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Abstract

This supplement is self-contained. It presents more general theoretical results than those
reported in the paper, as well as their proofs. In particular, a larger class of loss functions
is allowed for, and weaker regularity conditions are employed when possible, which together
enlarge the scope of our results. Furthermore, additional results not reported in the paper and
their proofs are given. Some of the technical results presented may be of independent theoretical
interest. Finally, some omitted details on the motivating examples are provided.
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A Introduction

Let Q C R% X C R? be fixed compact sets, where dg and d are positive integers. (In the
paper, do = 1 was set only for simplicity.) Suppose that ((yl, Xi)>1 <;<p, 18 a random sample, where
y; € Y C R is a scalar response variable, x; is a d-dimensional covariate with values in X'. Let
p(+,+;q) be a loss function parametrized by q € Q (Borel-measurable in all three arguments), and
let n(-) be a strictly monotonic continuously differentiable transformation function. (More detailed
assumptions on p(-,-;q) and n(-) will be provided below.) We fix a function po(-,-): X x Q@ = R,
Borel-measurable in both arguments and such that

po(,a) € argjninE[p(yl,n(u(xl)); q)l, (A1)

where the argmin is over the space of Borel functions X — R. In particular, we assume that the
minimum is finite, and such a minimizer exists.

Our main goal is to conduct uniform (over X x Q) estimation and inference for g, and trans-
formations thereof, employing the partitioning-based series M-estimator

~ o~

Atc,q) =p)TB@),  Bla) € arg mBian(yi,n(p(Xi)Tb); a), (A.2)
€5 =1

where B C RX is the feasible set of the optimization problem, and
x — p(x) = p(x; A, m) = (p1(x;A,m),...,px(x;A,m))T

is a dictionary of K locally supported basis functions of order m based on a quasi-uniform partition
A ={6;:1 <1 <K} containing a collection of open disjoint polyhedra in X such that the closure
of their union covers X. The m parameter controls how well g can be approximated by linear
combinations of the basis (Assumption B.4 below and in the paper); the partition being quasi-
uniform intuitively means that the largest size of a cell cannot get asymptotically bigger than the
smallest one (Assumption B.3 below and in the paper). We consider large sample approximations
where d and m are fixed constants, and & — oo (and thus K — oo) as n — oo. Prior literature is
discussed in the paper.

A.1 Organization

Section B collects the general assumptions used through this supplemental appendix. In subsequent
sections, we will list which assumptions are required for each lemma, proposition, or theorem. Note
that Assumption B.2 is weaker than the assumptions on the loss function described in Section 3 of
the main paper. In particular, a complexity condition on {¢(-,-;q)} is absent in Section 3 because
the main paper contains a stronger but simpler Assumption C. Thus, the setup in this supplement
is more general that in the main paper, and this fact is formally shown by Proposition I.1.

Section C records some well-known results and tools in probability and stochastic process theory
that will be useful for our theoretical analysis, and also presents a collections of lemmas that are
used repeatedly in many subsequent arguments throughout this supplement.

Section D presents all our consistency results, categorized based on whether the objective func-
tion is convex or not. Additional results of theoretical and methodological interest, such as the
consistency of partitioning-based M-estimators in important special cases (e.g., an unconnected ba-
sis or a strongly convex and smooth loss function), which were not formally reported in the paper,
are also presented.



Section E presents our main Bahadur representation results, also categorized based on whether
the objective function is convex or not. Theorem 1 in the paper corresponds to Theorem E.10
that allows for a possibly non-convex loss function. The other results in this section may be
of independent theoretical and methodological interest as they require slightly different (weaker)
assumptions for more special cases.

Section F develops strong approximation results using a generalized conditional Yurinskii’s
coupling approach. First, Section F.1 gives general results that may be of independent theoretical
interest: they provide generalizations of, and in some cases complement, prior coupling results
established in [1], [5], [6], and references therein. Second, Section F.2 deploys those results to the
setting of interest in our paper to verify our main result Theorem F.4, leading to Corollary F.5 that
confirms Theorem 2 in the paper. That second subsection also includes other technical lemmas of
potential theoretical interest (e.g., the construction of valid variance estimators).

Section G discusses results related to the implementation of uniform inference. In particular, it
formally shows the validity of the plug-in approximation method and confidence bands described
in the paper.

Section H discusses in detail the verification of our high-level assumptions for each of the four
motivating examples in the paper.

Section I shows that the simplifying Assumption C imposed in the paper implies the more
general assumptions imposed in this supplemental appendix.

Section J discusses other parameters of potential interest such as the level and marginal effect
functions, which formalizes the claims made in Section 8 of the paper.

A.2 Notation

For any real function f depending on d variables (t1,...,t;) and any vector v of nonnegative
integers, denote
f(v) L (9Vf L a|V| f
O e o
the multi-indexed partial derivative of f, where |v| = 2221 vj. A derivative of order zero is the
function itself, so if v; = 0, the i¢th partial differentiation is ignored. For functions that depend
on (x,q), the multi-index derivative notation is taken with respect to the first argument x, unless
otherwise noted.

We will denote N (F,p,e) the e-covering number of a class F with respect to a semi-metric p
defined on it.

For a function f: S — R the set {(z,t) € S xR :t < f(x)} is called the subgraph of f. A class
F of measurable functions from S to R is called a VC-subgraph class or VC-class if the collections
of all subgraphs of functions in F is a VC-class of sets in S x R, which means that for some finite
m no set of size m is shattered by it. In this case, the smallest such m is called the VC-index of F.
See [12] for details.

For a measurable function f: S — R on a measurable space (.5, S), a probability measure Q on
this space and some ¢ > 1, define the (Q, g)-norm of f as HfH((I@g = Exo[f(X)1].

We will say that a class of measurable functions F from any set S to R has a measurable
envelope F' if F: S — R is such a measurable function that |f(s)| < F(s) for all s € S and all
f € F. We will say that this class satisfies the uniform entropy bound with envelope F' and real
constants A >eand V > 1if

A

)
sup N (7. Mgzl Flo) < (%) (A3)



for all 0 < € <1, where the supremum is taken over all finite discrete probability measures Q with
[ Fllga > 0, [[[lg2 denotes the (Q,2)-norm.
We will say that an R-valued random variable ¢ is o2-sub-Gaussian, where o2 > 0, if

P{|¢| >t} < 2exp{ —t*/0} forall t > 0. (A.4)

We will denote by D, the random vector of all the data {x;,y;}.;.

We will say that random element Z (for example, a Gaussian process as a random element with
values in a space of continuous vector-functions) is a copy of random element Z if they have the
same laws.

If we say the probability space is “rich enough”, it means that, whenever the argument requires,
we can find a random variable distributed uniformly on [0, 1] independent of the data and such
random variables previously used (informally, independent of everything we had before). This
property is equivalent to having only one uniform random variable independent of the data (since
it can be replicated: see Lemma 4.21 in [10]).

Finally, we will use the following notations:

~

Bla) == aggeggn Enlo(yi, n(BTP(x:)); q)] (A.5)
fix, ) = p(x)"B(a), (A.6)
Qa = En[p(xi)P(x:) W1 (i, 0 (s 0)); )™ (1o i, ) (A7)
Qo.q = E[p(x)p(x:) "1 (i, (110 (i, @) @)™ (pao (i, @)’ (A8)
S0.q = E[p(x:)p(x:) (i, m(110 (i, @); @)*n" (1o (s, ))°| (A.9)
Sq 1= En|p()p(x:) 04 (x)1M (10 (%1, @) (A.10)
Q,(x,q) = p™V(x)7Qy 4 T0,4Qp 4P (%) (A.11)
Qv(x,q) == pM(x)7Q,'=qQ4 PV (%). (A.12)

We usually prove a claim below its statement, and indicate the end of proof by the Q.E.D.
symbol [ or with words.

Many mathematical notations are clickable and link to their definitions; for example, clicking
on X should lead to (A.10).

B Assumptions

This section collects the assumptions used throughout the supplemental appendix. These assump-
tions are weaker than (i.e, implied by) the assumptions imposed in the paper.

For the following assumption and throughout the document, when speaking of the conditional
distribution of y; given x1, or its functionals (like conditional moments or quantiles), we mean one
fixed regular variant of such a distribution satisfying all the assumptions listed.

Assumption B.1 (Data generating process).

(i) ((y,, Xi))1<i<n is a random sample satisfying (A.1) as described above. The random vector
x; has a Lebesgue density fx(-), continuous and bounded away from zero on a compact support
X C R?, which is the closure of an open connected set.



(ii) There exists a conditional density of y; given x;, denoted by fy x(y|x), with respect to
some (sigma-finite) measure M on Y. It satisfies that supycy Sup,ey, fy|x (y[x) < oo, where Yy is
the support of the conditional density of y; given X; = X.

(iii) po(-,q) is m > 1 times continuously differentiable. Moreover, (-, q) and its derivatives
of order no more than m are bounded uniformly over q € Q and x € X, and (%, q) is Lipschitz
in parameter: |po(x,q1) — po(x,d2)| < ||g1 — qz|| with the constant in < not depending on x € X,
qi,q2 € Q.

For the following assumption and throughout the document, we fix some (small enough) r > 0
and denote

Bqg(x) :=={¢: |¢ — po(x,q)| <1}, (B.1)
i.e. we will work with a fixed neighborhood of p(x, q).

Assumption B.2 (Loss function).

(i) Piecewise Hé6lder weak derivative. For each q € Q andy € Y, n — p(y,n;q) Is
absolutely continuous on closed bounded intervals within £, where £ is an open connected subset
of R not depending on y, and admits an a.e. derivative ¥ (y,n;q), Borel measurable as a function

of (y,n,q).
The function 1 (y,n(0); q) can be decomposed into the product of two Borel measurable functions

Yy, m(0);a) = »(y,n(0); q)w=(0), (B.2)

in the following way. If O in Assumption B.1(ii) is Lebesgue measure, for any q € Q, x € X and
a pair of points (1,2 € Bq(x), we have that

sup le(y, n(C1)sa) — ey, n(G);a)| S 16— G|,
y&nm(C1)An(¢2),m(¢1)vn(¢2)] (B.3)
sup lp(y,n(C)sa) — ey, n(G)ia)| S 1
y€[n(¢1)An(¢2),m(¢1)Vn(¢2)]
otherwise (if 9 is not Lebesgue), we have
suple(y, 1(¢1);a) — oy, n(¢2);a)| S ¢ — ¢, (B.4)
y

with constants in < not depending on q, X, (y, (a.
w(-) is continuously differentiable and either strictly positive or strictly negative. The real
inverse link function n(-): R — & is strictly monotonic and two times continuously differentiable.
(ii) Moments and envelope. The following first-order optimality condition holds:

E{(yi, n(po(xi,q)); q) | xi] = 0.

The function
oo(x) = E{w(yu n(po(xi,q)); q)’ ‘ X; = X}

is bounded and bounded away from zero uniformly over x € X, q € Q, and Lipschitz in q uniformly
in X.

The family {1 (y;,n(10(xi,q));q): g € Q} has a positive measurable envelope 1(x;,y;) such
that

sup E[E(xi, yi)y ‘ X; = x} < oo for some v > 2.
xeX



(iii) Conditional expectation of . V¥ (x,n;q) := E[(y;,n;q) | x; = x| is twice continuously
differentiable with respect to 1. Moreover,

xG}(I,lquCEIB;L(x) 1(x,n(¢);a)n(¢)” >0

and

sup  sup |Ui(x,7(¢);q)| < oo,
x€X,q€Q (€Bq(x)

where Uy (x,1;q) = %\I/(x, n;:4). Moreover, supycy qeo SUPceBy(x)|V2(%,1(¢);a)| < oo, where

Ua(x,750) := £ 01 (x,7: Q).
(iv) Complexity of {¢(-,;q)}. For any fixed r > 0 and ¢ > 0,1 € {1,..., K}, the classes of
functions

G1:= {X x V3 (x,9) = ¥y, n(P)"B); ) — ¥y, n{o(x, a)); q):
18~ Bo(@ll < ra€Qf

Go = {X % V'3 (x,y) = 0y n(po(x. @):a): q € Q},

Gy = {X x V3 (x.y) -
[¥(y,n(p(x)"B); @) — ¥ (y, n(P(x)"Bo(a)); WL (% € Nciogn) (0)) :
18- Bo(@ll <76 € Aq e Qf,

Ga:={X 3 x— Vi(x,n(0o(x,9));q) : q € Q},
Gs 1= {Xxya (x,y) —

(X)L (y, n(po(x,q));a) — ¥y, n(p(x)"Bo(a));a)] : q € Q}

satisfy the uniform entropy bound (A.3) with respective envelopes and constants as follows:

G1 <1, A <1, Vi <K =h¢
Ga(x,y) S P(x,y), A2 S 1, Va S 1

Gs <1, As <1, Vs < log? n;

Gi <1, Ay S 1, Vi1

Gs <1, A5 S 1, Vs S 1,

where for s € Z N [0,00), Ns(d) denotes the s-neighborhood of cell 6 € A which is the union of all
cells 0’ € A reachable from some point of 6 in no more than s steps (following a continuous path).

The following assumption is exactly the same as Assumption 2 in [4].

Assumption B.3 (Quasi-uniform partition). The ratio of the sizes of inscribed and circumscribed
balls of each § € A is bounded away from zero uniformly in § € A, and

max{diam(J) : 6 € A} <

min{diam(J) : 6 € A} ~

where diam(d) denotes the diameter of 6. Further, for h = 1/J = max{diam(J) : § € A}, assume
h = o(1) and log(1/h) < log(n).



The following assumption is exactly the same as Assumption 3 in [4].

Assumption B.4 (Local basis).

(i) For each basis function py, k = 1,..., K, the union of elements of A on which py, is active
is a connected set, denoted by Hy. For all k = 1,..., K, both the number of elements of ‘H; and
the number of basis functions which are active on Hj, are bounded by a constant.

(ii) For any a = (ay,...,ax)" € RE

aT/ p(x; A, m)p(x; A,m)Tdx a 2, aihd, k=1,....K.
Hi

(iii) Let |v| < m. There exists an integer < € [|v|,m) such that, for all ¢, |s| <,

h7lslh < inf inf Hp<<>(x;A,m)H < sup sup Hp("(x;A,m)H ShH
deA xecld deEA xECld

where cl§ is the closure of §.

Assumption B.4 implicitly relates the number of basis functions and the maximum mesh size:
K=h4=Jd
The following assumption is similar but weaker than Assumption 4 in [4].

Assumption B.5 (Approximation error). There exists a vector of coefficients Bo(q) € R¥ such
that for all ¢ satisfying |s| < ¢ in Assumption B.4 we have for some positive constant Cappy

sup ’ué‘) (x,q) — Bo(q) P (x; A, m)‘ < Cloppeh™ 181,
qeEQ xeX

In particular, this requires Supq’x‘,u(()v) (x,q) — Bolq)Tp™M (x; A, m)‘ < BVl

Assumption B.6 (Estimator of the Gram matrix). Qq is an estimator of the matrix Qq such that
HQq — QqHOO <p her and HQquo <p h~%, where rq = o(1).

~

Assumption B.7 (Variance estimate). Qy(x,q) is an estimator of the scalar function Qy(x,q)
such that

sup sup | (x, @) — R (x, @)| v sup sup | (x, @) — Du(x @) 5o 72V, (B)
qeQ xeX qeEQ XEX

where ro = o(1).

C Frequently used lemmas

We collect several lemmas that will be used multiple times throughout this supplemental appendix.
Lemmas C.1 to C.9 are well-known facts, so we provide either brief proofs or references to the
literature.

Lemma C.1 (Second moment bound of the max of sub-Gaussian random variables). Let n > 3
and &1, ..., &, be o%-sub-Gaussian random variables (not necessarily independent). Then

1/2
E[max 53] < Cyo+/logn,

1<i<n

where Cy; is a universal constant.



Proof. If p is an even positive integer, E[¢V] < 3app(p/2)p/2. Then

1/2 1/p n 1/p
Bl ] <Elpae] < (;E[@p ]) sult o pe
S Unl/p\/f? using pl/P < 2.
It is left to take p = p, such that Inn < p < 2Inn. ]

Lemma C.2 (Boundedness of conditional expectation in probability implies unconditional bound-
edness in probability). Let X,, be a sequence of integrable random variables, D,, a sequence of
random vectors, T, a sequence of positive numbers. If E[|X,,| | D, <p 7y, then | X,| <p .

~

Proof. Take any sequence of positive numbers -, — co. By Markov’s inequality,

E[|X,|| D 1
P{|X,| > Yurn | Dn} < E[|Xn|| D] <p — =o(1).
YnTn Yn

In other words, the sequence of random variables P{|X,,| > v,r, | Dy} converges to zero in
probability. By dominated convergence (in probability), the sequence of numbers P{|X,,| > v,r,}
converges to zero. Since it is true for any positive sequence 7y, — 00, this means | X,,| = Op(r,). O

Lemma C.3 (Converging to zero in conditional probability is the same as converging to zero in
probability). Let X,, be a sequence of random variables, D,, a sequence of random vectors. The
following are equivalent:

(i) for any € > 0, we have P{|X,,| > | Dy} = op(1);

(i) | Xn| = op(1).

Proof. The implication (i) = (ii) follows from dominated convergence in probability. To prove the
converse, take any €,y > 0. By Markov’s inequality,

P{| X,

{Xal >}
v

so by definition P{|X,,| > ¢|D,} = op(1). O

P{P{|Xn| > ¢ |Dn} >~} <

)

Lemma C.4 (Permanence properties of the uniform entropy bound). Let F and G be two classes
of measurable functions from S — R on a measurable space (S, S) with strictly positive measurable
envelopes F' and G respectively. Then the uniform entropy numbers of FG = {fg: f € F,g € G}
satisfy

suplog N (76, | lg.0 <lFGlaz, )

lF o ellGllo.2
< S%plogN(f, o ”2”Q> + s%plogN<Q, Il g2 ”2|@>

for all e > 0. Also, the uniform entropy numbers of F+G ={f+g: f € F,g € G} satisly

Sup 10gN(f+ G, g2 llF" + GII@,2)

IlF o, ellGllo,2
< s%plogN<.7:, H'HQ,2’ H2||Q> + S%p logN<g7 H‘”Q,Qa H2|Q>

for all € > 0. In both cases, Q ranges over all finitely-discrete probability measures.



Proof. This lemma is well-known. See, for example, [12]. O

Lemma C.5 (Maximal inequality for Gaussian vectors). Take n > 2. Let X; ~ N(0,07) for
1 <4 < n (not necessarily independent), with 03 < ¢2. Then

E[max XZ} < o4/2logn,

1<i<n
E[max |Xl|] < 204/logn.
1<i<n

If 31 and Y5 are constant positive semi-definite n x n matrices and N ~ N (0, I,), then
B[N - 557Nl | < 2v/lognlisi - %ally
If further ¥4 is positive definite, then
E[[[S1°N - 232N ] < Viogndmm(S1) 251 - Sall,.

Proof. See Lemma SA31 in [5]. O

Lemma C.6 (A maximal inequality for i.n.i.d. empirical processes). Let Xi,..., X, be inde-
pendent but not necessarily identically distributed (i.n.i.d.) random variables taking values in
a measurable space (S,S). Denote the joint distribution of Xi,...,X, by P and the marginal
distribution of X; by P;, and let P = n~! > P

Let F be a class of Borel measurable functions from S to R which is pointwise measurable (i.e.
it contains a countable subclass which is dense under pointwise convergence), and satisfying the
uniform entropy bound (A.3) with parameters A and V. Let F be a strictly positive measurable
envelope function for F (i.e. |f(s)| < |F(s)| for all f € F and s € S). Suppose that ||F|3, < oco.
Let o > 0 satisfy supcr || fll, < 0 < | Fllp, and M = maxi<i<n F(X;). ’

For f € F define the empirical process

G(f) = jﬁ SO(F(XG) — ELF (X)),
=1

Then we have

| M[1e2V Tog (]| Flls /o)

E
Vn ’

sup |G (f)]
fer

S oy/Vios (4Pl /o) +

where < is up to a universal constant.
Proof. See Lemmas SA24 and SA25 in [5]. O

Lemma C.7 (Maximal inequalities for Gaussian processes). Let Z be a separable mean-zero Gaus-
sian process indexed by © € X. Recall that Z is separable for example if X is Polish and Z has
continuous trajectories. Define its covariance structure on X x X by X(x,2') := E[Z(x)Z(2')], and
the corresponding semimetric on X by

p(ea’) = E[(2() - 2()))] " = (S(e.2) - 20(0.") + 2 (. a!)) 2



Let N(X,p,¢€) denote the e-covering number of X with respect to the semimetric p. Define o :=
sup, X(z, z)'/2.
Then there exists a universal constant C' > 0 such that for any § > 0,

20
E{sup\Z(m)]] <Co+C VIeg N(X,p,e)de,
0

zeX
1
E| sup ‘Z(x) — Z(LL’/)‘ < C/ Viog N(X, p,e) de.
p(z,x') <6 0
Proof. This lemma is well-known. See, for example, [12]. O

Lemma C.8 (Closeness in probability implies closeness of conditional quantiles). Let X,, and
Y,, be random variables and D,, be a random vector. Let Fx, (z|D,) and Fy,(z|D,) denote
the conditional distribution functions, and F)}i (z|Dy,) and anl (z|Dy,) denote the corresponding
conditional quantile functions. If |X,, —Y,| = o(ry), then there exists a sequence of positive
numbers v, — 0, depending on r,, such that w.p.a. 1

F)Zi(p’Dn) < F}le(p+yn|Dn)+rn and F;nl(p|Dn) < F)?i(p+yn|Dn)+rn
for all p € (v, 1 — vy).
Proof. See Lemma 13 in [1]. O

Lemma C.9 (Anti-concentration for suprema of separable Gaussian processes). Let X = (X;)ier
be a mean-zero separable Gaussian process indexed by a semimetric space T such that E[X?] = 1

for allt € T. Then for any € > 0,
supIP’{ < 5} < 4e <E [Sup |Xt|} + 1).
u€eR teT

Proof. See Corollary 2.1 in [8]. O

sup | Xy — u
teT

The following lemma appears to be new to the literature at the level of generality considered. It
guarantees the existence and gives some properties of the main estimand considered in this paper.

Lemma C.10 (The existence of p(-)). Suppose Assumptions B.1(i) and B.1(ii) hold. We will
suppress the dependence of p(-,-) on q in this lemma because the result can be applied separately
for each q. Assume n — p(y,n) is convex on &, £ is an open connected subset of R, 1(y, -) is the left
or right derivative of p(y, -) (in particular, it is a subgradient: (n1 — n0)¥(y,n0) < p(y,m)—p(y,m0)),
and (y,n) is strictly increasing in n for any fixed y € ). Assume the real inverse link function
n(-): R — & is strictly monotonic and two times continuously differentiable.

Denoting a; and a, the left and right ends of € respectively (possibly +00), assume that for each
x € X the expectation E[¢(y;, () | x; = x| is negative for (real deterministic) ¢ in a neighborhood
of a;, positive for ¢ in a neighborhood of a,, and continuous in ¢ (in particular, it crosses zero).

Then for each x € X the number min{( : E[¢)(y;, () | x; = x] > 0} exists and belongs to £.
Moreover,

po(x) 1= 1~ (min{C : B[y, €) | %, = x] > 0})
=7~ (min{¢ : E[(y;, ¢) [ x: = x] = 0})

defines a Borel-measurable function such that for all x € X

(C.1)

po(x) € argmin E[p(yi, n(¢)) [ xi = x].
CeR



If Q is not a singleton, applying this result for each q € Q gives a function uo(x,q) which is
Borel in x for each fixed q. Measurability in q is not asserted by this lemma.

Proof. The conditions ensure that min{C D El(yi, €) | xi = x| > 0} exists and belongs to £ by
continuity.
So the function po(x) is well-defined. It is Borel because 1~

{x:n(po(x)) > a} = {x: E[(yi,a) | x; = x] <0}
is a Borel set (the equality of the two sets is true because ¢ — ¥(y, () is strictly increasing).
For any ¢ € R, using (1(¢) — n(uo(x)))¥(y, n(ro(x))) < p(y,n(¢)) — p(y, n(o(x))), we have

0= (n(¢) = (o)) E[v (i, a) | xi = %] | ,_, 0 0
< E[p(y,n(Q)) | xi =x] = E[p(y, a) | xi = X]| 4 (0(x))»

0 po(x) is indeed the argmin. O

1 is continuous and

The following lemma establishes basic properties of the “Gram” (or Hessian, depending on the
perspective) matrix generated by the partitioning-based M-estimator.

Lemma C.11 (Gram matrix). Suppose Assumptions B.1, B.3, B.4, B.2 and B.5 hold. Then

h? S igf Amin(Qo,q) < Slcllp Amax(Qo,q) S hda (C.2)
sup“Q(;;“ < pd. (C.3)
q o0
If, in addition, % = o(1), then uniformly over q € Q
_ _ d log + 12
n(1@u - Qv 100 - el e 0( 25 ) )
h < ilollf )\min(Q_q) < sup )\maX(Q_q) < ht w.p.a. 1, (C.5)
q
supHQ;lHOO <h? w.pa.l, (C.6)
a
1/2
_ B _ _ _[log
o -an_vlor-anfhz(t) " e

For some positive integer L,, < 1/h, the rows and columns of Qq and its inverse can be numbered
by multi-indices (a,a) = (o, ...,aq4,a) and (B,b) = (51, .., B4, b), where

a,Be{l,.... L.} ac{l,....Thakb€{l,....Tng}, ThoTnpg <1,

in the following way. First, Qq has a multi-banded structure:

[Qq] (a),(3) = U if la =Bl > C, (C.8)
for some constant C' > 0 (not depending on n). Second, with probability approaching one
A1 —d_[la—Bllso
sgp“Qq ](a,a),(ﬁ,b)‘ < pdglle=Al (C.9)

for some constant g € (0,1) (not depending on n).
The same results hold with Qg q replaced by ¥g ¢ and Qq replaced by f)q.
Finally, the same results hold with Qg  replaced by E[p(x;)p(x;)T] and Qq replaced by E, [p(x;)p(x;)T].
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Proof. The last claim of the lemma, corresponding to the case

(1)(

Uy (i, (o (x4, a)); @)™ (o (xi, @) = 1,

is Lemma SA-2.1 in [4]. The properties (C.8) and (C.9) are not explicitly stated but follow from
the proof.

In the general case, by Assumption B.2(iii) ¥ (xs,7(po(xi,q)); @)n™ (o(x,q))? is bounded
and bounded away from zero uniformly over i, n and q, so (C.2) and (C.5) follow from the previous
case. The additional Uy (x;,n(po(xs,q)); @)n™ (uo(x;))? term does not influence the multi-banded
structure of the matrices, so (C.3), (C.6), (C.8), (C.9) remain true by the same argument as in the
previous case. The inequalities

|@at - Qad]_ <1195 - [1@a — Quall., - @5
|@a* - Qza| < 195" - 1Qa — Quall - Qa4

show that (C.7) follows from norm bounds (C.2), (C.3), (C.5), (C.6) and concentration (C.4).
Now we prove Eq. (C.4).
Define the class of functions

Y
(e 9]

G:= {x = P ()P (x) W1 (x,n(po(x, ) a)n™ (no(x,q))*: 1 < kI < K,q € Q}-

We will now prove that the class G with a large enough constant envelope satisfies the uniform
entropy bound (A.3) with A < h™2% and V < 1. By Assumption B.2(iv), the class

{x = Vi(x,n(uo(x,9));q): q € Q}

with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and
V' < 1. Since it is also true of the class {77(1) (,uo(x, q))2: qcE€ Q} because n) (,uo(x, q))2 is Lipschitz
is q, by Lemma C.4 the class

{X = Wy (x, (ko (%, 9)); @)™ (uo(x, a))*: a € Q}

with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and
V < 1. The class {x+— pr(x)pi(x): 1 < k,l < K} with a large enough constant envelope just
contains K? functions, so it also satisfies the uniform entropy bound (A.3) with A < h™2¢ and
V = 1, where we used K =< h~?% By Lemma C.4, combining these facts proves the claim about the
complexity of G.

