1r=i+1

Then the following Hoeffding-type decomposition holds, where Op(1/n) is uniform in w € W.
- - 1
() = B[FOw)] + L) + EE%(w) + 06 (1),
n

Further, the stochastic processes LI*° and E*° are mean-zero and mutually orthogonal in L*(P). Define the
upper and lower degeneracy constants as

(Dlllzo)2 = limsup sup Var [1}"°(w)] and (D110>0)2 = liminf inf Var [1;"°(w)].

n—oo weEW n—oo wew

Lemma SA20 (Uniform consistency of f‘}VDO)
Suppose that Assumptions SA1, SA2 and SA4 hold. Then

1l>0

D, logn
E | su 1>0 1>0 } < ppNB + .
|:w€11/)\) ‘f ) ( ) \/> n*h

Lemma SA21 (Strong approximation of ]?IDO)
On an appropriately enlarged probability space and for any sequence R, — oo, there erists a mean-zero
Gaussian process Zj1"° with the same covariance structure as f{i*%(w) satisfying

Su%/)v f 1'>O(u)) — E[fvlvbo(w)] — Z,{’lbo(w)‘ <pn tlogn+n"*h"7/8(logn)* R, +n" T/ h/2(logn)*/3.
we
Lemma SA22 (Counterfactual covariance structure)

Writing ki; for kp, (WZIJ, w') ete., the counterfactual covariance function is

0w, w') = Cov[ W0 (w), Fif ()]

7E [('Q/Jz [ 350 | Al] +E[ riWrkij | X m })(wl [ gjwj | All] +E [k/ Vrkij | X “ ]>]
2 1 1
[kmk:ﬂ/f ¢ ] [ Udjle] [ d}ﬂ/}J] +0 < 3/2 + ) ’

nth

Lemma SA23 (Infeasible Gaussian approximation of the standardized counterfactual ¢-statistic)
Let Assumptions SA1, SA2 and SA4 hold and suppose that fiZ°(w) >0 on W. Define for w € W

T'ibo( ) V%/DO( ) ‘%[l;O(w) and Zg;,l\>0(,w): ZT{JDO(U}) )
S0 (w, w) S0 (w, w)

Then with R,, — oo as in Lemma SA21,

n-1/21 3/45,-7/8(] 38R —2/3p,-1/2(] 2/3 1/2hp/\[5
sup |T20(w) — Z70(w)| <p 2 ogn+n- (logn) +n (logn)?® +n

wEW ~ D1‘>0—|—1/‘/

Theorem SA6 (Infeasible counterfactual uniform confidence bands)
Let Assumptions SA1, SA2, SA3 and SA4 hold and suppose that fiZ°(w) >0 on W. Let a € (0,1) be a

confidence level and define qi*°, as the quantile satisfying

]P’(Sup |ZT1l>O )’<q1>0)_1a.
weWw

Then
10 7150 1l>0 1>0 —
IP’(fW (w)e[fw (w) £ >,/ 2k (w,w)]foralleW) 1—a.

12



To conclude this section we propose an estimator for the counterfactual covariance function X*°. First let

_ NP =2} Pk (@) Px(@) {X} =} — Py ()

~ 0 1
RXT, X7 )] P (2) Pk (z) Px(x)

and define the leave-out conditional expectation estimators

i—1 n
§170w) = B [k (W, w)e(X) | A1) = —— [ S k(Whw)d (X)) + 32 kWl w)d(X)) |
Jj=1 j=i+1

Ty

~ _ I & e
5170 (w) = E [k (W), w)o(X)w(XP, X, X | X0, X} = —= D715 # R(XD, X, XS} (w).
j=1

Then set
160 /_i — [~ 1y @10 10 Tyl @10y, 7 Q0,1
S0 (w,w) = — 37 (H)S(w) + 50w) ) (S8 (w) + 510 (w))
i=1

- ﬁ_l) S k(w5 YK PHOCN? — - F ) k'),

i<J

We then use a positive semi-definite approximation to f],lfo, denoted by f);“lbo, following the methodology of
Section SA2.8. We omit the proof of consistency of these covariance estimators in the interest of brevity.
To construct feasible uniform confidence bands, define a process Z11*°(w) which, conditional on the data
WL, X% and X! is conditionally mean-zero and conditionally Gaussian and whose conditional covariance
structure is

S0 10w, w')

\/ix,lbo (u)7 w)i;l{,lbo ('LU/, 'LU/)

E[Z10(w) 2110 (') | WA, X0, XL] =
Let o € (0,1) be a confidence level and define g;>%, as the conditional quantile satisfying

P (sup |70 < a2,
wew

W%,X%,X%) =1-a.
Then assuming that the covariance estimator is appropriately consistent, we have that

11—

P ( w0(w) € {Avbbo(w) +q;"° irf’wo(w,w)} for all w € W) —-1-a.

SA3 Technical lemmas

In this section we present some lemmas which provide the technical foundations for several of our main
results. These lemmas are stated in as much generality as is reasonably possible, and we believe that they
may be of some independent interest.

SA3.1 Maximal inequalities for i.n.i.d. empirical processes

Firstly we provide a maximal inequality for empirical processes of independent but not necessarily identically
distributed (i.n.i.d.) random variables, indexed by a class of functions. This result is an extension of
Theorem 5.2 from Chernozhukov et al. (2014b), which only covers i.i.d. random variables, and is proven
in the same manner. Such a result is useful in the study of dyadic data because when conditioning on
latent variables, we may encounter random variables which are conditionally independent but which do not
necessarily follow the same conditional distribution.

13



Lemma SA24 (A maximal inequality for i.n.i.d. empirical processes)

Let X1,...,X, be independent but not necessarily identically distributed (i.n.i.d.) random variables taking
values in a measurable space (S,S). Denote the joint distribution of Xy,...,X, by P and the marginal
distribution of X; by P;, and let P = n~! > Pi. Let F be a class of Borel measurable functions from S
to R which is pointwise measurable (i.e. it contains a countable subclass which is dense under pointwise
convergence). Let F' be a strictly positive measurable envelope function for F (i.e. |f(s)| < |F(s)| for all f € F
and s € S). For a distribution Q and some q > 1, define the (Q,q)-norm of f € F as ||f|§,, = Ex~olf(X)7]
and suppose that | F||p 5 < co. For f € F define the empirical process

Gl1) = 2= 3 (#() ~ ELF(X.)).

Let 0 > 0 satisfy supjez | fllp2 < 0 < ||F|lp2 and M = maxi<i<, F(X;). Then with 6 = o/||F||p - € (0,1],

[ M]lp2 J (6, F, F)?
32 /n ’

where < is up to a universal constant, and J(6,F, F) is the covering integral

SIFle2 I (6, F F) +

E [sup ‘Gn(fﬂ
feF

)
J(6,F. F) :/ \/1+suplogN(f,p@,€||F||@,2)d5
0 Q

with the supremum taken over finite discrete probability measures Q on (S,S).

Lemma SA25 (A VC class maximal inequality for i.n.i.d. empirical processes)
Assume the same setup as in Lemma SA2/, and suppose further that F forms a VC-type class in that

S%pN(}', poellFllg,z2) < (C1/e)
for all e € (0,1], for some constants C1 > e (where e is the standard exponential constant) and Cy > 1. Then
for 6 € (0,1] we have the covering integral bound
J(8,F,F) < 385y/Cslog(C1/6),
and so by Lemma SA24,

MH]P’QCQIOg(Cl/(s)
sup |Gy ( <o/ Colog(Cy /6 +|| :
f€g| ‘] 2 g( 1/) \/ﬁ

|

(C1lIFllp2/0)
NG ,

< 0’\/02 log (Cl||F||1F’,2/U) +

where < is up to a universal constant.

SA3.2 Strong approximation results

Next we provide two strong approximation results. The first is a corollary of the KMT approximation (Komlds
et al., 1975) which applies to bounded-variation functions of i.i.d. variables. The second is an extension of
the Yurinskii coupling (Belloni et al., 2019) which applies to Lipschitz functions of i.n.i.d. variables.

Lemma SA26 (A KMT approximation corollary)

Forn > 1 let Xq,...,X, be i.i.d. real-valued random variables and g, : R x R = R be a function satisfying
the total variation bound sup,cg ||gn (-, x)||Tv < 00. Then on some probability space there exist independent
copies of X1,...,Xn, denoted X1,..., X/, and a mean-zero Gaussian process Zn(z) such that if we define
the empirical process

o) = = 3 (sn(X1 ) ~ Bl (X)),

7’L
=1
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then for some universal positive constants Cy, Cy and Cs,

t+ Cilogn _
P (Sup |Gn(x) - Zn(x)| > sup ||gn (-, 7)||Tv 1g> < Che™ .
z€R z€R Vn

Further, Z, has the same covariance structure as G, in the sense that for all x, ©’ € R,
E[Z, () Zn(2")] = E[Gy(2)Gy(2")].

!, we can assume that Z, is a function

By independently sampling from the law of Z, conditional on X7,..., X
only of X1,..., X! and some independent random noise.

Lemma SA27 (Yurinskii coupling for Lipschitz i.n.i.d. empirical processes)

Forn>2let Xy,...,X, be independent but not necessarily identically distributed (i.n.i.d.) random variables
taking values in a measurable space (S,S) and let X, C R be a compact interval with |logLeb(&X,)| < Cylogn
where C > 0 is a constant. Let g, be a measurable function on S X X,, satisfying sup¢cg SUP,ex, gn(&,2)] <
M,, and sup, ¢y maxi<;<, Var(g,(X;,z)] < o2, with [log M,,| < Cylogn and }logom < Cylogn. Suppose
that g, satisfies the following uniform Lipschitz condition:

gn(fa I) — gn(é, :C,)

xz—x

sup sup
ceSzrx'ex,

< ln,ooa

and also the following L? Lipschitz condition:
3
n

=1

gn(Xi7 CC) - gn(Xiv x/)

/

sup E
z,x’ X,

xr—x

971/2
1 S ln,27

where 0 < 12 < ly.00, logly o] < Crlogn and |logl, oo < Cilogn. Then for any t, > 0 with |logt,| <
C1 logn, there is a probability space carrying independent copies of X1,...,X, denoted X1{,...,X] and a
mean-zero Gaussian process Z,(x) such that if we define the empirical process

Gola) = o= Z (9n(X,2) ~ Elgu (X7, 2)]).

then

P (zseu}()n |Gn(x) — Zn(x)‘ > t,

Caopny/Leb(X,)v1ogny/ My, + 0,4/1 n,00
)g 29 eb(tn) vlog n to ogn\/lmQ 1ogn—|—l’ logn

nl/4¢2 vn

where Co > 0 is a constant depending only on Cy. Further, Z, has the same covariance structure as Gy, in
the sense that for all x,2' € X,

SA3.3 The Vorob’ev—Berkes—Philipp theorem

We present a generalization of the Vorob’ev—Berkes—Philipp theorem (Dudley, 1999) which allows one to
“glue” multiple random variables or stochastic processes onto the same probability space, while preserving
some pairwise distributions. We begin with some definitions.

Definition SA1 (Tree)
A tree is an undirected graph with finitely many vertices which is connected and contains no cycles or self-loops.

Definition SA2 (Polish Borel probability space)

A Polish Borel probability space is a triple (X, F,P), where X is a Polish space (a topological space metrizable
by a complete separable metric), F is the Borel o-algebra induced on X by its topology, and P is a probability
measure on (X,F). Important ezamples of Polish spaces include R% and the Skorokhod space D[0,1]% for
some d > 1. In particular, one can consider vectors of real-valued random variables or stochastic processes
indexed by compact subsets of R which have almost surely continuous trajectories.
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Definition SA3 (Projection of a law)

Let (X1, F1) and (Xa, Fa) be measurable spaces, and let P1o be a law on the product space (X X Xo, F1 ® Fa).
The projection of P15 onto X is the law Py defined on (X1, F1) by Py =Pp0 7r1_1 where m(x1,T2) = 1 is
the first-coordinate projection.

Lemma SA28 (Vorob’ev—Berkes—Philipp theorem, tree form)

Let T be a tree with vertex set V = {1,...,n} and edge set £. Suppose that altached to each vertexr i is a
Polish Borel probability space (X;, F;,P;). Suppose that attached to each edge (i,7) € € (where i < j without
loss of generality) is a law P;; on (X; x X;,F; @ F;). Assume that these laws are pairwise-consistent in the
sense that the projection of P;; onto X; (resp. X;) is P; (resp. P;) for each (i,j) € £. Then there exists a law
P on

11+ @)

such that the projection of P onto X; x X; is P;; for each (i,j) € €, and therefore also the projection of P
onto X; is P; for each i € V.

Remark. The requirement that 7 must contain no cycles is necessary in general. To see this, consider the
Polish Borel probability spaces given by X; = X5 = X3 = {0, 1}, their respective Borel o-algebras, and the
pairwise-consistent probability measures:

1/2 =P1(0) = P2(0) = P5(0)
1/2 = P1a(0,1) = Pyo(1,0) = P13(0, 1) = P13(1,0) = Poz(0,1) = Paz(1,0).

That is, each measure P; places equal mass on 0 and 1, while P;; asserts that each pair of realizations is a.s.

not equal. The graph of these laws forms a triangle, which is not a tree. Suppose that (X7, X5, X3) has

distribution given by P, where X; ~ P; and (X;, X;) ~ P;; for each ¢,j. But then by definition of P;; we

have X; =1 — X5 = X3 =1— X; a.s., which is a contradiction.

Remark. Two important applications of Lemma SA28 include the embedding of a random vector into a

stochastic process and the coupling of stochastic processes onto the same probability space:

(i) Let X; and X5 be stochastic processes with trajectories in D[0, 1]. For z1,...,2, € [0,1] let X, =

(X1(x1),...,X1(x,)) be a random vector and suppose that )?{ is a copy of X;. Then there is a law
P on D[0,1] x R™ x D[0, 1] such that restriction of P to D[0, 1] x R™ is the law of (X, )21), while the
restriction of P to R™ x D[0,1] is the law of (X7, X5). In other words, we can embed the vector X/ into
a stochastic process X; while maintaining the joint distribution of )~({ and Xo.

(ii) Let X1, X7,...,Xn, X}, be stochastic processes with trajectories in D[0, 1], where X/ is a copy of X; for
each 1 <7 < n—1. Suppose that }P’(HXH_l —X/[|| >t) <r;foreach 1 <i < n—1, where ||-|| is a norm on
DI[0,1]. Then there exist copies of X1,..., X, denoted X{,..., X/ satisfying P(|| X/, — X/[| > t) < r;
for each 1 < i < n. That is, all of the approximation inequalities can be satisfied simultaneously on the
same probability space.

Remark. Note that while we discuss trees in Lemma SA28, these refer to the dependency graph of the relevant
Polish space-valued random variables and do not have any direct relation to the networks studied throughout
the main paper.

SA4 Additional empirical results

We present some additional empirical results using the International Monetary Fund’s Direction of Trade
Statistics (DOTS) data set, to complement those given in the main paper. This data set contains information
about the yearly trade flows among n = 207 economies (N = 21321 pairs), and we focus on the years 1995,
2000 and 2005.
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We define the trade volume between countries ¢ and j as the logarithm of the sum of the trade flow (in
billions of US dollars) from i to j and the trade flow from j to 7. In each year several pairs of countries did
not trade directly, yielding trade flows of zero and hence a trade volume of —co. We therefore assume that
the distribution of trade volumes is a mixture of a point mass at —co and a Lebesgue density on R. The
local nature of our estimator means that observations taking the value of —oco can simply be removed from
the data set.

For counterfactual analysis we use the gross domestic product (GDP) of each country as a covariate, using
10%-percentiles to group the values into 10 different levels for ease of estimation. This allows for a comparison
of the observed distribution of trade at each year with, for example, the counterfactual distribution of trade
had the GDP distribution remained as it was in 1995. As such we can measure how much of the change in
trade distribution is attributable to a shift in the GDP distribution.

To estimate the trade volume density function we use the counterfactual dyadic kernel density estimator
from Section SA2.10 with d = 100 equally-spaced evaluation points in [—10, 10], using the rule-of-thumb
bandwidth selector }\LRQT described in the main paper with p = 2 and C(K) = 2.435. For inference we use an
Epanechnikov kernel of order p = 4 and resample the Gaussian process B = 10000 times. We also estimate
the counterfactual trade distributions in 2000 and 2005 respectively, replacing the GDP distribution with
that from 1995. For each year, Figure 1 plots the real and counterfactual density estimates along with their
respective uniform confidence bands (UCB) at the nominal coverage rate of 95%. Our empirical results show
that the counterfactual distribution drifts further from the truth in 2005 compared with 2000, indicating a
more significant shift in the GDP distribution.

In Figure 2 we illustrate how, in the preliminary step of the counterfactual analysis, the distribution of
log GDP is approximated using the histogram estimators p% and p% defined in Section SA2.10. We also plot
the density function of a normal distribution, fitted using maximum likelihood estimation, and this seems to
capture the distribution of log GDP reasonably well. Such a parametric approach to the preliminary step
may be favored in cases where a choice of model is clear or where the histogram estimators perform poorly.

To demonstrate the relative robustness of our counterfactual analysis to the choice of preliminary estimation
step, we also provide results using a parametric estimator of the distribution of GDP. Figure 3 repeats the
procedure used for Figure 1, but this time replacing the histogram estimators by parametric estimators of the
log GDP based on normal likelihood maximization. The point estimates are qualitatively similar, with the
counterfactual distribution drifting in the same direction over time. The confidence bands are also similar,
with the band based on the parametric fit being slightly narrower in general. This could be due to the more
stringent model specification leading to less estimated variance in the fitted values.

o104 FiP (w) ) o104 él‘!v(u‘) o104 jig;(w)
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0.081 0.08 4 UCB for f9%9 (w) 0.08 4 UCB for f93°9 (w)

> 0.06 4

=4

=)

=3
L

# 0.06

ty

Density
Density
i

Densi

0.04 4

=4
o
=
L
4
o
=
L

0.02 A 0.02 A 0.02 4

0.00 4= 0.00

T T T T T T
—10 -5 0 5 10 —-10 -5 0 5 10 -10 -5 0 5 10
Bilateral trade volume Bilateral trade volume Bilateral trade volume

(a) Year 1995, hror = 1.27 (b) Year 2000, hror = 1.31 (c) Year 2005, hror = 1.37

Figure 1: Real and counterfactual density estimates and confidence bands for the DOTS data with histogram-
based covariate estimation.
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Figure 2: Estimated GDP distributions for the DOTS data.
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Figure 3: Real and counterfactual density estimates and confidence bands for the DOTS data with parametric
covariate estimation.

SA5 Proofs

SA5.1 Preliminary lemmas

In this section we list some results in probability and U-statistic theory which are used in proofs of this
paper’s main results. Other auxiliary lemmas will be introduced when they are needed.

SA5.1.1 Standard probabilistic results

Lemma SA29 (Bernstein’s inequality for independent random variables)
Let X1,..., X, be independent real-valued random variables with E[X;] = 0 and |X;| < M and E[X?] < o2,

where M and o are non-random. Then for all t > 0,
Proof (Lemma SA29)

See for example Lemma 2.2.9 in van der Vaart and Wellner (1996).

t2n

1 n
Pl=S x| >t) <2 ).
2 Xi|zt) <2ew 2a2+§Mt)

=1
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Lemma SA30 (The matrix Bernstein inequality)

For1<i<n let X; be independent symmetric d x d real random matrices with expected values p; = E[X;].
Suppose that || X; — pilla < M almost surely for all 1 < i < n where M is non-random, and define
o =| ¥ El(X: — ui)2]||2. Then there exists a universal constant C > 0 such that for anyt >0 and ¢ > 1,

(|

n

> (X )

=1

4
> 20Vt + 3Mt> < 2det,
2

El (X; —

>

q

1/q
] < Co+/q+log2d+ CM(q + log2d).

2

Another simplified version of this is as follows: suppose that | X;||a < M almost surely, so that || X;— ;|2 < 2M.
Then since 02 < nM?, we have

([

|30
i=1
Proof (Lemma SA30)
See Lemma 3.2 in Minsker and Wei (2019). O

> 4M (t + x/rﬁ)) < 2de”,

q

1/q
1 < CM(q+log2d + /n(q + log2d)).

2

Lemma SA31 (A maximal inequality for Gaussian vectors)
Take n > 2. Let X; ~ N(0,02) for 1 <i <n (not necessarily independent), with o < o®. Then

E {max Xl} < o+/2logn, (2)

1<i<n
E Lrgax | X; q < 20+/logn. (3)
If 31 and X5 are constant positive semi-definite n X n matrices and N ~ N(0,1,,), then
B[N - 25Nl | < 2v/logn [z — |, ()
If further X1 is positive definite, then
IE[HE%NN - Eé/zNHm} < V1og 1 Amin (Z1) /2 H21 — 22H2- (5)

Proof (Lemma SA31)
For ¢t > 0, Jensen’s inequality on the concave logarithm function gives

1 1 I
| = — < = < = .
E [112?<Xn Xl} t]E {log exp 121%)(” th] <7 log E [exp 121?;(” tXZ] <7 log E,l E [exp t X;]

1 = t20? to?
tlog?}exp( ;’) flogn—l——

2
where we use the Gaussian moment generating function. Minimizing this upper bound over ¢ by setting
t = v/2logn/o yields Equation 2:

E [max Xl} < o4/2logn.

1<i<n
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For Equation 3, we use the symmetry of the Gaussian distribution:

E {max |Xi] =K [1rga,<x {X;, —Xi}} < o+/2log2n < 20+/logn.
<i<n

1<i<n

For Equations 4 and 5, note that E}/zN - Zé/zN is a Gaussian vector with covariance matrix (21/2 - 25/2)2.
The variances of of its components are the diagonal elements of this matrix, namely
2 1/2 1/2 1/2 1/212
o? = Var (212N - 2y*N) ] = (21 - 21%)°)
Note that if e; is the ith standard unit basis vector, then for any real symmetric matrix A, we have
el A%e; = (A?);, so in particular (A42);; < ||A||3. Therefore

S DI )
Applying Equation 3 then gives
B[N - s2n)| ] < 2vomm 517 - 547,

By Theorem X.1.1 in Bhatia (1997), we can deduce

1/2
2 b

D R |

giving Equation 4. If further 3 is positive definite, then by Theorem X.3.8 in Bhatia (1997),

1572 = 552, < Smin(E2) 72 |21 - B,

I, =
giving Equation 5. O

Lemma SA32 (Maximal inequalities for Gaussian processes)

Let Z be a separable mean-zero Gaussian process indexved by x € X. Recall that Z is separable for example
if X is Polish and Z has continuous trajectories. Define its covariance structure on X x X by X(z,z') =
E[Z(x)Z(2")], and the corresponding semimetric on X by

p(z,2') =E[(Z(z) — Z2(2')*]'? = (S(x,2) — 25(x, 2') + B(2',2')) /2.

Let N(g, X, p) denote the e-covering number of X with respect to the semimetric p. Define o = sup, X (x, x)"/2.

Then there exists a universal constant C > 0 such that for any § > 0,

20
E [sup |Z(x)|} <Co+C Viog N(e, X, p) de,
reEX 0
5
SC’/ Viog N(e, X, p) de.
0

E [ S 1Z(x) — Z(z')]

z,x')<d

Proof (Lemma SA32)
See Corollary 2.2.8 in van der Vaart and Wellner (1996), noting that for any z,z’ € X, we have E[|Z(z)|] S o
and p(z,2') < 20, implying that log N (e, X, p) =0 for all € > 20. O

Lemma SA33 (Anti-concentration for Gaussian process absolute suprema)
Let Z be a separable mean-zero Gaussian process indexed by a semimetric space X satisfying E[Z(z)?] =1
for allx € X. Then for any e > 0,

sup P (
teR

sup | Z(2)] - t‘ < €> <t (1 +E {sup |Z(I>|D .

zeX TeEX
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Proof (Lemma SA33)
See Corollary 2.1 in Chernozhukov et al. (2014a). O

Lemma SA34 (No slowest rate of convergence in probability)
Let X,, be a sequence of real-valued random variables with X, = op(1). Then there exists a deterministic
sequence €, — 0 such that ]P’(|Xn\ > En) <e, foralln>1.

Proof (Lemma SA34)
Define the following deterministic sequence for k£ > 1.

TE = sup {n >1: }P’(|Xn| > l/k) > l/k} V (T—1 + 1)

with 79 = 0. Since X,, = op(1), each 7 is finite and so we can define ¢, = % where 7, < n < Tgy1. Then,
noting that &, — 0, we have P(|X,,| > e,) =P(|X,,| > 1/k) < 1/k =¢,. O

SA5.1.2 U-statistics

Lemma SA35 (General Hoeffding-type decomposition)
Let U be a vector space. Let u;; € U be defined for 1 <i,5 <n and i # j. Suppose that u;; = uj; for all i, 5.
Then for any u; € U (for 1 <i<n) and any u € U, the following decomposition holds:

Proof (Lemma SA35)
We compute the left hand side minus the right hand side, beginning by observing that all of the u;; and u
terms clearly cancel.

ZZ(UU —u) 72(n—1)2(ui—u) fZZ(uij —u; — uj +u)
i=1 j=1 i=1 i=1 j#i
i
S TURT) S ) ST EHT) SRS 30 3D 25 21
i=1 i=1j=1 i=1 i=1 j=1 j=1i=1
J#i J#i 7]

= 2n—1) Y ui+ (1) uit (-1 u;=0.

O

Lemma SA36 (A U-statistic concentration inequality)
Let (S,S8) be a measurable space and X1, ..., X, be i.i.d. S-valued random variables. Let H : S™ — R be
a function of m wvariables satisfying the symmetry property H(x1,...,Tm) = H(Tr1), ..., Trm)) for any
m-permutation 7. Suppose also that E[H(X1,..., X)) =0. Let M = ||H||« and 02 = E[E[H(Xl, cey Xm) |
X1]?]. Define the (not necessarily degenerate) U-statistic

b, = M= m Y HX... X)),

n!
1<iy < - <im<n

Then for any t > 0,

nt?
P(|Un| > t) < 4exp ( Ch(m)o? + Cz(m)Mt> ’

where C1(m), Ca(m) are positive constants depending only on m.
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Proof (Lemma SA36)
See Theorem 2 in Arcones (1995). O

Lemma SA37 (A second-order U-process maximal inequality)

Let Xy ..., X, be i.i.d. random variables taking values in a measurable space (S,S) with distribution P. Let F
be a class of measurable functions from S x S to R which is also pointwise measurable. Define the degenerate
second-order U-process

ﬁz (f(Xi»Xj) —E[f(X:, X;) | Xi] —E[f(Xi, X;) | X;] HE[f(Xi,Xj)D

Un(f) =

1<J

for f € F. Suppose that each f € F is symmetric in the sense that f(s1,s2) = f(s2,51) for all s1,82 € S.
Let F be a measurable envelope function for F satisfying |f(s1,s2)| < F(s1,s2) for all s1,s9 € S. For a law
Qon (Sx S, S®S), define the (Q,q)-norm of f € F by || fl$,, = Eallf|9]. Assume that F is VC-type in
the following manner.

Sup N(F, Il - llgz2 el Fllg.2) < (C1/e)

for some constants C1 > e and Cy > 1, and for all € € (0, 1], where Q ranges over all finite discrete laws on
S x 8. Let 0 >0 be any deterministic value satisfying sup;cx || fllp2 < o < [|F|p2, and define the random
variable M = max; ; |F(X;, X;)|. Then there exists a universal constant Cs > 0 satisfying

Cs||M|lp 2

E
n N

sup }Un(f)|

2
(Catog (CulFllpz/o)) -
fer

S 030'(62 IOg (ClHF”Rg/O’)) +

Proof (Lemma SA37)
Apply Corollary 5.3 from Chen and Kato (2020) with the order of the U-statistic fixed at » = 2, and with
k=2. O

Lemma SA38 (A U-statistic matrix concentration inequality)
Let X1,..., X, bei.i.d. random variables taking values in a measurable space (S,S). Suppose H : S? — R4*4
1s a measurable matriz-valued function of two variables satisfying the following assumptions:

(i) H(X;,Xs2) is an almost surely symmetric matriz.
(i) |H(X1, X2)|l2 < M almost surely.
(ii) H is a symmetric function in its arguments in that H(X1, Xo) = H(X2, X1) almost surely.
(iv) H is degenerate in the sense that E[H (X1, 22)] =0 for all x5 € S.
LetU, =3, Z#i H(X;, X;) be a U-statistic, and define the variance-type constant
o = B[ [, X2 ]
Then for a universal constant C > 0 and for all t > 0,

P (||Un||2 > Con(t + logd) + CM+/n(t + log d)3/2) <Ce .

We remark here that clearly by Jensen’s inequality, o* < E[||H(X;, X;)?|2) = E[||H (X, X;)||3] < M?, giving
the weaker but simpler concentration inequality

P <||Un\|2 > 20 Mn(t + log d)3/2) < Cet.
From this last inequality we can deduce the following moment bound by integration of tail probabilities.
E[[|Unll2] < Mn(logd)*.
Proof (Lemma SA38)
We apply results from Minsker and Wei (2019).
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Part 1: decoupling

Let Uy, =331, Y00y H(xWY, X]@)) be a decoupled matrix U-statistic, where X1 and X are i.i.d. copies
of the sequence Xi,...,X,,. By Lemma 5.2 in Minsker and Wei (2019), since we are only stating this result
for degenerate U-statistics of order 2, there exists a universal constant Do such that for any ¢ > 0, we have

P ([Unll2 > t) < DoP ([ Unll2 > t/D2) .

Part 2: concentration of the decoupled U-statistic
By Equation 11 in Minsker and Wei (2019), we have the following concentration inequality for decoupled
degenerate U-statistics. For some universal constant C; and for any ¢ > 0,

P <||UnH2 > Cyon(t +logd) + C1M+/n(t + logd)3/2> <e ™t

Part 3: concentration of the original U-statistic
Hence we have

P (||Un||2 > Oy Daon(t +log d) + Cy Do M /n(t + log d)3/2)
< DoP (||Un||2 > Cron(t +logd) + C1M+/n(t + log d)3/2)
S Dge_t.

The main result follows by setting C = Cy + C1Ds.

Part 4: moment bound
The final equation, giving a moment bound for the simplified version, can be deduced as follows. We already
have that

P <||Un\|2 > 20 Mn(t + log d)3/2) < Cet.
This implies that for any ¢ > log d, we have

P (HUn||2 > 8(]Mnt3/2) < Cet.

Defining s = 8CMnt3/2, or equivalently ¢t = (8034”)2/3, shows that for any s > 8CMn(logd)>/?,

P(|[Un]ls > 5) < Ce(se5m)™""

Hence the moment bound is obtained:

8C Mn(log d)3/? oo

P(|Unll2 > 5) ds+/ P(|Unll2 > 5) ds
8C Mn(log d)3/2

E[||Un||2}:/0°ow||rfn||z>s> as— [

< 8CMn(log )"+ / Ce(soim)"" ds = 8CMn(log d)*/? + 8CMn / e ds
0 0

< Mn(logd)®/?.

SA5.2 Technical results

SA5.2.1 Maximal inequalities for i.n.i.d. empirical processes

Before presenting the proof of Lemma SA24, we give some auxiliary lemmas; namely a symmetrization
inequality (Lemma SA39), a Rademacher contraction principle (Lemma SA40) and a Hoffman—Jgrgensen
inequality (Lemma SA41). Recall that the Rademacher distribution places probability mass of 1/2 on each of
the points —1 and 1.
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Lemma SA39 (A symmetrization inequality for i.n.i.d. variables)
Let (S,8) be a measurable space and F a class of Borel-measurable functions from S to R which is pointwise

measurable (i.e. it contains a countable dense subset under pointwise convergence). Let Xi,...,X, be
independent but not necessarily identically distributed S-valued random variables. Let aq,...,a, be arbitrary
points in S and ¢ a non-negative non-decreasing convez function from R to R. Defineeq, ..., e, as independent
Rademacher random variables, independent of X1,...,X,. Then
n n
E|¢ (sup > (rex) —E[f(X»])D <E [qs (2 sup > i (f(X) — a) )] :
fer iz fer iz

Note that in particular this holds with a; = 0 and also holds with ¢(t) =1tV 0.

Proof (Lemma SA39)
See Lemma 2.3.6 in van der Vaart and Wellner (1996). O

Lemma SA40 (A Rademacher contraction principle)
Let €1,...,e, be independent Rademacher random wvariables and T be a bounded subset of R™. Define
M = sup,crmaxi<i<n |ti|]. Then, noting that the supremum is measurable because T is a subset of a
separable metric space and is therefore itself separable,

S
i=1

This gives the following corollary. Let X1,..., X, be mutually independent and also independent of €1,...,€y.

Let F be a pointwise measurable class of functions from a measurable space (S,S) to R, with measurable

envelope F. Define M = max; F(X;). Then we obtain that

Proof (Lemma SA40)

We apply Theorem 4.12 from Ledoux and Talagrand (1991) with F' as the identity function and

$i(s) = ¥(s) = min (2M ;”) |

n
Z{:‘iti

i=1

sup

teT

E |sup
teT

1§4ME

> eif(Xi)

i=1

> af(Xi)’

i=1

E | sup

feF

< A4E | M sup
feF

This is a weak contraction (i.e. 1-Lipschitz) because it is continuous, differentiable on (—M, M) with derivative
bounded by [¢'(s)| < |s|/M < 1, and constant outside (—M, M). Note that since |¢t;| < M by definition, we
have 1;(t;) = t2/(2M). Hence by Theorem 4.12 from Ledoux and Talagrand (1991),

E|F | =sup gi; (t; <E|F(sup git; , E|=sup gi——|| <E |sup giti| |,
(2@;”(10 (wiz_;“ QtGTZ;ZzM tefr;”
E |sup Eit? <4ME |sup eitil| -

To see the corollary, set 7 = {(f(X1),..., f(Xyn)) : f € F} and note that for fixed realization X1,..., X,

E. |sup eif(X)?|| =E. |sup git?|| < 4E. | M sup git;|| = 4E. | M sup e f(X)]] -
ng; (00| = B w2 <Ml <M 2 e (X
Taking an expectation over X, ..., X,, and applying Fubini’s theorem yields the result. O
Lemma SA41 (A Hoffmann-Jergensen inequality)

Let (S, S) be a measurable space and X1, ..., X, be S-valued random variables. Suppose that F is a pointwise
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measurable class of functions from S to R with finite envelope F. Let e1,...,e, be independent Rademacher

random variables which are independent of X1,...,X,. Then for any q € (1,00),
n qq1/a n 1/q
E | sup e f(X; <C, | E |sup g f(X)|| +E | max sup |f(X:)|* ,
S| | <6 (2 s S| 5 s mplrn

where Cy is a positive constant depending only on gq.

Proof (Lemma SA41)

We use Talagrand’s formulation of a Hoffmann—Jgrgensen inequality. Consider the independent £°°(F)-valued
random functionals u; defined by w;(f) = &; f(X;), where £>°(F) is the Banach space of bounded functions
from F to R, equipped with the norm [|ul|7 = sup ¢ [u(f)|. Then Remark 3.4 in Kwapien et al. (1991) gives

n a7 1/q n 1/q
E |sup ui(f <C, | E |sup U; +E | max sup |u;(f)]?
sunfS )] | < (2 o S| 42| s soplucr
n qq1/a n 1/q
E | sup e f(Xy) <C, | E|sup & f(X)|| +E | max sup |f(X;)|*
feF ; ( "\ lrer ; ) e, sup £ (60

O

Proof (Lemma SA24)

We follow the proof of Theorem 5.2 from Chernozhukov et al. (2014b), using our i.n.i.d. versions of the
symmetrization inequality (Lemma SA39), Rademacher contraction principle (Lemma SA40) and Hoffmann—
Jorgensen inequality (Lemma SA41).

Without loss of generality, we may assume that J(1,F, F) < co as otherwise there is nothing to prove,
and that F' > 0 everywhere on S. Let P, =n~!>". 0y, be the empirical distribution of X;, and define the
empirical variance bound 62 = suprn~" Y, f(X;)?. By the i.n.i.d. symmetrization inequality (Lemma SA39),

- lg

2
7 ]S\/EE L?EE ]

where €1, ...,e, are independent Rademacher random variables which are independent of X1,..., X,. Then
the standard entropy integral inequality from the proof of Theorem 5.2 in the supplemental materials for
Chernozhukov et al. (2014b) gives for a universal constant Cq > 0,

> eif(X)

i=1

S (05) - ELF(x)

=1

E | sup |Gn(f)|

feF

sup
fer

Zé‘if(Xz')

i=1

1
—E
Vn
Taking marginal expectations and applying Jensen’s inequality along with a convexity result for the covering
integral, as in Lemma A.2 in Chernozhukov et al. (2014b), gives

sup < C|F

fer

e,.2d (0n /| Flle, 2, F, F).

‘Xl,...,Xn

> eif(Xi)

i=1

sup < C1||F|lp 2 (Blon]'?/||Fllp 2, F, F).

feF

1
Z = —E
Vn

Next we use the symmetrization inequality (Lemma SA39), the contraction principle (Lemma SA40), the
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Cauchy—Schwarz inequality and the Hoffmann—Jgrgensen inequality (Lemma SA41) to deduce that

Zf E [f(Xi)?]

i=1
Z ‘|

sup
feF

suplzf(Xi)Z] < sup Bp [f(X:)?] + g

fer n

Z€if(Xi)2 M sup

fer

S

i=1

1<0 +8E

57 1/2

§02—|—8E[M2 °E sup
feF

Zezf

sup +E

1/2
2, 8 2
<o +EHM”P’202 E max sup | f(X;)|

1<i<n feF

Zfif(X
i=1

8C5

Ml||p2Z M|
P+ =2 Mlen (VAZ 4 [M]2) S 0® + Moz | IIM’

Vn n

where < indicates a bound up to a universal constant. Hence taking a square root we see that, following the
notation from the proof of Theorem 5.2 in the supplemental materials to Chernozhukov et al. (2014b),

S|Pl (AVVDZ),

E[02] S o + | M35 2201/

where A% = HF||H§3 (o®V (IIM]|5/n)) > 6% and D = ||MH]p72n*1/2||F||H{§. Thus returning to our bound on
Z, we now have

The final steps proceed as in the proof of Theorem 5.2 from Chernozhukov et al. (2014b), considering cases
separately for A > v/ DZ and A < v/ DZ, and applying convexity properties of the entropy integral J. O

Proof (Lemma SA25)
We are assuming the VC-type condition that

S%pN(ﬂ pa:ellFllg.2) < (Cr/e)

for all € € (0,1], for some constants C; > e and Cy > 1. Hence for 6 € (0,1], the entropy integral can be
bounded as follows.