Moreover, class G satisfies the following variance bound:

supE[g(x;)?] < he,
geG

which follows from the fact that the class is bounded by a large enough constant and the Lebesgue
measure of the support of pg(x)p;(x) shrinks (uniformly over k,1) at the rate h%.

Applying Lemma C.6, we see that
1 1/2 1

nhd n

sup| = 3" g(x:) — Elg(xy)]

n
9€d ™ iz

11



aflogy v log &
Sh d since —4 = o(1).

1
log &
nhd
Qq — Qo,q has a bounded number of nonzero entries, this implies

_ 1/2
So we have shown man,l‘(Qq — Qo,q)k,l‘ Sp hd< > . Since each row and column of

) ) 1 1 1/2
@0~ Quall. = @0 - Qual, < h(g) |

nhd

To conclude the proof of Eq. (C.4), it is left to use the inequality

HQq - QOAH < \/HQq - Q07QH1HQ_01 - QOVQHOO'

The claim about 3¢ 4 and 34 is proven analogously, using that aé(x) is bounded and bounded
away from zero and Lipschitz in q by Assumption B.2(ii).
Lemma C.11 is proven. O

The following Lemmas C.12 and C.13 are needed for the proof of the Bahadur representa-
tion theorems (Theorems E.1 and E.10), Corollary E.2 and a version of the consistency result
(Lemma D.3).

Lemma C.12 (Uniform convergence: variance). Suppose Assumptions B.1, B.3, B.4, B.2 and B.5
hold. If

v/(v—2)
log +
(n/thd)/(Vz) = 0(].), or (ClO)
— lognlog(1/h
(x4, y;) is o?-sub-Gaussian conditionally on x; and Ognn.;il(/) = o(1), (C.11)

then

sup [P (x)TQG En [ p(xi)n™ (1o (s @) (31 (10 (i, @)): )|
qeQxel

1/2
log +
<o VI 28R )

Proof. By Assumption B.4, SqueXHP(V) (X)H < h~; by Lemma C.11,
fore, it is enough to show

}Q_EIHOO <p h~4. There-

dlog 1
[0 oo, )il o a)):) | <o /Tt E (©a2)

n

sup
qeQ

Define the function class
G := {(x.9) = mx) M (no(x, @)y, n(po(x, @))ia) : 1 <1< K q € Q).
We will now control the complexity of G. Introduce some more classes of functions:

Wy ={(x,y) = p(x):1 <1< K},

12



W = {(x.9) = 0V (uo(x,) s q € Q)
Ws = A{(x,9) = ¢(y,n(po(x,9));q) : q € Q}.

Wi with a large enough constant envelope contains K fixed measurable functions, so it satisfies
the uniform entropy bound (A.3) with A < h™? and V = 1. W, with a large enough constant
envelope satisfies the uniform entropy bound (A.3) with A,V < 1 because po(x,q) is bounded
uniformly over x,q and Lipschitz in q, n(l) on a fixed bounded interval is Lipschitz. W3 with
envelope 1(x, y) satisfies the uniform entropy bound (A.3) with A,V < 1 by Assumption B.2(iv).
By Lemma C.4, G with envelope 1(x,y) multiplied by a large enough constant satisfies the uniform
entropy bound (A.3) with A <h~%and V < 1.
Moreover, class G satisfies the following variance bound:

supE [g(xs, 4:)?] < he.
geg

Indeed, for a fixed i € {1,...,n}

Sup E[g(xs,i)?] S sup E [pr(x:)2E [#(xi, )" | xi] | S supE[mi(x:)?] < .
9€g l l
Finally, under (C.10)
B ,11/2 B REL n V 1/v
E[max\w(xi,yi)‘ ] SE[maXW(Xi,yz’)! } SE[Z‘w(Xi,yi)‘ ]

1<i<n 1<i<n c
i=1

n 1/v n 1/v
= <ZE[¢(XMJ@')V}> S <Z 1) =n'/,
i=1 =1
and under (C.11)

1/2
| max [5G 0|  S Viogn

1<i<n

by Lemma C.1.
Applying Lemma C.6, we obtain (C.12) since

W_\/hdlog(l/h)'\/log(l/h) \/hdbg(l/h).og) and

nl=2/vpd

n n n
Viognlog(1/h) \/hd log(1/h) \/lognlog(l/h) B \/hd log(1/h) o(1)
n N n nhd N n '

Lemma C.12 is proven. O

The following lemma gives control on the projection approximation error.

Lemma C.13 (Projection of approximation error). Suppose Assumptions B.1, B.3, B.4, B.2 and
B.5 hold. If

lOgl v/(v—2)
(nhfd)/(V—Q) = 0(1), or (013)
lognlog(1/h)

(x4, y;) is o-sub-Gaussian conditionally on x; and vy =o0(1),

13



then

sup [P ()7 Qg Ex [ (i) {16 01, n(110(xi: @)); )™ (a0 i, @)
qEQxEX

(i n(p(xi) Bo(@); @) (p(x:) Bo(a)) } |

log £ 2 log L
S]P’ hm—|v| _i_h(a/\%)mf|v| (gh> + gn

nhd nhlvi+d’
Proof. Denote
v 9) = (s o (i, @) @) {0 (o i, @) = 1 (p(x:)Bo(e0) },
Az q(xi i) = { (i, n(po(xi, @)); @) — ¥ (yi, n(p(x:)TBo(@)); @) }n™ (p(x:)TBo(q)).

By Assumption B.4, SUPxeXHP(V) (X)H < b~V by Lemma C.11, HQalHoo <p h~%. Therefore,
it is enough to show

sup
qeQ

. [poci) {4 (i (ko 1, @)s @™ (o i, )
(i, n(P(x:)"Bol@)): a)n™ (plxi)TBo(a)) }] |

d 1 log + 2 log +
S]P’ hd—i—m + h2+(a/\2)m Yo h + h

n n

We will do this by showing the three bounds

1/2
iy, (logt

sup | En[p(x:) A1,q(Xis y)] [l Sp h2F (h) : (C.14)
qeQ n
SugHEn[E[P(Xi)Azq(Xi, yi) | xillll o, Sp R4 (C.15)
qeE
SggHEn[p(Xi)(AZQ(Xia i) — E[A2 q(xi, y:) | xi])]ll o
q

1 ) (C.16)
d 1 log+ log+
<p hst(any)m, [Pk | OOk
n n

To show (C.14), consider the class of functions
{(x,y) = (x)A1q(x,y) : 1 <1< K,q€ Q}.

Note that supq’x‘n(l)(,uo(x, q)) — n(l)(p(x)T,@O(q))‘ < ™ by Assumption B.5. (C.14) follows by
the same concentration argument as in Lemma C.12.
To show (C.15), note that

B[ (yi, n(po(xi, a)); q) — ¥ (yi, n(P(x:)TBo(a)); Q) | x4]
= —U(x;,n(p(xi)"Bo(aq));a) =
= U1 (x4, ¢ @)™ () {o(xi, @) — P(x:)TBo(q)},

14



where ¢ is between 7(uo(x;,q)) and n(p(x:)"Bo(q)), 5 is between puo(x;,q) and p(x;)TBo(q). By
Assumption B.2(iii) and B.5, it follows that a.s.

Sup\E[ (i n(po(xi,@)); @) = ¥ (g, n(p(x:)TBo(@)); @) [ xi]| S A
qeQ
Since 7™M (p(x;)7Bo(q)) is bounded, (C.15) follows by applying Lemma C.6 to the class {x — p;(x),1 <1 < K}.
It is left to show (C.16).
Consider the class of functions

G ={(x,y) » m(x)A24(x,y) : 1 <I < K,q € Q}.

We will now control the complexity of G. Introduce some more classes of functions:

Wi = {(x,9) = p(x) [y, n(uo(x, 9));a) — ¥ (y, n(p(x)"Bo(a)); )] : q € O},

W = {( ) = 1 (p(x)"Bo(@)1{x € supppi} s a € O},

W, —UWzl—{(X y) = 0" (p(x)Bo(@)1{x € supppi} : 1 <1< K, q € Q).

By Assumption B.2, for [ fixed W, ; with a large enough constant envelope (not depending on
[) satisfies the uniform entropy bound (A.3) with A,V < 1 (not depending on ). This immediately
implies that W, with a large enough constant envelope satisfies the uniform entropy bound (A.3)
with A <h ¢ and V < 1.

For [ fixed, W, is a product of a (bounded) subclass of {n(l)(p(x)T,B) : B € B}, where B is
a vector space of dimension O(1) (not depending on [), and a fixed function. By Lemma 2.6.15
in [12], {p(x)78 : B € B;} is VC with a bounded index. Therefore, since ") on a bounded interval
is Lipschitz, W5 with a large enough constant envelope satisfies the uniform entropy bound (A.3)
with A,V < 1. This immediately implies that W, with a large enough constant envelope satisfies
the uniform entropy bound (A.3) with A <h~% and V < 1.

By Lemma C.4, it follows from the above that G with a large enough constant envelope satisfies
the uniform entropy bound (A.3) with A <h~% and V < 1.

Next, we will show that class G satisfies the following variance bound:

sup B, [V]g(xi, yi) | xi]] < hHEADm a1, (C.17)
9€g

By Assumption B.2(i), we have for any x,y

[ (y, n(po(x,q));a) — ¥ (y, n(P(x)"Bo(a)); a)
= [p(y, n(po(x,q)); @)@ (ko(x, a)) — ¢y, n(P(x)"Bo(a)); @)@ (p(x)"Bo(a))|
< le(y, n(po(x,a));a)| - |w(po(x,a)) — w(p(x)"Bo(q))|
+ le(y, n(po(x,a));a) — ¢y, n(P(x)"Bo(a)); a)| - [=(p(x)"Bo(a))]-

Recall that w@(-) in a fixed bounded interval is Lipschitz and its absolute value is bounded away
from zero, which gives |¢(y, n(po(x,9));q)| S ¥ (x,y).
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We will now proceed proving (C.17) under the assumption that 9t is Lebesgue measure, so (B.3)
holds; the argument under (B.4) is similar (and leads to an even stronger variance bound), so it is
omitted. For y outside the closed segment between n(p(x)TBo(q)) and n(uo(x,q)),

[v(y, n(po(x,a));a) — ¥ (y,n(p(x)"Bo(a)); )l
< (Wxy) +1) - Ip(x)"Bo(q) — po(x, q)|
< (P(x,y) + 1), (C.18)

where in (C.18) we used Assumption B.5. For y between n(p(x)"8o(q)) and n(uo(x,q)) inclusive,

[ (y,n(po(x,q)); @) = ¥(y,n(P(x)Bo(@); a)| < ¥(x,9) - [P(x)"Bo(q) — po(x, @) +1
S Yy + 1, (C.19)
where in (C.19) we again used Assumption B.5.
In the chain below, to avoid cluttering notation we will use [a, b] to denote the closed segment

between a and b regardless of their ordering (a more standard notation is [a A b,a V b]). Using that
M (p(x)TBo(q)) is also bounded uniformly over x € X, we have a.s.

E[Asq(xi,yi)* | xi]

= E[Az,q(xi 4:)*1{ys ¢ [n(p(x:)TBo(@)), n(po (x5, )] } | xi]
+E[Agq(xi,4:)°1{yi € [n(p(x:)TBo(@)), n(po(xi,a))] } | xi]

ShzamE[@(xz-,yz )ﬂ{yz [1(p(x:)"Bo(a)), (,UO(XMQ))]}‘XZ']
+ W[ (xi, 1) 1 € [n(p(x:)"Bol ), (o (xs, )] } | ]
+P{y: € [n(p(x:)Bo(a)), n(ko(xi,a))] | xi}

< et +1) ] = B[S |
+P{yi € [n(p(x:)TBo(a)), n(po(xi,q))] | x:}

S B2+ W™+ |p(x:)TBo(q) — po(xi, q) (C.20)

S A2 4 p2m 4 pm (C.21)
5 h(2a/\1)m7

)
|
(xs
|

X5

where in (C.20) we used that by Assumption B.1(ii) the conditional density of y;|x; is bounded and
Assumption B.2(ii), in (C.21) we used Assumption B.5.
Therefore, uniformly over [ and q

En[Vig(xi, 4:) | xil] < En[E[g(xi, 1) | xi]] = En [pi(x:)°E[Az,q(xi, 4i)* | %3] ]
< RReNDME, [ (x;)?]
< RN B, [p(x;)p(x,)T])|
< pHRaAlm W b a1, (C.22)

where in (C.22) we used Lemma C.11. We have proven (C.17).

Applying Lemma C.6 conditionally on {x;};" ;, on an event with probability approaching one,
we get (C.16), and the proof of Lemma C.13 is finished. O
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D Consistency

We first study the convex case, and then move on to the non-convex case.

D.1 Convex case

The following lemma gives our most general result for a convex objective function. This is Lemma 1
in the main paper.

Lemma D.1 (Consistency: convex case). Suppose Assumptions B.1 to B.5 hold, p(y,n(0);q) is
convex with respect to  with left or right derivative v (y,n(8); q)n"(0), and m > d/2. Furthermore,
assume that one of the following two conditions holds:

1 l v—1
(log ,122 —o(1), or (D.1)
nhv-1¢
(x4, y;) is o*-sub-Gaussian conditionally on x; and logn}l;i(l/h) =o0(1). (D.2)
n
Then
sup [ B(a) — Bo(a) | = oz (1), (D3)
qeQ
sup sup | B(a) P (x) — 1" (x, @)| = 0z (7). (D4)
xeX qeQ
) ) 2 2
aco </ (B@"p™x) - 1 (x @) fx(x) dx> = op (/2M). (D.5)
qeEQ\J X

Proof. First, note that (D.4) follows from (D.3) since uniformly over x € X and q € Q

Bl@) P x) - (x. )

< |B@) P (x) ~ Bo(@) P ()| + [Bo(@) PV () — 11" (x, )

< ||Bla) - Bo(q)Hoo |[p (X)Hl + |Bo(@) ™ (x) — 1" (x, )

S ‘B(q) - 6o(q)Hoo h M )Bo(q)Tp(v) (x) — s (x, q)’ by Assumption B.4
S ‘B(q) - Bo(q)Hc>o hm M Y] by Assumption B.5,

where we used that only a bounded number of elements in p(*)(x) are nonzero. Similarly, (D.5)
follows from (D.3) since

~

Hﬂ(q)Tp(V)(x) —ug” (x Q)‘ Ls(X)
< B 00 - mota eV, a0 - i ),

< |B@"p™ () = Bo(@ PV ()| +sup|Bo(@) P () — " (x, )|
2(X) xeX

< 18(@) "™ (x) - Bo(@)p™ (x) oot pm vl by Assumption B.5
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o~

— (Bt - Bo(@)) "E[p) (x)p x| (Bla) — Bo(@)) )+ 1
< Amax (E [P(v) (x:)p™) (Xi)T} ) I/QHB(Q) - BO(CI)H + pm vl
< h2= - |B(a) = Bo(@)|| + H7 M = op (/2T) ] = op (1012,

uniformly over q € Q, where by [|g(x)| 1, (x) we denote ([, g(x)?fx (x) dx) Y2 for simplicity. In the
last equality we used m > d/2 again. We also used that the largest eigenvalue of E [p(") (x;)pv) (xi)7]
is bounded from above by h4=2¥l up to a multiplicative coefficient, which is proven by the same
argument as for v =0 in Lemma C.11 in combination with Assumption B.4.

It is left to prove (D.3). Fix a sufficiently small 7 > 0. Denote for i € {1,...,n} and o € SK~!

Sqi(e) := aTp(x:)¢(yi, n(P(x:)T (Bo(a) +ve)); @)n™ (p(x:)T(Bo(a) + yex)).

Since E, [1(yi, n(p(x:)78); a)n™M (p(x;)TB)p(x;)] is a subgradient of the convex (by Assump-
tion B.2(i)) objective function E,[p(y;, n(p(x;)T3);q)] of B, the strategy is to show that

inf E,,[0qs()] > 0 with probability approaching 1, (D.6)
q7a

which is enough to prove Lemma D.1 by convexity.
To implement this, we will show

inf E, [El0q4(@) [ x]) 2 Eala™p(x)p(x)Ta] + op (1) and (D.7)

log(1/h) | log(1/h) :O(hd)’

ni—1/vpd

log(1/h) + \/lognl]?dg(l/h) _ O(hd)

n

(D.8)

q)a

sup|Ep [0q,i(a) — E[dqi(a) | x]]| Sp {

under (D.1) and (D.2) respectively (proof below), and conclude

inf £, [0q,i(c)] >
q,x

> inf B [Ef5qi(e) | {kHor]] ~ suplEn[dai(e) ~ Bldqi(e) | (xu} il
2 Eq[aTp(x,)p(xi)Ta] + op (h”),

which gives (D.6) by Lemma C.11.
We will now prove (D.7). By Assumption B.2(iii),

E[dq,i(c) | xi] = aTp(x;)¥(x;, n(p(x:)"(Bo(a) + v)); q)
x W (p(x:)T(Bo(q) + )
= a"p(xi)V1(xi, {q,i5 ) (P(x:)T(Bo(a) + ver) — po(x4,q))

x 1M (¢qi)n™ (p(x:)T(Bo(q) + 7))

2 a’p(x;)p(x;)Ta—C sup |p(x)"Bo(a) — po(x,q)| - |[aTp(x;)|
qeQ,xeX

almost surely uniformly over q, where C' is some positive constant not depending on n or 7, {q; is

between n(p(x;)T(Bo(q) + va)) and n(po(xi,q)), (q; between p(x;)T(Bo(q) + yar) and po(x;,q).
We used that ¥(x;, n(po(xi,q));q) = 0, v is small enough, p(x)TGy(q) is (for large enough n)
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uniformly close to po(x, q) by Assumption B.5 and 7(-) is strictly monotonic by Assumption (B.2)(i)

giving the positivity of the product n"(¢q.:)n™ (p(x:)T(Bo(q) + ya)).
Again using the uniform approximation bound supgyeg xex[P(%)"B0(q) — po(x,q)| < ™ by
Assumption B.5, we obtain

sup  [P(x)"Bo(q) — po(x,q)| - EnflaTp(x;)|] Sp h™ /2 (D.9)
qeQ.xeX

1/2
since E,[|aTp(x;)|] S E, [(an(xi))Z] <p h%2 by Lyapunov’s inequality and Lemma C.11. Note

that since m > d/2, h"™+%/? = o(h?). (D.7) is proven.
We will now prove (D.8). Define the function class

G1 = {(xi, i) = 0qi(@): a € st lac Q}-

By Assumption B.2(i), B.4(iii) and Assumption B.5, for v small enough

|9 (yi, n(P(x:)T(Bo(a@) +ve); ) — (i, n(po(xi,q)); Q)| S 1+ (%, 4i).

Recalling the envelope condition in Assumption B.2(ii) and that jo(-,q) is bounded by Assump-
tion B.1(iii), we see that sup,cg, [g] < 1+ (%, yi), which means that under (D.1)

1/v
1<i< 1<i<n = }

1/v
E Z:“Sq,i(a {Xk}2:1] (Z [ (1+ (%, 9i)) ‘{Xk}k 1})
S (Zn: 1) v =n'" a.s.

and under (D.2) by Lemma C.1

1/2
E[max |0q,i(cx ‘ {xx}re 1] < E[ma |0q,i(a)|”

1/v

1/2
E[max|5q@( )2 ‘{Xk}ZJ < Vlogn  a.s.

1<i<

By similar considerations sup,cg, En, [E [92 ‘ xl]] < E,[a™p(x:)p(x;)Ta] < h? w.p.a. 1, where the
last inequality holds by Lemma C.11.
By Assumption B.2(iv), the class

{(xi,9i) = (Y, n(P(x:)78):q): [|B — Bo(q)l| < 7,9 € Q}

with envelope 1+1)(x;,y;) multiplied by a constant has a uniform entropy bound (A.3) with 4 < 1,
V < K = h™? Moreover, the class

{(xi,9:) = aTp(xi): [laf| =1}

has a constant envelope and is VC with index no more than K + 2 by Lemma 2.6.15 in [12], which
means it satisfies the uniform entropy bound (A.3) with A <1, V < K =< h~9. Similarly, the same
is true of

{(xi,p:) = p(xi)"B: B~ Bo(a)| <7, q€ Q}
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and therefore of

{ i) = 1 (p(x)B): 18~ Bo(@)| < 7.q € O}

since n(V)(-) on a bounded interval is Lipschitz. By Lemma C.4, we conclude that G; satisfies the
uniform entropy bound (A.3) with envelope 1 + t(x;,y;) multiplied by a constant, A < 1 and
V<Kx=h

Applying the maximal inequality Lemma C.6, we obtain (D.8). O

The following lemma considers the special case of unconnected basis functions.

Lemma D.2 (Consistency: unconnected basis functions). Assume the following.
(i) Assumptions B.1 to B.5 hold.
(i) p(y,n(6);q) is convex with respect to 6, and ¥ (y, n(6); q)n'")(8) is its left or right derivative.
(iii) For all k € {1,..., K} the kth basis function py(-) is only active on one of the cells of A.
(iv) The rate of convergence of h to zero is restricted by

(log 1) 71

o o(1), or

Viognlog(1/h)

=o(1).

(x4, ;) is o2-sub-Gaussian conditionally on x; and

nhd
Then R
up [la) ~ Bo(@)| = ox(1) (D-10)
and
sup sup|B(a) ™ (x) - " (x, @)| = op (). (D.11)

XEX qEQ

Proof. As in Lemma D.1, (D.11) follows from (D.10).

Forl € {1,...,R}, the number M; of basis functions in p(-) which are active on the lth cell of A
is bounded by a constant. Denote the vector of such basis functions p; := (p1,...,piam,)". Define
the matrices Qq,q, and Qq,l as before with p replaced by p; (for different [, the dimensions of these
square matrices may vary but are bounded from above). By a simple modification of the argument
in Lemma C.11, the analogues of (C.2) and (C.5) continue to hold: uniformly over q € Q and [

hd S )\min(QO,q,l) < )\max(QO,q,l) 5 hd7

J _ _ y (D.12)
h 5 Amin(Qq,Z) < Amax(Qq,l) 5 h W.Pp.a. 1.
By the assumption of the lemma, we can write Bo(q) = (Bo,q,1,--->B0,q,z)", where By q, is a
subvector of dimension M; corresponding to the elements in p active on the [th cell.
Fix a sufficiently small v > 0. Denote for [ € {1,...,&},i € {1,...,n} and oy € SM~!
Saii(au) = a] Py () (ys, n(Pr(x:)T (Bo.gr + vau)); )y (i (x:) T (Boq + Yeu)).
Proceeding in the same way as in Lemma D.1, we will show
inf E,[0q,i1(c)] >0 with probability approaching 1, (D.13)

q,o,l

which is again enough to prove the lemma by convexity. It will follow that with probability
approaching one the minimizer Bq; of E, [p(yi, n(pi(x;)T61); q)] with respect to 3; has to lie inside
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the ball ”:31 Bo,q,l| < v, and in particular inside the cube ||3;— B0 q.||cc < 7. But note that ,8( )=
(ﬁqyl, . ,ﬁ ) So, with probability approaching one, for all q € Q, we have HB —Bolq

Hoo <
«. Since v was arbitrary (small enough), it is equivalent to supqEQH ,8 H = op(1
Equation (D.13) is proven analogously to the corresponding argument in Lemma D.1. The class
of functions
Gr:= {(x1,y;) = Gq(en): ey € S 1€ {1, K}, q € Q}

now satisfies the uniform entropy bound (A.3) with A < & =< h~¢ (since there are & different values of
1) and V' < 1 (since the vectors oy are of bounded dimensions). The bound sup; o, Ey [|o] pi(x;)[] <

~

h? with probability approaching one can be proven without assuming m > d/2 by using

sup Ey [Jof pi(x:)[] < suplloullocEn [[po(xi)[1] £ A w.p.a. 1,

l,oy Loy
since the dimension of p;(-) is uniformly bounded. O

Next, we state and prove another variant of the consistency result, only requiring

log + -2
| nhili)?d =)

instead of

logl 1
BE) " o),
nhv-

The following lemma considers the special case of strongly convex and strongly smooth loss
function.

Lemma D.3 (Consistency: strongly convex and strongly smooth loss case). Assume the following
conditions.
(i) Assumptions B.1, B.3, B.4, B.2 and B.5 hold.

(ii) The rate of convergence of h to zero is restricted by

1)v=s
% =o0(1), or

lognlog(1/h)

(x4, yi) is o-sub-Gaussian conditionally on x; and vy =o0(1).

(iii) The function n — ¥(y,n;q) is continuously differentiable on R (for all y,q), and there
exist fixed (not depending on n, q or §) numbers \, A such that

0< A< o (0l n(0): n(0)) < A

06
Then
sup | B(a) - Bo(a)| = ox(1) (D.14)
qeQ o0
and
sup sup | B(a) P (x) — 1" (x, @)| = 0z (n~M). (D.15)
x€EX qeQ
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Proof. As in Lemma D.1, (D.15) follows from (D.14).
Denote for 3 € RX

Gu(B) = Ex |1y n(p(x:)T8) ) () TB)P(x1) .

which is the gradient of the convex (by Assumption B.2(i)) function E,[p(y;, n(p(xi)73);q)] of B.
By definition of B\(q) and differentiability, G, (,@(q)) = 0. By the mean value theorem,

G(Bo(a)) = Gn(Bol@) — G (B(@) = Ealusp(x:)p(x:)7)(Bo(a) — Bla) ) (D.16)

where

i = 880 (w(yi, n(0); q)n(l)(e)) for some 5, between p(x;)TBo(q) and p(xi)TB(q).

0=0;
By the assumption of the lemma, 0 < A < p; < A. Therefore, for any vector a € R
A-a'Ey[p(xi)p(x)]a < aEp[pip(xi)p(xi)T]a
= E,[1i(p(x:)7a)’] < A~ a"E,[p(x)p(x:) ]a.

Moreover, the matrix
En[pip(x:)p(x:)T]

has the same multi-banded structure as

En[p(xi)p(xi)T].

That means that by the same argument as that in Lemma C.11 we have

It is shown in the proofs of Lemma C.12 and Lemma C.13 that
he IOg% d+m d
1Gn(Bo(@)lloe S || — =+ —o(n"). (D.18)

|Bo(@) — Bla)||_ < [Ealnipeeiptxa™ |- 16 (Bo(@)l

B, [uip(xi)p(x) | e n (D.17)

From (D.16)
which in combination with (D.17) and (D.18) gives

|Bo(a) — Bla)|| = oz()

uniformly over q € Q. O
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D.2 Nonconvex case

Our next goal is to prove the consistency result Lemma D.5 for the nonconvex case. We will need
the following lemma.