) )
J((S,]-',F):/O \/l—s—sg)plogN(]-',p@,sF||@72)d5§/0 JTF Calog(C/e) de

</06 (1+ CQIOg(C1/E)) dazé—k@/émds

Cy
< .
M/ log(C1/e)d oa(C1/8) (6 + 6log(C1/6)) < 354/Calog(C1/6)

The remaining equations now follow by Lemma SA24. O

SA5.2.2 Strong approximation results

Before proving Lemma SA26, we require the elementary characterization of bounded-variation functions given
in Lemma SA42.

Lemma SA42 (A characterization of bounded-variation functions)
Let Vy be the class of real-valued functions on [0, 1] which are 0 at 1 and have total variation bounded by 1.
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Also define the class of half-interval indicator functions T = {I[0,t] : t € [0,1]}. For any topological vector
space X, define the symmetric convexr hull of a subset Y C X as

symconv ) = {Z/\iyi:Z)\i:L A >0, y, €YU=Y, nEN}.

i=1 i=1
Denote its topological closure by symconv ). Then under the topology induced by pointwise convergence,
V; C symconv Z.

Proof (Lemma SA42)

Firstly, let D C V; be the class of real-valued functions on [0,1] which are 0 at 1, have total variation
exactly 1, and are weakly monotone decreasing. Therefore for g € D, we have ||g||ltv = g(0) = 1. Let
S = {s1,52,...} C[0,1] be the countable set of discontinuity points of g. We want to find a sequence of
convex combinations of elements of Z which converges pointwise to g. To do this, first define the sequence of
meshes

Ay ={sp:1<k<n}U{k/n:0<k<n}

which satisfies | J,, 4, = SU([0,1] N Q). Endow A,, with the ordering induced by the canonical order on R,
giving A, = {a1,as,...}, and define the sequence of functions

Anl-1
gn(x) = > 1[0,ax)(g(ar) — g(ars1)),

k=1

where clearly 1[0, a;] € Z and g(ax) —g(ar+1) > 0 and ZL’L‘:“I‘_I (9(ar) —g(ar+1)) = g(0)—g(1) = 1. Therefore

gn is a convex combination of elements of Z. Further, note that for ay € A,,, we have
‘An|_1

gnlar) = (9(a;) — glaj+1)) = glar) — g(aja,)) = glax) — g(1) = gla).

Il
>

Hence if € S, then eventually z € A,, so g,(x) — g(x). Alternatively in x ¢ S, then g is continuous at x.
But g, — g on the dense set |J,, Ay, so also g, (x) — g(x). Hence g,, — g pointwise on [0, 1].

Now take f € V;. By the Jordan decomposition for total variation functions (Royden and Fitzpatrick, 1988),
we can write f = ft — f~, with fT and f~ weakly decreasing, f*(1) = f~(1) =0, and ||f|rv + || f " ||ltv =
|l fllTv. Supposing that both || f*|Tv and || f~||rv are strictly positive, let g, approximate the unit-variation
function f*/||fT||rv and g, approximate f~/||f~|Tv as above. Then since trivially

F= I v £/ ey = 1 v~/ ey + (= 1 v = 1 [lev) -0,

we have that the convex combination

g ey = g 1f~ [lev + (L= [ f T lov = [|f 7 [lrv) - O

converges pointwise to f. This also holds if either of the total variations || f* |1y are zero, since then the
corresponding sequence g need not be defined. Now note that each of g;*, —g-~ and 0 are in symconv Z, so
f € symconv Z under pointwise convergence. O

Proof (Lemma SA26)

We follow the Gaussian approximation method given in Section 2 of Giné et al. (2004). The KMT approxi-
mation theorem (Komlés et al., 1975) asserts the existence of a probability space carrying n i.i.d. uniform
random variables &1, ...,&, ~ U0, 1] and a standard Brownian motion B,,(s) : s € [0,1] such that if

an(s) = % Y; (I{&; < s} — 5), Bo(s) i= Bu(s) — sBu(1),
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then for some universal positive constants Cy, Co, C3 and for all ¢ > 0,

t+ Cqlogn _Cat
P sup |an(s)— Bu(s —F—— | < Che™ N
<se[o 1) | > Vn )

We can view «a, and 3, as random functionals defined on the class of half-interval indicator functions
Z = {I[0,s] : s € [0,1]} in the following way.

an (100, s]) IZ [0, s](&) — E[I[0, ](£:)]),

B(I[0, 5]) = / 100, 8] (1) dBy () — Bo(1) / 100, 8] (u) d,

where the integrals are defined as It6 and Riemann—Stieltjes integrals in the usual way for stochastic integration
against semimartingales (Le Gall, 2016, Chapter 5). Now we extend their definitions to the class V; of
functions on [0, 1] which are 0 at 1 and have total variation bounded by 1. This is achieved by noting that by
Lemma SA42, we have V; C Symconv Z where Symconv Z is the smallest symmetric convex class containing
T which is closed under pointwise convergence. Thus by the dominated convergence theorem, every function
in V; is approximated in L? by finite convex combinations of functions in +7, and the extension to g € V;
follows by linearity and L? convergence of (stochastic) integrals:

7; 9(&:) — Elg(€))), Bulg) = /O o(s) B, (s) — By (1) /0 o(s) ds.

Now we show that the norm induced on (c,, — 8,) by the function class V; is a.s. identical to the supremum
norm. Writing the sums as integrals and using integration by parts for finite-variation Lebesgue—Stieltjes and
It6 integrals, and recalling that g(1) = a,,(0) = B,,(0) = 0, we see

sup [0 () = Bu(o)] = sup / o(s) dan (s) - / g(s) B, (s) + Bu(1) / o(s) ds
- sup / 0n(5)dg() = [ B (s)do(s) + B (1) / sdg(s)
= sup / (0(5) = 5a(5)) dg)] = s [aa(s) = Bu(5)],

where in the last line the upper bound is because ||g||Tv < 1 and the lower bound is by taking g. = +I[0, s.]
where |ap(Se) — Bn(Se)| > sup, |an(s) — Brn(s)| — €. Hence we obtain

t—f—C’llogn) —Cat
P ( sup |an( n > ———>— ) < Coe™ 3% 6
(510 [anls) = pule)] > = : ©)

Now define V,, = sup,cp [|gn (-, T)||Tv, noting that if V;, = 0 then the result is trivially true by setting Z,, = 0.
Let Fx be the common c.d.f. of X;, and define the quantile function Fy'(s) = inf{u : Fx(u) > s} for
s € [0, 1], writing inf ) = co and inf R = —co. Consider the function class

= {Vn_lgn(F)zl(-),x) — Vn_lgn(F);l(l),x) tx € ]R},

noting that g, (-, z) is finite-variation so g, (+o00,x) can be interpreted as the relevant limit. By monotonicity
of Fx and the definition of V,;, the members of G,, have total variation of at most 1 and are 0 at 1, implying
that G, C V;. Noting that «,, and 3, are random linear operators which a.s. annihilate constant functions,
define

Zn(@) = Bu (90 (F5"():) ) = Vi (Vi g (FX (), 2) = Vi g (F (1), ) ),
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which is a mean-zero Gaussian process with continuous trajectories. Its covariance structure is

E[Z () Zn(2")]

= { </01 9n(Fx'(s),2) dBy(s) — Bn(1) /01 90 (Fx' (), 2) ds)

+ | gu(Fx'(s),2) ds/ 9 (Fx'(s),2") ds E [B,,(1)?]

—1 <),z 3—1 51 <L(s),2') ds
= gn(FX()7) ( d /Ogn )d/ogn(Fx()v )d

:E{ ( (fz) )n( X ,.T } {gn }E{QH(F);I(&)’-T/)}
E[gn(XZ,x)gn(X“m)] —E[gn(Xi,x)}E[gn(Xi,x)} =E[Gn(2)Gn(2)]

as desired, where we used the It6 isometry for stochastic integrals, writing B, (1) = fol dB,,(s); and noting
that Fy'(&) has the same distribution as X;. Finally, note that

Gn(z) = ayp (gn(F);l(),x)) = Vnan(Vn_lgn(F;l(.),x) — Vn_lgn(Fgl(l),x)),
and so by Equation 6

t+ Cilogn _
<P (s )t > SR < e

P (sup Gn(z) — Zn(sc)‘ >V, ur
g 1

t+ C1log n)
zE€R

NG
O

Proof (Lemma SA27)

Take 0 < 0, < Leb(X,) and let X% = {$1,~--,IE|X;§\} be a 6,-covering of X, with cardinality |X?| <
Leb(X,,)/6,. Suppose that |logd,| < C1logn up to a universal constant. We first use the Yurinskii coupling
to construct a Gaussian process Z, which is close to G,, on this finite cover. Then we bound the fluctuations
in G, and in Z,, using entropy methods.

Part 1: Yurinskii coupling
Define the i.n.i.d. and mean-zero variables

hilw) = == (9u(X},2) = Elgn (X[, 2)]),

where X7,..., X/ are independent copies of X7,..., X, on some new probability space, so that we have
Gn(x) =31 | hi(z) in distribution. Also define the length-|X?| random vector

h = (hi(z) 1z € X)).
By an extension of Yurinskii’s coupling to general norms (Belloni et al., 2019, supplemental materials,
Lemma 38), there exists on the new probability space a Gaussian length-|X?| vector Z2 which is mean-zero
and with the same covariance structure as >, hf satisfying

g

n

> onl -7,

=1

. Bs”
7 3tn> < min (2P(IINIOO > s) + w )
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where

n

8= 3 (DA <] + B )

with z; ~ N(0, Var[h!]) independent and N ~ N(0, I xs)). By the almost sure and variance bounds on gp,

Z E[h 2 M7|X5|a M, 0% Leb(X,)

§ § 9
B[IA218 142l ] < SZE[I13) < il ¢ Zeti

NG

m€X5

By the fourth moment bound for Gaussian variables,
j V212
Efl=i]2] < 1A El=:]4] < 127> maxE[(57)1] < 327> maxE[(”)’]

I (272 _ 30y Leb(&;,)?
=3[ ;Iéi%E[hz(x) " < s

n

Also by Jensen’s inequality and for |X°| > 2, assuming C; > 1 without loss of generality,

8

X
4 . 4 ~ 3 4 2
1) < 2 ) < s [ vt < gy
j=1
4o, 120102 1
< 390 (10g 2 1 log Leb(X,) — log 6,) < L2C10n 108"
n n

where we used the moment generating function of a x? random variable. Therefore we can apply the
Cauchy—Schwarz inequality to obtain

304 Leb(X,)2 [12C102logn _ 603 Leb(X,)y/C1logn
B[z 12illoo] < /B[] E[lailZ] < 4/ 222 5nmnly [ =108 ey
n n

Now summing over the n samples gives

M, o2 Leb(X, ) 603 Leb(X,)v/Ch logn o2 Leb(X,)
< n In Mn n'V 1 .

By a union bound and Gaussian tail probabilities, we have that P(||N|le > s) < 2|X%|e=*"/2. Thus we get
the following Yurinskii coupling inequality for all s > 0:

4 Leb(X, 2 Leb(X,,)s?
P ( > tn> < ye”zp + w(Mn + 60,1/ C1 logn).
=1 oo n

Vnbt3
Note that Z° now extends by the Vorob’ev-Berkes-Philipp Theorem (Lemma SA28) to a mean-zero Gaussian
process Z, on the compact interval X,, with covariance structure given by

_ 76

E[Zn(2)Zy(2")] = E[Gn(z)Gr(2")],

satisfying for any s’ > 0

4Leb(X,) .25 | 0p Leb(X,)s?
< 7 B —— .
P <;€u}()6 ’G Zn(x)| > tn> < . e + N (Mn + 60,4/C1 log n)
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Part 2: Regularity of G,

Next we bound the fluctuations in the empirical process G,,. Consider the following classes of functions on .S
and their associated (constant) envelope functions. By continuity of g,, each class is pointwise measurable
(to see this, restrict the index sets to rationals).

Gn={gn(-,2) 1z € X, },
Env(G,) = M,,

G = {gn(.2) = gn(-,2") s 2, 0" € Xy, |z — 2| < 6, ),
Env(gi) = ly,000n-

We first show that for each n these are VC-type classes. To see this, note that by the uniform Lipschitz
assumption we have that

Hgn('ax) - gn('ax/)Hoo < ln,oo|x - CE/‘

for all z,2’ € X,,. Therefore with Q ranging over the finitely-supported distributions on (S,S), noting that
any | - |leo-cover is a pg-cover,

supN(gn,pQ,slnm Leb(Xn)) < N(gn, I Nloos €ln,0o Leb(Xn)) < N(Xn, | - \,eLeb(é\f’n)) <1/e.
Q

Replacing € by eM,,/(Ln,00 Leb(X},)) gives

ln,0o Leb(X),)
s%pN(gn,P@,ﬁMn) < %,
and so G, is a VC-type class. To see that G° is also a VC-type class, we construct a cover in the following
way. Let F,, be an e-cover for (G, | - |loc). Then by the triangle inequality, F, — F, is a 2e-cover for
(Gn — G, ||+ [lo) of cardinality at most |F,,|?, where the subtractions are defined as set subtractions. Since
be C G, — G,, we see that F,, — F,, is a 2e¢-external cover for QS. Thus

sup N (G2, 9, €l oo Leb(X)) < N (G2, || - [loos €ln oo Leb(Xn)) < N (Gu, || - lloos eln.0o Leb(X,))* < 1762
Q

Replacing € by €6,/ Leb(X,,) gives

Leb(X,,)?

5252 S (Cl,n/g)z

Sup N<gfw PQ, Eln,ooén) <
Q

with C1, = Leb(X,,)/d,, demonstrating that G° forms a VC-type class. We now apply the maximal inequality
for in.i.d. data given in Lemma SA25. To do this, note that supgs [|gl[p.2 < ln,20, by the L? Lipschitz
condition, and recall Env(G9) = Iy, 000, Therefore Lemma SA25 with || F|[s5 = lnooOn, [|M|p2 = ln,cc0n
and o = l,, 26, gives, up to universal constants

7 2 (o0 - Eiox) H < 0\/2108 (Coal Pl o) + L2208 1l Pleal)

lnﬁoo(sn

NG

E | sup
gegys

S ln20n/Cilogn + C1logn,
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and hence by Markov’s inequality,

P ( sup  |Gn(z) — Gn(2)| > tn>

|z —a’|<dn
n

=P <| Sl/llp v Z (gn(Xi, r) — Elgn (X, 7)) — gn(Xi, ") + E[gn (X, x')])
z—x'|<dp i=1

. tn>

1
=2 (s |7 35 o000 - m0) ) {2 g | 35 o0 - mo) |
S%én Cllogn-i-lno\ofnCllogn.

Part 3: regularity of Z,
Next we bound the fluctuations in the Gaussian process Z,. Let p be the following semimetric:

p(z,7)? = B[(Zn(x) = Zu(2))"] = E[(Gn(2) = Gu(a"))’]

= LS B[ — )] < Bl - o

Hence p(x,2’) <l 2|z —2'|. By the Gaussian process maximal inequality from Lemma SA32, we obtain that
In,20n
E[ sup | Zu(x) zn<x’>|] < E[ swp | Zu(z) zm')@ < VIR N, %, p) de
|o—a’|<dn p(@,2")<lp,26n 0
ln,20n In,20n Leb(X,)l
< / \/logN(s/lmg,Xn,\ | de < / log (l—i—e(")m> de
0 0 €

In,20n =1/2 pln 26,
<[ wog (PLblnz) g, < (LAY 0 (bl o,
0 3 n 0 c

2Leb(X,)\ /2 1
~log (‘M) (zn,Qan 1og (2 Leb (X, )ln.2) + Ln.20p + Ly 26, log (z - ))
n,20n

O
2Leb(%,)\ "/* 2 Leb(X Leb(X,
= log (eéb(”)> Ln,26 <1 +log (eab())) < ln2day log (eb;”)> < ln2bay/Cilogn,

where we used that J,, < Leb(X},). So by Markov’s inequality,

P < sup ’Zn(a:) - Zn(x')| > tn> <t M 26,1/ Cy log n.

|z—2'[<dn

Part 4: conclusion
By the results of the previous parts, we have up to universal constants that

]P’(bup ’G Zn(x)‘ > tn)
TEX,
<P (Sup |G Zn(x)| > tn/3> +P ( sup ’Gn(x) — Gn(gcf)‘ > tn/3>
zeX? |lz—a’| <&y

—|—IP’< sup |Zn(x)—Zn(m’)‘>tn/3>

lo—=z'|<6n

4 Leb(X, 2 2 Leb(X,)s?
g M) e LB (1, + 60,/ Crlogn) +

v/ Cilogn + n\fC’ 1 logn.

n
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Choosing an approximately optimal mesh size of

o2 Leb( X) logn l,oo logn
Op = \ft‘f (M + o logn . ln2 logn LoV

satisfies log |0, < C1 logn up to a universal constant, so taking s a large enough multiple of \/logn gives

P ( sup |Gyp(z) — Zn(2)] > tn>

TEX,
4Leb(X,) 25 07 Leb(X,)s? ln20n /o lncoOn
5 T@ +W(Mn+60'n\/ Cl logn) + t Cl logn n\/» Cl logn
1 1
SJ(snln,m/ ogn (1+l ogn)
tn n Q\f
on\/Leb(X,)v1ogny/ M, + o,\/logn ; 0 ln,co |
nt/42 n2V 1087+ Vn oen
up to constants depending only on Cj. O

SA5.2.3 The Vorob’ev—Berkes—Philipp theorem

Proof (Lemma SA28)

The proof is by induction on the number of vertices in the tree. Let 7 have n vertices, and suppose that
vertex n is a leaf connected to vertex n — 1 by an edge, relabelling the vertices if necessary. By the induction
hypothesis we assume that there is a probability measure P(*~1) on H?:_ll X; whose projections onto X; are IP;
and whose projections onto &; x X are IP;;, for 4,7 < n — 1. Now apply the original Vorob’ev-Berkes-Philipp
theorem, which can be found as Theorem 1.1.10 in Dudley (1999), to the spaces H?;f X;, X,—1 and &,;; and
to the laws P(®~1) and P,,—1,n. This gives a law P(™) which agrees with P; at every vertex by definition, and
agrees with P;; for all 4,5 < n — 1. It also agrees with IP,,_1 5, and this is the only edge touching vertex n.
Hence P satisfies the desired properties. O

SA5.3 Main results
We give our main results on consistency, minimax optimality, strong approximation, covariance estimation,
feasible inference and counterfactual estimation.

SA5.3.1 Bias

We begin with a basic fact about Lipschitz functions.

Lemma SA43 (Lipschitz kernels are bounded)
Let X CR be a connected set. Let f: X — R satisfy the Lipschitz condition |f(x ) f@"] < Clz —a'| for
some C >0 and all x,2’ € X. Suppose also that f is a kernel in the sense that fX z)dx = 1. Then we have

1
Leb(X)’

sup | f(z)| < C'Leb(X) +
x€EX

Now let g : X — [0, 00) satisfy |g(x) — g(z')| < Clx — &'| for some C' >0 and all x,2’ € X. Suppose also that
g is a sub-kernel in the sense that [, g(z)dx < 1. Then for any M € (0,Leb(X)], we have

1
su z) < CM + —.
I M

Remark. Applying Lemma SA43 to the density and kernel functions defined in Assumptions SA1 and SA2
yields the following. Firstly, since k,(-,w) is OL/h?-Lipschitz on [w #+ h] N W and integrates to one, we have
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by the first inequality in Lemma SA43 that

20, +1 n 1
h Leb(W)'

[k (s, w)| <

Since each of fyaa(- | a,a’), fwja(-|a) and fy is non-negative and Cu-Lipschitz on W and integrates to
at most one over W, taking M = \F% A Leb(W) in the second inequality in Lemma SA43 gives
H

fwiaa(w | a,a’) < 24/Cu + fwialw | a) <2/Cu + fw(w) <24/Cn +

1 1
Leb(W)’ Leb(W)’ Leb(W)’
Proof (Lemma SA43)

We begin with the first inequality. Note that if Leb(X) = oo there is nothing to prove. Suppose for
contradiction that |f(x)| > C Leb(&X) + b( y for some z € X. If f(z) > 0 then by the Lipschitz property,

for any y € X,

fly) > f(x) = Cly — x| > CLeb(X) + ﬁm — CLeb(X) = Lebl(/y).
Similarly if f(z) <0 then
f(y) < f(@) + Cly = 2] < ~CLeb(X) — s + O Leb(X) = _Lebl(x)'

But then either [, f(z)dz > [, 1/Leb(X)dz =1or [, f(z)dz < [, —1/Leb(X)dz = —1 < 1, giving a
contradiction.

For the second inequality, assume that f is non-negative on X and take M € (O,Leb(X )} Suppose
for contradiction that f(z) > CM + ﬁ for some x € X. Then again by the Lipschitz property, we have
f(y) > 1/M for all y such that |y — 2| < M. Since X is connected, we have Leb(X N[z + M]) > M and so
we deduce that [, f(x)dz > M/M =1 which is a contradiction. O

Proof (Lemma SA1)
Begin by defining

for s,w € W as the degree-p Taylor polynomial of fy, centered at w and evaluated at s. Note that for
p < B —1, by Taylor’s theorem with Lagrange remainder,

AR D)

(p+ 1) (s —w)

for some w’ between w and s. Also note that for any p,

f(:D)(w) ) )
/W kn(s,w)(Ppy(s,w) — Py_1(s,w)) ds = /W kn(s,w) Wp! (s —w)Pds = h’ By(w).

Further, by the order of the kernel,
E[fur(w)] — fuv (w) = /W (s, w) fur (5) ds — fuy (1) = /W (s, w) (v (5) — fov (w)) ds
— [ Bu(sw) (fw () = Pooa(svw)) d.
w
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Part 1: low-order kernel
Suppose that p < 8 — 1. Then

sup ’E[fw(w)] — fw(w) — AP By( ‘ = sup ‘/ kn (s, w) fW s) — Py_1(s, w)) ds—hpo(w)’
weW weW

= sup / kn(s,w) (fw(s) — Pp(s,w) 4+ Py(s,w) — Py_1(s,w)) ds—hpo(w)’

weW
(p+1) (v
_ _ _ w (W) P+l
_Sg/)\/ /W kn(s,w)(fw(s) — Py(s,w)) ds Sg/)\/ /W kn(s,w) T (s —w)PTds
Gk _Cuppn 2CkCH 5 p 11
= e /[wih] h (p+1)!h d5| = (p+1)!h .

Part 2: order of kernel matches smoothness
Suppose that p = 8. Then

sup |E[fw (w)] — fw (w) — b By(w)| = sup ‘/ kn(s,w) (fw (s) — Pa—1(s,w)) ds — h”Bp(w)‘
wew weW |Jw

= sup / kn(s,w) (fW(s) — Ps(s,w) + Pg(s,w) — P@_l(s,w)) ds — hﬁBg(w)‘
wew |Jw
B0\ #(B)
:sg/)\) /W kn(s,w)(fw(s) — Ps(s,w))ds| = 523} /W kh(37w)fw (w )5[ Jw’ (w) (s —w)?ds
%CHhB_@ 8 2CkCH 8
= oo /[wih] hoa " d8‘< g

Part 3: high-order kernel
Suppose that p > 8+ 1. Then as in the previous part

2CC:

sup ‘E fW w)] —fw(w)| = sup / kh(s,w)(fw(s) —Pg(s,w)) ds| < k' Hps.

wew weW |J[wth]nWw B!
SA5.3.2 Uniform consistency
Proof (Lemma SA2)
Part 1: Hoeffding-type decomposition
Note that

fivtw) = Bnlw) = Elfi ()] = - =5 Z ( (Wi, w) | Ai, Ay] = Elkn(Wij, w)])

- nilzz( [n(Wig,w) | i, Ay] = Ellon (Wi, w)])

‘H\

and apply Lemma SA35 with

1

“i = =)

E[k)h(Wi]‘,w) | Ai,Aj], U; = mE[kh(W”’w) | Az]7 u = mE[k‘h(Wi]‘,w)],
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to see

For () = o) = Bl )] = 2 3 (s =) + s 33 (g — = +0)

i=1 n—1) i=1 j£i
2 n 2 n n
== Li(w)+ —F—— qij(w) = Ly + Qn.
n; n(n_l);j;rl !

Part 2: Expectation and covariance of L,, @, and F,
Observe that L,, Q, and E, are clearly mean-zero. For orthogonality, note that their summands have the
following properties, for any 1 <i < j<nand 1 <r < s <mn, and for any w,w’ € W:

E[l;(w)grs(w')] = E[l;(w)E[grs(w) | Ai]] =0,
| n  JE[L(w)]E [em ’]»lfwﬁ{ns}
E[li(w)ers(w')] = { E [l (w)E[ers(w') | Ar, AJ]], if i € {r, 5}
-0,
E[gij(w)|E[ers(w')], if {z ]} N{r,s}=10
Ve (] = E[ [qu(w) Z]E[ers ,]], if {i,5}n{r, s} ={i}
Bl 0)ers] = g i g 0) | A era () | )], 3 45,4} 0 5} = ()
E[qu(w)E[er‘i(w,) | A?“aA Ha lf {7’5]} = {T75}

= 07
where we used mutual independence of A,, and V,, and also E[g,s(w) | A;] =0 and Ele;;(w) | 4;,4;]=0. O

Proof (Lemma SA3)

Part 1: total degeneracy

Suppose D, = 0, so Var[fy4(w | A;)] = 0 for all w € W. Therefore for all w € W, we have fyy|a(w) = fw(w)
almost surely. By taking a union over W N Q and by continuity of fy 4 and fy, this implies that
Jwia(w) = fw(w) for all w € W almost surely. Thus

E [k (Wi, w) | Ay] = /W (5, 0) foy a(s | A7) ds = /th<s,w>fw<s>ds—E[/chwij,w)]

for all w € W almost surely. Hence /;(w) = 0 and therefore L, (w) = 0 for all w € W almost surely.

Part 2: no degeneracy
Suppose that Dy, > 0. Now since fy4(- | @) is Cu-Lipschitz for all a € A and since |ky,| < Cy/h,

sup [Elkn (Wi, w) | A — fupaw | A))| = sup ' [ s whfwials | 40 ds = funatw | 4)
weWw weW |Jw

= sup
weW

/ kn(s,w) (fwia(s | Ai) — fwja(w | 4:)) ds
Wn[w=h]

C
< 2h7kCHh < 20,Cyh
almost surely. Therefore since fya(w | a) < Cq4, we have

SUEV ’Var [E[kh(W”ﬂU) | Ai]] — Var [fw|A(w | Az)} ’ S 160kCHth
we

whenever h is small enough that 2CCyh < Cq. Thus
wig)f/vVar [E[kn(Wij,w) | 4;]] > wig‘gv\/ar[fwm(w | A;)] — 16CCuCqh.

Therefore if D), > 0 then eventually inf,,cyy Var [E[kh(Wij, w) | Alﬂ > Dy, /2. Finally note that

ingv Var[L, (w)] = 4 inf Var[ [kn (Wi, w) | Aj]] > 2D1°.
we

n wew n
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Part 3: partial degeneracy

Since fyja(w | A;) is bounded by Cyq and Cy-Lipschitz in w, we must have that Var[fy a(w | Aj;)]
is a continuous function on W. Thus if D), = 0, there must be at least one point w € W for which
Var[fyyja(w | A;)] = 0 by compactness. Let w be any such degenerate point. Then by the previous part,

Var[L, (w)] = A Var [E[ky(Wij,w) | Aj]] < 64CkC'HCd%.

T
If conversely w is not a degenerate point then Var[fya(w | A;)] > 0 so eventually
4 2
Var{Lo(w)] = & Var [Blk (W, w) | 4] > 2 Va{figa(w | 4]
O

Proof (Lemma SA4)
We establish VC-type properties of some function classes and apply results from empirical process theory.

Part 1: establishing VC-type classes
Consider the following function classes:

Fi = {Wij — kp(Wij,w) tw e W},
Fo = {4, 45) = B[l (Wig, w) | Ai, 45w e W,
Fs = {Ai s B[k (Wi, w) | Ai] - w e W}.
For Fi, take 0 < & < Leb(W) and let W, be an e-cover of W of cardinality at most Leb(W)/e. Since

kh(svw) - kh(saw/) CL
=

sup
s,w,w' eW

w —w’

almost surely, we see that

CL CL Leb(W)
S%p (-7:17 PQ7 I’L2 5) P (-7:17 || || h2 5) c

where Q ranges over Borel probability measures on WW. Since % is an envelope function for Fi,

Ci Ct, Leb(W)
N (F )<= .
S%p ( 15 PQ> h 5) = C he

)

Thus for all € € (0, 1],

Ci ) _ CiLebW) v 1

Te) € I < (),

SU.pN (J:hp(@a
Q

where Cy = %(Leb(W) V1) and Cy = 1. Next, F2 forms a smoothly parametrized class of functions since for
w,w’ € W we have by the uniform Lipschitz properties of fyjaa(-| As, A;) and kp(s, -), with |w —w'| < h,

|E[l€h(Wi]‘,w> ‘ Ai,Aj] —]E[kh(Wij,w') | AL,A]”

= / kn(s,w)fwiaa(s | Ai, Aj)ds —/ kn(s,w') fwrjaa(s | As, Aj)ds
[wxh]NW [w’ £h]NW

= /[ o (kn(s,w) — kn(s,w")) fwaa(s | Ai, Aj)ds
w n

= ‘/[ LMW (kh(s,’lU) - kh(s,w/)) (leAA(s | Ai,Aj) — fW|AA(U) | A“A])) ds

C
< 4hh—£‘|w —w'|2Ch < 8CLChlw —w'| < C3|lw — w'|,
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where C3 = 8CL,Cy. The same holds for |w — w’| > h because Lipschitzness is a local property. By taking
E[- | A;], it can be seen by the contraction property of conditional expectation that the same holds for the
singly-conditioned terms:

|E[l€h(Wl],W) | Az} - E[kh(Wij,w’) ‘ AZ” S Cg|’w - ’LU/|.
Therefore F3 is also smoothly parametrized in exactly the same manner. Let

C, = sup esssup |E[kh(Wij,w) | Ai,AjH = sup esssup
weW A, Aj weW A;,A;

< 2h%0d <20y C4.

/ kn(s,w)fwiaa(s | Ai, Aj)ds
[wh]W

For any € € (0, 1], take an (¢Cy4/C3)-cover of W of cardinality at most CsLeb(W)/(¢Cy). By the above
smooth parametrization properties, this cover induces an eCy-cover for both F5 and Fs:

S%p N(]:g,pQ,€C4) < N(.Fg, || . HOO,€C4> < C3 Leb(W)/(5C4),

S%P N(F3,p0,eC1) < N(Fa, || - [loos €C1) < C3Leb(W)/(eCy).

Hence Fi, F2 and F3 form VC-type classes with envelopes Fy = Cy/h and Fy = F3 = Cy respectively:
S%PN(fl,PQﬂ?Ck/h) < (C1/(he)), SE@PN(]‘—Q,PQ@Q;) < (C1/e),

sup N (Fs, pg.eCy) < (C1 /),

for some constants C; > e and Cy > 1, where we augment the constants if necessary.

Part 2: controlling L,

Observe that v/nL, is the empirical process of the i.i.d. variables A; indexed by F3. We apply Lemma SA25

with o = Cy:

04 CQ 10g 01
Vn

By Lemma SA3, the left hand side is zero whenever D, = 0, so we can also write

B | sup VAL, (u)]| £ Civ/CaTonCs + <L

wew

E [sup ‘\/ﬁLn(w)@ < Dyp.
weWw

Part 3: controlling @,

Observe that n@,, is the completely degenerate second-order U-process of the i.i.d. variables A; indexed
by F». This function class is again uniformly bounded and VC-type, so applying the U-process maximal
inequality from Lemma SA37 yields with o = Cy

CalCalog C1)? _ |

E {sup |nQn(w)|] < C4Cylog Cy + T <

wew

Part 4: controlling F,
Conditional on A,,, note that nF,, is the empirical process of the conditionally i.n.i.d. variables W;; indexed
by F1. We apply Lemma SA25 conditionally with

o? = sup E|(kn(Wij, w) — Elka(Wig, w) | Ai, 45])" | Ai, 4;] < sup E[kn(Wig, w)? | 4y, 4;
weW weW

2
< sup kh(s,w)QfW‘AA(s | A;,Aj)ds < ZhC—l; <1/h
weW J wh]nW h

38



and noting that we have a sample size of $n(n — 1), giving

F1Cy 1 C1/h)F
E [Sup B (w } S o\/ca log ((Cy/h)Fy /o) + —2 og ((C1/h)F1 /o)
weWw n
Cy/h)Cslog ((C1/h)(C/h)Vh
S —=/Catog (Co/) (G Vi) + L8 (C/m(C/IVE)
< \/W+ log (1/h) - \/@
~ h nh ~ h
where the last line follows by the bandwidth assumption of log” — 0. O
Proof (Theorem SA1)
This follows from Lemma SA1 and Lemma SA4. L)

SA5.3.3 Minimax optimality
Before proving Theorem SA2 we first give a lower bound result for parametric point estimation in Lemma SA44.

Lemma SA44 (A Neyman-Pearson result for Bernoulli random variables)

Recall that the Bernoulli distribution Ber(0) places mass 0 at 1 and mass 1 — 6 at 0. Define P§ as the law
of (A1, As, ..., An, V), where Ay,..., A, are i.i.d. Ber(), and V is an R%-valued random variable for some
d > 1 which is independent of the A variables and with a fized distribution that does not depend on 0. Let
Oy = % and 01, = % + \/%. Then for any estimator 0,, which is a function of (A1, As,..., An, V) only,

~ 1 1 1
o | |On — 00| > —=—= 0p —O1n| > 25
b (-0l z ) <P (ool ) 25

Proof (Lemma SA44)

Let f:{0,1}™ — {0,1} be any function. Considering this function as a statistical test, the Neyman—Pearson
lemma and Pinsker’s inequality (Giné and Nickl, 2021) give

b (f=1)+ PG, (f=0)=1-TV (P, gm)zl—\/;KL( I®5,.)

1 \/’; KL (Ber(6o) || Ber(61,)) + 5 KL (V|| V)

=1—- \/Z KL (Ber(eo) H Ber(el,n))v

where TV is the total variation distance and KL is the Kullback—Leibler divergence. In the penultimate line
we used the tensorization of Kullback—Leibler divergence (Giné and Nickl, 2021), noting that the law of V'
is fixed and hence does not contribute. We now evaluate this Kullback-Leibler divergence at the specified
parameter values.

B (f=1)+P5 (f=0)>1- \/” KL (Ber(6p) || Ber(61.))

1— 6,
_1—\/7\/9010g01n 90)10g17017n
1\/‘ 12 11 12
1/2+1/\/8T”L 1/2—1/\/871

1
_1_7 o8 7= /72 = \f

39




where in the penultimate line we used that log == < 2z for z € [0,1/2]. Now define a test f by f =1 if
0, > 1+

and f = 0 otherwise, to see

i ((3 >1+1>+IP" (0 <1+1>>1
o \"" 7 27 /3 O1.m 2 32m) T2

By the triangle inequality, recalling that 6y = 5 and O1n = % + ——, we have the event inclusions

8n
~ 1 ~
ot )|
32n

1
V32n

1 1
0., — 6] >
2 0’—\/3271}
"2 V3an) U

Thus by the monotonicity of measures,

~ 1 ~ 1
6 | |On — 00| > — Py O — b1,n| >
i (=0l = ) 4B (=102 )

> 7o)

Y

1
5"

Proof (Theorem SA2)

Part 1: lower bound for P

By translation and scaling of the data, we may assume without loss of generality that W = [—1, 1]. We may
also assume that Cy < 1/2, since reducing Cy can only shrink the class of distributions. Define the dyadic
distribution Py with parameter 6 € [1/2,1] as follows: A4,..., A, are i.i.d. Ber(#), while V;; for 1 <i < j <n
are i.i.d. and independent of A,,. The distribution of V;; is given by its density function fy (v) = % + Cqgv on
[—1,1]. Finally generate W;; = W (A, A;,Vi;) := (24;A; —1)V;;. Note that the function W does not depend
on . The conditional and marglnal densmes of W;; are for w € [—1,1]

l—I—C'Hw ifAi:Aj:1

Ai,A' = i
fW\AA(w \ i) {;Cﬂw if Ay=0o0r A; =0,
) .
14 (20 —1)Chw if A; =1
Ai = 2
fwia(w | A;) {; — Cyw if A; =0,
1
fww) =5+ (20° = 1)Cuw.

Clearly fw € Hﬁ W) and fyrjaa(- | a,a’) € HE, (W) Also sup,, ey || fwia(w | -)|[Tv < 1. Therefore Py
satisfies Assumptlon SAl and so {Py : 0 € [1/2,1] }

Note that fy/ (1) = 3+ (26% —1)Ch, so 62 = 2CH (fW( )—1/2+Ch). Thus if fyy is some density estimator
depending only on the data W,,, we can naturally define the non-negative parameter point estimator

62 = s (fW( ) — ;—i-CH)\/O

This gives the inequality

1 1 1 ~
‘92_92|_ fw (1) = 5 + Cu VO—* fw() =5 +Cu )| < 5~ sup ‘fw(w)—fw(w).
2 2 2C’H weWw
Therefore since also § > 0 and 6 > 1,
=
16, — 0] = < — sup |fw(w) = fuwr(w)|.

0 +9 707Hw€W
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Now we apply the point estimation lower bound from Lemma SA44, setting 6y = % and 60, , = % + \/%,

noting that the estimator gn is a function of W,, only, thus is a function of A,, and V, only and so satisfies
the conditions.