Lemma D.4 (Preparation for consistency in the nonconvex case). Suppose Assumptions B.1, B.3
and B.4, Assumption B.2, Items (i) to (iii), and Assumption B.5 hold. Then the infinity norm of
Bo(q) is bounded:

Supllﬁo( Moo S 1. (D.19)
qeQ

Moreover, for any R > 0, there is a positive constant C; = C1(R) depending only on R such
that for any x € X

sup sup |p(y, n(p(x)78);q) — p(y, n(p(x)"Bo(a)); q)] < C1(1+ ¥ (x,y)). (D.20)

A€Q|[IBll <R

Proof. We prove (D.19) first. By Assumption B.5 (8o(q)Tp(x) is close to po(x,q)) and Assump-
tion B.1(iil) (uo(x,q) is uniformly bounded), |Bp(q)Tp(x)| is bounded uniformly over q € Q and
x € X. By Assumption B.4, we can bound the kth coordinate of By(q)

1/2
Bt ([ (Bu(arpeo) ax )
< W% sup|Bo(a) TP ()| - (Leb Hi)'? S sup|Bo(a)"p(x)| S 1.

where the constants in < do not depend on k.
Now we prove (D.20). Note that

p(y,n(p(x)78);q) — p(y, n(P(x)"Bo(aq)); q)
p(x)T(8—Bo(a))
/0 (W(y,n(p(x)"Bo(q) +t);q) — ¥ (y,n(po(x,q)); q))

x M (p(x)TBo(q) + ) dt
/p(X)T(B—ﬂo(q))

+ 9y, n(po(x,q)); q) 1M (p(x)"Bo(q) + ) dt

0

By Assumption B.2(i), for any x, y and ¢ in the interval of integration

Uy, n(p(x)"Bo(a) + t);a) — ¥(y, n(ko(x,q)); q)l
= |e(y,n(P(x)"Bo(a) + t); Q)@ (P(x)"Bo(a) + t) — (v, n(po(x, a)); a)w@(uo(x,q))|
< [(y, n(o(x,q)); Q)| - [@(o(x,q)) — @ (p(x)"Bo(q) + )|
+ oy, n(po(x,a));q) — ¢(y, n(P(x)"Bo(a) + t);q)| - [@(p(x)TBo(a) +1)|.

Recall that w(-) in a fixed bounded interval is Lipschitz and its absolute value is bounded away
from zero, which gives |¢(y, n(po(x,q));d)| < ¥(x,y). So we have a bound

[y, n(p(x)"Bo(q) + t);q) — P (y, n(ro(x,9)); )| < v(x,y) + 1.

Since both p(x)7Bp(q) and p(x)T3 lie in a fixed compact interval (not depending on x or q),
M (p(x)TBo(q) + t) is uniformly bounded in absolute value. This means that for any x € X,
q€ 9, |8l < R, we have for some positive constants Cy and C; depending only on R

lp(y,n(p(x)"B);q) — p(y, n(P(x)"Bo(q)):q)| < Co(1+¥(x,y)) - IP(x)T(B — Bo(q))|
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< Co(1+9(x,9)) - I - 18 = Bo(a)ll
< Co(1+9(x,9)) - [IPG)l; - (18]l + 1Bo(@)ll0)
< Cl(l +$(Xa y))’

concluding the proof. O

We are now ready to prove a general consistency result for an estimator under constraints
18l < R for some large enough constant R. This is Lemma 2 in the paper, modulo the fact that
the assumption on the form of the loss here is more general than Assumption C in the paper, as
explained in Section 3.1 there.

Lemma D.5 (Consistency in the nonconvex case). Assume the following conditions.
(i) Assumptions B.1, B.3 and B.4, Assumption B.2, Items (i) to (iii), and Assumption B.5 hold.
(i) m > d/2.
(iii) The following rate condition holds:

log L) 71
(Oghzzd =o(1l), or (D.21)
nhv-T1
Vlognlog(1/h)

(x4, y;) is o2-sub-Gaussian conditionally on x; and = o(1). (D.22)

nh2d

(iv) R > 0 is a fixed number (not depending on n) such that supycollBo(q)ll,, < R/2 (existing
by Lemma D.4).
(v) There is a positive constant ¢ such that we have inf ¥y (x,(;q) > ¢, where the infimum is

overx € X, q € Q, |8l < R, ¢ between n(p(x)78) and n(uo(x,q))-
(vi) The class of functions

{(x,9) = p(y,n(P(x)"B);a) — p(y, n(P(x)"Bo(q));a) : |8l < R,q € Q}

with envelope C(1+(x,y)) (by Lemma D.4) satisfies the uniform entropy bound (A.3) with
A<landV S K.

Then for R
/Gconstr(q) = arg min [, [p(yza n(P(Xi)Tﬂ); Q)] (D23)
18l <R
we have R
sup | Beonstr (@) = Bo(a) | = oz(1). (D.24)
qeQ

Proof. For 3 satisfying the constraint ||3]|,, < R, define
0q,i(B) = p(yi, n(P(xi)TB); @) — p(yi, n(P(xi)TBo(a)); Q)

p(x)T(B—Bo(a)
/ (i, n(p(x:)TBo(a) + 1); a)n™ (p(x:)TBo(q) +t) dt.

0
Note that
| L P(x:)T(B—Bo(a)) ‘ T . (1) AT
Efdq:(8) | xi] = | U (xi, n(p(x:)"Bo(a) +t); a)n' (p(x:)TBo(a) + t) dt
(@) p(x:)T(B—PBo(q))
_/ Uy (x4, 6q,i,t:9)
0
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x 1M (Cqit)n™ (p(x:)TBo(@) + £){p(x:)TBo(a) — po(xs, @) + t} dt

2 Calp(x:)7(8 — Bo(@)}? — Casuplp(x)TBo(a) — 10, @) - [p(x:)T(3 — Bo()]

q,x
2 Cp(x)T(8 - Bo(a))? — Csh™ p(x:)(8 — Bo(@)].

with some positive constants Cy and C5 (depending on R), where in (a) we used

U(xi,n(p(x:)TBo(q) +1);q) = V(xi, n(P(x:)"Bo(q) +t);a) — ¥(x4,n(po(xi,q)); q)
= Uy (x;, €q,it; D{N(P(x:) T Bo(aq) + 1) — n(po(xi, q))}
= Uy (x4, Eqit; DN (Cqit) {P(x:)TBo(a) — po(xi,q) + t}

for some &g+ between n(p(x;)TBo(q) +t) and n(uo(xi, q)), and some (q,i+ between p(x;)TBo(q) +
t and po(x;,q) by the mean-value theorem applied twice; in (b) we used Condition (v), As-
sumption B.2, in particular that n(-) is strictly monotonic giving the positivity of the prod-
uct 1M (Cqie)n™ (p(x:)TBo(q) +t); in (c) we used Assumption B.5. By Lyapunov’s inequality,

Ellp(x:)7(8 — Bo(@)]] < B [(06<)(8 — Aufa)))?] - We conclude

EnlE[6q(8) | xi]
> C4(B — Bo(@)) Ealp(x:)p(x:)T](8 — Bo(a)) — O™ Ex | (p(x:)T(8 — Bo(a)))?]

1/2

(a)
> Csh?||B — Bo(a)||> — C7h™ /2|18 — Bo(q)

with probability approaching one for some other positive constants Cs and C7 (depending on R),
where (a) is by Lemma C.11.
Fix € > 0 smaller than R/2. In this case

{B:18—-Bo(a)ll <e} c{B:IB—Bo(a)ll <e} C{B: I8l < R}

because

1Blloe <118 = Bo(@llo + 1Bo(lloc < 18 = Bo(d)l o + R/2-

Define the class of functions

g:= {(X, y) = 18 = Bo(@ ™ (p(y: n(p(x)7B); a) — p(y, n(p(x)"Bo(a)); @) :
1Bl < R.118 = Bo@] > e.q € Q}.
It is a product of a subclass of the class
{x,y)—a:0<a<1/e}

with envelope 1/¢, obviously satisfying the uniform entropy bound (A.3) with A <1, V <1, and
a subclass of the class

{(x,9) = p(y,n(P(x)"B)) — py,n(P(x)"Bo(q))) : |18l < R,q € Q}

with envelope C; (1 +(x, y)), satisfying the uniform entropy bound (A.3) with A <1and V S K
by the conditions of Lemma D.5.
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By Lemma C.4, class G with envelope C /e (1 +1(x, y)) satisfies the uniform entropy bound (A.3)
with A <1and V S K.
Next, under (D.21)

B , 1/2
EL@%(Q/E) (1+9¢(x,9)) {Xk}zzl]

- 1/v
< E[max (Cy/e)” (1+¢(X,y))y {Xk}21]

1<i<n

n

E(Y (Ci/e)" (1 +d(xy)"

=1

n 1/v
< i(ZE[(l + D) | {Xk}zl}>
i=1
1/v
1< nl/v
S’s(;:[) = a.s.

with constants in < depending on R but not on n or €, and under (D.22) by Lemma C.1

1/2 Vviogn
{Xk}k:1:| S -

IN

1/v
{XquLl]

E [ max (C /¢)* (1 +@(X7y))2

1<i<n

Moreover,
E, [E[g(xi,5:)? | xi]]
< 118 = Bo(@) | C3En | (i) (8 — Bo(@))*E [ (1 + Blxs, ) | ]
<18 = Bo(@)[|7*(8 — Bo(@) "En[p(x:)p(x:) (8 — Bo(a))
(2) hd

where (a) is by Lemma C.11.
By Lemma C.6, we have

log(1/h) log(1/h)
+ = =0
sup|En[g(x:, vi) — Elg(xi, vi) | x:]]| <p {\/T ni-1/vpd ( )

G log(1/h) | VIERIoB(1/h) _ ()

nhd

under (D.21) and (D.22) respectively (since ¢ is fixed).
Combining, we infer from the previous results that with probability approaching one for all

1Bll < R. 18— Bo(a)| > . a € Q
Enlqi(@)] = Coh?l|8 — Bo(a)|* — ™ 2|18 = Bo(a)l| + 18— Bo(@)]| - o)
= 18- Bola)ll - {CehlIB ~ Bo(a) | = ™+ + o(n) }
> 118 = Bo(a)ll - { Coeh — Crh™ 12 + o () }

@18 = Bo(@)]| - h{Coe + o(1)} > 0,
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where in (a) we used m > d/2.
It follows that the constrained minimizer under the constraint ||3||,, < R has to lie inside the
ball |3 — Bo(q)|| < ¢ for all g € Q with probability approaching one. Since € was arbitrary smaller

Beonsir() = Bola)| = o2(1). 0

than R/2, it is equivalent to supqEQ’

The following lemma considers the special case of unconnected basis functions.

Lemma D.6 (Consistency in the nonconvex case: unconnected basis). Assume that for all k €
{1,..., K} the kth basis function p(-) is only active on one of the cells of A, and define py(-), M;,
Bo,q,0 @s in the proof of Lemma D.2.

Assume the conditions of Lemma D.5 with Condition (ii) removed, Condition (iii) replaced by

(log(;/iyz))vzl — o(1), or (D.25)
Viognlog(1/h)

nhd

(x4, y;) is o2-sub-Gaussian conditionally on x; and =o(1), (D.26)

and Condition (vi) replaced by the following: the class

{(x,9) = oy, n(Pr(x)B1)) — p(y, 1(P1(x)"Bo,qr)  1Billee < Rrq€ Q1 e{l,... R}}

satisfies the uniform entropy bound (A.3) with A < k < h=¢ and V S 1
Then, for ,Bconstr defined as in (D.23), we have supqegH ,Bconstr H = op(1

Proof. Define matrices Qg g, and Qq,l as in the proof of Lemma D.2, and recall that the asymptotic
bounds on their eigenvalues are the same as in the general (not restricted to one cell) case, i.e.
(D.12) holds.

For any M;-dimensional vector 3; satisfying the constraint ||3;lcc < R, define

0q,i1(B1) == p(yi, n(P1(x:)TB1); a) — p(yi, n(P1(%:)"Bo,q.0); A)

P1(x:)T(B1—Bo,q,1) )
/ Y(yi, n(P1(x:)"Bo,q1 + )i a)n' (P1(x:)"Bo,q + t) dt.

0

By the same argument as in the proof of Lemma D.5, we have

E,. [E[6q,i1(8r)x:]]
> Cs(B1 — Bo,a) "Enl[pi(xi)Pi(x:)T] (81 — Bo,ay) — Coh™En [|pi(x:)T (81 — Bo,a)|]

(a)
> Csh®|B; — Bo,qill* — C1oh™ 81 — Bo,qu

with probability approaching one for some positive constants Cg, Cy and Cg (depending on R, but

not on q or [), where in (a) we used En[‘pl(xi)T(Bl - 507%;)!] < 181 = Bo,qllocEn[lPi(x)l1] S
181 — Bo.quillch? < |81 — Bo.q.llcoh® with probability approaching one since the dimension of p;(-)
is bounded.

Next, proceeding with the same concentration argument as in Lemma D.5, we will obtain that
with probability approaching one for all [ € {1,...,&}, q € Q, [|Bill < R, |81 — Bo,q,ll > €,

En[0q.i1(81)] > Cshl|Br — Bo.quill®> — Croh™ By — Bo.quill + 1181 — Bo.qull - o(hY)
=181 = Boqull - {Csh®|B — Bo(a)|| — C1oh™ + o(h%)}
> 181 — Bo,aull - {Cseh? — C1oh™ ™ + o(h?)}
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()

= 181 — Boqull - H{Cse +o(1)} > 0.

It follows that the constrained minimizer ﬁq7constr7l of E, [p(yi, n(pi(x;)76)); q)] with respect to
B; under the constraint (3] < R has to lie inside the ball ||8; — Bo.q.|l < €, and in particular
inside the cube [|8; — Bo,qillc < €. But this optimization can be solved separately for all [, i.e.

Beonstr (@) = (IB(LCOHSUJ?"‘7/3q,constr,l_c)T' So, with probability approaching one, for all q € Q,
we have ||Beonst+(q) — ,Bo(q)HOO < e. Since € was arbitrary smaller than R/2, it is equivalent to

SupquHB\constr(q> - BO(q)HOO = OIP’(1>- o

E Bahadur representation

The main purpose of this section is to prove two versions of the Bahadur representation theorem:
Theorem E.1 and Theorem E.10. In the first variant, we study the case where 6 — p(y,n(6);q)
is convex, and in the second one we consider the general case allowing for a possibly nonconvex
loss function. The reason we have two versions is that consistency results are different in the two
cases (see Section 4 in the paper and Section D here), and consistency is a prerequisite for our
Bahadur representation results. In addition, some of the technical assumptions on the form of the
loss are different, though this does not affect the simplified setup considered in the paper. Since
Theorem FE.10 is essentially more general, Theorem 1 in the main paper corresponds to that version.

In addition to proving the theorems, we provide a result on the convergence rates, Corollary E.2,
as an immediate corollary. We state it only for the setting of Theorem E.1 to avoid repetition but
of course the analogous result holds for the general case, and the argument is the same. This proves
the claims in Section 5.1 of the paper.

We remind the reader that in the supplement the assumption on the form of the loss is more
general than Assumption C in the main paper, as discussed in Section 3.1 there.

E.1 Convex case

Theorem E.1 (Bahadur representation: convex case).
(a) Suppose Assumptions B.1 to B.5 hold, p(y,n(0);q) is convex with respect to 6 with left or
right derivative 1(y,n(6); q)n"(9), and B(q) is a consistent estimator of By(q), that is,

sup | Ba) — Bo(@)||_ = ox(1).

qeQ
In addition, suppose

d+2

lOng = o(1) and
" Y (E.1)
(h_1 log n) 2t
. o e N 2 ] . .. )
either - = o(1), or 1(x;,y;) is o“-sub-Gaussian conditionally on x;.
Then R
sup ‘p(v) (x)"B(a) - 5" (x,q)
qeQxeX
+pV(x)TQ ' En [p(xi)n(” (o(xi, @) ¥ (yi, (10 (xi, )5 q)} ‘ (E-2)

<p b Mrgan
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with

3+(273) 1/2
1 d 2 24 1 d+1
PBah = ( = d”) A e I (E.3)

(b) If, in addition to the previous conditions, (B.4) holds (without any restrictions on y), then

sup [P (x)TB(a) — " (x,q)
qEQXEX

+p™) ()7 Qg En [pxi)n™ (o (xi: @) (i, n(poxi: @) )|

1+«

1/2
) [logdn | ? am [ log@tn m
<ph {(nhd) logn+h ( e +h™ .

We prove this theorem below in this section. First, we state and prove the following corollary.

(E.4)

Corollary E.2 (Rates of convergence).
(a) If the conditions of Theorem E.1(a) hold, then

~ v _ _ log?n\ /2
esQupeX‘p(V)(X)Tﬁ(Q) — u )(X7q)) <p b Mrye := A7 [( nghd ) logn + hm} (E.5)
q 7x

and, as a consequence,
R ) 9 1/2
sup (/ ‘p(V) (x)78(q) — g (X,q)) fx(x) dx> <p L (E.6)
qeQ \Jx

(b) If the conditions of Theorem E.1(a) hold and

(log n)(d+1)/(a/\(1/2))+d _ O<nhd>’ hONL/2Im 166d/2 ) — (1), (E.7)
then
~ v) logn 1/2
sup [P () TB(a) — g ()| e M (o) e (ES)
qeEQxeX nhd
(c) Finally, if the conditions of Theorem E.1(a) hold and
(logn)(d+2)/(a/\(1/2))+d _ O(nhd) RN/ D)m 166 (d+1)/2 ) — (1), (E.9)
then
I (\TE ™ e o’ 2 v L
su YVi(x)T — g (%, x) dx <ph™V —|—hm} E.10
s ([ [p007Bt0) — i ) e ) o n M| (E.10)

Proof. By Theorem E.1, Lemma C.12 and triangle inequality,

sup|p™ (x)B(a) - " (x, @)
qeQ,xeX

1
_ log(1/h)\ 2 log?n
<, povl| (28 o n
e h < nhd > * ( nhd

+2A

[ NI
N

1/2
1 d+1
logn+h(°m5)m< Ognhd n) +hm| .
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Using log(1/h) < logn and simplifying the right-hand size, we obtain (E.5), and (E.6) follows
immediately since the density fx is bounded. Additional restrictions (E.7) allow us to get a
slightly stronger result (E.8).

To prove (E.10), note that

sup [ [p)6)7B(@) ~ P07l £xx) dx
q X

— sup(Bla) — Bo(a)) E o 0p (7] (Bia) ~ Aol < 12 Ba) — pu(a)|

q

where inequality (a) is true because the largest eigenvalue of E [p(") (x;)p™) (x;)T] is bounded from
above by h% 2Vl up to a multiplicative coefficient, which is proven by the same argument as for
v =0 in Lemma C.11 in combination with Assumption B.4.

It is left to prove

|B@ - @] <= e (B.11)

By the triangle inequality,
|B(a) ~ Bo(@)|| < | Bla) - Bo(a) + Q5 'En[p <x->n<”<ﬂo<xz-,q>>¢<yi,n<uo<xi,q>>;q>} |
+ || @5 B [poxi)n™ (10xi, @)y m(o i, @)z )] |-

To bound the second term in (E.12) on the right-hand side, consider the expectation

?

(E.12)

[Pt )t i) |

n2ZE[ (p0(xi, q ))2¢(yz‘7n(ﬂo(Xi7Q))§Q)QHP(XZ’)Hz}

(a)
nziE[ I a6 1] £ 5301 = 1

where in (a) we used uniform boundedness of U%(X) by Assumption B.2(ii), uniform boundedness
of pp(x,q) and ||p(x)||. By Markov’s inequality and Lemma C.11, this immediately implies

1
hd\/ﬁ‘

HQ_(;lEn [P(Xz)n(l)(ﬂo(xwQ)W}(yun(ﬂo X7,7 7 ] H ~P HQq1H
Concerning the first term in (E.12), it is proven in Theorem E.1 that

[B(a) = Bo(a) + Q5B [pxi)n' (o i, @) i, o (xis ) )] | S 7

for rpan defined in (E.3), so that )
Hﬁ(q)_ o(a) + Q4 'E, { )™ (10 (x4, @) )¢ (i (1o (x4, ) ); q)”‘
a)

<o VErpa < B © ( ! )

hd/2 hd f
where in equality (a) we used rga, = 0(1 / Y nhd) under the assumptions. This concludes the proof
of (E.11). O
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We will now prove Theorem E.1.

We only show the first part, since the argument for the second is very similar with minor changes
in obvious places.

Denote p; := p(x;) for simplicity. Next, define

V= {’U € R¥ : 3 d-dimensional multi-index k,
luey| < ol* =g, for ||k — £]oe < M, and vg; = 0 otherwise}
H = {v e RK . Iv][oo < Tlm} forl=1,2,

where p is the constant from Lemma C.11 and the vy; notation is as in the bound (C.9), and
putting 8 := a A (1/2) to shorten the notations

logdn 1/2
n = "
71, [( Y > +

¥2n ‘= TBahVn, (El?’)

Z/048),

T2m = 3%2n,

En = 3tan
for 3,3’ > 0 and M,, = ¢;logn, and ~y,, — oo a positive sequence such that r; , +t2, = o(1). In the
last step of the proof, we will consider 3 = 20 ¢ =L,L+1,...,L where L is the smallest integer
such that 2Lt2,n > ¢ for some sufficiently small ¢ > 0, and 3 = 2¥ for a large enough constant

integer L.
Define for 81 € Hi, B2 € Ho and v € V

dq,i(B1, B2, v) = vTpi[th(yi, n(p; (Bo(q) + B1 + B2 — v));a) — ¥ (yi, n(p; Bo(a)); a)]
x 1 (pl(Bo(a) + B1 + B2 — v)).

Note that 6q,i(81,82,v) # 0 only if vTp; # 0. For each v € V, let 7, := {j :v; # 0}. By
construction, the cardinality of 7, is bounded by (2M,, + 1)¢. We have dq,i(B1,B2,v) # 0 only if
p;(x;) # 0 for some j € 7, which happens only if x; € Z,, where

RE U{(S € A: §Nsuppp;j # @ for some j € Jp}.

Ty includes at most CQMg cells. Moreover, at most c;;Mff basis functions in p have supports
overlapping with Z,. Denote the set of indices of such basis functions by 7,,. Based on the above
observations, we have dq (81, B2, v) = dq.i (Bljv,,ﬁzjv,v), where

0q,i (B1,jv B2, 7,5 ’U) (E.14)

=Y pigvs || vin | D pia(Boqr + Bui+ Baa) — Y pigvi |1

JE€ETw lejv JE€ETw

— | yin| D piiboas |5a

1€

< W pia(Bosqr + Bui + Baa) — D pigus | 1{xi € T}

1€Jw JEITw
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Accordingly, for 51 € ]RC?’M?CLZ, ,52 € ]RC‘?Mg, define the following function class
Gg:= {(Xi,yz') = 5q,’i<513§23'v) qe Q,veV, 52“00 < Tz,n}-

Also denote

)BIH < 71,
o

Bq = —Qq4'E, [pm“) (P! Bo(@))¥(yi» (P} Bo(a)); q)]'
By Lemmas C.12 and C.13, using

logd 1/2
og’n m
< v > +h™ = o(r1n), (E.15)

we have with probability approaching one

SupHBqHOO <7Tin. (E.16)
qeQ

Step 1 We bound sup ¢ |En[g9(xi, y:)] — E[g(x;, yi)x;]| in this step.
Lemma E.3 (Bonding variance). There exists a constant C1; > 0 such that the probability of the

event

Ap = {supEn[Il(Xi €0)] < Cnhd}
JSTAN

converges to one. On Ay, class G satisfies the following variance bound:
sup Eu [Vig(xi, ) | xil) S enh(rn + o + £n) 2N
ge

Proof of Lemma E.3. The first sentence follows from Assumption B.3 and the same concentration
argument as in Lemma D.1.
We will now proceed under the assumption that 9t is Lebesgue measure, so (B.3) holds; the
argument under (B.4) is similar (and leads to an even stronger variance bound), so it is omitted.
By the same argument as in the proof of Lemma C.13, using |4 (y, n(p(x)"Bo(q)); a)| S ¥(x, y)+
1, for y; outside the closed segment

between 1 > piiBoqu | and 0| Y pii(Boqr + B+ Bat) — D pigvy |

1eJy €Ty J€Ty

we have

Ul win| D pia(Boar+ B+ Ba) — > pijvi |1

lEj'u jej’v

— |y | D pisBoar |ia || S (i) + 1) (rin + rom + &),
1eJy

and for y; in this segment we have

Ul win| D pia(Boqr+ Bra+Baa) = D pijui |1

1€y JE€ETw
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=y | Y pisboar |ia || S (@ivi) + 1) (rin +ron +e0) + 1
1edv

uniformly over q.
By construction, for each v € V, there exists some k,, such that vy | < glt=Fellog,, if [[I—ky |00 <
M,,, and otherwise v;; = 0. The above facts imply that for any x; € § C Z,,

V[3q.i(B1, B2,0) | xi] S en(rim + 1o +20) BN N7 MRl for
LhHeLls

Ls:={(,1): supppy; N # T}.

In addition, since dq,;(B1,B2,v) # 0 only if x; € Z,, for all g € G,

EnlV[g(xi, ) | %il] S e2(r1n + 2 +20) 20 S By[1(xi € 0)] S glihole

6CTy (LhHeLs
= 2 (rp + rop + £q) PN Z 0?1kl Z E,[1(x; € 6)] for
Ll 6€Ly,

11:=1{0 CZy: supppy; NJ # T}

Note that £, contains a bounded number of elements. Then on A,

Sup E,[Vig o6, 1) | %) S <81+ 7o +-20) GO 3 Pl
ge

< é‘%hd(ﬁ,n +ropn + €n)(20‘)/\1 Z o?I=kelle since [ is bounded
1

2,d 2a)A1 2|t 2,d 2a)A1
< E2h(rp + ron + en) %Y Z o?Mloe < &2 (ry ) 4 79,0 + £,) PN,
tezd

concluding the proof of Lemma E.3. O

Lemma E.4 (Complexity of class G). Class G with envelope e, multiplied by a large enough
constant satisfies the uniform entropy bound (A.3) with A <1 and V' < log?n.

Proof of Lemma E.4. First, indeed supy , sup,eglg(x,y)| S
Next, the class of functions Wy = {(x;,v;) — ’UTp(XZ) v €V} is a union of O(h™?) classes
Wik = {(xi,y:) = vTp(x;): v € Vi }, where

Vi = {v ERE :jugy| < olF=Hloog, for ||k — £]|0o < M, and vg; =0 otherwise}.

Since W j, is a subclass of a vector space of functions of dimension O(logd n), by Lemma 2.6.15
in [12] it is VC with index O(logd n). This implies that Wy j, with envelope O(e,) satisfies the
uniform entropy bound (A.3) with A <1 and V < log?n. Since there are O(h™?) such classes and
log + 7 < logn, using the chain

0(-e) (2)7 < ot (4) T L (AYFIER_()F

3 3 9 S

33



(recall that A > e), we get that W also satisfies the uniform entropy bound (A.3) with A <1 and
V <login.
By Assumption B.2(iv), the class of functions
Wa = {(Xiayi) =
[¥(yi, n(p] (Bo(a) + B1 + B2 — v));a) — ¥(yi (P} Bo(a)); a)]L{x; € Lo }:
B1€Hi,B2 € Ha,vEV,qE Q}
with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and
V < logn.
The class of functions
Ws = {(Xiayi)
= 1 (p(x:)T(Bo(@) + B + B2 — v))1{x; € T, }:
B1 € Hi,B2 € Ho,vEV,qE Q}

is a subset of the union over § € A of classes (for some fixed positive constants ¢ and r, n large
enough)

Wss 1= {(Xiayi) = W (p(x:)TB)1{x; € Nciogn)(0)}: I8 = Bo(@)llo < a € Q}~

Note that B can be assumed to lie in a fixed vector space Bs of dimension dim By = O(logd n)
Again applying Lemma 2.6.15 in [12] and noting that ") on a fixed (bounded) interval is Lipschitz,
we have that W5 5 with a large enough constant envelope satisfies the uniform entropy bound (A.3)
with A <1 and V < log?n. Similarly to the argument for W, this implies that the same is true
for Wjs.