(1)

1
Po(usllelgi|fw ’_C\/»>+P91n(su5\}’fw fW )’ZC\/H)

> PGO (’571 _90’ > W) +P911n (‘gn - el,n‘ > C’CH )
1
2

~ 1 ~
Z ]PGO <|9n _00’ Z \/327) +]P)c91’n <|9n _61,n| Z

where we set C' > ‘é—?? Therefore we deduce that

)2

) ~ 1
aa® (o )= ]2 ) 2§
and so
inf sup Ep {sup |fW fW(w)@ > 401\f'
fw PEP weW n

Part 2: lower bound for Py

For the subclass of totally degenerate distributions, we rely on the main theorem from Khasminskii (1978).
Let Py be the subclass of Py consisting of the distributions which satisfy 4; =--- = A, = 0 and W;; :=
A; + Aj + Vi = Vi, so that Wy; are i.i.d. with common density fyr = fy. Define the class

= {f density function on R, f € HgH (W)} )

Write Ef for the expectation under W;; having density f. Then by the main theorem in Khasminskii (1978),

n2 2B+1 ~
lim inf inf sup E; < > sup |fW(w)*fW(w)| >0,
n—o0 fu feF logn weWw

where fw is any density estimator depending only on the %n(n —1) ii.d. data samples W,,. Now every

density function in ”H’gH (W) corresponds to a distribution in Py and therefore to a distribution in Pyq. Thus
for large enough n and some positive constant C,

s
1 [logn\ 22+T
inf sup Ep {bup ’fw fw(w)@ > — ( s ) .

fW PePy weW

Part 3: upper bounds

The corresponding upper bounds follow by using a dyadic kernel density estimator fW with a boundary
bias-corrected Lipschitz kernel of order p > 8 and using a bandwidth of h. Firstly Lemma SA1 gives

sup sup |]E]p> []?W(w)] - fw(w)| < 40O

he.
PEP weW B!

Then, treating the degenerate and non-degenerate cases separately and noting that all inequalities hold
uniformly over P and Pq, the proof of Lemma SA4 shows that

—~ -~ 1 logn

sup Ep | su w) — E w < —+ ,

2o [ Vo) —Blfv ol £ 75+ 35
-~ logn
sup B | sup |For(u) = Bl wl]| < /257
PEPy wew n2h
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Thus combining these yields that

~ 1 logn
sup Ep | su w) — w)|| S+ —= +4/ ,
Peg : L@F/)v |fW( ) = fw )|] Vn n2h
—~ logn
sup Bz | sup [Fw) — fur(w)] | < 17 + /252
PEPy weW n*h

1

_1 _B
Set h = (loﬁ) 1 and note that B > 1 implies that (longzn) T« ﬁ Therefore for some constant C' > 0,

n2

sup Ep [sup ’J?W(w) —fw(w)@ < 1 + <logn> 2BFT - Q’

PeP weW n n
~ logn\ 28+1

sup Ep {sup | fw (w) — fw(w)@ < C< gQ ) .

PePq weW n

SA5.3.4 Covariance structure

Proof (Lemma SAb)
Throughout this proof we will write k;; for ky(W;;,w) and kéj for kp,(Wi;,w’), in the interest of brevity.

~

En(w,w) = B[ (fw (w) ~ Elfuw ) (i (w') — Elfw ()]

2 9 / /
=E nin—1) Z (kij — Ekij) <n(n_1) Z (K., — Ek;rs)>

1<J r<s
4 4
= R2m 12 ;;E [(kij — Bhi) (k) — Ek,)] = 217 ;;COV [Kijo Kis] -

Note first that for ¢, j,r, s all distinct, k;; is independent of k., and so the covariance is zero. By a counting
argument, it can be seen that there are n(n — 1)/2 summands where |{7, j, 7, s}| = 2, and n(n — 1)(n — 2)
summands where |{4, j, 7, s}| = 3. Therefore since the samples are identically distributed, the value of the
summands depends only on the number of distinct indices and we have the decomposition

4 n(n—1 ,
S, 0) = ety (P05 Covlhg ]+ (o = 1)(n — 2) Corlry K,
__ 2 M=) o
= D) Cov(kij, ki;] + R =1) Covlkij, ki,

giving the first representation. To obtain the second representation, note that since W;; and W;, are
independent conditional on A;,

Cov [kijki,] = E[kiski,] — Elky|E[k;,] = E[E[kiski, | Ai]] — Elki]E[,]
= E[E[ki; | AE[k;, | Ai]] — Elk]E[k;,] = Cov [E[ki; | Al E[k7, | Ai]].

Proof (Lemma SAG)
By Lemma SA5, the diagonal elements of ¥, are

W =2) § e (Bl (Wi w) | A

Zn(ww) = e

2D Var [k, (Wij, w)] +
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We bound each of the two terms separately. Firstly, note that since ky, is bounded by Cy/h,

Var [ky,(Wij,w)] < E[kp(W;j, w)?] :/ En(s,w)? fu(s)ds < 2C2/h.
WnN[w=th]
Conversely, since ’E[kh(Wij, w)]| = | f[wih]ﬂw kn(s,w)fw(s) ds’ < 2CCy, Jensen’s integral inequality shows
Var [kp(Wij,w)] > / En(s,w)? fw (s)ds — 4C2C3
Wn[w=h]

wew %

2
> inf fw(w) ! (/ kh(s,w)ds> — 40203
WnNlw=h]

> g fw(w) —4CECT > L

inf
= Ok wew 1 o, fw ()

for small enough A, noting that this is trivially true if the infimum is zero. For the other term, we have
Var [E[kn(Wij,w) | A;]] < Var [fwa(w | A;)] + 16CuCxCah < 2D7,

for small enough h, by a result from the proof of Lemma SA3. Also

D2
Var [E[kjh(Wij, w) ‘ Ai]] > Var [fW|A(w | Al)} — 16CxCCyh > 210

for small enough h. Combining these four inequalities yields that for all large enough n,

2 1. 4(n—2) D .
- N 7 0<
nn =) 1h v W e 2 S, Be(ww)

2 20 4(n-2)

< Yp(w,w) £ ———= 2D7,,
- 525\; (w,w) < nn—1) h nn—1)" "
so that
Dy 1 . , DI 1
1 mwlgvfw(w) S wlgvzn(wa’w) < jggvzn(wvw) S T

SA5.3.5 Strong approximation

Proof (Lemma SAT)
To obtain the strong approximation, we apply the KMT corollary from Lemma SA26. Define the functions

k,‘?(a,w) = 2E[ky(Wij,w) | Ai = al,

which are of bounded variation in a uniformly over w since

m
sup ||k (-, w)||rv = 2 sup sup  sup Z |k;‘?(a,;,w) — k;‘?(ai_l,w)|
wew weW meN ag<--<am ;-

m

=2 sup sup sup
weW meNap<--<anm, i=1

/ kn(s,w)(fwia(s | ai) = fwia(s [ ai—1)) ds
[wxh]NW

m
<2sip [ bsw)lsp swp Y [fwials]a) — fiials | a)] ds
wew [wih]ﬂw mEN ag<---<am i=1

<2 En (s, ' d
= e [wih]ﬂw| n(s,w)l [ fwiaw | )|y ds

<40 sup || fwiaw | )| oy S Dups
wew
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where the last line is by observing that the total variation is zero whenever D,, = 0. Hence by Lemma SA26
there exist (on some probability space) n independent copies of A;, denoted A} and a centered Gaussian
process ZL" such that if we define

n

=—> (ki — E[kj) (A7, w))),

i=1

S\H

then for some positive constants Cy,Cy, Cs, by defining the processes as zero outside W we have

t 1
<sup ’fL Z,f’(w)‘ > Dup—i—Clogn> < Che™ @t
wew \/ﬁ

Integrating tail probabilities shows that

Cilogn D, _ Dyplogn
sup [vnL,(w) — ZY (w ” < Dy, / pC’ Catqp < =27
g - 1] 5.2 :

Further, ZL has the same covariance structure as GL in the sense that for all w,w’ € W,
E[Zy (w)Z;' (w')] = E[G} (w)Gy (w')],

and clearly L/, is equal in distribution to L,,. To obtain the trajectory regularity property of Z.' note that
it was shown in the proof of Lemma SA4 that for all w,w’ € W,

|kf(Ai,w) — k;?(Ai,w’)| < Clw — |

for some constant C' > 0. Therefore since the A; are i.i.d.,

B (|22 w) - 28] = VAR || La(w) - L) ]
. 071/2
= VB (|53 (Kt (Asw) = k(A ) = B[k (s 0)] + B (4, w)])

911/2
=E “k,‘:‘(Ai,w) — ki (A, w') — Bk (A w)] + E[k,’?(Ai7w/)]‘ ] < |lw—w'|.
Therefore by the regularity result for Gaussian processes in Lemma SA32, with §,, € (0,1/2]:

E

sup | Z} (w) — Z} (w ] / Viegl/ede < 6,1/log1/6, < Dypdnr/log /6y,

Jw—w’"| <6y,

where the last inequality is because ZX' = 0 whenever D, = 0. There is a modification of Z' with
continuous trajectories by Kolmogorov’s continuity criterion (Le Gall, 2016, Theorem 2.9). Note that L],
is A/ -measurable and so by Lemma SA26 we can assume that Z’ depends only on A/, and some random
noise which is independent of (A], V! ). Finally in order to have A’ , VI LI and ZL" all deﬁned on the same
probability space, we note that A, and V,, are random vectors Whlle L; and Zﬁ are stochastic processes
with continuous sample paths indexed on the compact interval WW. Hence the Vorob’ev—Berkes—Philipp
theorem (Lemma SA28) allows us to “glue” them together in the desired way on another new probability
space, giving (A;, v oL, ZE ), where we retain the single prime notation for clarity. O

Proof (Lemma SAS)

We apply Lemma SA27 conditional on A,,. While this lemma is not in its current form stated for conditional
distributions, the Yurinskii coupling on which it depends can be readily extended by following the proof
of Belloni et al. (2019, Lemma 38), using a conditional version of Strassen’s theorem (Chen and Kato,
2020, Theorem B.2). Care must similarly be taken in embedding the conditionally Gaussian vectors into a
conditionally Gaussian process, using the Vorob’ev—Berkes—Philipp theorem (Lemma SA28).
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By the mutual independence of A; and V;;, we have that the observations W;; are independent (but not
necessarily identically distributed) conditionally on A,,. Note that sup, ,cw [kn(s,w)] < M, = h~' and
Elkn,(Wij,w)? | A,] S 02 = h™!. The following uniform Lipschitz condition holds with I, oo = CLh™2, by
the Lipschitz property of the kernels:

kh(S,UJ) - kh(57wl)
w—w'

sup
s,w,w €W

< ln,oo-

Also, the following L? Lipschitz condition holds uniformly with I, » = 201+/Cah=3/2:

E[ |k (Wij, w) — kn (Wi, w')| | An]Y?

c 1/2
([wHh]U[w £h]) AW
C
< h—;\w —w'[\/4hCq < lp 2w — w').

So we can apply Lemma SA27 conditionally on A,, to the %n(n — 1) observations, noting that

T () — | 22 Tt Z Z (b (Wi ) — Bl (Wi w) | Ai, A7),

n—1
1=1 j=i+1

to deduce that for ¢,, > 0 there exist (an enlarged probability space) conditionally mean-zero and conditionally
Gaussian processes ZF/(w) with the same conditional covariance structure as vVn2hE, (w) and satisfying

P (Sup Vn2hE, (w) — ZEF' (w)| > t n)
A;>

wew
n -1 n n—1
7 ZE/ ¢
<us)1€111/)v ! 2nh | 2nh "

0ny/Leb(W)/1 M, Vil ln,oo
e ogn\/ + on ogn\/ln,2 /710g7l+-%10gn
n

n1/22 /1)
h 12\ /logn/h=t + h=1/2\/logn [, _ h=2
D 302 logn + = logn

h3 n2h

logn 1 [logn 1/4 —2, _-1/2;-3/4 3/4
< sl Ston h (logn)*/=,

where we used h < 1/logn and logn <1 To obtain the trajectory regularity property of Zlf’ , note that for

2h ~
w,w’ € W, by conditional independence,

<\/1ogn\/1+\/hlogn \/logn <1+ logn)
~ n 2

E[|ZEw) - ZE'(w)[ | A,

= Vn2hE “En(w) — B, ()] | An]m

}1/2

9 1/2

< Vn2hE nlz__: ( (Wijsw) = kn(Wig,w) | | An

1/2

2] An] < h Yw —w'].

SVhE [|kh(Wija w) = kn(Wij, w')|
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Therefore by the regularity result for Gaussian processes in Lemma SA32, with d,, € (0,1/(2h)]:

N _ S /b T
E| sup |ZF(w)—ZF ()] A;] 5/ Vlog(e=1h=1) de < 875
n

[w—w’|<én

and there exists a modification with continuous trajectories. Finally in order to have A/, V' E' and ZZ'
all defined on the same probability space, we note that A, and V,, are random vectors while E/ and
Zf’ are stochastic processes with continuous sample paths indexed on the compact interval VW. Hence the
Vorob’ev—Berkes—Philipp theorem (Lemma SA28) allows us to “glue together” (A, V,, E,) and (E}, ZE )
in the desired way on another new probability space, giving (A}, V), E/,, Z;E' ), where we retain the single
prime notation for clarity. _

Note that the trajectories of the conditionally Gaussian processes ZZ’ depend on the choice of t,,
necessitating the use of a divergent sequence R,, to establish bounds in probability on the coupling error. []

Proof (Lemma SA9)

Part 1: defining Z2”

Pick 6, — 0 with log1/d, < logn. Let W;s be a d,-covering of W with cardinality Leb(W)/d,, which is also
a dn-packing. Let Z[s be the restriction of ZJ to Ws. Let X (w,w') = E[ZE' (w)ZF' (w') | AL] be the
conditional covariance function of Z¥', and define SF (w,w') = E[if(w,w’)]. Let ifié and ETEL,(S be the

n 9

restriction matrices of EE and LF respectively to Ws x W, noting that, as (conditional) covariance matrices,
these are (almost surely) positive semi-definite.

Let N ~ N(0, Ijy,|) be independent of A/, and define using the matrix square root ng = (ifvé)l/QN,
which has the same distribution as Zn s, conditional on Aj,. Extend it using the Vorob’ev-Berkes-Philipp

theorem (Lemma SA28) to the compact interval W, giving a conditionally Gaussian process Zf” which has
the same distribution as Z’, conditional on AJ,. Define ZJ} = (Eié)l/gN, noting that this is independent

of A/, and extend it using the Vorob’ev—Berkes—Philipp theorem (Lemma SA28) to a Gaussian process ZZ"
on the compact interval W, which is independent of A’, and has covariance structure given by L.

Part 2: closeness of ZZ” and ZE” on the mesh
Note that conditionally on A/, Zﬁg’ — Zf’[;’ is a length-|Wjs| Gaussian random vector with covariance matrix

((iTEL,é)l/Q (Zn 6)1/2)2- So by the Gaussian maximal inequality in Lemma SA31 applied conditionally on
n, We have

)

H1/2

E max ‘ZE”( )= ZF" (w) ’A;} \/lognHan
weWs

since log |Wjs| < logn. Next, we apply some U-statistic theory to ZE EE(;, with the aim of applying the
matrix concentration result for second-order U-statistics presented 1n Lemma SA3S. Firstly we note that
since the conditional covariance structures of Zf' and Vn2hE,, are equal in distribution, we have, writing
E,(Ws) for the vector (E,(w) : w € Ws) and similarly for k,(W;;, W),

En5 = Qh]E[E (W&)En(wé)T | A"l]

QZZ

i=1 j=i+41

B [(mwij,wcs) < (Wi W) | A1) (kW55 W3) ~ B (W W) | A1) | A,

:n_12zz A“A

i=1 j=i+1

|
3

where we define the random [Wjs| x |Wjs| matrices

w(Ai, Aj) = E [kn(Wig, Wa)kn(Wij, Ws)T | An] — E [kn (Wi, Ws) | AR]E [kn (Wi, Ws) | A]”
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Let u(A4;) = Elu(A;, A;) | A;] and v = E[u(A4;, Aj)]. The following Hoeffding decomposition holds, by
Lemma SA35:

if,a - 25,5 =L+ é,

where
B= S () — ),
_ 4h n—1 n
Q=7"—"3 Z Z (w(Ai, Aj) — u(A;) — u(A;) +u).
(n—1) i=1 j=i+1

Next, we seek an almost sure upper bound on |[u(A;, A;)||2. Since this is a symmetric matrix, we have by
Holder’s inequality

(W

AL A2 A2 =
[[u(Ai; Aj)lle < flulAs, A7) [ lulAi, AL = 1<g1<a‘§v|2\u Ai, Aj)l.

The terms on the right hand side can be bounded as follows, writing w, w’ for the kth and Ith points in W
respectively:

u(Ai, Aj)ial = |E [fn(Wig, w)kn(Wig, w') | An] = E [kn(Wij, w) | Au] E [kn(Wij,w') | Ay |
S E{[kn(Wij, w)kn(Wig, w')| | An] + E [[kn(Wij, w)] | An] B [[kn(Wij, w')| | An]
ShT'{jw—w'| <20} +1 SATI{k =1 < 2h/6,} +1,
where we used that |w — w’'| > |k — |d,, because W is a d,-packing. Hence
[Ws| Ws|

AL < -1 —l <
lu(Ai, Ap)l2 < Kgg»;v'ZwAl,A il £ 1<g3%2(h I{JJ— 1] < 20/6,} +1)

<1/6p +1/h+ Ws| S 1/6, + 1/h.

Clearly the same bound holds for ||u(A;)||2 and |lu||2, by Jensen’s inequality. Therefore applying the matrix
Bernstein inequality (Lemma SA30) to the zero-mean matrix L gives

S[E) <5 (5, + ) ospwl + vamospwl) < (5 1) 22

Applying the matrix U-statistic concentration inequality (Lemma SA38) to the zero-mean matrix @ gives

s {HQHJ S %n (;n + 2) (log [Ws])*? < <5}i + 1> %.

Hence putting everything together, taking a marginal expectation and applying Jensen’s inequality,

E [max |ZE// ) ZE// |] \/@ E |:H2n6 2E Hl/Q} 5 v/Iogn E {Hig’é -2

wEW;

}1/2

1/2 1/2

< Viogne[|2+q] ] < viene[|Z], + |2

1/2
3/2
Tog 7 ﬁJrl /lognJr iJrl (logn)
On n On n

h (logn)3/*
<4/ — A
S\ +1 I/
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Part 3: regularity of Z” and Zf’
Define the semimetrics

plw,w')? = E [| 27" (w) = 2" )] plw,w')? = E [|ZE"(w) = ZE"(w')[* | A

We can bound p as follows, since ZZ” and v'n2hE,, have the same conditional covariance structure:

/

ﬁ(w,w’) - [‘Zf//(w) _ Zf//(w/)F ‘ A/n:| 1/2 _ /thE |:’En(’LU) _ En(w/)’2 ‘ A/n:|1 2 5 h_1|w _ U}/‘,

uniformly in Al where the last line was shown in the proof of Lemma SAS8. Note that also
plw, ') = VERw, w7 S b~ w - o],

Thus Lemma SA32 applies directly to ZF and conditionally to Zf' , with é,, € (0,1/(2h)], yielding

E

A

|w_w/|§5n

B B 6n/h
sup |27 (w) = Z7" (w')] !AL] S ; V1og(1/(eh)) de

h
On/h 5 1
E| sup |ZZ'(w)- 2" (w')|| S Vlog(1/(ch)) de 5 =
0

lw—w’|<én

Continuity of trajectories follows from this.

Part 4: conclusion
We use the previous parts to deduce that

E {sup |Z;E”(w) - Zf”(w)@ SE [max ’Zf”(w) - Zf”(w)‘] +E
wew wEWs

sup |Zf//(w) _ ZE//(w/)|1

|w—w’[<6n

FE| sup  |ZE(w) - ZE(w)|
|w_w/‘S6n
h (logn)3/*  6,+/logn
< ./ —
SV, P T

1/6
Setting d, = h (bﬂ> gives

n

E [sup |Zf”(w) - Zf”(w)|] <n"Y%(ogn)?/3.
wew

Finally, independence of ZE” and A’ follows by another application of the Vorob’ev-Berkes—Philipp theorem

from Lemma SA28, this time conditionally on A/, to the random variables (A;l, Zf') and (Zf”, Zf”). O

Proof (Theorem SA3)
We add together the strong approximations for the L,, and E,, terms, and then add an independent Gaussian
process to account for the variance of @Q,,.

Part 1: gluing together the strong approximations

Let (A}, V., L., Z) be the strong approximation for L, from Lemma SA7. Likewise let (A7, V/ E, Zf”)
and (AZ' , v 7271;3”’ , Zbm ) be the conditional and unconditional strong approximations for F,, given in
Lemmas SA8 and SA9 respectively. The first step is to define copies of all of these variables and processes on
the same probability space. This is achieved by applying the Vorob’ev—Berkes—Philipp Theorem (Lemma SA28).
In particular, dropping the prime notation for clarity, we construct (An, V., L., ZE E,, Zf ,ZE ) with the
following properties:

(1) SupweW |\/ﬁLn(’U}) - Zr%(w)| SzP nil/Z 1Ogn7
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(i) sup,ew ’\/thEn(w) — Z;E(w)‘ <p n_1/4h_3/8(10g 71)3/8Rn7
(i) sup,ew |28 (w) = ZF (w)| Spn~/%(logn)?/3,
(iv) ZE is independent of ZF.

Note that the independence of ZL and ZF follows since Z! depends only on A,, and some independent
random noise, while ZZ is independent of A,,. Therefore (ZL, ZE) are jointly Gaussian. To obtain the strong
approximation result for fy, define the mean-zero Gaussian process

Zh(w) = <= ZE(w) + - 22(w) + — 7 (w),

1
Vv vn2h
where Z2(w) is a mean-zero Gaussian process independent of everything else and with covariance
}E[Zf?(w)Zg(w’)] =n’E [Qn(w)Qn(w')}.

As shown in the proof of Lemma SA4, the process @, (w) is uniformly Lipschitz and uniformly bounded in
w. Thus by Lemma SA32, we have E[sup,,cyy |29 (w)|] < 1. Therefore the uniform approximation error is
given by

sup | fw (w) — E[fuy (w)] — Z1 (w)|

wew
= sup ‘ZL 1 ng(w) 4 12 ZE (w) — (Ln(w) + Qn(w) + En(w))‘
wew n2h
1 ~ 3 1 -
< sup (225 0) = VL) + < [ZE0) = ViR (w)] + e [2E(0) - 25 (w)

1
+1Qu(w)] + 1280w
<pn tlogn +n"4h""8(logn)*/B R, +n""/h"1/2(logn)?/3.

Part 2: covariance structure
Since L,, Q, and E,, are mutually orthogonal in L? (as shown in Lemma SA2), we have the following
covariance structure:

E[Z](w)Z](w)] = %E[Z,f(w)z,f(w’)] + IE[ w')] + —h E[ZF (w)Z] (w')]
=E[Ly(w)L,(w')] + E[Qn( ] E[E,(w)E,(w')]
:E[(fw(w)*E[fw(w)])(fw( ) E[fw (w' ]

Part 3: trajectory regularity
The trajectory regularity of the process Z7 follows directly by adding the regularities of the processes ﬁZﬁ

and Z! has continuous trajectories. O

SA5.3.6 Infeasible uniform confidence bands

Proof (Lemma SA10)
Note that

v () — i (w) ~ Zh )|
Yo (w,w)

|Ta(w) = Z, (w)| =

By Theorem SA3 and Lemma SA1, the numerator can be bounded above by

sup | v (w) = fir (w) = Z}(w)| < sup | fiv (w) = E[fiw(w)] = Z(w)| + sup |E[fw ()] = fiw(w)|
weWw weW weW

<pn tlogn +n "3 (logn)* R, +n"T/Ch1/2(log n)?/3 + WPNP,
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By Lemma SA6 with infyy fy (w) > 0, the denominator is bounded below by
inf /3, (w,w) DlO + — !
wew N \/> th
and the result follows. O
Proof (Theorem SA4)
Note that the covariance structure of ZI is given by
P (w w’ )

o L 0, 2 =

n

We apply an anti-concentration result to establish that all quantiles of the random variable sup,, ¢y ‘Z I )|
exist. To do this, we must first establish regularity properties of Z1.

Part 1: L? regularity of Z!
Writing k;; for kj,(W;;,w') etc., note that by Lemma SA5,

‘Zn(w, w') = 3, (w, w”)’

( 2) / 2 " 4(” — 2) "
= |———< Cov |k;;, k Cov |kij, ki,.| — ——— Cov |kyj, ki.| — —= Cov |kyj, k.
n(n =) 00 s g+ Sy Cov g K| = Sy Cov [k k] = 20—y Cov [l K
L A2
S m‘ COV k/’”, ki,ij kﬁ} n( ‘ COV klj7 k;r k;;}
2 A(n — )
< m”kinoon — kfilloo + Y )”kinoon = kip oo
4
< —CCp|w' —w"| S th 3w’ —w”|
nh3
uniformly in w,w’, w” € W. Therefore by Lemma SA6, with 6, < n~2h2, we have
D? D} 1 1 D2 1
inf En / & - _1h_35n lo - -
\wfiunﬂg(sn (w,w') 2 + n2h + n2h  n3h R n n2h’
D2 1 D2 1 1 _ D} 1
5, nN< Zuw L —lp=3s, < U - wp L
‘w,sltlfﬁ)ggn (w,w') 5 n + n2h o n + n2h *sh n3h S n n2h
The L? regularity of Z1 is
Z /
E [(Zf(w) —Zf(w’))z} —2-2 n(w, ') .
VEn (w0, ), (W, w')
Applying the elementary result that for a,b,c > 0,
14 _ b(c—a) +a(b—a)
Vie | vae(vbe + a)
with
a = En(w7w/)7 b= En(wa ’LU), c= En(wlvw,)

D2

; 2
and noting that [c —a| <n th=3|w —w'| and |b—a] Sn~th=3|w — w'| and % + 7 Sabes
yields

(D3p/n+1/(n*h))n~ A3 w — w'| _ n2h~*|w — w/|
(D}, /n+1/(n?h))? D O

Thus the semimetric induced by Z1 on W is

p(w.u) = E [(28(w) — 2Z@))*] " 50 Vi =]

<n?h % w —w'|.

E[(20(w) - Z8")’] 5
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Part 2: trajectory regularity of Z!
By the bound on p established in the previous part, we can deduce the following covering number bound:

N(eW,p) SN(EW,nh '] ]) SN the, W, /|- ) S N(n2h22 W, |- |) SnPh 22

Now apply the Gaussian process regularity result from Lemma SA32.

p(w,w’)<s

5 5
E l sup  |Z}(w) — Zg(w')‘] < / V1og N(e, W, p)de < / log(n?h=2e72)de
0 0

5
5/ (\/logn—i— \/10g1/6> dssé(\/logn—i- \/logl/é),
0
and so

El sup | Z5(w) — Z} (w)|| SE

[w—w'|<on

sup 12} (w) — Z{(w')d < nh'y/6,logn,

plw,w)<nh=15,/*

whenever 1/4,, is at most polynomial in n.

Part 3: existence of the quantile
Apply the Gaussian anti-concentration result from Lemma SA33, noting that Z_ is separable, mean-zero and
has unit variance:

sup |ZX (w)| —t‘ < 25n) < 8ep (1—HE [sup ]Z,?(w)\D.

sup P (
terR wew weWw

To bound the supremum on the right hand side, apply the Gaussian process maximal inequality from
Lemma SA32 with ¢ < 1 and N(g, W, p) < n?h= 2%

2
E {sup ’Z};(wﬂ] <1 +/ Viog(n?h=2e72)de < /logn.
0

wew

Therefore

sup ’Zg(w)| —t‘ < 5) < ey/logn.

sup P (
teR weWw

Letting € — 0 shows that the distribution function of sup,,cy, |Zg (w)‘ is continuous, and therefore all of its
quantiles exist.

Part 4: validity of the infeasible uniform confidence band
Under Assumption SA3 and with a sufficiently slowly diverging sequence R,,, the strong approximation rate
established in Lemma SA10 is

-1/2] —3/4p,-7/8(] 3/8R,, -2/3p-1/2(] 2/3 1/2),pA8
sup [T (w) — 21 (w)] Sp T80T (logn)** Ry + 1 (logn)®/% + n

weW ~F Do +1/v/nh
1

< .
Vlogn

So by Lemma SA34, take ¢,, such that

P (sup |T(w) = Z; (w)] > en) < en/logn

weW
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and g,+/logn — 0. So by the previously established anti-concentration result,

P(‘fw(w fw (w ‘<q1 aV/ 2 (w, w) for allweW)

=P sup [T (w)| < q1- a>

(22
(

sup |Z;} (w <q1_a+5n> +]P’(sup T (w) — Z (w)] >€n>
wew

weW
< 67,,) +eny/logn

<P

<®(sup 25w <0 )+ | sup |2 (0] - 1m0
weEW weWw
<l—-a+ QEn\/IOE.

The lower bound follows analogously:

]P’(‘fw(w v (w ‘ < Qi—a/Sn(w,w) for all w € W)
>P (Sup 1 Zy (w)| < q1-a —€n> —en/logn
weW
>P (sup |Zg(w)| < qla) —IP’( sup |Z;‘f(w)| —q1_a
weW wew
<1—a—2,vlogn.

Finally we apply €,v/1logn — 0 to see

‘P(‘fw( ~ fw(w ‘ o/ Sn(w,w) for allweW)—(l—a)‘—)O.

< sn> —en/logn

SA5.3.7 Covariance estimation

Before proving Lemma SA11, we provide the following useful concentration inequality. This is essentially a
corollary of the U-statistic concentration inequality given in Theorem 3.3 in Giné et al. (2000).

Lemma SA45 (A concentration inequality)
Let X;; be mutually independent random variables for 1 <i < j < n taking values in a measurable space X.
Let hyi, hy be measurable functions from X to R satisfying the following for all i and j.

E[h1(X45)] =0, Elha(Xi5)] =0,
£l < o EliaX,)] <
|h1(Xi5)] < M, |ha(Xi5)| < M.

Consider the sum
Sy = Z ha(Xij)ha(Xir).
1<i<j<r<n

Then S, satisfies the concentration inequality

1 ) t2 t t2/3 t1/2
P(1Snl 2 1) < Cexp (_c min { 308 g (nMo)2/3’ M})

for some universal constant C' > 0 and for all t > 0.

Proof (Lemma SA45)

We proceed in three main steps. Firstly we write S,, as a second-order U-statistic where we use double
indices instead of single indices. Then we use a decoupling result to introduce extra independence. Finally a
concentration result is applied to the decoupled U-statistic.
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Part 1: writing S, as a second-order U-statistic
Note that we can write .S,, as the second-order U-statistic

n - Z Z hzjqr 2]7 ),

1<i<j<n 1<g<r<n

where

]’Liqu(a, b) =h (a)hg(b) H{j <r,q= Z}

Although this may look like a fourth-order U-statistic, it is in fact second-order. This is due to independence
of the variables X;;, and by treating (4, j) as a single index.

Part 2: decoupling
By the decoupling result of Theorem 1 from de la Pefia and Montgomery-Smith (1995), there exists a universal
constant C7 > 0 satisfying

P(1Sal > £) < C1P (C11S0] 2 1),

where

§n = Z Z hijqr ijaX/ )

1<i<j<n 1<g<r<n
with (X};) an independent copy of (Xj;).

Part 3: U-statistic concentration
The U-statistic kernel h;jq, (X5, X ) is totally degenerate in the sense that

Elhijor (Xij, Xgr) | Xij] = Elhijqr(Xiz, X)) | Xgp] = 0.
Define and bound the following quantities:

A = max ||hiqu(XlJ7X/ Moo < M2,
ijqr

1/2
B=max{ |l S E[hyer (Ki, X | X[ o || Y B[ hier (X, Xp)? | Xy, ]
1<i<j<n w  |[1<a<r<n -
—max{ > ha(Xiy)’Elhe(X),)° |G < rg=1d}||
1<i<j<n o
1/2
Z ]E[hl(le)z] hQ(X(/]T‘)2]I{J <7rq= 7’} }
1<g<r<n s
< max {nQMQUQ,nM202}1/2 =nMo,
1/2
C = Z Z ijar(Xij, X00)?]
1<i<j<n 1<g<r<n
1/2
= Z ]E[hl(X”)QhQ(X{T)Z] < \/Tl30'4,

1<i<j<r<n

D = sup { Z Z z;qr Xij, X )flj( z])qu(X(;r)]

f.g 1<i<j<n 1<g<r<n
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Y B2 <1 Y E[gqr<xgr>2]<1}

1<i<j<n 1<g<r<n
= sup { Y E[(Xi) fi(Xi) B ha(X],) gir (X],)]
9 Li<ici<r<n

Z E[fi;(Xi;)%] <1, Z E [gqr(X7,)?] < 1}

1<i<j<n 1<g<r<n

SSHP{ > E[hl(Xij)2]1/2]E[fz'j(Xz‘j)2]WE[hz(X{r)z]I/QE[gir(X{rﬂl/z :

L9 i<icj<r<n

Y Elfu(Xip)l <1 Y Elge(X)?] < 1}

1<i<j<n 1<g<r<n
302sup{ S E[f(X)H? Y Elga(x0)7
1.9 1<i<j<n 1<r<n
Y Elf(Xp) <1 Y Efge (X)) < 1}
1<i<j<n 1<g<r<n
1/2 1/2
SO’QSup{<TL2 Z E[fij(Xij)2]> (n Z E[giT(X£T)2]> :
fr9 1<i<j<n 1<r<n

Z E[f:;(Xi;)%] <1, z E[gqr(X,,)?] < 1} < Vn3cg4.

1<i<j<n 1<g<r<n

By Theorem 3.3 in Giné et al. (2000), we have that for some universal constant Cy > 0 and for all ¢ > 0,

~ 1 t2 t t2/3 tl/z
]P>(|Sn| > t) < CzeXp< [ mm{CQ’D’ 32/3’/11/2})

1 2 " £2/3 £1/2
< Csexp | —— min —
- ( Cy {n304’ Vn3od (nMa)2/3" M })

Part 4: Conclusion
By the previous parts and absorbing constants into a new constant C' > 0, we therefore have

P(ISal 2 8) < C1P (IS0 2 t)

1 2 t t2/3 t1/2
< 0102 exp 77min 5 )
= Cy n3oiC? \/n3otC; (nMaCh)?/3 ot/

1 t2 t 23 1/2
< Cexp | ——= min —_— .
- ( C {7’L30'47 \/7},30'4, (’I’LMU)Q/?’, M })

O

Proof (Lemma SA11)
Throughout this proof we will write k;; for kn(Wij;, w) and ki, for kn(Wij,w’), in the interest of brevity.
Similarly we write S;;, to denote S;;r(w,w’). The estimand and estimator are reproduced below for clarity.
2 4(n — 2) dn—6
—  Elkjikl) + ——LE[k ik ] — ————
[ } ( _1) [ er] n(n—l)

i Vg

S 2 -2) 4n—6 ~ ~

b)) "= E § _ ’
n(wyw) TL—]. kz] z] 1) (TL—]. n_2 Sz]r fW(w)fW(w )7

n(n —1)
Z<j 1,<]<r

Elki;JE[k7;]
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where

iJ Jr

Sijr = (kl]k;r gk kinkl + ikl + gkl + k:]k)

We will prove uniform consistency of each of the three terms separately.

Part 1: uniform consistency of the fy (w)fw(w’) term
By boundedness of fyy and Theorem SA1, fW is uniformly bounded in probability. Noting that E[]?W(w)] =

E[k;;] and by Lemma SAG6,
Fw () fov (w') = B[ | E [k ]
VEn(w,w) + Zp, (w', w')
fw () fww (w') = E[fw ()| E [fw ()]
w,w €W VI (w,w) + %, (w’,w’)

w,w’ EW

fw(w) — E[fw(w)] ~ fw @) —E[fw ()]~
M sy e B LG R e Bl )
<o sup (10BN oy g | En) |y i s 1Qu )|+ ViPh sup (B )
wEW Yo (w, w) weW |/ Zn(w, w) weW
Ln(w) logn L (w)
e 52\% Yo (w,w) +\/7 + Vi & sup S (w, w) logn.

Now consider the function class

F_ {a N E[kh(Wij,w) | Ai = a] - E[kjh(Wij,w)] we W} 7

nY, (w, w)

noting that

Ly (w)
Sy (w, w)1/2 = Zgw

is an empirical process evaluated at g,, € F. By the lower bound on ¥, (w,w) from Lemma SA6 with
infyy fir (w) > 0 and since nh > logn, the class F has a constant envelope function given by F(a) < v/nh.
Clearly M = sup, F(a) < vnh. Also by definition of ¥,, and orthogonality of L,, @, and E,, we have
sup e E[f(A;)?] < 0 = 1. To verify a VC-type condition on F we need to establish the regularity of the
process. By Lipschitz properties of L, and X, derived in the proofs of Lemma SA4 and Theorem SA4
respectively, we have

1
\/E W) - VER (W w')
Yo(w,w) =X, (w',w')
S (w,w) /2y (W', w')
SVn2hlw — w'| + (n2h)3/? |8, (w, w) — Sy (W', w')]
< Vn2hlw —w'| + (n2h)* 20w — W) < ntlw — W'

Ly (w) 3 Ly (w")
\/En(w,w) \/Zn(w’,w’)

uniformly over w,w’ € W. Therefore by compactness of YW we have the covering number bound

N(F, | loose) SN, |- |,n~* e) <nie L.
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Thus by Lemma SA25,

E[sup Ln(w) 1 < logn +
wew | v/ Xp(w, w)
Thus

Jw () fiw (v

) —Blky B[R] |

vnhlogn < \/@.

n

sup
w,w EW | \/En(w,w) + X (w W)

Part 2: decomposition of the S;;. term

<p /logn.

We first decompose the S;;, term into two parts, and obtain a pointwise concentration result for each. This is
extended to a uniform concentration result by considering the regularity of the covariance estimator process.