Applying Lemma C.4 concludes the proof of Lemma E.4. O

Lemma E.5 (Uniform concentration in G). On the event A; defined in Lemma E.3 we have

E sup [En[0q,i(B1, B2, v) — E[0q,i(B1, B2, v) |xi]]]

q€Q,B81€H1,B26H2,vEV

{Xi}?:l

(E.18)

1
hd/25n(rl7n + ron + 5n)a/\2 (d+1)/2 En IOgd+1 n
< log n+ ————.
Vvn n

Proof of Lemma E.5. This follows by applying Lemma C.6 conditionally on {x;};", on Aj. O

Step 2

Lemma E.6. For éq = E, [pipZT\Ill(xi,n(pgﬁg(q));q)n(l)(pz,ﬁo(q))ﬂ, we have the following
bound on the event Aj;:

sup 07 (Qq — Qq) (B1 + B2)| S W™ e (i + 720). (E.19)
q€Q,B1€H1,B26H2,vEV

Proof of Lemma E.6. By the same logic as in Lemma C.11, we have on .4;
|@a -], v[@a -l < m
uniformly over q with probability approaching one. This gives (E.19), proving Lemma E.6. O
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Step 3

Lemma E.7. On Ay, we have

sup E,[E[0q.i(B1, B2, v)[xi]] — vTQq(B1 + B2)

qQ€Q,B81€H1,B826H2,vEY
2
S E%Lhd + €nhd(rl7n + T27n + En) .

Proof of Lemma E.7. First, on A; the largest eigenvalue of Qq is bounded by h¢ up to a constant
factor (uniformly in q):

Amax(Qq) = sup @’Qqa = sup E,[(aTp;)*W1(x;, n(p]Bo(a)); a)n™ (p] Bo(a))?]

lleel=1 lleell=1
< ||¢T|TI:)1E o [(@Tp)?| 1 (xi,1(p] Bo(a)); @)|n™ (P} Bo(q))?]
S g Enf(aTp)’]
(because }\111 X, 1) (pZ Bolq }17 (P! Bo(q))? < 1 by Assumptions B.2 and B.5)
= ||Zﬂp1lz;E [(a™pi)*1{x; € 6}]
< ||SL|TP1ZK:(Z aj k) Il{x, € 51}]
l=ti=1

(because supycs (@Tp(x))? S Zk 1 al > Where {oy, k}k , are the components of a corresponding
to the M; basis functions supported on d;)

< supE, [1{x; € 0} sup i(Z alk>

seA lal=17=3
< supE [1{x; € 6}] sup || = supE [1{x; € 6}].
llexl|=1

Next, by Taylor expansion,

E[dq,i(B1, B2, v)|x]
= vTp;i[¥(xq, n(P] (Bo(q) + B1 + B2 — v));q) — (x4, n(p] Bo(a)); q)]
< 1 (p](Bo(a) + B1 + B2 — v))

— vTp; [ W1 (xi, n(p]Bo(a)); @) { 1) (P Bol@))pI (B1 + B2 — v)+
#3111+ 62— )}
+1‘I’2 (Xiv €q.i q) {n(p(Bo(a) + B1 + B2 —v)) — n(p] Bo(a))}’
x 1] (Bo(a) + B + Bz — v))

for some &q; between p]Bo(a) and p](Bo(a) + B1+ B2 —v), &qi is between n(p]Bo(a)) and
n(p](Bo(q) + B1 + B2 — v)). This gives

En[E[6q,i(81, B2, v)[x]] = vTQq(B1 + B2) — vTQqu + I+ I +1II,
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where for some £q; between p] Bo(q) and p] (Bo(q) + B1 + B2 — v)
Li= By 07D (xi, n(p] Bo(a)): a)n™ (] Bo ()0 (€ (BT (B1 + B2 — v))°),
1= S [07pi0 (i, 1P o @); )1 ()
x 1 (p](Bo(a) + B1 + B2 — ) (B](B1 + B2 — ))°],
11T = S [07poWs (i £q. ) (0] (Bola) + B + B2 — ) — n(p]Bo()?

x 1 (p](Bo(a) + By + B2 — v)|

and
'UTéq'U S 637,hd7
I S 5nhd(rl,n + T2.n + 5n)27
II 5 gnhd(rl,n + T2.n + En)zu
11T < e,h(r1pn + Tom + €0)*
on the event Aj;. O

Step 4 We employ the following lemma.

Lemma E.8. There exists an event Ao whose probability converges to one such that on As

En [0"pit (3 n(pIBo(@)): a)n”) (p] (Bo(@) + B1 + B2 — )

sup
q€Q,81€H1,B26H2,vEV

~En [0TPith (i, n(p] Bo(@)); a)n) (PTBo(@)] | S Arin(rm + ran + 2n)en.

Proof of Lemma E.8.

B, [0"pit(yi n(p] Bo(@)): an”) (p] (Bo(@) + B1 + B2 — )|
~ o [0"pits(ui n(p]Bo(a)): a)n™ (0] Bo(a)]

— 0T, [1(y:, (P} Bol@); @)1 (€q.)pip] | (81 + B2 — v)

d
S h rl,n(rl,n +7ron + 5n)5na

where £q; is between p](Bo(q) + B1 + B2 — v) and p] Bo(q). The bound holds on the event

Ap = {sup’ En (53 n(p]Bo(a)); a)n® (€q..)pip] | LO < hdﬁ,n},
where the supremum is over 31 € Hi, B2 € Ha, v € V, q € Q and &q,; between p](Bo(q) + B1 +
B2 —v) and p]Bo(q). By the same argument as Lemmas C.12 and C.13, P{As} — 1. O
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Step 5 Let (k, k) be such an index that |82k x| = ||B2]| .- Let
Vg = caenh[Qq'], sign(Ba,kr)

for some c4 > 0 chosen later, where [Qal] ., denotes the (k, k)th row of Qal. Take vq € RE with

components vq j j = Uq,j,; for |7 — klloc < M, and zero otherwise. Clearly, vq € V on an event A3
with P(.Ag) — 1. On A1 N As,

’('Uq - @q)TQqﬂ2’ S EnthQ,nn_C5
for some large c5 > 0 if we let ¢; be sufficiently large.
Step 6 For each q, partition the whole parameter space into shells: Oq := Uéi:_oo Oq,r Where
Oq, = {ﬁ e RE: 2€*1t2,n < H,@ — Bo(q) — ’Bquo < 2£t27n} for the smallest L such that 2Lt27n > c.
Since with probability approaching one both supqEQHB(q) — Bo(q) H < ¢/2 and SupquHBquo
o0

IN

¢/2, we obtain that the probability of the event quQ{ B(q) € Oq} approaches one. Define A :=
AN Ay N As.

Note that for any vector v
E, [vpi (i1 (0] (Bla) — v) ):a)n™ (o] (Bla) — v) )| <0, (E-20)

because g(,@(q) - v) = E, [¢ <yi,n<pg (,E‘}\(q) — 'U))‘q) nM (plT (B\(q) - v))pi] is a subgradient
of the function f(8) := E,[p(vi,n(p;B); q)] at 3( ) —v, and ,@( ) is the minimizer of this function,
giving v7g(B(a) —v) < f(B(a)) - £(Bla) —v) <0.

Let ¢ > L for some constant L chosen later, and put €,, := 2Pty ,. Denote Hoy := {8 € R¥ : ||B]|
and note that if 3 € Oq, then B — Bo(q) — By € Hae by definition. Recall also that B3y € H1 on

the event of probability approaching one by (E.16). Therefore, if B( ) € Oqyu, for vq defined in
Step 5, on the event with probability approaching one

0> [vpits (i (pT (Bla) — va) )i )0 (b7 (Bla) — vq) )] (E.21)
= \}ﬁGn [5q,i (qu B(Q) — Bo(q) — qu "’q)}
+ En[E b0, (Ba: Bla) ~ Bo(a) ~ Bava) | xi] ]
+ i+ Ex [v3pato(ui n(p] Bo(@))s an'”) (p] Bo ()
= -GS (Ba Bla) ~ Bola) — Ba.va)] + S5+ 5,

NGO
+v§Qa(Bla) - Bo(a)) ~ vfQaba

= =G [3as(Ba. Bla) = Bofa) ~ Ba.vq)] + 5+ 5,
+01(Qq— @a) (Bla) — Bo(@)) + v Qa(Bla) — Bola) — Ba)
_ \/15@” [5% (Bqﬁ( ) - Bolq )—Bq,vq)} Sy + S5+ Sy
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+ (vq — 54)"Qq(B(a) — Bo(a) — Bq) +51Qaq (B(a) — Bola) — Ba)

= -G [Sqs(Ba Bla) ~ Bola) — Bavg) | + 5+ 5+ Su+ 5

\/ﬁ
o aio-a,
[ (q, Bo(a) — Ba> vq)| + S + S+ S+ S5
+ cagnh Hﬂ(q 5qH
where
(e )(5( )~ Bo(@).

Q
Sy 1= B [B b4, (B, Bla) — Bo(@) — B, va) | xi]| -~ ©1Qa (Bla) - Bol@),
S = By [03pst) (i, n(p] <q>>;q>n<l>(pz (Bla) - vq))]

— E, [vgpits(ui, (P} Bo(a)): ) (] Bo(a)) .
S5 i= (vq ~ )" Qa(Bla) ~ Bo(a) — Bq ).

We now bound these terms uniformly over q, for ¢ > L, where L is constant, and such that
2%ty,, = O(1). Using Lemma E.6 and

hmrl,n = O(tz,n), (E.22)

we bound
Sy = O(hm+d5n (rl,n + 2€t27n>> = o(hdZZtgmsn).

Using Lemma E.7, we bound
2
Sg = O(aihd) + O (5nhd (rljn + 2Ztg7n + 5n) )

on A. Using Lemma E.8 and
i, = o(tan), (E.23)

we bound
Sy = O(hd’l”lm(?”lm + 2£t27n -+ En)5n> = O(hd2£t27n5n)

on A. Finally, using Step 5 and n=% = o(1), we bound
Ss — o(snhdz%,nn—ﬂ - o(hd#rg,ngn).

If B(q) € Oq,, then 045nhdHB(q) — Bol(q) — ﬂ_qH > 4,092 1ty ,,. Note that

(a) - ~ (b)
|S3] < cZClhdsi + Coe,h? - 2%%7” + o(hd2£t2,nsn) < %Enhd2£t2,n,
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where in (a) we again used r%n = 0o(ta,,) and (b) is true if we choose ¢4 and ¢ small enough; C

and Cy are constants allowing for a bound |(’Uq/C4)Téq(’Uq/C4)| < C1h%e?, and such that ¢, can be
chosen small independently of C'; or C'y. Combining this with

1Sl + 1Sl + 1551 < Fenh"2'ez,n
for large enough n, we obtain
S2+ S5+ 84+ S5+ caah”||Bla) — Bo(@) — Ba|_ > Fenh2ron.

Combining the considerations above, we conclude

:

<P {sup sup sup Sup —— ‘G a.i(B1, B2, )H ZC4hd2ét27n€n}ﬂA
P qu/BIEHlBQEHQ,g'UEVf

{supHB Bo(a) — Bel| _ > 2"

qeQ

:

I C

+ O]p(l)
L
< Z (Cﬁhd2€t2,n5n) - 1(A1)
=L

xElsup sup sup sup —=|Gp[dq,i(B1, B2, v)]| + op(1).

|G
qeQ B1eH1 ,3267'[27@ vey \/ﬁ

By Step 1, the term before op(1) in the rightmost expression can be made arbitrarily small by
choosing L large enough, for n sufficiently large, since

1/2

/2 ans logdt1

Enf;%n) log(d+1)/2 n< hdt2,n5n PN (7“1,n) OgnT < tom, (E.24)

1/2
/2 . logd+1 .
b tn log(@1)/2 p < hd(tg,n)l_a/\;en & % < (tz}n)l_a/\;, (E.25)
logd+1 logd+1

WT” < hlvy e, © % < ton. (E.26)

Since 7y, was an arbitrary positive diverging (slowly enough) sequence, we infer (E.2) from this,
and the theorem is proven.

Remark E.9 (Rate restrictions). The rates in the proof are determined by four restrictions: Eqgs. (E.15)
and (E.23) to (E.25). Equation (E.26) follows from Eqs. (E.15) and (E.24). Equation (E.22) follows
from Eq. (E.15) and Eq. (E.23).

E.2 General case

We will state another version of the Bahadur Representation theorem, where 6 — p(y,n(0);q) is
not assumed to be convex. The following technical changes in the main assumptions are required:
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Replacement of Assumption B.2(i) Assumption B.2(i) holds with (B.3) replaced by

sup sup sup lo(y, (¢ + MG — ¢1))sa) — ey, n(¢2);a)| S I¢ — G|,
X Ae[0,1] y&[n(¢1)An(C2),m(C1)Vvn(C2)] (E.27)
sup sup sup lo(y,n(G1+ MG —¢))sa) — ey, n(¢);a)| S 1,
X Ag[0,1] yen(¢1)An(¢2)m(¢1)Vvn(C2)]
and (B.4) replaced by
sup sup sup|e(y,n(¢1 + MG — ¢1));a) — ey, 1(¢2);a)| S |61 — G| (E.28)

x Ae[0,1] ¥

Addition to Assumption B.2(iv) The following assumption is added to Assumption B.2(iv):
For any fixed ¢ > 0, r > 0, and a positive sequence &, — 0 the class of functions

0
{(X,y) *—>/_ . [ (y, n(P(x)T(Bo(a) + B) + t);q) — ¢(y, n(P(x)"Bo(q)); q)]
x 1M (p(x)T(Bo(a) + B) + 1) dt - 1(x € Ne1ogn)(9)) :

18 = Bo(dlloe <7 vl <en,d € Asqe Q}

with envelope &, multiplied by a large enough constant (not depending on n), satisfies the uniform
entropy bound (A.3) with A <1/e,, V < log? n, where the constants in < do not depend on n.

Theorem E.10 (Bahadur representation: general case).

(a) Suppose Assumptions B.1 to B.5 hold with changes described immediately above, B C RE
is such a set that {b € RX : ||b—8y(q)|s < ¢,q € Q} C B for some positive ¢, and the constrained
minimizer R

Beonstr(a) € argergin Enlp(yi, n(p(x:)"8); q)]

exists and is a consistent in co-norm estimator of 3y(q), namely:

sup
qeQ

ﬁconstr(q) - ﬂO(q)Hoo = OP(1)~ (E29)

In addition, suppose (E.1).

Then (E.2) holds with ,@(q) replaced by Bconstr(q).

(b) If, in addition to conditions in (i), (E.28) holds (without any restrictions on y), then (E.4)
holds with 3(q) replaced by Bconstr(Q)-

The argument for Theorem E.10 is almost the same as for Theorem E.1, so we will only describe
the changes that need to be made.

The setup is the same as in the convex case except the definition of dq (81,82, v) is replaced
with

dq,i(B1, B2, v)
= p(yi, (P (Bo(Q) + B1 + B2)); q) — p(yi, n(p] (Bo(a) + B1 + B2 — v)); q)
— [n(p](Bo(a) + B1 + B2)) — n(p] (Bo(a) + B1 + B2 — v))]v(yi, n(p! Bo(a)): q)

0
=/ [¥(yi, (Pl (Bo(q) + B1 + B2) + t);q) — ¥(yi, n(p. Bo(a)); q)]

T
—-p;v
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x 1V (p] (Bo(@) + B + Ba) + 1) dt,
and (E.14) is changed accordingly.
Lemma E.11 (Bounding variance). On A; as in Lemma E.3, class G satisfies the following variance

bound:

sup En[V[g(xi, i) | xi]] S enh(r1n + o +20) 2N

geg

Proof of Lemma E.11. This is proven by the same argument as in the proof of Theorem E.1. [

Lemma E.12 (Complexity of class G). Class G with envelope €, multiplied by a large enough
constant satisfies the uniform entropy bound (A.3) with A < 1/, and V' < logn.

Note that A is not constant in this statement but it will not matter since log(1/e,) < logn.

Proof of Lemma E.12. This is a directly assumed in the modified Assumption B.2 described in Sec-
tion E.2. O

Lemma E.13 (Uniform concentration in G). On the event A;, (E.18) holds.

Proof of Lemma FE.13. This is proven by the same argument as in the proof of Theorem E.1. [

Lemma E.14. For éq =E, [pipiT\I/l(xi,n(pzT,Bo(q)); q)n(l)(pgﬁo(q))Q], (E.19) holds.
Proof of Lemma FE.14. This is proven by the same argument as in the proof of Theorem E.1. [J

Lemma E.15. On A;, we have

sup
q€Q,B1€H1,B26H2,vEV

S E2n 4 e h (i 4 rom + €0)>

En[Elq(B1. B2. v)lxil] — v"Qa(B1 + B2)|

Proof of Lemma E.15. First, on A; the largest eigenvalue of C~2q is bounded by h¢ up to a constant
factor (uniformly in q), which is proven in Lemma E.7.
Next, by the Taylor expansion,

E[dq,i(B1, B2, v)|x;]
0
=/ _ [T, n(p](Bo(@) + B + B2) + 1);@) — ¥(xi,n(p{ Bo(a)); )]
bl

x M (p](Bo(a) + B1 + B2) +t) dt

0
— [ [wrtxine]Bol@): @) {n" 6T Bul@) (B (81 + B) + 1)

T
-p,v

312 Cas ) (P81 + 82) + 07}

450 (x5 G a) (BT (Bola) + B + B2) + 1) — n(p]Bo(@)”

x nM(pI(Bo(q) + Br + Ba2) +t) dt
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for some &qi¢ between plBo(q) and pl(Bo(q) + B1+ B2) + t, {qir between 1(p]Bo(q)) and
n(p] (Bo(a) + B1 + B2) +t). This gives

En[E[dq,i(B1, B2, v)[xi]] = vTQq(B1 + B2) — vTQqu + I+ II + 111,
where for some £q;; between p]Bo(q) and p] (Bo(q) + B1 + B2) + ¢ again

0
1:=E, / Uy (x5, 7(p] Bo(@)): @)™ (P! Bo(a))n® (€q.0) (P] (Br + B2) +t)* dt |,

T
—pi’U

1
II:=-E,

0
. / Wy (x5, 7(p] Bo (@) a)n® (Eqi)

T
_piv

x 1 (Pl (Bo(a) + B+ B2) +)(PT(B1 + B) +)°]

PN RN ! ! ?
= 5En / 2(Xz‘=§q,z‘,t7q) {n(p; (Bo(a) + B1 + B2) + 1) — (P Bo(a))}

T
-p,;v

x (Pl (Bo(a) + Br + B2) + 1) dt}

and
UT@qU S 5%hd7
I< snhd(rl,n + 7o + 6n)2,
IT< snhd(rlm + 7o + En)2,
II1 < enhd(rl,n + 7o + sn)2
on the event Aj. O

Lemma E.16. There exists an event Ay whose probability converges to one such that on As

sup B[4 (yi, n(p! Bo(q)); q)

q€Q,B1€H1,B26H2,vEV

x(n(p] (Bo(a) + B1 + B2)) — n(p] (Bo(a) + B1 + B2 — v)))]
~En [0Tpith (i, n(p] Bo(@)); a)n") (T Bo(@)] | S Arin(rm + o + 2n)en.
Proof of Lemma E.16. By the Taylor expansion,
B[4 (yi, 1(P] Bo(@); @) (n(P] (Bo(a) + B + B2)) — 1(p] (Bo(@) + B1 + B2 — v)))]
~ En[oTpit(ui, (0] Bo(@)); ) (BT Bol )|

[ Tt a0l Buta): @ {1 ca T 61+ B2 = 0) + 51 (Gas)plv}
5 hdrl,n('rl,n +ron + 5n)5na

where £q; is between p] (Bo(q) + 81 + B2 — v) and pBo(q), &q.i between p](Bo(q) + B1 + B2) and
P} (Bo(q) + B1 + B2 — v). The bound holds on the event As := A}, N A}, where

’ < hdrl,n }7
o0
and Af is defined the same way as A, with £q; replaced by éqﬂu
By the same argument as Lemma C.12, P{ A2} — 1. O

n [w(yz-, n(p}Bo(a)); a)n'® (Eq.i)Pip] }

b= sup
B1EH1,B2€H2,vEV,qEQ
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The last step in the proof is essentially the same as for Theorem E.1 with the following changes.
First, B(q) is replaced with Beonstr(q) everywhere in this step.
Instead of (E.20), we have for any vector v

E, [p (yz n (pzT ﬁconstr(q)) ; q) —p (yz n (piT (ﬁconstr(q) - ’U) ) ; q)} <0

by the definition of Bconstr(q) as long as ||v||, is small enough (so that Bconstr(q) — v satisfies the
constraints).
Also, (E.21) is replaced with

0>E, [p (,%‘7 n(p,T Bconstr(q)> ; q) - p(% n(pzT (Bconstr(q) - vq));qﬂ ,
and the definition of S4 becomes

Sy :=E, Kn (plT 3constr(q)) - (pi (Bconstr(q) - vq) ) ) Y (i, n(p; Bo(q)); q)]
~E, {Uépiﬂ)(l/u n(p!Bo(@)); a)n' (p] ﬁo(q))} :

F Strong approximation

The first subsection collects general results that may be of independent theoretical interest, while
the second section discusses our main results on strong approximations for partitioning-based M-
estimation.

F.1 Yurinskii coupling

The three theorems, and their proofs, in this subsection are self-contained, and hence all variables,
functions, and stochastic processes, should be treated as defined within each of the theorems and
their proofs, and independently of all other statements elsewhere in the supplemental appendix.
The following theorem is due to [11]. We use the statement from [7] making it explicit that the
supremum over Borel sets may not be a random variable (a direct proof may also be found in that
work). Let (S,d) be a Polish space (where d is its metric), and B(.S) its Borel sigma-algebra.

Theorem F.1 (Conditional Strassen’s theorem). Let X be a random variable defined on some
probability space (Q, F,[P) and with values in some Polish (S,d). Let J be a contably generated
sub-sigma algebra of F and assume that this probability space is rich enough: there exists a random
variable U that is independent of the sigma-algebra J Vo (X). Let B(S)xQ 3 (A,w) — G(A|T)(w)
be a regular conditional distribution on B(S), i.e., for each A € B(S), G(A|J) is J-measurable, and
for each w € Q, G(-|J)(w) is a probability measure on B(S). Suppose that for some nonnegative
numbers o and 3

E* sup{P{X € A|J} — G(A%|T)} < B,
AeB

where E* denotes outer expectation. Then on this probability space there exists an S-valued random
element Y such that G(-|J) is its regular conditional distribution given J and P{d(X,Y) > a} < §.

The following theorem is a conditional version of Lemma 39 in [1]; its proof carefully leverages
Theorem F.1. See also [6] for a related, but different, conditional Yurinskii’s coupling result.
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Theorem F.2 (Conditional Yurinskii coupling, d-norm). Let a random vector C with values in
R™ sequence of random vectors {&;}1_, with values in R* and sequence of random vectors {g;}1_,
with values in R¥ be defined on the same probability space and be such that the all the 2n vectors
{&}i, U{gi}i, are independent conditionally on C, are mean zero conditionally on C and for
each i € {1,...,n} the distribution of g; conditionally on C is N(0,V[&; | C]). Assume that
this probability space is rich enough: there exists a random variable U that is independent of

{&};, U{gi}i_,. Denote
S=&+...+&, T=gi+...+8n,
and let

5= Y E[l6II 0] + S E[lellel,]
=1 =1

be finite. Then for each § > 0, on this probability space there exists a random vector T' such that
Prio(c)(+) is its regular conditional distribution given o(C), and

P{||S —T'||, > 36} < 1;261(21@{”2”(1 >t} + 553752>,
where Z ~ N (0, I,).

Proof. By the conditional Strassen’s theorem, it is enough to show

. 36 . B
E A:Bu(%k)(ﬂ»{s € Aa(C)} — Priy(o) (A )) < rtnzlg<2P{\Z\d >t} + oyt )

or, equivalently, for any ¢ > 0

E* P(S e A|C}—P{T € 4% | C)) < 2p{|Z||, > 1} + 22, F.1
Aes;(%k)({ [} P [c}) <2P{1Z), > ) + 55 (F.1)

Fix t > 0 and A € B(R*). Let f: R¥ — R be the same as in the proof of Lemma 39 in [1],
namely, it is such that for all x,y € R¥,

2
‘f(x+ y) = f(x) = yVf(x) - ;yTvzf(x)y’ < Wl
(1-lfx e A} < f(x) S e+ (1-1{x € 47},

with o := 0/t and € := P{|| Z]|; > t}.
Then note that

P{S e A|C} =E[1{S € A} — f(S) | C] + E[f(S) — f(T) | Cl + E[f(T) | C]
< ¢E[1{S € A} | C] +E[f(S) - f(T) | C] + e+ (1 - OE[1{T € 4¥} ‘ c|
< 2e+E[H{T€A35} ‘ c} FE[f(S) — £(T) | C). (F.2)
Now we bound E[f(S) — f(T) | CI:

E[f(S) - f(T)|C] =) _E[f(X; +Y;) - f(X; + Wi) | C]

i=1
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<ZE ¥ ¥,
_ZE

@ZE[HY\I 1% lq+ 1WA l*[Willy |

+YTVA(X) + YTV F(X)Yi +

g

W Wil

FWIVI(X) + WV (X)W, - L

g

for X; =&+ ... +&-1+8+1+...+8n Yi =&, W, :=g;, in (a) we used the conditional
independence of the family {&;}7 ;U {gl}zzl, that they are conditionally mean zero and the equality
of the corresponding conditional second moments.

c] |

2(5 a. S.

We conclude that almost surely

2 2
1&llI"11€ill g + gl "8l 4
026

AesBu(I;m(IP’{SGA]C} P{TGA%‘C}) < 2 +ZIE

By the definition of outer expectation, this implies

g

E*  sup (]P’{SGA|C}—IF’{T€A35‘C}) <2+ 5.

A€B(RF)
which is (F.1). O

The following theorem generalizes Lemma 36 in [1], and also builds on the argument for Lemma
SA27 in [5].

Theorem F.3 (Yurinskii coupling: K-dimensional process). Let {x;,y;}.—, be a random sample,
where x; has compact support X C R% y; € ¥ C R is a scalar. Also let @ C R be a fixed
compact set.

Let Ap: @ x X x Y — R be a Borel measurable function satisfying supyco|An(q, i, yi)| <
Ay (xi,yi), where A, (x;,y;) is a Borel measurable envelope, E[A,(q,%;,y;) | x;] =0 for all q € Q,
supyex B[ A(xq, y:)]” | x; = x| < py < 0o for some v > 3 with p, 2 1 and log p,, < logn, which
satisfies the Lipschitz condition

sup E[\An(q,xz-,yi) — An(@, %3, ) ‘ x; = X} S lla—all
xeX
for all q,q € Q. Also, the (regular) conditional variance E[An(q, X, yi)2 ‘ X; = x} is continuous in

x € X. Moreover, assume that the class of functions {(x,y) — An(q,%,y): q € Q} is VC-subgraph
with an index bounded from above by a constant not depending on n.

Let b(-) be a Borel measurable function X — R¥ (where K = K, is some sequence of positive
integers tending to infinity and satisfying log K < logn) such that supycy||b(x)| < (x and the

probability of the event A := {SUPHaH:l E, [(aTb(xi))Q} < CGr} approaches one, where Cg, is
some positive constant. Assume (x satisfies 1/Cx S 1, |log (x| < logn.
Let vy yur = ryur — 0 be a sequence of positive numbers satisfying

?{Mf’/" e Vd1ogn + M logn = o(ryur) (F.3)
NG nl/2—1/v yur/: :
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Assume also that the probability space (for each m) is rich enough: there exists a family of
independent random variables {Uy,Us, Us} distributed uniformly on [0, 1] that is independent of
{(xi,vi)}i_y. Then, on the same probability space, there exists a K-dimensional process Z,(q)
on Q which is conditionally on {x;};_, a mean-zero Gaussian process with the same conditional
covariance structure as that of G, (q) := G,[An(q,x;, yi)b(x;)], meaning that for all q,q € Q

E[Gn(a)Gn(@)T | {xi}i21] = E[Zn(@) Zn(Q)" [ {xi}ily], (F.4)

such that

sup(|Gn(a) — Zn ()| o = oP(Tyur)-
qeQ

Moreover, if A,(q,X;,y;) is 0?-sub-Gaussian, then (F.3) can be replaced with

3\ 520G
(\C/Kﬁ> ; Viegn + \C/I% 10g3/2 n = o(ryu).

Proof. Let Q0 := {ql, 5 dgs |} be an internal d,,-covering of Q with respect to the 2-norm || - ||

of cardinality |Q%| < 1/ 522 where 6, is chosen later. Denote 70 Q — Q a sequence of projections
associated with this covering: it maps each point in Q to the center of the ball containing this point
(if such a ball is not unique, choose one by an arbitrary rule).

The plan of attack is to

1. show that G,(q) does not deviate too much in sup-norm from its projected version, i.e.
bound the tails of supquHGn(q) -G, o0 wg(q)Hoo,

2. apply Yurinskii coupling to the finite-dimensional vector (Gn owfl(q))q cos and obtain a

conditionally on {x;}; ; Gaussian vector Zfl with the right structure that is close enough,
i.e. with a bound on the tails of HGn omd — ZgHOO,

3. extend this conditionally Gaussian vector to a K-dimensional conditionally Gaussian process
Zy,

4. and finally show that Z,,(q) does not deviate too much from its projected version, i.e. bound
the tails of supqEQHZn(q) —Z, 0 ﬂg(q)Hoo.

If we complete these steps, it will prove the lemma by the triangle inequality.
Discretization of (G,, Consider the class of functions

G, ={XxY>3(x,9) = An(a,x,9)bi(x): 1 <I< K,q € Q}

with envelope (x A, (X). Since {A4,(q,x,y)} is a VC class with O(1) index and envelope 4, (x,y),
G!, satisfies the uniform entropy bound (A.3) with A < K and V' < 1.
Next, consider the class of functions

GO = {X x V3 (x,9) = (An(a,%,y) — An(@,x,9)bi(x): 1 <I< K,q,q € Q,|la—q|| <}

with envelope (x,%) — 2(x A, (x,y). Using Lemma C.4, we get that this class satisfies the uniform
entropy bound (A.3) with A < K and V < 1.
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Now we apply Lemma C.6 conditionally on {x;};"; on A with [|F|[p, < 2¢ K,u,l/ Y since

- 1 n - 1 n
1AnGe )2, = - S B[ AnGrui)? | 3] < - 52 = 2,
=1 =1

[M|lp2 < 2k (i)Y since

2/v
E {Xi}?:J

(max An(xi,gﬁ)>2 {xi};;l: < EK max An(xiayi)>y

1<i<n 1<i<n

q2/v

<SE|Y An(xip)” [{xidimy| < (man)™”,
i=1 _

and o < /0, since on A

I _
Sla-all- > hx)® < la—dl.
=1

This gives that on A

E| sup [|Gu(a) — Gn(d)]« {Xi}?zll
la—all<dn
< \/5 log KCKM}/V + Ciclpoam) log KCKM}/V
~yT Von Vn Von

By Markov’s inequality and since P{.A} — 1, for any sequence t, > 0

P{ sup HGn(Q)—Gn(d)Hm>tn}

”q*EIHS(sn

(F.5)

1 K" )Y K e

Von tny/n Von

where the constant in < does not depend on n.

n

Coupling Define a K]QZ|—dimensional vector & = (An(q, xi,yi)bl(xi)/\/ﬁ)lggK,qega, so that
we have G, o WfL =Y, &. We make some preparations before applying Theorem F.2.
Firstly, we bound (1€ 2116 | {xi}ii .

S E[je 26, | Gxir)
i=1
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= /2 ZHb %) |I2[|b () || o Z An(a,xi, ;) max|A (a4, %3, ¥3)| | xi
qacQ)

< 3/2\@512% %) 121D (xi) | oo B [An (xi, 4i)* | xi]

Q5 3/u n Q5 M3/V
< 1Sl > ot RIS Y

Secondly, for i € {1,...,n} let g; ~ N(0,%;) be independent vectors, where ; = V[§; | x,].
Since there is an independent random variable U; distributed uniformly on [0, 1], we can construct
the family {g;} on the same probability space. Then by Jensen’s inequality for any A > 0 we have

E[ngnio ‘ Xi] < ilogE[eAHgi”io )Xz} < ilog Z E{eA(g“)g ‘xl]

2/v
—%log< 2022 / ) +log K + log| Q)| CKMQ/V )
< N S (logKHog\Qn\),

where we used the moment-generating function of x3: [exp{axl}] 2 fora<1 /2,

the bound V[&; | x;] < CK,LLQ/V/TL and put A := <4CK,LL2/V/n> . Also,

9 1/2
8

4 1/2 K<y 9 4 1/2
E{H&‘H ‘Xz} =El[ D gi] |x| < Elg;; | xi]

K|Q)|

- Y VEE[ ] SE[leil? | x] - Elel? | =]

which gives

n

SB[l [x] " £ SB[l [x] < i2v108E (b)) < IS
=1

=1

Therefore, by the Cauchy-Schwarz inequality,

n n 1/2 1/2
> Ellgillgill | xi] < DE[lal" | xi] T E[lgd% | xi
i=1 =1

C?(M?L/V 5
S |Qn |/ log(K|Q5)).
f
Now, since there exists a random variable Uy independent of {&;}"" ; U{g:}.—, applying Theo-
rem F.2 with

5= Y E[l6Iel] + SB[ le el
=1 =1
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Cg 3/v

o

< SR Q) 1 oa(K1€5)
3 3

< Go” o K

~ pl/25de 5le

gives that for any ¢, > 0, on the same probability space there exists a vector Zg ~N (O,V[Gn o
7o | {Xi}?zl]), generally different for different ¢,,, such that

]P’{HGn 071'2 — Zg

> 3tn} < m>i(1)1{2]P{||NHOO > s} + £s2},

n

where IV is a K|Q?|-dimensional standard Gaussian vector. By the union bound,
P{IN ]l > s} < 2K|Qle /%,

so by taking s := C'y/log(K|Q?|) for a positive constant C' not depending on n (chosen later), we
have

) s (K8) T Deton (K100)

) 5
P{Hanown—zn 5
K 1-C2?/2 K

5o 3
1-C2/2 3/v
S(ENTTP L o G s K
< B +C i log =,

where the constant in < does not depend on n.

Embedding a conditionally Gaussian vector into a conditionally Gaussian process For
a fixed vector in X € X", by standard existence results for Gaussian processes, there exists a mean-
zero K-dimensional Gaussian process whose covariance structure is the same as that of G, (q) given
{x;};=; = X. It follows from Kolmogorov’s continuity criterion that this process can be defined
on C(Q)%. The laws of such processes define a family of Gaussian probability measures on the
Borel g-algebra B(C(Q)¥) of the space C(Q)*, denoted {Px}xcyn. In order to construct one
process that is conditionally on {x}}” ;, a mean zero Gaussian process with the same conditional
covariance structure as that of G, (q), where {x]}!" | is a copy of {x;}!";, we need to show that
this family of measures is a probability kernel as a function X" x B (C(Q)K ) — [0,1]. This fol-
lows by a standard argument: we can take a m-system of sets, generating B(C (Q)K ), of the form
B = {feC(Q)¥ :f(q1) € Bi,...,f(qm) € B}, where m € {1,2,...}, q; € Q, and each B; is
a parallelepiped in RX with edges parallel to the coordinate axes, and notice that for such sets
X +— Px(B) is a Borel function (since a mean-zero Gaussian vector is a linear transformation of
a standard Gaussian vector). The sets A € B(C(Q)®) such that X — Px(A) is a Borel function
form a A-system. It is left to apply the monotone class theorem.

We have shown that there exists a law on X™ x C(Q)*X which is the joint law of {x]}!" | and a
conditionally on {x}};" ; mean zero Gaussian process with the same conditional covariance structure
as that of G,,(q). Projecting this C(Q)®¥-process on Q% and adding the resulting (conditionally
Gaussian) vector as the middle coordinate, we obtain a law 123 on the Polish space X™ x R AR
C(Q) with projection P12 on the first two spaces, where Pis is the law of ({x;}I_;, ZJ). Since
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there exists a random variable Us independent of {(x;,y;)}i U{ Z} 5} with a continuous distribution
function, we can apply Lemma 3.7.3 in [9] with V denoting ({x;};;, ), and obtain that there
exists a random element W with values in C(Q)® on the original probability space such that the
law of ({x;}/_;, Z3, W) is exactly P1o3. This is what we are looking for: W = {Zn(a)}eg is the
conditionally Gaussian process whose projection on Q9 is the vector Z? a.s.

Discretization of Z,, Consider the stochastic process X,, defined for t = (I,q,q) € T with

T _{(l q,9 ) 16{1727-"7K}7q7q€ Qv”q—(lH S(Sn}

as Xyt = Zpn1(d) — Z,,1(q). It is a separable (because each Z,, ;(-) has a.s. continuous trajectories)
mean-zero Gaussian conditionally on {x;} ; process with the index set T' considered a metric
space: dist((l,,@), (I, @)) = |a— o'l + & — &l + 1{l # I'}.

We will apply Lemma C.7 to this process. Note that on the event A

o(Xa)? = supB[X2, | {xi}Ly] =  sup  maxE[(Zui(a) — Zny(@)? | {xi}i ]
teT la—dall<é, !

= sup max[E [(Gn,l(Q) - Gn,l((l))2 {Xi}?:l}

la—al|<én !
= sup max — Z bi(xi) E[(An(q, i, Yi) — An(@,%i,91))? ’ Xz}
la—all<on

S osup maxfzbz xi)*lla— 4l < dn max By, [b1(x:)?]
la—all<én

< 6, sup En[me(xi)) | <o
laf]=1

<Ce
Next, we define and bound the semimetric p(t,t'):
plt, )2 i= B[ (Xog — Xnr)” | {1
= E[((Z01(@) = Z01(@) = (Zns(d) = Z0(@)))° | {xi}?_l}
SE[(Zni@) = Zop (@) | Y| + E[(Z0i(@ = Z0(@))* | ixiFi .
The first term on the right is bounded the following way: if [ # [/,
E[(Zna(a) = Zna(@))” | (%Y1 = EB[(Grala) = Ga(@))® | {xidy]

:fZE[ (X, )00 (%) = An(l's i, )b (x0))” | xi]

2/\

n Z bi(x:)°E |:(An(q7 xi, i) — An(d', xi, yi))z ) XZ}

+ % Z(bl(xi)2 + by (x:)*)E[An(d, xi, i) | xi]
i—1
Slla—d|Ex [bl(xz) ] +M2/”( n[bl(Xi)Q] +E, [bz/(xz) 1) < lla—d 2l
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Similarly, if [ =I', E [( Zni(aq) — Zn,l,(q’))2 ‘ {xi}?zl] S lla—d|-
The term E[(Znyl(Q) — val,(q,))z ‘ {xi}?zl} is bounded the same way, and we conclude

p(t,t)? < " (lla — o' + lla— &'l + {1 # '}) = i/ dist (Lo, @), (', 4, @)
In other words, we have proven that for some positive constant C15 we have on A

p(tv t/)Q S Clg/},?,/ydlst((l, q, (i)v (llv q/7 q/)) .

2
This means that an (5 / u}/ "V C’12> -covering of T" with respect to dist(-) induces an e-covering
of T" with respect to p, and hence

2
£
N(T,p,e) < N| T, dist(-), <> . (F.6)
/%11/ VCi2

Combining this with (F.6) we get
log N(T, p,e) < log(Kui/”/E)-

Applying Lemma C.7 gives that on the event .4

20(Xp)
{Xi}?l},sJ(X [ VieeN T e
o N\ 1/2
< o(Xn) + o(X Mlog(mn Jo(X >)“<a 1g<K“5/>> ,

where in (a) we used our bound o(X,) < /3, above and that z +— zlogl is increasing for
sufficiently small . Rewriting and applying Markov’s inequality, we obtain that on A

E [sup\Xn7t|
teT

1 Kl/y
o)« 2 o

where the constant in < does not depend on n. Since P{.A} — 1, this implies

H—

P sup HZn(q) - Zn(d)”

1 K 1/v
P{ sup ||Zn<q>—zn<q>||m>tn}s dulog o) (k.7

~~

la—qll<dn n

Choosing §, and conclusion Combining the bounds obtained above, for any given positive
sequence t, and any constant C' > 0 of our choice

P{SUPHGH(Q) = Zn(a)] o > tn} < P{ sup  [[Gr(a) — Gn(@)|l > tn/?’}

qu ||Q*(~l||§5n

+ P{HGN © 7"2 - Zg - > tn/?’} + P{ sup [ Zn(a) — Zn(Q)|| & > tn/3}

||Q*(~l||§5n
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1\/‘51 KCiem!” | Cre(pan)"! ”1 KCrpmsl”

> Vot BTG,
-C?/2 3/v
+ <K>1 / C?(Nn log3/2£
sie t3f sie sie
1 K 1/v
+ ? 5n IOg Ig + 0(1)7

where the constant in < does not depend on n.

Take, for example, C = 2 (so that 1 —C?/2 is negative). Now we approximately (assuming that
each log(-) on the right is O(logn) and ignoring constant coefficients) optimize this over §,. This
gives

Let £, — 0 be a positive sequence satisfying

NZD

Putting t,, := {p7yur, We get

1
3 3/v\ 3+2dg v
n —

qeQ

P{supHGn(q) - Zn(q)|l > Enryur} =o(1).

Fix € > 0. For n large enough, ¢,, < . Then for these n we have

qeQ qeQ

P{SupHGn(Q) — Zn(q)|l > 87"yur} < P{SupHGn(Q) — Zn(a)ll > enryur} =o(1).
Theorem F.3 is proven. O

F.2 Main Result

We begin by presenting our main strong approximation result, which is a special case of more
technical and lengthy Theorem F.3. To simplify exposition, the following notation will be helpful
from this point onwards:

E(Xv q,V) = _hd/Qwv (FS)
Qv (x.q)

_ Qq'p™v (x)

- d/2*q

E(X7 q’ V) M h QV(X7 q) ) (F.g)

_ )15 V)

Ux,q,v) = —hd/2m, (F.10)
—1 (V

L(x,q,Vv):= hd/Qm, (F.11)
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t(x,q,v) == h"%0(x,q,v) G, W(yi, (o (xi,a)); @)™ (o (xi, a))p(x5) |, (F.12)

v ) (v)
T(X, q,v) — p( )(X)Tﬁ(q) — My (X7q> . (F13)

~

QV (X7 q)/n

Theorem F.4 (Strong approximation: Yurinskii).
(a) Suppose all the conditions of Theorem E.1(a) hold with v > 3, 1/(nh3?) = o(1) and the
following Lo-norm Hoélder-type condition holds: for any q,q € Q

E[|(ws: n(110(xi, @)): a)n™ (a0 i, @)

(F.14)

1/2 a. S.

5 11/2

T i Tt i S S P

Assume that the probability space (for each n) is rich enough: there exists a family of in-

dependent random variables {Uy,Us,Us} distributed uniformly on [0,1] that is independent of

{(xi,y:i)}i—,. Then there exists a K-dimensional process Z,(q) on Q which is conditionally on

{x;};", a mean-zero Gaussian process with a.s. continuous trajectories and the same conditional

covariance structure as that of G,,(q) := h=%?G,, (¥ (i, n(po(xi,9)); @)™ (o (xi, q))p(x;)], mean-
ing

E[Gn(@)G(@)T | {x:}11] = ElZa(a) Za(@) | {x:}):

such that if roy — 0 is a positive sequence of numbers satisfying

1\ orig 1
(nh3d> logn + XY= logn = o(7str),

then

sup sup |£(x, 4, V) Gn(q) — £(x,q, V) Z,(q)| = 08 (rstr)- (F.15)
XEX qEQ

(b) If, in addition to the previous conditions, 1(X;, ;) is 0?-sub-Gaussian conditionally on x;,
and 5% — 0 is a positive sequence of numbers satisfying

str
1
1 6+4d log3/2 ]
() Viomn+ Bt — oz,

nh3d Vnhd
then _ _
sup sup [€(x, @, v) G (q) — £(x,q, V)  Zn(q)| = op(r5P). (F.16)
XEX qeQ

Proof. We will only show Assertion (a) since Assertion (b) is shown similarly.
It is enough to show

SngGn(Q) — Z,(9)|| o = 0P (7str)

because supq’xHZ(x, q,v)“1 <p 1 (which we will prove in Lemma F.7 below). To do this, apply
Theorem F.3 with G,,(-) as in the statement,

An(a,y) = An(a,x,3) = ¥y, n(po(x,q)); @) (1o (x, a)),

b() == h™?p(-),

(k SKV?Sn 92,

n S 1. O
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Using this theorem, we will obtain the following result as a corollary. This corresponds to The-
orem 2 in the main paper; the notation there is simplified for better readability, and the statement
is different but the argument is the same. Specifically, T'(x,¢) in the main paper corresponds to
T(x,q,v) here and the approximating process Z(x,q) corresponds to £(x, q,v)TZn(q) here. The
reason for differing notation is that we require more precision here: given the form of Theorem F.3,
it is more natural to use K-dimensional processes such as Z,(q), also making for simpler presen-
tation of precise results in Section G later.

Corollary F.5 (Strong approximation of the t-process). In the setting of Theorem F.4(a), we have

= T [ d
sup T(X, q, V) - E(X, q, V) Zn<q) SJP’ \/ﬁhdmrucrﬂ + nhdrBah + 0(rstr) = 0(rstr + Tho)-
q?x
The rest of this subsection will be devoted to filling in the small detail in the proof of Theo-
rem F.4 that we deferred, and proving Corollary F.5. First, we prove bounds on the asymptotic
variance and its approximation. Similar bounds were proven in [3, 4].

Lemma F.6 (Asymptotic variance). Suppose Assumptions Assumptions B.1 to B.5 hold, and
log(L/h) _ o(1). Then

nhd

h- d—2|v| < mf inf Q (X CI) < sup sup 2y (X q) < h~ d— 2“" (F17)

qeEQ XEX qeQ xeX
—d—2Jv] log(l/h)

sup sup’ﬂ X,q) — Qy(x, Q)’ Seh T pd (F.18)

qeQ xEX nh

B2V <p inf inf Qy(x,q) < sup sup Qv(x, q) <p A2V, (F.19)
qeEQ xeX qQEQ XEX

Proof. For the lower bound in (F.17), we have

2 (x,@) 2 Muin(Zng) - [ Q55| 2 M (Boa) - Qa0 )|

(F.20)
> Amin(Bo.q) - h 24 h2V > pd 2 2] = pmd2dy]

by Assumptions B.4, B.2 (02(x) and 7™ (1o(x, q))? are uniformly over x bounded away from zero)
and Lemma C.11.
For the upper bound in (F.17), we have

(x,0) < Ams(Zna) - [ QP < (B [ Q5] 0 G0
(S) /\max(zo,q) ShH hizlv‘ (%) hd . p—2d h*2\V\ — h*d72|v\,

where (a) is by Assumption B.4 and Lemma C.11, (b) is by Assumption B.2 (02(x) and ™ (po(x, q))?
are uniformly over x bounded) and Lemma C.11.
We will now prove (F.18). We start by noticing

) (3)7Q5 4 (Zq — To.a) Q5P ()

X

_ BICIRSNT
SpsupHEq—Zo,qH‘HQO,QH -Hp (X)H
q,x

@ _ ® Nog(L/B) o [Tos(1/h
SP h 2d | h 2|v| SUPHEq . 207qH S]P’ h 2d 2‘V|hd g( Z ) =B d—2|v| g( é )’
q nh nh
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where in (a) we used suquQaaH <p h~% by Lemma C.11 and suprp(") )| < R~V by Assump-
tion B.4, in (b) we used suquEq — EO,qH <p h?y/ logn(% which is proven by the same argument
as SuquQq — Qo,qH <p hy/ % in Lemma C.11. Similarly,

sup ) (x)7(Qq" — Q) @4 ' ()
<uplQq" — Qo+ 193 - 1%l Ip) ()P
_, [Jlog(1/h) . _ _ q log(1/h)
< p=d [081/R) 5 _a ya oy _ g —d-2v|, [log8U/h)
<ph et h h X

Finally,

sup
a,x

P (x)'Q54Ta(Qih — Q3P (x)| Sp h 2 log(1/h)

nhd

Combining the bounds above gives supq7x}f_2v(x, q) — Qy(x, q)‘ p h—4=2Vl %.

(F.19) is an immediate consequence of (F.17) and (F.18), since logn(}lléh) = o(1). O

Lemma F.7 (Closeness of linear terms). Suppose all the conditions of Theorem E.1(a) hold. Then

A x,a) = a) | o hH g, (F.21)
_ _ log(1/h
Sup‘ﬂv(& a) -0 (x, q)*m‘ <p K42 &{z)’ (F.22)
q.x nh
sup||€(x, q, v)[l; $ 1, (F.23)
q,X
_ log(1/h
supl|[£(x, a4, v) — £(x, @, V)|, S 1/ L2, (.21)
a,x nh
v log(1/h)
E ) My - ’e IR B} H < 5 F25
Sup (x,q,v) —£(x,q,v)|| P\ — (F.25)
supHE(x,q, Hl <1 w.p.a. I, (F.26)
sup E(X,q,v)H1 <1 w.p.a. I (F.27)
If, in addition, Assumption B.6 holds, then
supl|€(x, q, v) — £(x, q, V)H1 <prqQ+To, (F.28)
q,x
sup||€(x, q,v)H1 S1 w.p.a. 1. (F.29)

Proof of (F.21). This follows from the following chain of inequalities:

~ 71/2 — _
sup|(xa) - Quxa)
q7x

Qu(x,q) — D (x,q)

< sup sup

1
9 [y (x,q)2 x,q)<\/ﬁv(x7q)+\/ﬁv(x7q)) ax
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(a) 3/2 N B (b)
Sp (hd+2|v\) sup‘ﬂv(x, Q) — Oy (x,q)| <p BY2HVIg
q7x

where in (a) we used that Q,(x,q) is close to Qy(x,q) by Assumption B.7 and the lower bound
on 0 (x,q) from Lemma F.6, and in (b) we used Assumption B.7. O

Proof of (F.22). Recall that
_ log(1
sup| Q2 (¢, ) — Q)| o ho2 L) g

q,x nhd

inf Qv (Xv q) Z]P’ h_d_Q‘v|
q7x

by Lemma F.6. Therefore,

sup|Qy (x,q) % — Qu(x, q)*m‘

q7x

1 _
< sup Sup‘ﬂv(x7 q) - QV(X7 q)|

/D (x,q) 2 (x <\/ﬂ Xq)+\/m> o

3/2 _ —d—alv| [log(1/h
<o (12) ™ supl @y e, ) — e, )] o Y v [ O80T
q,x nh
_ pd/2lv| log(l/h)'
nhd
O
Proof of (F.23). The result follows from
hd/QHQ 1 (v ( )Hl < hd/2HQ(;1H1 . Hp(v)(X)H1 ,SIF’ hfd/27|v\
and Lemma F.6. ]

Proof of (F.24). The result follows from

S(]luf\}f(x,q,\')—f(x,q,V)Hl Sup#‘)(le—Q&é)p(v)(X)Hl
< e supl Q" - @ o0

hd+‘V‘ h d lOg 1/h h ‘V‘ log(l/h)
V nhd '

where in (a) we used infqx Qy(%,q) = h~9" 2Vl by Lemma F.6, in (b) we used HQ_q -Qq qH Sp
h~4\/log(1/h)/(nh9) by Lemma C.11 and |[p() )|, < h~I¥l by Assumption B.4. O
Proof of (F.25). We have that

sup[[Qq ', <2 h?
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by Lemma C.11, and

ol 0

by Assumption B.4. Combining this with (F.22) gives

MEQPM () hPQ'PM )| flog(1/h)
Vi (x,q) Vi) TV b

It is left to recall (F.24).
Proof of (F.26). This follows from (F.24), (F.23) and +/log(1/h)/(nh?) = o(1)
Proof of (F.27). This follows from (F.25), (F.23) and +/log(1/h)/(nh?) = o(1)

Proof of (F.28). By the triangle inequality,
N-1p™)
oup Qy'p (X) Qq'p" (F.30)
\/Q v(x,q) ||,
. Qa) ] I VR ( | )
< sup u =
X V2 . \/ﬂ (x,q) \/ﬂv(x,q)

To bound the first term in (F.31), recall that ﬁv(x, q) >p h~% 2"l by Lemma F.6 and Assump-

tion B.7. Then
sup ( ) S,IP’ hd/2+|v| sup
q,X / q,X
1

< hd/2+|V| Squ,I() Qal — QC—llHl . HP(V)(X)Hl

< hd/ZHQal _ Q‘;IHOO <p h/2. h_er _ h—d/QTQ’

(F.31)

(@a' - Q3" )p™ )

where in the last inequality we used H@q — QqH <p her by assumption, and
o

|Qa" - Qa'| = l@a"] -[|@a— @l - l1Qq " s i (0t )i =g

also by assumption and Lemma C.11.
It is left to bound the second term in (F.31):

0t s )

]

< supl| Qg sup|[p) ()| sup| v x, @) = @y . @)
q X q,xX

(@)
<ph~ M. sup
q,X

~ 71/2 — —
Nexa) - Qxa)

(<I; h—d |v|hd/2+|v\ ro = h™ d/27"Q,

where (a) is by Lemma C.11 and Assumption B.4, (b) is by (F.21). O
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Proof of (F.29). This follows from (F.28), (F.27) and ry. + rq = o(1). O

Lemma F.8 (Hats off). Suppose all the conditions of Theorem E.1(a) hold. Define (and fix for all
further arguments) ry, as an arbitrary positive sequence satisfying

Vh® 2 rq + Vihrga, = o(rpo) (F.32)
for rgan defined in (E.3).
Then
sup sup|T(x,q,v) — t(x,q,v)| <p Vnh®2ricra + Vnhirga, = 0(Tho)- (F.33)

xX€EX qeQ

Proof. First, note that by Corollary E.2; Lemma F.6 and Assumption B.7

pM )8 — 1 (xa)  PV)B) — 1 (x,q)

a,x , /QV(X7 q)/n VQ(x,q)/n

O (x.q) — R (x,q)|

<p vn-h My (hd+2IV|)3/2 p2AvI=dy
= \/ﬁhdﬂruch.