Note that E[S;;,] = E[k;;k/,], and hence
6
— Sigr — Elkiykl,]) =
n(n_l)(n_Q) i;T( J [ J zr]) n

where

SW = S, —E[Si;r | Aul,

igr

Part 3: pointwise concentration of the 51(317)

___ 6
(n—1)(n-—
term

5 2

i<j<r

S —

ijr

) 6
Sigr n(n—l)(n—Q),Z r

E[Sijr | An] — E[Sijr].

By symmetry in 4, j and r it is sufficient to consider only the first summand in the definition of S;;,.. By
conditional independence properties, we have the decomposition

6

m Z (kwk;r - E[kijkgr | AHD

1<j<r

6
:n(n—l)(n—Q) Z (kij

i<j<r

i<j<r

+ (kij — Elkij | An])E[K;,

6
- n(n—1)(n—2) Z (kij_

1<j<r

n—2 n—1

+(n—1 n—2) Z Z

1= 1] i+1

+(n—1 ZZ

6
n(n—1)(n —2) 2 ((’%‘ B

K, — Elky | AuJE[K, | A,])

Elki; | Anl) (K,

| An)+ (i, — E[k, | An])E[ks; | An))
Elk; | An]) (i, — Elk}, | An)) (7)
(ks ~Bli | A0) -2 32 Bl | A (8)
r=j+1
(¥, W|An1)-% S Bk A )
j=i+1

=1 r=1+4+2

For the term in (7), note that conditional on A,,, we have that k;; —

Elki; | A,] are conditionally mean-zero

and conditionally independent, as the only randomness is from V,,. Also Varlk;; | A,] < 02 := 1/h and

|kij| < M :=1/h uniformly. The same is true for k;;.

Cy > 0:

P Z (kij — Eki; | An]) (kér

<j<r

< Cjexp <_C’1 min {
1

<Clexp( C’l mm{
1

t? t

~E[k, | Ax))

Thus by Lemma SA45 for some universal constant

>t| A,

t?h?  th

t2/3 t1/2 })

ndot’ \/n3gd’ (nMa)2/3" M

n3 7\/’,’]/73’
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and therefore with ¢ > 1 and since nh 2 logn, introducing and adjusting a new constant Co where necessary,

P oy 2 (b —Blh | Al) (ke —BlE, | A1) > =22 |4,

i<j<r
<P (| S (ki —Blkis | Anl) (b, — Bl | An])| > t¥/2h ogn/24 | A,
<jg<r
1
< Cyexp <_C min {(t logn)?, tlogn, (tlogn)?3(nh)Y/3, (tnhlog n)1/2n1/4})
2

< Cyexp <_C min {tlogn tlogn, /3 logn, t/2pt/4 10gn}>
2

2/3
= Cyexp <_t / logn) = C2n_t2/3/c2.
Cs

Now for the term in (8), note that 3 > j+1 B[k}, | Ayl is Ap-measurable and bounded uniformly in i, j. Also,
using the previously established condltlonal variance and almost sure bounds on k;;, Bernstein’s inequality

(Lemma SA29) applied conditionally gives for some constant C3 > 0
Al > /18" ‘A
n2h "

—(n — 1)2(71 — 2) Z <kl.7 — ]E[k‘ij ‘ An]) . % Z E[k!

i=1 j=i+1 r=j+1

2,2 2
< 2exp ( t*n*logn/(n*h) >

Cs3/(2h) + Cst+/log n/ (n2h)/(2h)

2 2
—exp | - t?logn < 2exp (_t logn) Py
C3/2 + Csty/logn/(n2h)/2 Cs

The term in (9) is controlled in exactly the same way. Putting these together, noting the symmetry in i, j, r
and taking a marginal expectation, we obtain the unconditional pointwise concentration inequality

logn logn —t2/3 /0y —t2/(4C3)
>tm+t\g < Con +4n :

Multiplying by (3, (w,w) + (v, w’))_1/2 < vn2h gives (adjusting constants if necessary)

P

6 (1
D3, 22, S

i<j<r

S(l) logn 2/3 2
Pl ur ¢ +ty/logn | < Con™? /C2 +4nt /(4Cs)
n(n—l Zﬁz;r VEn(w,w) + S, (W, w') vnh & ?

Part 4: pointwise concentration of the S term
We apply the U-statistic concentration mequahty from Lemma SA36. Note that the terms E[S;;, | A,] are

permutation-symmetric functions of the random variables A4;, A; and A, only, making S ) the summands
of a (non-degenerate) mean-zero third-order U-statistic. Whlle we could apply a thlrd order Hoeffding
decomposition here to achieve degeneracy, it is unnecessary as Lemma SA36 is general enough to deal with
the non-degenerate case directly. The quantity of interest here is

6 2
m}z S§jZ=W > (]E Sijr | An] —E[S m})-

i<j<r

Note that by conditional independence,
|E[kijkir | An]| = [E[kij | An]E[kir | An]| S 1,
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and similarly for the other summands in S;j,, giving the almost-sure bound |SZ(J2T)| < 1. We also have
Var [E[k;; | A B[k, | Aj]] S Var [Elki; | A]] + Var [E[k],. | A;]] S nVar[L,(w)] + n Var[L, (w")]
<SS (w,w) + nX, (w',w')

and similarly for the other summands in S;;, giving the conditional variance bound

E[E[S() | Ai)?) S nZn(w,w) + nSa(w,w').

T

So Lemma SA36 and Lemma SA6 give the pointwise concentration inequality

P > ty/log ny/S (w, w) + X, (w', w')

6 (2)
w7 2=, 5

1<j<r

< doxn | — nt? (S, (w, w) + By, (w',w')) logn
- P Cy(nE,(w,w) + nX, (v, w')) + C4t\/2n(w, w) + X, (w',w')y/logn

t?logn t2logn ) 2
<4 - <4 o ) <ypt/Ca
= exP( 04+c4t<zn<w,w>+2n<w',w'>>I/Qﬁlogn/n) = e’“’( Ci+ Catv/h

for some universal constant Cy > 0 (which may change from line to line), since the order of this U-statistic is
fixed at three.

Part 5: concentration of the S;;, term on a mesh

Pick 6, — 0 with log1/d, < logn. Let Ws be a d,-covering of W with cardinality O(1/d,,). Then Ws x Wi
is a 26,,-covering of W x W with cardinality O(1/62), under the Manhattan metric d((wy,w}), (w2, w})) =
|wy — wa| 4+ |w) — wh|. By the previous parts, we have that for fixed w and w’:

p< 5 ¥ )Pty “”>]| > logn Htm)

l<]<r \/E ww)—l—E (w',w") Vnh

< 02n7t2/3/02 +4n~t */(4Cs) +4n~? /C4.

n(n—l

Taking a union bound over Ws x Ws, noting that nh 2 logn and adjusting constants gives
Z 7,]'!‘ ]E[Sijr(w w/)]

P sup > ty/logn
(w,w'ewg \/E ww)—l—Z (w',w") & )

5 6;2 (02721_152/3/02 +47’L_t 2/(4C3) _|_4n—t /C4> 5 5;271_252/3/05’

n(n —1) 1
1<]<r

for some constant Cys > 0.

Part 6: regularity of the §;;, term
Next we bound the fluctuations in S;;, (w,w'). Writing k;; (w) for ky(W;;,w), note that

1 1
| kij (w1)kir (w]) — kij (wa)kir (wh)| S E|k’z‘j(w1) — kij(wa)| + E|k’ir(w’1) — kg (wh)]
<1
~ h3

using the Lipschitz property of the kernel. Similarly for the other summands in S;;,. Therefore

(leor = wal + uwf = wh).

sup sup |S¢jr(w1, wy) — Sijr(wg,w’z)| < 6p,h 3.

w1 w2 | 8, [} —w)|<6,
Also as noted in the proof of Theorem SA4,
sup sup | S (wi, wh) — Sy (wo, wh)| S SR

|w1 —w2 <6y |w] —wh|<dy
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Therefore since /3, (w, w) 2 vn2h and |S;;,| < h™2, using the elementary fact FoAEET 0%7

Sijr(wy, wh) Sijr (w2, wh)
sup sup 7 ~ 7 7
|wi —w2| <8, (W) —wh|<6p \/En(wla wl) + En(wlv wl) \/ETL(wQ’ wQ) + E'fb(rw27 ’UJ2)

< 6,h73Vn2h + h 28,0 h =3 (n?h)%/% < 8,nh %% 4+ 6,n2h" /% < 5,08,

where in the last line we use that 1/h < n.

Part 7: uniform concentration of the S;;, term
By setting 6,, = n~%y/logn, the fluctuations can be at most \/logn, so we have for ¢ > 1

Pl sup
w,w’ EW

This converges to zero for any sufficiently large ¢, so

— E[Sijr(w, w")] _o _q42/3 _42/3
m 1T S 9t ﬁlo n <57 2t /Cs < pl2-t /CS.
(n—l Y(n —2) Z \/E ww)+2 (w’,w") 81~ On ~

z<]<7‘

<p /logn.

sup
w,w’ W

Sigr ( — E[Sijr (w, w')]
(n—l )(n—2) Z \/E ww)+2 (w',w')

z<]<r

Part 8: decomposition of the k;;k;; term

We move on to the final term in the covariance estimator. We have the decomposition

ﬁ ; (kl]kij [kwkég]) = Z S(l) Z S

z<j

where

1 2
S3) = kijkl; — Elkijkl; | Ay, SZ = Elkijkl; | An] — E[kikl].
Part 9: pointwise concentration of the SZ.(;) term

Conditioning on A,,, the variables SZ(; ) are conditionally independent and conditionally mean-zero. They

further satisfy |SZ(JI)\ < h™? and the conditional variance bound E[(S (1)) | A,,] < h™3. Therefore applying
Bernstein’s inequality (Lemma SA29) conditional on A,,, we obtain the pointwise in w,w’ concentration
inequality

22 21,3
P LZSZ(;) IOQgZ’An <2exp|— ‘ t'n logn/(nh) ‘
n(n —1) i<j n?h h=3/2 + Cgth=2\/logn/(n2h3)/2

<9 t2logn
ol
= 2O\ T s /2 + Cot\Slog n) (n2h) /2

2
< 2exp (—t lc(zgn> = Zn_tz/c“,
6

where Cg is a universal positive constant.

Part 10: pointwise concentration of the Si(]?) term

We apply the U-statistic concentration inequality from Lemma SA36. Note that SS ) are permutation-
symmetric functions of the random variables A; and A; only, making them the summands of a (non-degenerate)
mean-zero second-order U-statistic. Note that |51(12)| < k™! and so trivially IE[IE[SZ(JQ) | A;]?] < h™2. Thus by
Lemma SA36, since the order of this U-statistic is fixed at two, for some universal positive constant C; we
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have

1 2n 1 2
ZS” og;z <2exp |- _ t*n og_n/(nh )
n(n—1) £ nh Crh=2/2 + C7th=1\/log n/(nh?) /2

<96 t2logn
o | —
=S\ TG 2+ oty Jlog njn 2

2
< 2exp (_téogn) = Qn—t2/07.
7

Part 11: concentration of the k;;k;; term on a mesh

As before, use a union bound on the mesh Ws x W.

2 , , \/logn \/logn
P sup n(n_l);(kmkw B[k k)| >ty Sz + 44/ o

w,w’ EWs

logn
<P su g
ww€W5

+P sup
n2h3 w,w’ EWs

[logn
t =
- nh?

n—l ZS(l)

1<J

2 )
n(n —1) ZS”

1<J

5527t/C6+527t/C7

Part 12: regularity of the kwkij term

Just as for the S;;, term, we have
!/ !/ < 1 / /
s iy () = iy (w2 (w5)] S = (Jwr = wa] + g = wh]).

Part 13: uniform concentration of the k;;k;; term

By setting 6,, = h®+/logn/(nh?), the fluctuations can be at most /logn/(nh?), so we have for t > 1
2 log n 1og n
P =3 (kukyy — Elkigkiy]) | > 1y
wrrew |n(n — 1) ; 7 kil )| > 0 s

2 logn logn
<P sup n(n—1) Z (k’zgkga [kwkgy]) > t\/nzhs + t\/ nh2

w,w’ EWs TL(TL -1

i<j
logn
+P < sup sup [k (wi)kij(wy) — kij(ws)kij (ws)| >t h2 >
|wy —w2| <Ly |w] —wh|<on

< 6—2n—t2/cﬁ + 5;2n—t2/c7 < n1—t2/csh—4 + nl—t2/07h—4 < ns—t2/cg7

~ 'n

where Cg > 0 is a constant and in the last line we use 1/h < n. This converges to zero for any sufficiently
large t, so by Lemma SA6 we have

- Z k”k;]_]E[kmk;J /102;57; \W Vi < /nlogn
w,w’ €W nn*l \/E ww -I—E( n?h h
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Part 14: conclusion
By the uniform bounds in probability derived in the previous parts, and with nh 2 logn, we conclude that

5 ) — / kijhl; — E[kijk,
p | Znlww) = Saww) |2 wp 3 iki; — Elkijkiy]
w,w’ €W \/27,(w,w)+2n(w/,w/) n(n_l)wwew nn_l Z<j \/Z w w)+2 (w w)
— z T kk/
+ 4(n 2) sup Z 7 [ ]
n(n —1) wuwew|n(n— Z<j<r\/2nww)—|—2 (w',w')

n -6 fw (w)fw (w') — Elki,]E[k,]
——— sup
n(n=1) wuwew| /Sp(w,w) + . (w, w')
logn  +/Iogn N Viogn _ /logn

P + P
~ n3h n n "~ n

O

Proof (Lemma SA12)
Since there is no ambiguity, we may understand k;; to mean kj, (W;;,w) when ¢ < j and to mean kj,(W;, w)
when j < i. We use a prime to denote evaluation at w’ rather than w. In this notation we may write

1

J#i

Let >, ;. indicate that all the indices are distinct. Then

%Zsi(w)si(w/): nQZn—IZkU Zk - QZZZk”k;T

r;éz i=1 j#i r#i

- n_mzz S gkl +

i=1 j#i \r#i,r#j

= 7’L _ 1 Z kl] k;r Z klj 1]

iEJFET i#]
= 1 QZSwww n_“ka
i<j<r l<]
_ 8 ’ ’ — Y
_En(w’w) n_12zk”kzr _1)ff7
1<J
and the result follows. O

SA5.3.8 DPositive semi-definite covariance estimation

Proof (Lemma SA13)

Firstly we prove that the true covariance function ¥, is feasible for the optimization problem (1) in the sense
that it satisfies the constraints. Clearly as a covariance function, 3, is symmetric and positive semi-definite.
The Lipschitz constraint is satisfied because as established in the proof of Theorem SA4,

4
/ " ’ "
[Za(w,w) = Salw,w”)| < 5 GOl — ']

for all w,w’,w"” € W. Denote the (random) objective function in the optimization problem (1) by

~

obj(M) = sup M(w,w") — Xy (w, w") .
w,w'EW \/Z (w,w) + Sp(w', w')
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By Lemma SA11 with w = w’ we deduce that sup,,ecyy ‘En(w ) _ 1‘ <p vhlogn and so

Yn(w Y (W', w’
obj(X,) = sup = +A W, w)
w,w' €W \/E (w, w) +Z Yo(w,w) + Xy (w,w')

< Viogn - !E (w,w) — (w,w)| f}n (w',w') — En(w’7w')’ -1/2
~F T S (w, w) So(w',w')

< Vlogn (1_m)—1/2< ,/logn.

P ~P
n n

Since the objective function is non-negative and because we have established at least one feasible function
M with an almost surely finite objective value, we can conclude the following. Let obj* = infs obj(M),
where the infimum is over feasible functions M. Then for all € > 0 there exists a feasible function M. with
obj(M.) < obj* + ¢, and we call such a solution e-optimal. Let Z+ be an n~'-optimal solution. Then

obj(EF) < obj* +n "t < obj(S,) +n L

Thus by the triangle inequality,

S OS> ' -
(W) = Bnlr W) | o ohi($55) + 0bj(Sa) < 20b§(Sn) + 171 o

su
e VEn (0, w) + S, (w, w') ~ n

w,w’' €W

Proof (Lemma SA14)

Smce E+ is positive semi-definite, we must have Z*(w w) > 0. Now Lemma SA13 implies that for all
€ (0, ) there exists a C. such that

V1 a V1
P (Zn(w,w) —C. Ogn\/zn(w,w) < S w,w) < 2, (w,w) + C: Ogn\/En(w,w) for all w € W)
n n
>1—c.
Consider the function g,(t) = ¢t — av/t and note that it is increasing on {t > a?/4}. Applying this with

t =%, (w,w) and a = Y2 noting that by Lemma SAG we have t = ¥, (w, w) 2 —1- > 2862 = 42 /4, shows
that for n large enough,

Viogn

inf ¥, (w,w)— inf S, (w,w) <p inf SF(w,w),
wew wew wew

~

n
~ 1
sup S (w,w) Sp sup Ty (w,w) + Y2 [sup 5, (w, w).
wew weW n wew

Applying the bounds from Lemma SA6 yields

D? 1 V1 D 1
lo +7 - Ogn (\/lﬁ + F) ~P lnf E (’LU,’U)),

n nzh n
S D 1 I D 1
sup X} (w,w) Sp “p+2+@< =+ )
wew no ' nwh NI
and so
D120 1 S+ S+ Dﬁp 1
n +Th§P lnf z (w w)<£g$\)2n(waw) SJPT*FW.
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SA5.3.9 Feasible uniform confidence bands
Proof (Lemma SA15)

1

w)‘ . 1 _
\/if{(w, w) V3 (w, w)

w) — E[fw(w)} — fw(w)
En(w,w) V0 (w, w)

S -5,
- sup 4 (w, w) (w,w)

wew \/En(w,w)iﬁ(w,w)

Fw () —E[fw (w)]
2 (w,w)

gives sup,, ey [E[fw (w)] — fw (w)| < BP*2. By Lemma SA6 we have sup,,eyy Sy (w, w) /2 < W’

and similarly Lemma SA14 gives sup,,cyy f);’l'( w)” 12 <p W, Thus, applying Lemma SA13 to
1

Now from the proof of Lemma SA1l we have that sup,,cyy ’ ’ <p vlogn, while Lemma SA1

control the covariance estimation error,

sup |7, (w) — T, (w)‘ < logn + i log !
wew | " TS Yt 1Veh ) n Dujvn+ 1/Vnh

PAB
< flogn ( Tog 71 + Vnh ) 1 .
n D10+1/\/nh D10+1/\/nh

Proof (Lemma SA16)

-~ ~ S+ ’
Firstly note that the process Z! exists by noting that ¥} (w,w’) and therefore also 2, (ww)

\//X\)i (w,w)fz(w’,w’)
positive semi-definite functions and appealing to the Kolmogorov consistency theorem (Giné and Nickl, 2021).
To obtain the desired Kolmogorov—Smirnov result we discretize and use the Gaussian—Gaussian comparison
result found in Lemma 3.1 in Chernozhukov et al. (2013).

are

Part 1: bounding the covariance discrepancy
Define the maximum discrepancy in the (conditional) covariances of ZI and ZI by

A= sup St (w, w') by (w w)
w,w' €W \/E+ (w w)2+( L) \/E (w, w) 2, (W', w')

This random variable can be bounded in probability in the following manner. First note that by the
Cauchy—Schwarz inequality for covariances, |3, (w,w’)| < /3, (w, w)S, (w’,w’). Hence

§)+ nN_w ! E+ww2+ww Y (w, w) B, (w', w
A< sup (w, w) n(w, w) + sup \/ ) v )

w,w’' eEW \/Z+ w w)2+(w ,w) w,w’' EW \/EJr E+ U) U))

. Yo (w,w) + X, (w! ’)
= w,?v’IGDW{\/ S (w, w)SE (w', w') }

T+ S+ (1w w') — ! W
+ sup S (w, w)EF (v, w') En(w7w)2n(w,w).