Now, by Theorem E.1 and h=2VI=¢ <p infy « |Qy(x,q)| (by Assumption B.7 and Lemma F.6)

pM(x)B(q) — 1 (x,q) i av
2, (xa)/n )

1/2
sup Se ﬁ(hdH'vl) hMrgan = Vnhirgay,

q’x

where g, is defined in (E.3).
It is left to apply the triangle inequality.

Proof of Corollary F.5. Combine Theorem F.4 and Lemma F.8.

G  Uniform inference

Theorem G.1 (Plug-in approximation). Suppose that all of the following is true:

(i) All the conditions of Corollary E.2(a), Theorem F.4(a) hold.

(ii) Assumption B.6 holds with a rate restriction (rq + rq)+/log(1/h) = o(rsy).

(iii) On the same probability space, there is a K-dimensional Gaussian conditionally on {x;};_,
process 2;;(q) on Q with a.s. continuous sample paths, whose distribution is known (depends only
on the data and known quantities), such that

igg“fi(q) - ZZ(q)HOO = 0p(Tstr), (G.1)

where Z7(q) is a copy of Z,(-) conditionally on {x;}!" , depending on the data only via {x;}; ;.
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Then
T 1 T 1
h/2 sup Sup Q ( ) Q I .

2(@)] = op(rstr),
qeQ xeX X q v/ Q X q -

or, equivalently (by Lemma C.3), for any ¢ > 0

P! .

VQu(x,q)

T
P{ p/? sup sup () Qq

qeEQ xeX / x q

If @(xi, yi) is o?-sub-Gaussian conditionally on x;, then ry, in the conditions and conclusion of

this theorem can be replaced with rSiP.

Z;(a) -

(Q)| > ersty | Dy p = op(1).

For the proof, we only handle the case where v is finite since the sub-Gaussian case is proven
similarly. We build on the proof of Theorem 6.3 in [4].

Lemma G.2 (Bounding the supremum of the Gaussian process). In the setting of Corollary E.2(a),
we have supyeol|Zn(q)llo Sp Viog K.

Proof. Consider the stochastic process X,, defined for ¢t = (I,q) € T with
T:={(l,q):1€{1,2,...,K},q € Q}

as Xnt 1= Zy1(q). It is a separable mean-zero Gaussian process with the index set 7" considered a
metric space: dist((,q), (',q’)) = |lq — d'|| + 1{l # I'}. Note that

O'(Xn)2 = SupE[ it ‘ {xi}ie 1] = (slgp maxE[ ‘ {xi}i 1]

- S“SmaX*ZE (s 0ot )5 @2 30 (a0 (x5, 1)) 21 (x,)°
qc

< hUE, [n(xi)?] <A sup E,faTp(x)p(x)Tal S1 w.p.a. 1.

acSK-1

Next, we will bound
p(t, )2 = E[ (X = Xo)” | {xiH ] = E[(Zna(@) = Zoa (@) | i} .
1+,
E[(anq) ~ Zo(d))* | I}
= Z BB (o (s, )): ™ (o s, @) (3)

—b (i (po(xi,d)); )™ (o (x5, q’))pzf(xz-)) 2{Xi}?:1]

= hE B (Au(a 1, %0) = Anld %)) | (Y |puxi)?]
+ W B, [E[An(d, yix0)? | {xi1 ] ((x2)? + prr(x:)?) ]
S hYa = o||En [pi(x:)?] + b En [pi(x)* + prr(x:)?]
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S Hq— q’H +1 w.p.a. 1,
where we denoted A, (q,vi, %) = ¥ (yi, n(1o(xi,q)); @)™ (po(xs,q)) to simplify notation. Simi-
larly, if [ =1,
2 n
B[ (Zni(@) = Zno(@)® | BYim] S [la— ]| w.pa 1.
We conclude
p(t,t)? < dist((l, qQ), (l’,q’)).

2_covering of T with respect to dist(-) induces an e-covering of T' with respect

This means that an e
to p, and hence
N(T,p,e) < N(T7 dist(-),aQ). (G.2)

On the other hand, since Q does not depend on n, clearly for (sufficiently small) £ > 0, N (T, dist(-), )
K(C, /€)%, where C; and Cs are both constants. Combining this with (G.2) we get

log N(T', p,e) < log(K/e).

Now we apply Lemma C.7:

20(Xn)
{Xi}?zl}sdx / R N T o) de

So(Xp) +o(Xn)Vl0og(K/o(X,)) <1 V9og K w.p.a. 1,

E [sup\Xn,t]
teT

where in <; we used our bound o(X,,) < 1 above. Rewriting, we obtain

SHPHZ (@l
qeQ

{xi}?zll < VlogK w.p.a. 1. (G.3)

By Markov’s inequality this gives supycol|Zn(a),, Sp viog K. O

Concluding the proof of Theorem G.1. By the triangle inequality, it is enough to show

h/? sup TQq A* (q) — TQq Z7(q)| = op(7str), (G.4)
X (x,9) \/ (x,q)
1 v TNH-1
W72 qup P % %Zﬁ(q) ) (@.5)
lll}p J/Q (x,9q) V Qy(x,q) o

To prove (G.4), combine supq’x“é(x, q,v)H1 <p 1 by Lemma F.7 with (G.1).

To prove (G.5), combine Lemma G.2 with sup,

£(x,q,V) —E(X, q,V)H1 Sp rq + ro by
Lemma F.7, and use Condition (ii) of this theorem. O

Theorem G.3 (Confidence bands). Suppose that the following is true:
(i) All conditions of Theorem F.4(a) hold.
(ii) Assumption B.6 holds with a rate restriction (rq + rq)/log(1/h) = o(rgy).

(iii) (rstr + Tho) v/10g(1/h) = o(1).

Then P{sup, , |T(x,q,v)| < k*(1 — @)} = 1—a+o(1), where k*(n) is the conditional n-quantile
of supq,xw(x, q, V)T2:(q)| given the data.
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To prove this result we first introduce some auxiliary lemmas. To simplify the exposition, let

V= Sup|T(X, q, V)|a (GG)
q,X
V) TO-1 N
v i sup 2B 0@ g | (1)
ax Qv(x,q)
W) (x)TQ!
- PV (x)
V = sup|n¥?———LZ9 7 (q)|, (G.8)
QX V QV(X, q)
. V) (x)TO-!
V* = sup hdﬂwz;g(q) : (G.9)
a,x Qy (X7 q)

Let k*(n) denote the conditional 7-quantile of V* given {xiti .

Lemma G.4 (Closeness rates). Random variables V, V., V*, V* satisfy the following:
(a) ’V — f/’ = O]P’(rstr + Tho);
(b) [V = V| = op(ra);
(c) V* depends on the data only via {x;}},.

Proof. By Lemma F.8 and Theorem F.4, we have

E(X’ q, V)TZn(Q) ‘ ‘ = OIP‘(Tstr + rho)a

’ V —sup
q?x

which is Assertion (a).
By Theorem G.1, we have

thx.a.9)' Z3(@)] | = or(r),

V* —sup
q7x

which is Assertion (b). _
Assertion (c) follows from the definition of the process Z}(-) and the fact that £(x,q,v) only
depends on the data via {x;};_;. O

Lemma G.5 (First sequence). There exists a sequence of positive numbers v, 1 — 0 such that
w.p.a. 1

(1= a) <E(1—a+4vp1) +7ser and k(1 —a) > k(1 —a —vn1) — Tsire
Proof. This follows from |V* — V*| = op(rg.) by Lemma G.4, directly applying Lemma C.8. O

Lemma G.6 (Second sequence). There exists a constant Cy. > 0 such that w.p. a. 1

Dn} < Cf/*(rstr + Tho)V/10g(1/h) =: vy 2,

sup P{ “7* - U‘ < 2rstr + Tho
ueR

Moreover, for the sequence v, 2 — 0 just defined, the following holds w. p. a. 1:

(1= a—vn1) — k" (1= a—Vp1 — Vn2) = 27str + Tho, (G.10)

E*(1—a+uvn1+vn2) — k(1 —a+vp1) > 2rser + Tho- (G.11)
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Proof. By Lemma C.9, using that ?(x, q, V)TZ;EL(q) is a separable mean-zero Gaussian conditionally
on {x;};_, process on Q x X with E[(£(x,q, V)TZ;';(q))2 | {xi}i1] =1, we have w.p.a. 1

supIP’{’V* — u‘ < 2ty + Tho
u€eR

< 42 + o) (B sup[Etx 0. Z3 )
q’x

)

{Xz‘}?1] + 1)

exa)| £l Zz@l | o] +1)

< 4(2Tstr + Tho) <SUP
q7x

(a)
< A2rar + 1) (E [supuz;m) B
q

b
S (Tstr + Tho) V log(l/h),
where in (a) we used Hz(x, q, V)H1 <1 w.p.a. 1 by Lemma F.7; (b) is by Lemma G.2.

We will now prove (G.10). Note that sup,cg P{W* —u| < 2rgy + 7o | Dn} < vp2 w.p.a. 1 by
Lemma G.6 implies that w.p.a. 1

{Xi}?zl] + 1)

—~
=

SupIP’{u <V* < u+ 2rr + Tho
ueR

Dn} < Upgo.

This can be rewritten as

sup{]P’{f/* < U+ 2rsr + Tho
u€R

D,} -P{V* <u ‘ Dy} < v

Since this is true for any w, we can in particular replace u with a random variable k*(1 —a — 1,1 —

Un2). Using IP’{V* < l;:*(l — Q0 — Up1 — Un2) ’ Dn} >1—a—vy1 — Vp2, this gives w.p.a. 1

b}

IP’{f/* < l::*(l — & —Up1 — Vp2) + 2rstr + Tho

- (1 — QO —Vnpl— Vn,2) < Un,2

or
P{f/* < ]~€*(1 —Q—Vpl— Vn,2) + 2rgtr + Tho

Dn} <l—-a—-vy1.
By monotonicity of a (conditional) distribution function, this means that w.p.a. 1
E*(1 = a — vn1 — Una) + 2rser + Tho < k¥ (1 — & — v 1).

This proves the inequality (G.10). The inequality (G.11) is proven similarly. O
Concluding the proof of Theorem G.3. Note that

(a) -

P{V > k*(1 —a)} < ]P’{V > E (1= o —vny) — rstr} +o(1)

< IF’{V > l;:*(l —a—Vp1) — (2rey + Tho)} +o(1)
() (~ -
< IP’{V >E(l—a—v, — Vn’Q)} + o(1)
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d ~ ~

@ IE[]P’{V >E(1—a—vp1—vp2) ‘ {xi}?zl}] +0o(1)

(e)

< a+ Un1 + Un,2 + 0(1) = o+ 0(1);
where (a) is by Lemma G.5, (b) is by Assertion (a) in Lemma G.4, (c) is by Lemma G.6, (d) is by
the law of iterated expectations, (e) is by the definition of a conditional quantile and using that V'
has the same conditional distribution as V*.

Similarly,

(@ )
P{V > k(1 - )} > P{V > F*(1 - a+vn1) + e} +0(1)

O
> IP’{V > B (1= o+ vng) + 2re + rho)} +o(1)

© (o -
> IP’{V > E (1= o+ vng + yn,z)} +o(1)

@ IE[IP’{V > k(1= a4 vna + vn2) ‘ {Xi}?:l}] +o(1)

© Un1 — Un2 +0(1) = a+o(1),

where (a) is by Lemma G.5, (b) is by Assertion (a) in Lemma G.4, (c) is by Lemma G.6, (d) is by
the law of iterated expectations, in (e) we used that the distribution function of V' conditional on
{x;};=, is continuous w.p.a. 1, because by the same anti-concentration argument as in the proof
of Lemma G.6 there is a positive constant C' such that on an event A,, satisfying P{A,,} — 1 we

have for any € > 0
SupP{HN/ —u|<e ‘ {xi}?zl} < Ce/log(1/h).

u€eR

In particular, on A, all jumps of the distribution function of V conditional on {x;};—, are bounded
by Ce/log(1/h), which implies that the distribution function is continuous on A4,, since ¢ is
arbitrary. Theorem G.3 is proven. 0

The following theorem uses a Gaussian anti-concentration result from [8] to convert op(-) bounds
obtained above to the bound on the Kolmogorov-Smirnov distance (sup-norm distance of distribu-
tion functions), similarly to [4].

Theorem G.7 (K-S Distance). Suppose the following holds:
(i) All the conditions of Theorem G.1 hold, and (st + The)v/10g(1/h) = o(1)

(ii) There exists a K-dimensional mean-zero unconditionally Gaussian process Z,,(q) on Q with
a.s. continuous sample paths such that

| (¢0x.av)"Zu(@)’

{Xi}?1:| =1
and

E

sup | Zu(a) — Zu(q)|
qeQ o0

{Xi}?_ll = OIP’(Tstr)- (G12)

(iii) On the same probability space there exists a copy, conditional on {x;};-_,, of Zn(), denoted
Z}(-), independent of the data and such that

E

sup | 2 (a) — Z3(a)|
qeQ 0

{Xi}?1] = OIP’(rstr)- (G13)
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Then

hd/2p(v) (X)Té_l R
= Z(q)
Qy(x,q)

<u

Dn} = O]p(l).

u€eR qeEQ xXEX qeEQ xXEX

sup ]P{sup sup|T(x,q,v)| < u} — ]P’{sup sup

Proof. Since Z*(-) is a copy of Z,(-) conditional on {x;};—,, in particular they have the same
unconditional laws, giving

P{sup
q7x

00x,9,v) Zn(@)] < u} = P{sup

£(x, q,V)TZZ(q)‘ < u}

This means that, by the triangle inequality, it is sufficient to prove the following bounds:

sup P{sup]T(X, q,v)| < u} - IP’{ (x,q, v)TZn(q)’ < u} =o(1), (G.14)
UGR q,x X

sup P{sup‘é(x, q, V)Tz,t(q)‘ <u Dn} - P{sup‘é(x,q, V)TZ;(q)‘ < u}‘ = op(1). (G.15)
u€R X q,x

We will now prove (G.14). Note that for any random variables £ and 7 and any s > 0,

Sgglp{ﬁ <up—P{n<uf| < SEEP{W —ul < sp+P{[{—nl > s}, (G.16)

which follows from the two bounds

P{§ <up <P{{ <wand [§ —nf < s} +P{[{ —nl > s}
<P{n<u+s}+P{{—n| > s}
<P{n <u}+Plu<n<u+s+P{E—n| > s}
P{¢ > u} <P{¢>wand [ — 7| < s} +P{I{ —n| > s}
<P{n>u—s}+P{£—n]>s}
<P{n>u} +P{u—s<n<u} +P{{—n|> s}
By supqy «|[€(x,q,v)[; S 1 (from Lemma F.7) and (G.12), a simple application of Lemma C.2
gives
( )TQO,q
(x,q)

( )TQOq
(x,q)

s Zo(a) -

Zn(q )' op(Tstr)- (G.17)

By (F.25) in Lemma F.7, we have supq’XHZ(x, q,v) —Lx,q, V)1 <p %, which by
Lemma G.2 gives supq’x@(x,q, V) ' Zn(q) — £(x,q,v)"Z,(q)| <p % = 0(rstr). Combining
it with Theorem F.4, Lemma F.8 and (G.17),

|

Then we can apply (G.16) with § = supy |T'(x,q, V)|, 7 = supq«

suplT . v)]  sup 0%, 4920 @) > e+ 1 p = 01
q7

£(x,q, v)TZn(q)’ and s =
Tstr + Tho, and get

P{supyT(x, q,v)| < u} — ]P’{

q7x

(x,q, V)TZn(q)‘ < u}

sup
u€R

X
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< sup IP’{
u€eR

supe(x, a, V)" Zu(a)| - v

< Tstr + Tho} + 0(1)'

For (G.14), it is left to show that

supIP’{ (x, q,v)TZn(q)‘ —u| < T + Tho} =o(1). (G.18)
UER X
We apply the Gaussian anti-concentration result given in Corollary 2.1 in [8]:

SupP{ (X q,Vv ) Zn(q)‘ —u| < Tstr + Tho}

u€eR

< A(rstr + Tho) [sup‘f X,q,V TZ (q )” + 1)

(=
s+ 1) (E[suplex a vl 2| ] +1) (@.19)

%) (Fstr + Tho) (E[ upHZn(q)HOJ + 1>

b)

N

(Tstr + Tho) log(l/h)7

where in (a) we used [[€(x,q,V)|; S 1, see (F.23); (b) is by

E[SlépHZn(Q)HOJ :E[S‘QPHZ"@)HOO

<& [sw| Zua) - Zula)|_ | 2] + E[suplZua)l

@op(rstr)+op( log(l/h)> OIP( log(l/h))

{Xi}?l]

{Xi}?:1:|

using (G.12), Lemma G.2 for (c), rsr S y/log(1/h) for (d), and noting that

E [sngZn(q)Hoo] Sp V/1og(1/h)

is equivalent to

E[S&;PHZMM < iog (/).

Since (Tstr + o)/ 10g(1/h) = o(1), the right-hand side in (G.19) is o(1), proving (G.18), which
was sufficient for (G.14).

We will now prove (G.15). By supg «|[£(x,q,v)[|; S 1 (from Lemma F.7) and (G.13), a simple
application of Lemma C.2 gives

(V) (x\T T
2 supl P J%qm ) - J”TQ(;’"Z( >' = op(rac). (G.20)
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By Theorem G.1, we have supq7x‘é(x, q, v)TE;;(q) — £(x,q, V)Z,*L(q)| = op(rstr). By (F.25)

in Lemma F.7, we have supq,x||z(x, q,v) —£€(x,q,v)|[1 Sp log(1/h)

nhd
supq7x]2(x, q, V)TZ;;(q) —L(x,q,v)"ZX(q)| <p % = 0(rstr). By the triangle inequality,

, which by Lemma G.2 gives

suplé(x,q,v)' Z:(q) — £(x,q, V)T ZE(q)| = op(re)-
q,x

Combining with (G.20) and applying the triangle inequality again, we obtain

i

implying by Markov’s inequality that for any € > 0,
{7
A

Then we can apply (G.16) with P{- | D, } instead of P{-}, { = supq,x‘é(x, q,v)Té;‘;(q)‘, n =

sup
q7x

£(x,,v) Z; ()| ~ sup|€(x, q,v)TZ;;(q)H > rstr} — o(1),
q,X

sup‘f(x, q. V)Tz;i(q)‘ - sup‘e(x,q, V)TZ;(q)‘ > Tatr
ax ax

that is,
sup|€(x, q,v)" Z; (q)| — sup
q,x q,x

> Tstr

0(x,q,v)"Z}(q)

£(x,q, V)TZ;;(q)‘ and s = 1y, and get

SUPq x
sup P{sup é(x, q,V)TEZ(q)‘ <u Dn} - IP’{sup £(x, q,v)TZ:;(q)’ < u}‘
ueR| (ax a,x
< supIP’{ sup‘ﬂ(x, q,v)TZT*L(q)‘ —ul < Tstr} + op(1)
u€R q,x
= sup P [suple(x. 0. ¥)7 2, (@) - o] < 1+ 0x(1),
UER q,xX

where we used that AZT;;(q) is independent of the data allowing us to remove the conditioning on
D,,, and again that Z,(-) and Z(-) have the same laws.
It is left to use that

SupIP’{ sup |£(x, q,V)TZn(Q)‘ —u| < Tstr}
UGR q,X
< sup P [suple(x 4. )" Zu )| = ] < o+ 10 & o),
u€eR q,x

where (a) is by (G.18).
Theorem G.7 is proven. O

H Examples

This section discusses in detail the four motivating examples introduced in the paper.
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H.1 Quantile regression

The next result verifies that the quantile regression case under the same conditions on fy x as
Condition S.2 in [1] is a special case of our setting.

Proposition H.1 (Verification of Assumption B.2 for quantile regression). Consider the model in
Eq. (A.1) with Q = [, 1 — &¢| for some positive g < 1/2 and p(y,n;q) = (¢ — L{y < n})(y —n).
Suppose the following conditions.

(i) Assumptions B.1, B.3, B.4 hold.

(i) m = Fyx(n|x) is twice continuously differentiable with first derivative fy|x(n|x) (in par-
ticular, M is the Lebesgue measure).

(i) Efjyn]] < oo.

(iv) The real inverse link function n(-): R — £ is strictly monotonic and two times continuously
differentiable, where £ is an open connected subset of R containing the q-quantile of y; conditionally
on x1 = x for all (x,q).

v) fyvix (77 (,uo (x, q)) |X) is bounded away from zero uniformly over q € Q, x € X'; the derivative
of y = fy|x(ylx) is continuous and bounded in absolute value from above uniformly over y &
Y, x € X.

(vi) n(uo(x, q)) is the g-quantile of the conditional distribution of 1y, given x; = x, where
x €€ X.

Then Assumption B.2, its stronger version described in Section E.2, and (F.14) are also true.

Remark. Taking n(uo(x, q)) to be the conditional g-quantile does not violate (A.1) by Lemma C.10.

Remark. In the setting of Proposition H.1, it is not necessary to assume that po(x, q) is Lipschitz
in parameter (as we do in Assumption B.1(iii)). Since

1
" Fyix (o(x, q)[x)

0

afqﬂo (Xu Q)
the Lipschitz property follows from fyx(ro(x,q)[x) being bounded from below uniformly over
xe X, qe Q.
Proof. We will verify the assumptions one by one.
Verifying Assumption B.2(i) Clearly, p(y,7n;q) is convex in n and the a.e. derivative in 7 is

Y(y,m;q) = 1{y —n < 0} — ¢ is piecewise constant with only one jump (therefore piecewise Holder
with @ = 1). 7 is strictly monotonic and three times continuously differentiable by assumption.

Verifying Assumption B.2(ii) Since n(uo(-,¢)) is the conditional g-quantile, we have
Bl (yi, n(po(xi,9)); ) | %i] = E[1{y; <n(po(xi,q))} —qlxi]=¢—q¢=0
and
2 _ . )2 —
02(x) = B [(yi, n(1u0(xi, 0)): 0)” [ x5 = X]
= E[(1{y: < nlpo(xi,0)} — 0)?

is constant in x (in particular continuous in x) and bounded away from zero since both ¢ and
1 — g are bounded away from zero. Since ¢(1 — ¢) is smooth, ag(x) is Lipshitz in ¢. The family
{(yi,n(po(xi,q));q): ¢ € Q} has a positive measurable envelope 1 which has uniformly bounded
conditional moments of any order.

XZ:X} =q—2¢"+q¢*=q(l1—q)
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Verifying Assumption B.2(iii) The conditional expectation
"
U(z,mq) =E[M{y <n} —qlxi=x] = / frix(ylx)dy —q
—00

is twice continuously differentiable in 7 (the integral on the right is a, possibly improper, Rie-
mann integral) and its second derivative f{,‘ +(n]x) is continuous and bounded in absolute value.
By the mean value theorem, this means that fy|x(7(ro(x,q))[x) being bounded away from zero
implies fyx(n(¢)[x) is bounded away from zero for ¢ sufficiently close to uo(x,q). The bound
on |¥q(x,n(¢);q)| from above in such a neighborhood (and in fact everywhere) is automatic since
fyix (y[x) is bounded from above (uniformly over y € Vx, x € &).

Verifying Assumption B.2(iv) This verification proceeds similarly to Lemmas 25-28 in [1].
The class of functions

Wi = {(x,y) = I{y <n(p(x)7B8)}: B € R}

is VC with index O(K) by Lemmas 2.6.15 and 2.6.18 in [12] (since n(-) is monotone). The class of
functions

Ga = {(x,9) = Ly <n(po(x,q))}: g € Q}

is VC with index 2 since n(uo(x,q)) is increasing in ¢ for any x € X, giving that the class of sets
{(x,y) : y < n(uo(x,q))} with ¢ € Q is linearly ordered by inclusion. The VC property of W; with
envelope 1 implies that it satisfies the uniform entropy bound (A.3) with A <1 and V < K. The
VC property of Go with envelope 1 implies that it satisfies the uniform entropy bound (A.3) with
A< Tand V < 1. By Lemma C.4, for any fixed » > 0 the class

G ={(xy) = Hy <npx)"8)} — Hy <npo(x,9))} : 1B = Bo(@)ll. <7 q € Q}

with envelope 2 satisfies the uniform entropy bound (A.3) with A <1 and V' < K because it is a
subclass of W; — Gs.
For a fixed vector space B of dimension dim B,

Wg = {(x,y) = H{y <n(p(x)"8)} : B € B}

is VC with index O(dim B) by Lemmas 2.6.15 and 2.6.18 in [12] (since 7(-) is monotone). Therefore,
for any fixed ¢ > 0, 6 € A, the class

WQ,E = {(Xa y) = ﬂ{y < U(P(X)Tﬁ)}ﬂ{x € /\/‘[clogn](é)} HICRS RK}

is VC with index O(logd n) by Lemma 2.6.18 in [12] because it is contained in the product of Wa, s

for some vector space By s of dimension dim By s < log?n and a fixed function ]l{x € Nciogn] (6)}
This means Wy s with envelope 1 satisfies the uniform entropy bound (A.3) with A < 1 and
V < log?n. Then the union of O(h_d) such classes

Wa = {(x,y) = L{y < n(p(x)"B)}1{x € Neiogn)(0)} : B €R¥, 5 € A}

with envelope 1 satisfies the uniform entropy bound (A.3) with A <1 and V < log?n, see (E.17).
By Lemma C.4, the same is true of

g3 = {(Xa y) =
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[1{y < n(P(x)"8)} — 1{y < n(p(x)"Bo(9))}]1{x € Nc1ogs(0)} :
BeRN 5N qe 0}

with envelope 2 because it is a subclass of Wy — W;.
The class of functions

G1 = {x = fy;x(n(po(x,9))x) : g € Q}

has a bounded envelope by the assumptions of the lemma. Moreover, G4 has the following property:
for any g1, q2 € Q we have for some &x ¢, 4, between 1(p0(x, ¢1)) and n(uo(x, g2))

| fyix (mpo(x, q1)) %) — fyx (n(po(x, g2))|x)|
Syix (Exarae) | - n(ko(x,q1)) = nlpo(x, g2))|

S [n(po(x,q1)) — n(po(x, g2))| since f§/|X is uniformly bounded
S lro(x, 1) — po(x, g2)| since 7(-) is Lipschitz
Slar — g2 since po(x, q) is Lipschitz in q.

with constants in < not depending on x, g1, g2 or n (this is also proven in Lemma 20 in [1]). Since Q
is a fixed one-dimensional segment, this implies that G, satisfies the uniform entropy bound (A.3)
with A,V < 1.

For a fixed [, the class of functions

{(x,9) = p(x)1{y <n(p(x)'8)} : B € RF}

is VC with index O(1) because it is contained in the product of Wg, , for some vector space Bs
of dimension dim Bs; < 1, and a fixed function p;(x). Then this class with envelope O(1) satisfies
the uniform entropy bound (A.3) with A,V < 1. Since, as we have shown above, the same is true
of Go, by Lemma C.4, it is also true of

G5 = {(x.y)
P01y < n(uo(x.4))} = Ly < n(p&) Bo(a)}] : g € Q).

Verifying the addition to Assumption B.2(iv) described in Section E.2 The functions
in the class have the form

p(y, n(P(x)"(Bo(q) + B)); 9)1(x € Niciogn) (9))
— p(y,n(PX)T(Bo(q) + B — v)); )1 (x € Nc1ogn) (9))
— [n(p(x)T(Bo(q) + B)) — n(p(x)"(Bo(q) + B — )] (y,n(pP(x)"Bo(q)); @)
X 1(x € Neiogn)(6))
=T+ T2+ T35+ T4,

where

Ty = y[1{y < n(p(x)"(Bolq) + 8 —v))} — Hy < n(p()"(Bo(q) + B))}]
X ]l(x € -/v[clogn](é))’

Ty :=n(p(x)"(Bo(q) + B)) 1{y < n(p(x)"(Bo(q) + B))}L(x € Niciogn)(6)),
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T3 := —n(p(x)"(Bolg) + B — v))L{y < n(P(x)"(Bo(q) + B — ) }1(x € Neiogn) (9)),
Ty := —1{y < n(p(x)"B0(9))} n(p(x)T(Bo(q) + B)) — n(P(X)T(Bo(q) + B — v))]
X ]l(X € jv[clogn](d))'

Note that for T} to be nonzero, y has to lie in a fixed interval (not depending on n), say [—];?, ]ﬂ .
The class of functions

{x9) = y1{lvl < R}y < n(p(x)78)} : 8 € B},

where B is any linear subspace of R is VC-subgraph with index O(dim B) by Lemmas 2.6.15
and 2.6.18 in [12] (since 7(-) is monotone and y — y]l{|y] < ]:Z} is one fixed function). The class
{(x,y) = T1,[|B—Bo(@) |l <7 ||Vl < Enrqg € Q} with 6 fixed is a subclass of the difference of
two such classes, so by Lemma C.4 this class with a large enough constant envelope satisfies the

uniform entropy bound (A.3) with A <1 and V' < log?n. Therefore, the union of O(h~%) such
classes

{(Xay) — T17 HIB - 160<q)Hoo S r, HUHOO S 677«’5 € A7q € Q}
with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and
V < log?n, see (E.17).
Similarly, the classes

{(6y) = T2, 1B = Bo(Dlloo < 7 [0l <en,d €A, g€ QJ,
{66,y) = T3, 18 = Bo(Dlloo < 7 [0l <en,d €A g€ Ql,
{(,9) = Tu, 1B = Bo(d)lloo < 7 [0l Sen,d €A g Q)

with large enough constant envelopes also satisfy the uniform entropy bound (A.3) with A < 1
and V < log?n. We used that €, — 0 giving that v is bounded in co-norm (like 8). Applying
Lemma C.4 one more time, we have that there exist some constants Ci3 > e, C14 > 1 and Cq5 > 0
such that

013 Chyg logd n
sgw@wmmw@s(e> (1)

for all 0 < ¢ < 1, where the supremum is taken over all finite discrete probability measures Q
and G is the class defined in the modified Assumption B.2 in Section E.2. Note that the integral
representation of G makes it clear that this class not only has a large enough constant envelope,
but is also bounded by Cige,, where Cig is a large enough constant.

For large enough n we can replace € with Cigee, /C15 in (H.1), giving

d
013015 Chqlogn
sup N ( Nk ,Cleee ) <
¥ (0. g Crocen) < (Gt
for all 0 < ¢ < 1. For large enough n, % > e. The verification is complete.

Verifying (F.14) In this case, ¥(y,n;q) = 1{y < n} — ¢ and n(uo(x;,q)) is the g-quantile of y;

conditional on x;. Without loss of generality, we will assume that 7(-) is strictly increasing and
q < ¢ (the other cases are symmetric).

2

EUw(yi,n(uo(xzsQ));Q)n(l)(uo(xi,q» = (s a0 (xis @)); 0 (pao (i, )| Xi]
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= E[zﬂ(yi,n(uo(xi, 9)): q)* ‘ Xi}n(l)(uo(xi, q))?

+ E [y n(p0(xi, 0): ) | 33 1 (0, 3))?

— 2E [ (i, n(po(xi 4)): )% (yi n(o(xi, @) @) | xiln™ (no(xi, )™ (o (xi, G))
= (g — )" (po(xi,q))* + (fi )0 (po(x:, )

—2(q — qg)n" (uo(xz,q)) (uo(xz,q))

= q|n™D (so(xi,9)) — 1V (1o(xi, @) + (@ — 0™ (no(xi, @))?
\qn (10 (i, q>> an' (uo(xu q)|’
< qln® (no(xi,0)) — 0 (po(x1, D)|* + (@ — )™ (o (xi, 4))?

—~

a

Sad—9’+i—-qg<d—q

N

where in (a) we used that n(1)(-) on a fixed compact is Lipschitz and pg(x,q) is Lipschitz in ¢
uniformly over x, as well as boundedness of p(x, ¢) uniformly over ¢ and x.
This concludes the proof of Proposition H.1. ]

Proposition H.2 (Verification of the conditions of Lemma D.5). Suppose all conditions of Proposi-
tion H.1 hold. In addition, suppose there is a positive constant Cy7 such that we haveinf fy x (y|x) >
Ci7, where the infimum is overx € X, q € Q, ||B||, < R for R described in Lemma D.5, y between
n(p(x)T3) and n(po(x,q)). Then conditions in Conditions (v) and (vi) of Lemma D.5 also hold.

Proof. We only need to verify Lemma D.5(vi) since Lemma D.5(v) is directly assumed in this
lemma (¥1(x,7;q) = fy|x(n]x) in this case).
In this verification, we will use 61 := p(x)73, 02 := p(x)TBo(¢) to simplify notations. Rewrite

p(y,n(61); ) — p(y,n(02); q)
= y[I{y < n(02)} — H{y <n(01)}] + q[n(01) — n(62)]
+n(601)H{y <n(01)} —n(02)1{y < n(62)}.

By the same argument as in the proof of Proposition H.1, the class

{(x,9) = y[l{y <n(02)} — {y <n(01)}] : |Bllc < R,q € Q}

with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and
V<K.

The class {(x,y) — ¢q : ¢ € Q} is of course VC with a constant index (as a subclass of the
class of constant functions), and the class {(x,y) — n(p(x)73) : B € R} is VC with index O(K)
because the space of functions p(x)83 is a linear space with O(K’) dimension, and 7(-) is monotone.
Applying Lemma C.4, we see that the class {(x,y) — ¢q[n(01) —n(62)] : [|Bllec < R,q € Q} with a
large enough constant envelope satisfies the uniform entropy bound (A.3) with A <1 and V < K.

The class {(x,7) — 1{y < n(p(x)TB)} : B € RE} is VC with index O(K) because the space
of functions p(x)T3 is a linear space with O(K) dimension, and 7(-) is monotone. Again applying
Lemma C.4, we see that the class {(x,y) — n(61)1{y <n(01)} : [|Bllcc < R} with a large enough
constant envelope satisfies the uniform entropy bound (A.3) with A <1 and V' < K. The same is
true of its subclass {(x,y) — n(02)1{y < n(f2)} : g € Q}.

It is left to apply Lemma C.4 again, concluding that the class described in Lemma D.5(vi)
with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and

V<K. O
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Proposition H.3 (Verification of plug-in approximation assumptions for quantile regression). Let
the setting be as in Proposition H.1 with identity link function n(a) = a.
(a) Suppose that Conditions (i) and (ii) of Theorem G.1 are true. Then so is Condition (iii).
(b) Suppose that Condition (i) of Theorem G.7 is true. Then so are Conditions (ii) and (iii).

Proof. The argument for Assertion (a) can be found in [1]; we include it here for completeness.
Z,(q) is a mean-zero Gaussian conditionally on {x;}; ; process with a.s. continuous sample paths
with covariance structure

E[ZR(Q> Zn(q)T ’ {Xi}?:l]
= BB Sy ™ (o (i, )0 (10 (i, ) (x:)p(x:) T
= (¢ A G~ ah™ Enlp(x:)p(x)T],

where Sq.5(x:) = E[¥(yi, 1(10(xs, 0)); )% (v, 110 (%, 0); Q) | %]

This means that Bg(q) = hd/QEn[p(xi)p(xi)T]_1/2Zn(q) is, conditionally on {x;};",, a K-
dimensional Brownian bridge on Q (i.e., a K-dimensional vector of independent 1-dimensional
Brownian bridges on Q). Simulating any Brownian bridge Bj(-) on Q with a.s. continuous
sample paths independent of the data, we note that h*d/QEn[p(xi)p(xi)T]l/QB}‘((-) is a feasible
copy (conditional on {x;};" ) of Z,(-), depending on the data only via {x;}!" ;, so the supremum
in (G.1) is zero.

We will now prove Assertion (b). Take the unconditionally Gaussian process

Z () = h™*E[p(x:)p(x;)T]*B ().
Then
|Z(@ = Zu(@)||_ = 12| (Ealp(ep )2 = Blp(xi)p(x:) 1) B )|

By the same argument as for Lemma G.2 (applying the Gaussian maximal inequality), we can
note

[e.9]

B[||Zu(a) - Za(@)|| | txibi]

< 02| B p(xi)p(xi)T)2 ~ Elp(xi)p(xi) )2 | Vioe K,

(where the constant in < is the same everywhere except a negligible set). By Theorem X.3.8 in [2]
and Lemma C.11

log(1/h
W2 (o) p o) 2 — Elp(ae ) poe) 7| o/ 22U,
so we can conclude
~ n log(1/h
| 2.0 - 2@ _ | ] 52 LY < e

verifying Condition (ii) of Theorem G.7.
Now take _
Z;(-) = b= PE[p(x)p(xi)T)*Bi (),
which is independent of the data. By the same argument (replacing Z,(-) with Z*(-) and Z,(-)
with Z*(+)), we have
S « n log(1/h
e[| Ziw - zi@||_ | eyi,] e U <
o0 nhd

verifying Condition (iii) of Theorem G.7. O
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H.2 Distribution regression

Proposition H.4 (Verification of assumptions for distribution regression). Consider the model (A.1)
with a strictly monotonic two times continuously differentiable link function n(-): R — (0,1),
Q = [—A, A] for some A > 0, and p(y,m;q) = (1{y < q} —n)*. Suppose the following conditions.

(i) Assumptions B.1, B.3 and B.4 hold.

(ii) The conditional distribution function X > x ~ Fy|x(q|x), as a function of x, is a continuous
function whose values lie in a compact subset of (0,1), where this compact does not depend on
q € Q.

(iii) As a function of q € Q, Fy|x(q|x) is continuously differentiable and fy|x (q|x) is its deriva-
tive (in particular, 9 is Lebesgue measure).

(iv) 1(po(x,9)) = Fy|x(qx) = P{y1 < ¢ |x1 =x}.
Then Assumption B.2, its modified version described in Section E.2, (F.14), and conditions in
Conditions (v) and (vi) of Lemma D.5 are also true.

Remark. Taking n(uo(x,q)) to be the conditional distribution function does not violate Eq. (A.1)
by the following standard argument. For any Borel function u(-): X — R one has

E[(L{y: < g} - n(n(x1)))’]
=E[(1{y1 < q} — Fyx(qlx1) + Fy|x(qlx1) — U(M(Xl)))Q]
= E[(l{yl <q}— FY|X(Q\X1))2]
+2E[(1{y1 < ¢} — Fyx(qlx1)) (Fy x(qlx1) — n(u(x1)))]
+E[(Fyix(ghx) = n(u(x1))].

Since the cross term is zero (proven by conditioning on x;), this means
2
E[(1{y1 < ¢} — n(u(x1)))’]

=E[(1{y1 < q} — Fyix(alx1))’] + E[(Fyx(alx1) — n(p(x1)))’]
> E[(1{y < ¢} — FY|X(Q‘X1))2]'

Pointwise in ¢ € Q, equality holds if and only if n(u(x1)) = Fy|x(g|x1) almost surely.
Remark. In this case,

E[Zn(a)Zn(@)" | {xi}iZi]

= 4h™En | By (a A dixi) (1= Fyix(a v dlxa))n™ (no (i 0)n™ (o, 8))p(x)p(x:)T .

This covariance structure is not known, but it can be estimated by
4h~E,, {n(ﬁo,qu(Xz‘)) (1- n(ﬁo,qvq(xz‘)))n(l)(ﬁo,q(Xz‘))n(l)(ﬁo,q(Xz‘))P(Xi)P(Xi)T} (H.2)

Condition (iii) in Theorem G.1 requires constructing a process 2;’;((]) whose distribution is
known. This is done by the discretization argument as in the proof of Theorem F.3:

e prove the existence of Z}(q) by applying Lemma 3.7.3 in [9] with V denoting D,,;

e project Z*(q) on a discrete d-net Q° of Q and show that the process does not deviate too
much from its projection, denoted Z;(q|as);
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e approximate the projection vector Z;(q|gs) by a different conditionally Gaussian vector with
a known covariance matrix, using (H.2) (for ¢ and ¢ in the covering);

e use the same argument as in the proof of Theorem F.3 to extend the resulting conditionally
Gaussian vector to a conditionally Gaussian process Z(q);

e finally, show that the resulting process does not deviate too much from its projection onto
the covering (its “discretization”).

Proof. We will verify the assumptions one by one.

Verifying Assumption B.2(i) p(y,7;q) is indeed absolutely continuous, and even infinitely
smooth, with respect to n € £ := (—00,0). Its first derivative is

V(y,mq) =2(n— 1y < q}).

Since the derivative of n(-) is bounded on a compact interval, the function ¥ (y,n(0);q) is
Lipschitz in 6 on a compact interval, so we can take ¥ (y,n(0);q) = ¢(y,n(0);q), and w(-) is the
identity function.

Verifying Assumption B.2(ii) The first-order optimality condition
E[2(n(po(xi,q)) — My < q}) | xi] = 2(Fy x (g/x:) — E[1{y; < ¢} | x3]) =0
indeed holds. The conditional variance
o2(x) = 4E [ (n(u0(xi- @) — Uy < a})? | x5 = x| = 4By (alx) (1 = Fyjx(alx)

is continuous and bounded away from zero by the assumptions (Fy|x(g|x) cannot achieve 0 or 1).
The family {Q(FY‘X(q]x) —1{y < q}) 1q € Q} is bounded in absolute value by (x,y) = 2.

Verifying Assumption B.2(iii) The conditional expectation

U(x,n;q) = E2(n — I{y: < q}) | xi = x| = 21 — 2Fy x(q]%)

is linear, and in particular infinitely smooth, in n. Its first partial derivative

0
‘lll(x777;Q) = %W(X7H7Q) =2

is a nonzero constant, so it is bounded and bounded away from zero everywhere. The second partial
derivative is zero, and so it is also bounded.

Verifying Assumption B.2(iv) The class of functions

G = {(xy) = Fy|x(qlx): g € Q}

with a constant envelope satisfies the uniform entropy bound (A.3) with A < 1and V' < 1 because it
is VC-subgraph with index 1 since the subgraphs are linearly ordered by inclusion (by monotonicity

in q).

74



The class
Giz == {(x,y) =» P(X)T8: B € R¥}

is VC with index not exceeding K + 2 by Lemma 2.6.15 in [12]. Since in a fixed bounded interval
n(-) is Lipschitz, the class

Gi3 :={(x,9) = n(P(x)"B) : 1B = Bo(@)lloc <7}

with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and
V < K. By Lemma C.4, the class

Gr = {(x,9) = 2(n(P(X)"B) — Fyx(4|x)) : B = Bo(9)lloc <70 € Q},

with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and
V<K.

The class of sets {(x,y) : y < ¢} with ¢ € Q is linearly ordered by inclusion, so it is VC with a
constant index and so is the class of functions

Go1 :={(x,y) = I{y < ¢} : q € Q},

giving by Lemma C.4 that

Go = {(x,) = 2(Fyx(ax) — I{y < ¢}) : q € Q},

which is a subclass of 2(G11 — Go1), satisfies the uniform entropy bound (A.3) with A < 1 and
V<L
For a fixed vector space B of dimension dim B,

Wp :={(x,y) = p(x)'8: B € B}

is VC-subgraph with index O(dim B) by Lemmas 2.6.15 and 2.6.18 in [12]. Therefore, again using
that n(-) is Lipschitz in a compact interval, by Lemma C.4 we have that for any fixed ¢ > 0, § € A,
the class

W3,5 = {(Xa y) = ﬁ(P(X)TB)l{X € Mclogn}(d)} : ||16 - IBO(q)HOO <rqe Q}

with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and
V < log?n. Then the union of O(h~%) such classes

Wi = {(x,5) = n(P(x)TB)1{x € Nciogn)(6)} : 1B = Bo(@)lloc <7 g€ Q,6 € A}

satisfies the uniform entropy bound (A.3) with A < 1 and V < log?n (see (E.17)). The same is
true of

Gs .= {(x,y) = 2(n(p(x)TB8) — n(P(x)"Bo(q))) L{x € Nciogn (6} :
18— Bo(@)|lo <7 g€ Q.0 €A}

because it is a subclass of 2W5 — 2Ws.
The class

g4 = {XI—> 2}

consists of just one bounded function, so clearly it satisfies the uniform entropy bound (A.3) with
envelope 2, A <1,V <1,
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Finally, for any fixed [ € {1,..., K} the class

Gs1 = {(x,y) = p(x)n(p(x)"Bo(q)) : ¢ € Q}

satisfies the uniform entropy bound (A.3) with a large enough constant envelope, A <1and V <1
because 7(+) is Lipschitz and Gs; is contained in a fixed function multiplied by n(Wg) for a linear
space B of a constant dimension, and by Lemma C.4

Gs := {(x,9) = 2m(x) (Fy|x (g]x) — n(P(x)"Bo(q))) : ¢ € Q}
with a constant envelope satisfies the uniform entropy bound (A.3) with A <1 and V < 1.

Verifying modified Assumption B.2 The replacement of Assumption B.2(i) holds trivially:
see the argument in Section H.2.
The addition to Assumption B.2(iv) holds as well because the class of functions described there

{(x,9) = [n(P)T(Bo(q) + B)) — n(P(x)T(Bo(q) + B — v))]
x (P(x)"(Bo(q) + B)) + n(P(x)T(Bo(q) + B —v)) — 2n(p(x)"Bo(q))]
X ]l(X S Mclogn} (5)) :
1B = Bo(D)lloo <7 vl < en,d€A,qe Q)

is contained in the product of two classes

V1= {(x,9) = px)T8) — n(P(x)T(B — v)]L(x € Niogn(9)) :
18lloe <7, [|0]log < en,d € Aq e QF,

Vo = {(x,9) = [n(P)T(Bo(q) + B)) + n(p(x)"(Bo(q) + B — v)) — 2n(p(x)"Bo(q))]
X 1(x € Nietogn)(9)) : 18 = Bo(@)lloo <7 [[vllo < nd €A g€ Qf

for some fixed 7 > 0. V; with envelope €, multiplied by a large enough constant (since 7 is Lipschitz)
satisfies the uniform entropy bound (A.3) with A < 1/e, and V < log?n (this can be shown by
further breaking down V; into classes {n(p(x)73)} and {n(p(x)T(8 — v))} with constant envelopes,
using Lemma C.4 and then replacing ¢ in the uniform entropy bound by ¢ - &,). Vo with a large
enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and V < log?n
because it is true for each of the three additive terms it can be broken down into. We omit the
details since they are the same as in the verification of Assumption B.2(iv).

Verifying Condition (v) in Lemma D.5 This condition holds trivially because ¥1(-,-;¢q) is a
positive constant.

Verifying Condition (vi) in Lemma D.5 The class of functions described in this condition is

{(x,y) = (n(P(x)"Bo(q)) —n(p(x)78)) - (21{y < ¢} —n(P(x)"B) —n(P(x)"Bo(q))) :
18l < R.q € Q}.

The assertion follows by Lemma C.4 since

{x,9) = 1{y<q}:qe Q}

is a VC-subgraph class with a constant index and

{(x,9) = n(Px)6) : |18l < R}

with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and
V < K because 7(+) is Lipschitz.

76



Verifying (F.14) Without loss of generality, assume ¢ < ¢ (the other case is symmetric).

y

2
| o0 0 )50 o)) = 05 0 0 )

= E[w(yi,n(uo(xz» 7));q)” ( Xi}n(”(uo(xz» q))?
+ E [y n(po(xi, 0): ) | %3] 1 (o, 3))?
— 2B (1) (i, (10 (xi, 0)): )0 (yi (10 (%6, @) @) | 3]0 (o (x5 @)™ (p0 (x4, )
= 4[Fy|x(qx:) — FY\X(Q|XZ')2]77(1)(MO(XZ'= q)?
+ 4[Fyx (a]xi) — Fyx(alxi)*]n™ (o (xi, @)2
— 8[Fy|x(qlx:) — FY|X(Q\Xi)FY\X(Q|Xi)] ) (po(xi, )0 (po(xi, G))
= 4Py (alx) |1 (o (x> 0)) = ™ (o (i, )|
+ 4[Fy x(qlxi) — Fy|x Q\Xz)] ) (po(xi,4))?
— 4| Fyyx (abxi)n™ (po(xi, @) = Fyx (abxi)n™® (o(xi, @)
< 4Py x (q]x:) |0 (po(xi,q)) — 1)(%( q)|”
+ 4[Fy x (d1%:) — Fy)x (%) |7 (po (x4, §))*

ol

Z?

a

S@-9*+@G-a9Sdi—q

—
ooy

where in (a) we used that n(!)(-) and 7(-) on a fixed compact are Lipschitz and jio(x, ) is Lipschitz
in ¢ uniformly over x (therefore, n(uo(x,q)) = Fy|x(g|x) is also Lipschitz in ¢ uniformly over x),
as well as boundedness of jp(x, ¢) uniformly over g and x.

Proposition H.4 is proven. O

H.3 L, regression

Proposition H.5 (Verification of Assumption B.2 for L, regression). Suppose Assumptions B.1,
B.3, B.4 hold with Q a singleton, p(y,n) = |y — n|’, where 1 < p <2, uo(-) as defined in (C.1), M
the Lebesgue measure. Assume the real inverse link function n(-): R — & is strictly monotonic and
two times continuously differentiable, where £ is an open connected subset of R.

Denoting by a; and a, the left and the right ends of £ respectively (possibly £00), assume that
Jg (v, ar) fyx (y[x) dy < 0 if a; is finite, and wa(y,ar)fy‘X(y|x) dy > 0 if a, is finite.

Also assume that |y|*?~1) is integrable for some v > 2 and x fyix(y[x) is continu-
ous for any y € ). Moreover, for any x the conditional density fy|x(y|x) is a member of
the Schwartz space S(R); the function [p|n(¢) — y[P~ sign(n(¢) — y)f§/|X(y\x) dy is bounded and
bounded away from zero uniformly over x € X, ( € B(x) with B(x) defined in (B.1); the func-
tion [5|n(¢) — y|P~ sign(n(¢) — y)f{ﬁ‘X(y|X) dy is bounded in absolute value uniformly over x € X,

¢ € B(x). Then Assumption B.2, its stronger modified version described in Section E.2 and (F.14)
are also true.

Proof. Since Q is a singleton, we will omit the index ¢ in notations.

Verifying the assumptions of Lemma C.10 The fact that

¢ /R by, ) fyx (1) dy

77



is continuous is proven below in the verification of Assumption B.2(i). To ensure that it crosses
zero if a; or a, is not finite, we show

/]R (w9, O) fypx (y]%) dy — —o00 as ¢ = —oo, (1L.3)
/R Wy, O) fyyx (]%) dy — +00 as ¢ = +oo. (H.4)

To prove (H.3), recall that ¥ (y,¢) = ply — ¢’ sign(¢ — y) and therefore

+o0 ¢
/ Yy, Q) fyix (ylx) dy = —p/ (y— P fyix (yx) dy +p/ =) fyix(ylx) dy
R ¢

—0o0

—1
— o [ (1 _1’()’) 1y > v (ylx) dy

-~

—1

ip /R (€ — 9" Uy < Oy x (y]x) dy — —oo,

—0

where we used dominated convergence because for —( > 1 we have 1 + _ig < 1+ |y| in the first
integral and ¢ —y < —y = |y| in the second integral. (H.4) is proven similarly.

Verifying Assumption B.2(i) The function p(y,n) is continuously differentiable with respect
ton € R, and its first derivative is the continuous function ¥ (y,n) = ply — 17|p*1 sign(n — y),
therefore p(y,n) for any fixed y is absolutely continuous with respect to n on bounded intervals.

The function z +— |z|*sign(x) for a € (0, 1] is a-Hélder for x € R (with constant 2). Therefore,
putting « := p — 1, for any pair of reals (; and (o in a fixed bounded interval we have

sup sup sup|Y(y, n(C1 + A(C2 — C1))) — ¥y, n(¢2))|

x Agl0,1] ¥

(a)
<2pIn(G+ MG —G) =0 S G -G

where in (a) we used that the link function 7() in a fixed bounded interval is Lipschitz.
We can take ¢(y,n) = ¢¥(y,n) and w(f) =1

Verifying Assumption B.2(ii) The first-order optimality condition is true because pg(-) is
defined this way in (C.1).
The function

o?(x) :=H*I[?/J(z»/i,uo(}c))2 ( X; =X} =pz/Rly—ﬂo(X)\zp_zfyx(yIX) dy

is continuous because x — |y —po(x)[**~2 fy| x (y|x) is continuous and dominated by (|y[**~2+C)C"
for large enough constants C' and C’. As a continuous function on a compact set, 0(x) is bounded
away from zero because it is non-zero since y; has a conditional density.

-1
i

The family of functions {p|y — n(po(x)) sign(n(po(x)) — y)} only contains one element.

Note that x — |y — n(uo(x))]”(p_l)fy|x(y]x) is continuous and dominated by (|y[*®~1) + C)C’
for large enough constants C' and C’. Therefore, the function

s / 1y — n(10(x)) [P0 fy x (ylx) dy
R

78



is also continuous. As a continuous function on a compact set, it is bounded.
Verifying Assumption B.2(iii) For each x, the function
1 .
ne /Rln —yP” sign(n — y) fyx (y[x) dy

is a convolution of two (locally integrable) functions |y|P~!sign(y) and fyix(yx). The first one
grows no faster than a polynomial, and therefore defines a tempered distribution, i.e. it can be
considered a generalized function in §'(R). Since fy|x(-[x) lies in the Schwartz space S(R), it
is well-known that this convolution is infinitely differentiable, and its derivative of any order is a
convolution of |y[P~!sign(y) and the corresponding derivative of fy|x(y|x). The other conditions
in Assumption B.2(iii) are directly assumed in the statement of Proposition H.5.

Verifying Assumption B.2(iv) Since Go, G4, G5 are just singletons (and the existence of cor-
responding envelopes holds trivially), it is enough to consider G; and Gs.

Assume that 3 and ,5 are such that ||8 — Bol|,, < r and B - ﬁOH < r. Note that
o

16 npx)"B)) — (y,n(ox))] = [ (1(PX)B) ) = vy, n(ru0(x)))] |
< 2no(8) - n(pe8)| <o -4

The result for G; follows.
Similarly,

[, n(p(x)"B)) — (y, e Bo))] - 1211 (px)TB) ) — ¥y, n(p(x)780))]|
< 2p‘n(p(X)TB) ~n(p(x)78) )p_l S Hﬁ - 5“:1-
For a fixed cell § € A the class of functions of the form
[ (y,n(P(x)T8); q) — ¥ (y, n(P(x)TB0); )] (X € Nciogn) (9))

can be parametrized by 3 lying in a fixed vector space Bs of dimension O(log?n). The result now
follows from the bound (H.5) (by using (E.17) similarly to the proof of Proposition H.7).