W |\ JSE (w0, 0) S (w0 (0, 0) S ()

f]Jr(w w') — X, (w,w)
VEn(w,w) + (W', w')
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For the first term note that inf,eyy 57 (w, w) > D1° + —4 by Lemma SA14 and sup,,¢yy ‘g’zé:g - 1’ <p

vhlogn by the proof of Lemma SA13. Thus by Lemma SA13,

{\/Zj(w,w) —I—AZn(w’,w’) ij{(w,w’) — Y, (w,w)
S5 (w, w) S (w,w') | /S (w,w) + 3, (w', w')

sup
w,w’ W

< Viogn 1
~ T n Dy/va+ 1/Vi2h

< [logn 1
~ n D10+1/\/nh

For the second term, we have by the same bounds

S (w, w)EF (W, w') — S (w, w) Sy (W', w')

sup
W €W | S5 (0, w) S (0, w) S (10, ) S (', 0)
‘Z*‘ w,w) — En(w,w)@;f(w’,w’) |Z+ W', w') = S (w', w')| Sy (w, w)
< sup
“’wew \/E (w, w) S (W', W) S (w, w) Sy, \/E (w, w)S (W', W) Sy (w, w) Sy (W', W)
_ |5 (w, w) = Ty (w, w)| i*(w/ w')
< sup
W EW VEn (w, w) \/E+ (w, ) S (', w')
§:+ /a ! 7En /a ! En
v B0 B ()

w,w’ eW \/m \/fjﬁ(w,w)f];'{(w’,w’)

< [logn 1
~F n Dy, +1/vnh

Therefore

logn 1
A <py/ .
~F n Dy, +1/vnh

Part 2: Gaussian comparison on a mesh
Let Ws be a d,-covering of W with cardinality O(1/6,,), where 1/6,, is at most polynomial in n. The scaled

(conditionally) Gaussian processes Z! and Z! both have pointwise (conditional) variances of 1. Therefore by
Lemma 3.1 in Chernozhukov et al. (2013),

sup

1 >2/3
teR

IP’( sup Z! (w) St) —IP’( sup ZT(w) <t ‘ Wn>’ §A1/3(1\/log—
weWs weEWs Ady,

uniformly in the data. By the previous part and since x(log1/2)? is increasing on (O, 6_2),

1/3
logn 1
P( su ijwgt)—lp(su Z7 (w <t‘W>’N \/ logn)?/3
(quVI\)/a ( ) weVI\)/(s g n D+ 1/vVnh ( &)

n’l/G(logn)S/G
T
DY/? 4 (nh)-1/6

sup
teR

Part 3: trajectory regularity of Z!
During the proof of Theorem SA4 we established that Z! satisfies the following trajectory regularity property:

sup \fo(w)—zﬁf( |1 <nh~'y/6,logn,

|w—w’|<én

E

whenever 1/4,, is at most polynomial in n.
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Part 4: conditional L? regularity of Zf

By Lemma SA13, with nh = logn, we have uniformly in w, w’,
|§]z(w7w’) — ij(w,w” <n T hT3lw — ).

Taking §,, < n~2h%, Lemma SA14 gives

a 2 D? 1 1 l)2 1
. f E+ N> lo - 71h 367 lo - J—
|wfgl'|§6n n (W) 2 n + n2h " te n2h  n3h R n n2h
The conditional L? regularity of Z7 is
2 (w,w)

E((ZT(w) — ZF (0')* | W, | =2 -2 > .
{ } \/Eﬁ(w,w)zﬁ(w’,w’)

Applying the same elementary result as for Z! in the proof of Theorem SA4 yields
E[(Z0(w) - ZF ()

Thus the conditional semimetric induced by 2;{ on W is

? | Wn} <p n?h72|lw — w'|.

1/2

o=,

plw,w') :=FE [(2,?(11}) - 25(11/))2 ‘ Wn} <pnh~

Part 5: conditional trajectory regularity of Z7

Just as for ZI" in the proof of Theorem SA4 we apply Lemma SA32, this time conditionally, to obtain that

also

‘Z{(w -

sup
|lw—w’|<68,

d

whenever 1/0,, is at most polynomial in n.

n] SJIP’ ’I’Lh71 V 5” lOgTL,

Part 6: uniform Gaussian comparison

Now we use the trajectory regularity properties to extend the Gaussian—Gaussian comparison result from a

finite mesh to all of WW. Write the previously established approximation rate as
n=1/6(log n)3/6
DJ* + (nh)=1/%

Take €, > 0 and observe that uniformly in ¢ € R,

IP(sup ‘ZT St’Wn>
weWwW
S]P’(sup |Zg(w)|§t+sn Wn>+IP’ sup ‘Zg(w)ffg(w/) >e, | W,
weWs |w—w’|<dp
<P < sup |Z§(w)| <t+ En) + Op(ry,) +P < sup An (w) — Eg(w’) > e Wn)
weWs |w—w’|<d,
<P (sup |Zg(w)’ <t+ 2€n> + Op(ry)
wew
+P sup ’Zg(w) — Zf(w’)| >ep | +P sup An (w) — Ef(w’) >en | W,
[w—w’|<dn [w—w’|<dn
<P <sup |Zg(w)’ <t-+ 25n> + Op(ryn) + Op(e,; 'nh™1\/6, logn)
wew
§]P’<sup |Zg(w)’§t)+]P’< sup |Z |t‘<25n>+0p(rn)+0p 1/, logn).
wew wew

65



The converse inequality is obtained analogously as follows:

P (sup ‘Zg(w)’ <t ) Wn>
weWw
Zn (w) = Zyy (w')

Z]P’(sup |2§(w)|§t—€n > En

wEWs

)
wn)

)

su\;/)v |Zg(w)| - t‘ < 25n> — Op(ry,) — Op(e;, 'nh™1\/5, logn).
we

Wn> —P sup
Jlw—w’|<ép

> 1P’< sup |Z,T(w)’ St—sn> — Op(ry) —IP’( sup

weW5 Jw—w’|<dp

Zy(w) = Zy (w')| = en

>P (sup |ZF (w)] <t - 25n> — Op(rp)
wew

Z(w) - ZE(w')| > e,

[w—w’|<dn [w—w’|<dr

_]P< sup ’Zg(w)—Zg(w’ﬂzen)—]P’( sup

> P <sup |Zg(w)’ <t-— 25n> — Op(ry) — Op(e;,'nh™1\/8, log n)
wew

21P><sup |Z§(w)!9)ﬂ><

weW

Combining these uniform upper and lower bounds gives

sup

]P’<sup |23;(w)’ <t ‘ Wn) —]P’(Sup ‘Zg(w)’ §t>‘
teR weW

weW

<
teR

sup |2 (w)] —t‘ < 25n> + 7y 4 5, tnh Y2612 /logn.
we

To bound the remaining term, we apply the anti-concentration result for Z! from the proof of Theorem SA4:

sup P ( sup ’fo(w)| - t' < 5) < ey/logn.
teR weW
Therefore
sup |P <sup ‘Zg(w)’ <t ‘ Wn) —-P (sup ‘Zg(w)’ < t)‘
teR weW wew

<p en/logn + r, 4+ e, nh~261/2, flogn.

Taking ¢ = r,,/v/logn and then 6, = n=2hr2e2 /logn yields

N ~1/6), 5/6
‘IED (sup |ZF(w)| <t ’ Wn) -P (sup |Z5(w)| < t)’ <pr,= %.
weW weW D3 4 (nh)—1/6

lo

Proof (Lemma SA17)
Part 1: Kolmogorov—Smirnov approximation

Let ZI' and 2,7; be defined as in the proof of Lemma SA16. Write
- nil/ﬁ(log n)5/6
DY/* + (nh)-1/6

lo
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for the rate of approximation from Lemma SA16. Then for any ¢, > 0 and uniformly in ¢t € R:

P (sup ‘Zg(w)’ <t ‘ Wn) <P (sup |2 (w)] < t) + Op(ry)
weW weWw

§P<sup |Zg”(w)|gt—sn> +IP<

sup |Z, (w)| — t’ < Sn) + Op(r4s)
weW

wew

<P (sup fn(w)‘ < t) +P (sup T (w) — Zg(w)‘ > an) +P ( sup |2} (w)] — t‘ < En) + Op(ry)
wew weWw wew

<P (sup fn(w)‘ < t) +P (sup T (w) — Zg(w)‘ > 5n> + en/logn + Op(ry),
wew weWw

where in the last line we used the anti-concentration result from Lemma SA33 applied to Z!', as in the proof
of Lemma SA16. The corresponding lower bound is as follows:

P <sup ég(w)’ <t ‘ Wn) > P (Sup |Z7T(w)| < t) — Op(ry)

wew wew

>P (sup |Zg(w)| < tJrEn) —-P ( sup |Z§(w)| — t‘ < 5n> — Op(ry)
wew wew

>P (sup fn(w)’ < t> —-P (sup T (w) — Z};(w)’ > 5n> —-P ( sup }Z};(w)| - t‘ < sn) — Op(rp)
wew wew wew

>P (sup fn(w)’ < t> —-P (sup T (w) — Z};(w)’ > 5n> —env/1ogn — Op(ry,).
wew wew

Part 2: t-statistic approximation
To control the remaining term, note that by Lemma SA10 and Lemma SA15,

Tu(w) = Tu(w)| + sup [T (w) — 27 (w)
weWw

logn /nhP"B > 1
< —— | logn +
Vo ( & D+ 1/vnh) Do+ 1/vnh

n~Y2logn +n=3*h""/8(logn)?/8 R, + n~=2/3h=1/2(logn)?/? + n'/2pPNP
+
Dlo + 1/ V nh

Tu(w) = 25 (w)| < sup

sup
weWw

and denote this last quantity by r/,. Then for any &, > r/,, we have

P <sup
wew

Part 3: rate analysis
This rate can be made op(1) by some appropriate choice of e, whenever r, — 0 and r] y/logn — 0, by
Lemma SA34, along with a sufficiently slowly diverging sequence R,,. Explicitly, we require the following.

fn(w)’ < t> —-P (sup ’23(10)‘ <t ’ Wn>‘ <p env/1ogn + 1, +o(1).

wew

sup
teR

n=1/2(logn)3/? . hPlogn o
Dio+1/vnh DY+ (nh)=t 7
—1/2 3/2 —3/47,—7/8 7/8
n (logn) Lo, n=>/*h (logn) Lo,
Dy, +1/vnh Dy, +1/v/nh
—2/3p-1/2] 7/6 /21,078 (] 1/2
n=*/3h (logn) Lo, nt/2hP " (logn) Lo,
Dy, + 1/vnh Dy +1/v/nh

n~/%(logn)5/6

D* + (nh)=1/0

67



Using the fact that h < n~¢ for some € > 0 and removing trivial statements leaves us with

n_3/4h_7/8(logn)7/8 n1/2hpA,8(10gn)1/2

Dy, + 1/v/nh Dy, +1/v/nh

Now we analyze these based on the degeneracy type and verify that they hold under Assumption SA3.

(i) No degeneracy: if D), > 0 then we need
n=3/4h =T/ (logn)/® — 0, n/2nPM8 (log n)t/2 — 0.
These reduce to n=%7logn < h < (nlogn)~ 2B
(ii) Partial or total degeneracy: if D), = 0 then we need

n~ Y4 h=3/8(ogn)7/® — 0, nh®P 2 (1ogn)1/2 - 0.

These reduce to n=2/3(logn)™/? <« h < (n?log n)72(1’ﬂlﬂ>+1.

Proof (Theorem SA5)

Part 1: existence of the conditional quantile

We argue as in the proof of Lemma SA16, now also conditioning on the data. In particular, using the
anti-concentration result from Lemma SA33, the regularity property of Z! and the Gaussian process maximal
inequality from Lemma SA32, we see that for any ¢ > 0,

sup P (
teR

sup ‘23(w)| t‘ <2 ‘ Wn) <8¢ <1+E [sup |23;(w)| ‘ Wn})
wew wew
< ev/logn.

Thus letting e — 0 shows that the conditional distribution function of sup,,cyy |Zf (w)| is continuous, and
therefore all of its conditional quantiles exist.

Part 2: validity of the confidence band
Define the following (conditional) distribution functions.

FZ(t|Wn):P(sup ‘Z{(w)‘gt‘wn>, FT(t)z]P(sup
weWw weW

L (w)| < t) ,
along with their well-defined right-quantile functions,
F;'(p| Wy,) =sup{t €R : Fz(t| W,) =p}, Fr'(p) =sup {t €R : Pr(t) = p}.

Note that t < F,'(p | W,,) if and only if Fz(t | W,) < p. Take a € (0,1) and define the quantile
Q1o =F;'(1—a|W,), so that Fz(qi_ | W,) =1 — a. By Lemma SA17, we have that

sup ’Fz(t | W,,) — FT(t)| = op(1)
teR
Thus by Lemma SA34, this can be replaced by

P (sup Fot | W,) - Fr(t)] > ) <en
teR
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for some ¢,, — 0. Therefore

P(wp”uwﬂs@ﬂ)P(mm QWHSF;ua'wm>
wew weWw

IP(FZ( HW><1a>

weWw

gP(FT<sup An(w)’) §1a+5n)+sn§1a+3sn,
wew

where in the last line we used the fact that for any real-valued random variable X with distribution function
F, we have |IP’(F(X) < t) — t| < A, where A is the size of the largest jump discontinuity in F'. By taking an
expectation and uniform integrability, sup,cp ’F 7(t) — FT(t)’ = 0(ep). Since Fz has no jumps, we must have
A < ¢, for Fr. Finally a lower bound is constructed in an analogous manner, giving

P (sup
weW

Here ends the proof of the theorem. O

~

n(w)’ S Z]\la) 2 1-—- a_3€n'

SA5.3.10 Counterfactual dyadic density estimation

Proof (Lemma SA18)
Writing kij = kn(W, w), ¢ = (X)), i = (X)) and wi; = w(X), X}, X)),

E[fif®(w)] = Z@ﬂ@ i
- ﬁ X 2 Bl v )] o (&)
ZE[kij¢i¢j]+O<:L) = E[¢i);E [kn(Wi,w) | X H+O< )

—EwwﬁhxﬂwuiXﬁ+OMWwH+O<i)=ﬁWM+O<Ww+i>

uniformly in w € W, following the proof of Lemma SA1 by Holder-continuity of f&V‘XX(- | x1,x2). O
Proof (Lemma SA19)

f0(w) = sy D bk
’L<j
:n(n_l);<wz+n§ﬁm> ("bj"‘n;lirj) kij—FO]p (n)
= n(n Zwlw,]klj + ZQ/J’L Z K/r.]kz] + Zd]j Z Hrikij
l<J Z<J r&{m} 1<] re{i,j}

=3 ’““(WW“”WJ“”)*OP< )

i<j r¢{ig}

S

’L<]<T

69



where
1 1 1
Vijr = gkz’j (1/%%' + Yikr + %/Jjﬂm') + gkir (%‘d’r + ik + 1/%«’%1) + gkjr (%‘lf)r + YK + 1/%«’%‘)

So by the Hoeffding decomposition for third-order U-statistics,

n—1 n 6 N2 _ "
1|>0 _u+ Zuz nfl) z:zl ':Z4-luij+m; er§1uijr
6 n—2 n—1 n .

+ m — jz; “~, UZJ?” Uzgr) + Op < >

= E[fi*(w)] + LI (w) + Q1 (w) + T (w) + B (w) + O (i) |

Noting that v;, s;; and E[k;; | Aj, A}] are all bounded and that E[k;; | Aj, Af] is Lipschitz in w, we deduce
by Lemma SA37 and Proposition 2.3 of Arcones and Giné (1993) that sup,,cyy |QF%(w) + T (w)| Sp £

Proof (Lemma SA20)
By Lemma SA25 we have sup,,cyy | L0 (w)| <p ﬁ Note that in the proof of Lemma SA19 the terms

vijr — uijr depend only on Vi;, Vi, and Vj, after conditioning on Al, X% and X!. Thus E™(w) is a

degenerate second-order U-statistic and so sup,,ey |Er0(w)| Sp log” by Lemma SA37. O

Proof (Lemma SA21)

Note that L0(w) = 237" 11°0(w) where 1}*°(w) depends only on A}, X? and X}!. Let v: X x X —
{1,...,|X|?} be a b1Je0t1011 and define logistic(z) = 1-&-? Let A; = logistic(A!) + (X9, X}) so that
Al =logistic™" (4; — | 4;]) and (X, X}) = 7 (|4;]). Thus I[>°(w) is a bounded-variation function of A;,
uniformly in w, and so as in Lemma SA7 we have that on an appropriately enlarged probability space,

logn
E | sup [vnL®™(w) — ZE1P0(w)|| <

where Z21"0 is a mean-zero Gaussian process with the same covariance structure as v/nL*°. For E*0(w),
we first construct a strong approximation conditional on A,, and X, as in Lemma SAS8 and deduce an
unconditional strong approximation as in Lemma SA9 to see

sup [Vn2hEP(w) — 220 (w)| <p n Y43/ (logn)*# R,, + n~'/%(log n)?/®
wew

where ZEF:1*0 is a mean-zero Gaussian process with the same covariance structure as vn2hE0. Arguing as
in the proof of Theorem SA3 shows that the Gaussian processes are independent and can be summed to yield
a single strong approximation. O

Proof (Lemma SA22)
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Arguing by mean-zero properties and conditional independence,

0w, w') = Cov [ i 1>°<w> ()]

= e E DY [(kij%%‘ — Elkijityj] + kijiikir; + kijwj/fri)

i#g rg{i g} i'#5 v ¢{i' 5"}

x (k;,j/wmj/ ~ Bl 5] + Koty + Kyt ) | + O ( e ﬁ)
= %E [kijidik ;] + %E [kijbitbi ki ibindy] — %E [kijoind B [kijinds]
ig [kijiki skl by + .
+0 (55 + 7o)
- %E {(wiE[kijujj |i] +E [krjwr"ﬂij | ] ) (%E [Kijs 1] +E [kyjthrssag | 4] )}
2 E [kijki;wiw]] — —E[kijwis) E [kijiiy] +O< 3,1/2 + 1) )

4
E [kijibabikis i kij ] + —E [Kijkir jo00iir Ko o |

n nth
where all indices are distinct. O

Proof (Lemma SA23)
The proof is exactly the same as the proof of Lemma SA10. O

Proof (Theorem SAG)
This proof proceeds in the same manner as the proof of Theorem SA4. O
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