(H.5)

Verifying the addition to Assumption B.2(iv) described in Section E.2 Fix §j € A. Let
3 and B be such that |3 — Bol|,, < r and HB_BOH < r; let v and v be such that ||v|| < e,
and ||v]|, < e,. To declutter notation, put
9(t) = [U(y,n(P(x)T(Bo + B) + 1)) — ¥(y, n(P(x)"Bo))]
x D (p(x)T(Bo + B) + 1),
3(t) = [ (51 (pX)T(Bo + B) +1) ) — Uy, n(px)T80))]

x ) (p(X)T<Bo + 5) + t>.

Note that
0 0 0 —p(x)Tv
[ emar— [ gwar= [ go-gender [ T g
—p(x)Tv —p(x)Tv —p(x)Tv —p(x)Tv
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Since 1(y, ) is (p — 1)-Holder continuous in the second argument and functions n(-), nV(-) in a
fixed bounded interval are Lipschitz, we get that uniformly over ¢t and x in these integrals

B ~|1p—1 ~
s -gwi s8-8 +|s-8]_
and |g(t)| is bounded. This gives

0
/ t)dt — / gt)dt
—p(x)Tv

It means that taklng an e-net (for e smaller than 1) in the space of 3 and an e,e-net in the space
of v induces an Cige,e-net in the space of functions

{ (x,7) H/ t)dt - 1(x € Neiogn) (9)) = 18 = Bo(@)[l o <7 7]l < En}

sea(lo-B" + 8- 5] ) + 1o -l

in terms of the sup-norm, where Cg is some constant. Possibly increasing C'1g, we can conclude that
this class with envelope Cg satisfies the uniform entropy bound (A.3) with A <1 and V < log?n
(where we used that 3 and v can be assumed to lie in a vector space of dimension O(log?n)). By
(E.17), the same can be said about the union of O(h*d) such classes (corresponding to different
9). The verification is concluded.

Verifying (F.14) This is obvious because Q is a singleton.

Verifying Lemma D.5(vi) It follows from the proof of Lemma D.4 that
|p(y, n(p(x)7B)) — p<y,n(p(X)T5)>| (1+%(x,9) |p(x)T(8 - B)|
S (L+90y)]8 -8l

The required uniform entropy bound follows immediately from this.
Proposition H.5 is proven. O

Proposition H.6 (Verification of strong approximation assumptions). Suppose the setting of
Proposition H.5 applies, and the probability space is rich enough.

(a) If Conditions (i) and (ii) of Theorem G.I are true, then so is Condition (iii), as long as
there is an estimator 3 (known measurable function of the data) such that

S S Rty
-3 = .
H I=e < Vlog K)
(b) If Condition (i) of Theorem G.7 is true, then so are Conditions (ii) and (iii).

Proof. Since Q is a singleton, this is proven by exactly the same argument as in Lemma H.10. O

H.4 Logistic regression

Proposition H.7 (Verification of Assumption B.2 and others for logistic regression). Suppose
Assumptions B.1, B.3, B.4 hold with Q a singleton, Y = {0,1}, n(0) = 1/(1+e7%), 9 is the
counting measure on {0,1}, and p(y,n) = —ylog(n) — (1 — y)log(l — n). Assume also 7(x) :=
P{y, = 1|x; = x} is continuous and 7(x) lies in the interval (0,1) for any x € X. Then Assump-
tion B.2, its stronger modified version described in Section E.2, and (F.14) are also true. Moreover,
the conditions in Conditions (v) and (vi) of Lemma D.5 are true.

We will prove Proposition H.7 now. Since Q is a singleton, we will omit the index ¢ in notations.
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Verifying Assumption B.2(i) and its stronger version described in Section E.2 The
function p(y,n) is infinitely smooth with respect to n € (0,1), and its first derivative is ¥ (y,n) =
(1 -y)/(1 —n) —y/n. Using the famous expression for the derivative of the logistic function

nW(0) = n(0)(1 —n(h)), we get

ggp(y, n(0)) = ¥y, n(0))n™(0) = (1 —y)n(0) — y(1 —n(8)) = n(®) — v,

2
%p(y, 0(8)) = 1V (9) = n(6) (1 —n(6)).

Since the logistic link maps to (0, 1), the second derivative is positive (and does not depend on y).
Therefore, p(y,n(6)) is convex with respect to 6 for any y.

The following decomposition holds: ¥ (y,n(0)) = ¢(y,n(0))w(0), where o(y,n) =n—y, w(f) =
1/7M (). Uniformly over ¢; and ¢, in a fixed bounded interval, we have

suplply. (1) = (G| = (1) = n(G2) Yia-al

where in (a) we used that the derivative of n(-) does not exceed 1. So in this case the Hélder
parameter o = 1.

w(-) is infinitely smooth and strictly positive on R. The logistic function 7(-) is strictly mono-
tonic and infinitely smooth on R.

Verifying Assumption B.2(ii) We have E[¢(yi, n(p0(x:))) | xi] = 0 since
n(po(xi)) = Elyi | xi] = P{ys = 1| xi} = m(xi).
Next,

]E[(yz —7(x4))? ‘ X; = X}
0 (o (x))

o2 (x) = E [ (yi, n(110(x:)))* | x: = x| =

m(x)(1—7(x) _ 1
m(x)2(1 — 7(x))*  7(x)(1 —7(x))

is continuous and bounded away from zero (is not less than 4).
Since x; lies in a compact set, 1 (y, n(1o(x;))) is bounded, so it has moments of any order.

Verifying Assumption B.2(iii) In this case

n—Ely|xi=x] _n—m(x)
n(1—n) n(l—mn)

This function is infinitely smooth in 7 for n € (0,1). Its first derivative

U(x;n) =

n? — 207 (x) + 7(x)
n?(1 —n)?

0
Uy(x,n) = %W(X; n) =

Therefore,

Uy (x,7(O))nM(Q)? = n()* — 2n(¢)m(x) + 7 (x). (H.6)
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If |¢ — po(x)| < 7, then |n(¢) —n(po(x))] = [n(¢) — m(x)| < r (since the derivative of 7(-) does not
exceed 1). Since 0 < mingey m(x)(1 — 7(x)) < maxxey 7(x)(1 — m(x)) < 1, for small enough r the
right-hand side of (H.6) for such ( is also bounded away from zero and one.

Finally,

o 2(773 —3m(x)n? + 37(x)n — F(X))
\IIQ X, n :7\111 X, 1) = .
Gom) = gy W1 bom) (1 —n)?

Again since 0 < mingey m(x)(1 — 7(x)) < maxyey 7(x)(1 — w(x)) < 1, for such ¢ that |¢ — po(x)| <
r and r small enough, the product n(¢)(1 —n(¢)) is bounded away from zero. So for such ¢,
|Wa(x,n(¢))| is uniformly bounded.

Lemma H.8 (Class G1). The class

npx)78) -y  7(x)—y
nW(p(x)T8)  m(x)(1 —m(x))

with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and
V<IK.

glz{xmm,ym :IIBBoHST}

Proof of Lemma H.8. The class
G ={(x,9) ~»px)8: B RN}

is VC with index not exceeding K + 2 by Lemma 2.6.15 in [12]. Since in a fixed bounded interval
n(-) is Lipschitz and (x,y) — v is one fixed function, the class

G2 = {(x,9) = n(P(x)"8) =y : 1B - Bollx <7}

with a large enough constant envelope (recall that ) is a bounded set) satisfies the uniform entropy
bound (A.3) with A <1 and V < K. Since 1/9M () in a fixed bounded interval is Lipschitz, the
same is true of

Gis = {(x.9) = 0V (p(T8) "+ |18~ Boll, <},

where we used again that under these constraints 7" (p(x)73) is bounded away from zero. This
implies by Lemma C.4 that it is true of G12-Gi3 — ¥ (y, n(x)) (since ¥ (y,n(x)) is one fixed function),
which is what we need. O

Lemma H.9 (Class G3). The class

g3 = {X xR 3 (x,y) —
n(p(x)78) —y B n(p(x)T8o) — y ) |
[ nD(px)T8) M (p(x)TB0) }ﬂ( € Nictogn)(9)) :

18 = Bo(@)|l <70 € A}

with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and
V < log?n.
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Proof of Lemma H.9. For a fixed vector space B of dimension dim B,

n(p(x)8) —y
nM(p(x)78)

with a large enough constant envelope (recall that ) is a bounded set) satisfies the uniform entropy
bound with A < 1 and V' < dim B by the same argument as in the proof of Lemma H.8. Therefore,
for any fixed ¢ > 0, § € A, the class

n(px)8) -y
nM(p(x)78)

with a large enough constant envelope also satisfies the uniform entropy bound with A < 1 and
V< log? n because it is contained in the product of Wg, s for some vector space Bj 5 of dimension
dimBs s < log?n and a fixed function ]l(x € /\/[clogn](é)). Subtracting a fixed bounded function
does not change this fact, so the same is true of

Wi 1= {(x,y> - B €B.1B - o)l ér}

W3,§ = {(X, y) = ﬂ(X € '/\/'[clogn]((s)) 1B e RK? Hﬂ - ﬁO(q)Hoo < 7"}

g3,6 = {(X, y) —
ne)8) —y  nPx)B) ~ Y|, (. |
[ 1 (p(x)78) W (p(x)TBo) }1( € Netogn) (0)) :

BER 8- Bo(a)l <7}

Since there are O(h~?) such classes and log(1/h) < logn, using the chain (E.17) we obtain that Gs
satisfies the uniform entropy bound (A.3) with with A <1 and V < log?n. O

Verifying Assumption B.2(iv) Classes Ga, G4, G5 are just singletons (and the existence of cor-
responding envelopes holds trivially). Classes G; and Gs are tackled in Lemma H.8 and Lemma H.9.

Verifying the addition to Assumption B.2(iv) described in Section E.2 This is verified
(in a more general setting) in Section I.

Verifying (F.14) This is obvious since Q is a singleton.

Verifying the condition in Lemma D.5(v) Recall that in this case

2 _opm(x) + m(x
) = 2 50

The numerator is always positive since 0 < m(x) < 1, and the denominator is also positive since
n € (0,1). Since ¥i(x,n) is continuous in both arguments and the image of a compact set under
a continuous mapping is compact, we see that for any fixed compact subset of (0,1), ¥1(x,n) is
bounded away from zero uniformly over x € X and 7 lying in this compact subset.

Verifying the condition in Lemma D.5(vi) In this verification, we will use 0; := p(x)7(3,
01 = p(x)TB and 0, := p(x)TFy to simplify notations. Note that for ¢ lying in a fixed compact,
both functions logn(#) and log(1 — n(6)) are Lipschitz in 0, so if ||B]|cc < R and ||B]lcc < R, we
have

lp(y,n(61)) — p(y,n(02)) — p(y, n(él)) + oy, n(02))| S 101 — 611 S 18— Bl
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where the constants in < are allowed to depend on R but not on (3, ,3, x or y (we used that y and
1 — y are bounded by 1). The result follows.
This concludes the proof of Proposition H.7.

Lemma H.10 (Verification of strong approximation assumptions). Suppose the setting of Propo-
sition H.7 applies, and the probability space is rich enough.

(a) If Conditions (i) and (ii) of Theorem G.I are true, then so is Condition (iii), as long as
there is an estimator 3 (known measurable function of the data) such that

12 -5 = o L)
ViegK )
(b) If Condition (i) of Theorem G.7 is true, then so are Conditions (ii) and (iii).

Proof. (a) In this case, Z, is a K-dimensional vector, which is conditionally on {x;};" ; mean-zero
and Gaussian with covariance matrix

E[Z,Z." | {xi}i_,] = b En UZ(Xi)W(l)(Mo(Xi))QP(Xz’)P(Xi)T} =h™I%.

Let Nk be a standard K-dimensional Gaussian vector independent of the data. Clearly, we can
put Z¥ = h=¥2XZ1/2 N R R R
If we find an estimator ¥ of 3, we can put Z* = h=4/231/2 Ny | giving by Lemma C.5

B[|1Z; -zl | DA

= E[n 2|8V Nic = £1 0Nk, | Pa] < 02 A0in(2) 7S - Vlog K.

Using Amin(2) 2p h¢, which is proven by the same argument as in Lemma C.11, and Markov’s
inequality, we see that (G.1) is true as long as

4| — B|[\/log K = op(retr).

(b) Since Z,, is a conditionally on {x;} | Gaussian vector with a conditional covariance matrix
h=%3, we get that the vector
&n = W28\ )9 2,

is conditionally on {x;}; ; standard Gaussian (and, in particular, unconditionally standard Gaus-
sian). Put Z,, = h_d/22(1j/2£n. Again using Lemma C.5, we get

> - (@) log(1/h
B2, - 2l | k] < A (B0 IS - Sl VB R 1 % <

where in (a) we used Apin(o) > h? and | — =) <p h? %, which is proven by the same
argument as in Lemma C.11. _

Condition (iii) is obvious: just take Z = h_d/QEOJ/QNK, where N is defined above in this
proof. O
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I Simplifying assumption on loss function

As discussed in the paper, it is possible to impose a simplifying assumption on the loss function,
which is motivated by the examples considered. More specifically, we aim at simplifying the general
complexity assumptions in Assumption B.5(iv).

Proposition I.1 (A simpler generalization of all examples). Assume the following conditions.
(i) The function p(y,n;q) is of the form

p(y,m9) =T (y,m) + (f1(y) + Din)1{y < n} + (f2(y) + Dan)1{y < q} + (f3(y) + D3n)g,

where f; are fixed continuous functions of y, D; are universal constants and T (y;n) : Y x € = R
is a measurable function not depending on q, differentiable in n for any fixed y with a derivative
(y,m) == 5T (y,m).

(ii)) E[7(yi,n) | x; = x| is also differentiable in n for any x. The functions

(y,n) = 7(y,n), and

(x,m) %Em,m % = x]

are continuous in their arguments, and a-Holder continuous in n on Y x K and X x K respectively,
where K is any fixed compact subset of £ (with the Hélder constant possibly depending on this
compact IC, but not on the other argument, i.e. y and x respectively), a € (0, 1].

(iii) If Dy is nonzero, Fy|x is differentiable and fy|x is its derivative (in particular, I is
Lebesgue measure), (x,1) = fy|x(n|x) is continuous in both arguments and continuously differen-
tiable in 7.

(iv) Assumptions B.1, B.3 and B.4 and Assumption B.2 Items (i) to (iii) hold with ¥(x,y) =

7(x,y) + |D1| + |D2| + |Ds| maxqecq |q|, where T(x,y) is a measurable envelope of {(X, y) —

7(y, (po(x, q)))}-
(v) q— po(x,q) is nondecreasing.
Then Assumption B.2(iv) and the addition to it described in Section E.2 also hold.

We will prove this now.
In this case

Y(y,mq) = 7(y,n) + D1l{y < n} + D21{y < ¢} + D3q.

Lemma 1.2 (Class G1). The class G described in Assumption B.2(iv) with a large enough constant
envelope satisfies the uniform entropy bound (A.3) with A <1,V S K.

Proof of Lemma I.2. Tt is shown in the proof of Proposition H.1 (replacing < with < does not
change the argument) that for any fixed » > 0 the class

{x,y) = H{y <np(x)"8)} — I{y < n(ko(x,9)} : 1B — Bo(@)ll <7 q € Q}

with envelope 2 satisfies the uniform entropy bound (A.3) with A <1and V < K.
Next, assume that the infinity-norms of 3 and 3 lie in a fixed bounded interval, and let ¢, ¢ € Q.
Note that by a-Holder continuity of 7(y, ) on compacta

7(y,n(P(x)"8)) — 7(y; n(ko(x,9))) — T(y, n(p(X)TB)) + 7(y, n(po(x,49)))
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’77 —n(p)B)| + n(uo(x, ) — n(uo(x, )|

s 8- BH +la—dl°,

where the constants in < do not depend on 3, B, q, ¢, and we used that n(-) on a fixed bounded
interval is Lipschitz, and ¢ — po(x, q) is Lipschitz (uniformly in x). Again by a-Ho6lder continuity
for any fixed r > 0 the class

{xy) = 7(y,n(P(x)"8)) — 7(y,n(ko(x,9))) : B = Bo()ll o < 7,0 € Q}

has a constant envelope. It follows that it satisfies the uniform entropy bound (A.3) with A < 1,
VK.
Combining these results concludes the proof of Lemma 1.2 by Lemma C.4. O

Lemma I.3 (Class G3). The class Gy described in Assumption B.2(iv) with envelope 1)(x,vy) sat-
isfies the uniform entropy bound (A.3) with A S1,V S 1.

Proof of Lemma 1.3. The class

{¥x Y3 (0y) = rly(0x0): g € O

with envelope T(x, y) satisfies the uniform entropy bound (A.3) with A < 1, V' < 1 by a-Hélder con-
tinuity and since 7(-) on a fixed bounded interval is Lipschitz, ¢ — po(x, ¢) is Lipschitz (uniformly
in x).
The class
{¥%Y3 (xy) = 1y <nuo(x.0)}: g € Q}

with envelope 1 satisfies the uniform entropy bound (A.3) with A < 1, V < 1 because puo(x,q) is
nondecreasing in ¢, see the proof of Proposition H.1.
The class

{Xxya(x,y)Hﬂ{ygq}:qu}

with envelope 1 satisfies the uniform entropy bound (A.3) with A < 1, V < 1 because it is VC-
subgraph with a constant index, (cf. the proof of Proposition H.4).
The class

{Xxya(x,y)}—)q:QEQ}

with envelope max,co |g| satisfies the uniform entropy bound (A.3) with A <1, V' < 1 because it is
VC-subgraph with a constant index (as a subclass of a one-dimensional space of functions, namely
constants in X, y).

It is left to apply Lemma C.4, concluding the proof of Lemma I.3. O

Lemma 1.4 (Class G3). The class Gz described in Assumption B.2(iv) with a large enough constant
envelope satisfies the uniform entropy bound (A.3) with A <1, V < log?n.

Proof of Lemma I.4. Fix 6 € A and some large enough R > 0. Note that if l{x S /\/'[clogn](é)}
and p(x)T@ are both nonzero, B must lie in a vector subspace B of R of dimension O(log?n).
For any positive and small enough ¢, the class of vectors {8 € Bs, |||/, < R} has an infinity-norm
e-net B§ such that

log|B5| < log? nlog(C/¢),
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where C' is some positive constant.
By a-Hélder continuity of 7(y,-) on compacta and since 7(-) on a compact is Lipschitz, this
means that the class of bounded (by a constant not depending on n) functions

3o = {(x,9) = {7(y,n(P(x)"B)) — (5. n(P(x)"B0(9))) } 1 (x € Nc1ogn) (9)) :
18 = Bo(@)llos <70 € Q}

has a covering number bound
log N (G35, sup-norm, C'c®) < log? nlog(C/e),
where C” is some other positive constant. This means that also
log N (G35, sup-norm, ) < log? nlog(C” /¢)

for some other positive constant C”. Finally, from this we can conclude that G35 with a large
enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and V < log?n.
Therefore, the union of O(h_d) such classes

{G,y) = {7 (v, n(p(x)78)) — 7y, n(P(x)"Bo(4)))} L (x € Nic1ogn(9)) :
1B~ Bo(@)llo 7 g€ Q0 €A}
with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and
V <log?n, see (E.17).

Next, since 7(+) is monotonic, the functions x — p(x)T3 with 3 € Bs form a vector space of
O(log?n) dimension, and x — 1{x € Nclog n}(é)} is one fixed function, the class

{(x.9) = 1y < n(p()TB)}L{x € Mciogn)(8)} : B € R}

is VC with an index O(log? n). Therefore, it satisfies the uniform entropy bound (A.3) with A <1
and V < log?n. By Lemma C.4, a subclass of the difference of two such classes
{(x,9) = {1{y <n(P)"8)} — Hy < n(P(x)"Bo(4)) 1 (x € Neiogn)(9)) :
18 = Bo(@) ]l <70 € Q}
for fixed § € A also satisfies the uniform entropy bound (A.3) with A < 1 and V < log?n.
Therefore, the union of O(h*d) such classes

{(x,9) = {1{y <n(p(x)"B)} — 1{y < n(p(x)"Bo(q))}}1(x € Nciogn)(0)) :
18— Bo(@)]lo <m0 €A g Q}

with a large enough constant envelope satisfies the uniform entropy bound (A.3) with A < 1 and
V < log?n, see (E.17).
It is left to apply Lemma C.4 once again, concluding the proof of Lemma I.4. O

Lemma 1.5 (Class G4). The class G4 described in Assumption B.2(iv) with a large enough constant
envelope satisfies the uniform entropy bound (A.3) with A <1,V < 1.
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Proof of Lemma 1.5. In this case
U(x,m;9) = E[7(yi,n) | xi = x| + D1Fy|x (n|x) + DaFy|x(q|x) + D3q

and

0
Ui(x,nm;9) = %E[T(yu n) | xi = x| + D1 fy|x (n]x).

By assumption, if n lies in a fixed compact, this function of x,7 is bounded (by continuity).
Moreover,

U1 (x, (1o (%,9)); q) — ¥1(q, %5 ¢)n(po(x, 7))

(a)
S In(po(x,9)) — n(po(x, )" + In(po(x,9)) — n(uo(x,9)| S lg — 41" +lg — 4l

where in (a) we used that 7(-) on compacta is Lipschitz and ¢ — po(x, ¢) is uniformly Lipschitz in
q. The result of Lemma 1.5 follows. 0

Lemma 1.6 (Class G5). The class G5 described in Assumption B.2(iv) with a large enough constant
envelope satisfies the uniform entropy bound (A.3) with A <1, V < 1.

Proof of Lemma I1.6. Take R > 0 fixed and large enough so that HBO’qHOO < R for all ¢ and n. Note
that for p;(x) and p(x)T3 to be nonzero at the same time, 8 must lie in a fixed vector subspace
B, of RX of bounded dimension. For 0 < & < 1, the class of vectors {8 € B, ||B]|, < R} has an
infinity-norm e-net B; such that

log| Bf| < log(C/e),

where C' is some positive constant.

By a-Holder continuity of 7(y, ) on compacta, since 7(-) on a compact is Lipschitz and uo(-, q)
is uniformly Lipschitz in ¢, this means that the class of bounded (by a constant not depending on
n) functions

Gs == {(x,y) = p(x)(7(y,1(o(x,9))) — 7(y,n(P(x)"Bo(a)))) : ¢ € Q}
has a covering number bound
log N (GZ, sup-norm, C'c®) < log(C/e),

where C’ is some other positive constant. It follows that this class with a large enough constant
envelope satisfies the uniform entropy bound (A.3) with A <1 and V < 1.
As in the proof of Lemma 1.3, the class

{X X V3 (x,9) = 1y < n(uo(x,q)}: g € Q}

with envelope 1 satisfies the uniform entropy bound (A.3) with A < 1, V' < 1. Since 7(-) is
monotonic, the functions x +— BTp(x) with 8 € B; form a vector space, and p;(x) is one fixed
function, we have that the class

(%Y 5 (xy) > nEUy <npx)B)} : 8 RY
is VC with a bounded index. Then it also satisfies the uniform entropy bound (A.3) with A <1

and V < 1.
It is left to apply Lemma C.4, concluding the proof of Lemma 1.6. O
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Verifying the addition to Assumption B.2(iv) described in Section E.2 Suppose 61, 62,60 €
R and 61,605,0 € R all lie in a fixed compact interval. Then

T(y,n(01)) = T (y,n(62)) — [n(01) — n(02)]7(y, n(0))

— T (y.n(61)) + T (y,n(02)) + n(61) — n(02)]7(y, n(6))

= 7(y, CLy) n(61) = n(61)] — 7(y, o) n(62) — n(62)]
— [n(61) — n(61) + n(61) — n(02)7(y, n(8)) + [n(61) — n(62) + n(62) — n(B2)]7(y,n(h))
= [T(y, Cry) — T(,m(0))] - [n(61) = (01)] = [T(y. Coy) — T(,m(0))] - [n(02) — n(02)]
— [n(61) — n(62)]7(y. () + [n(61) — n(62)]7(y, n(B))
= [T(y, Cry) — T(,m(8))] - [n(61) = n(61)] = [7(y. Cay) — T(y,m(D))] - [N(62) — 1(62)]
<1 <[01—-61 ] <1 $[02—02
+ [0(81) — (0] [r (5 1(8)) — 7, n(O)] < 161 — Gul + 16> — o] 10 — B
<1 <Jo_d|°

for some (1, between 7(6;) and 7(61), Cay between 7(62) and 7(62), where we used the a-Holder
continuity of 7(y,-) on a fixed compact and the Lipschitzness of n(-) on a compact. This means
that the class of functions

G = {(xy) = (T, n@)(Bo(a) + B))) = T(y,n(P)T(Bo(q) + B — v)))
~[n(P)T(Bol(q) + B)) — n(P(x)T(Bo(q) + B — v))]7(y, n(P(x)"Bo(9))))
X 1{x € Neiogn](6)} : 4 € Q1B = Bo(@)llo <7 [|v]lo < &n}

has a covering number bound
/ d Ch
log N(G', sup-norm, ¢) < log?nlog| — |, (I.1)
€

for all small enough positive e, and C; is some positive constant (not depending on n), where we
used that all By(q), Bo(q) + B and By(q) + B — v must lie in a vector space of dimension O(logd n)
if Il{x € Nelogn] (5)} is not zero. Applying the mean-value theorem to

T (y,n(p(x)"(Bo(q) +B))) — T (y,n(P(x)"(Bo(q) + B —v)))

and a-Holder continuity again, we see that class G’ has an envelope which is e, multiplied by a
large enough constant Cy. Replacing ¢ with Chee, (for large enough n this is small enough) in
(I.1), we get a covering number bound

C
log N(G', sup-norm, Coee,,) < logdnlog< ! >
Coeeyp,

It follows that class G’ satisfies the uniform entropy bound (A.3) with A < 1/, and V < log?n.
Therefore, the union of O(h*d) such classes

= {(T(y,n(P(x)T(Bo(a) + ) — T (y,n(P(x)T(Bo(q) + B — v)))

—[77( (x ) (ﬁo( )+8)) —n(Px)"(Bo(q) + B8 — )] (y, n(p(x)"Bo(9))))
X ]l{X € j\/’[clogn](é)} HU'RS Q? HIB - IBO(q)HOO < T, HvHoo < 8”’6 € A}’
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also with envelope ¢, multiplied by a large enough constant, satisfies the uniform entropy bound
(A.3) with A <1/e, and V < log?n, by the same argument as (E.17).
Next,

[f1(y) + Din(61)]1{y < n(61)} — [f1(y) + Din(02)]1{y < n(62)}
— [n(61) —n(02)]D11{y < n(0)}
= fiy) [y <n(61)} — L{y < n(02)}] + Din(01)1{y < n(61)} — Din(62)1{y < n(f2)}
— D1[n(01) — n(62)]11{y < n(0)}.

It is proven by the same argument as in the proof of Proposition H.1 that the class

{(x,9) = [(i(y) + Din(p(x)T(Bo(a) + B))]1{y < n(p(x)"(Bo(q) + B))}
— [/1(y) + Din(p(x)"(Bo(q) + B — v))[1{y < n(p(x)7(Bo(q) + B —v))}
— [n(P(x)"(Bo(q) + B)) = n(p(x)T(Bo(q) + B —v))|D1l{y < n(0)})
X 1{x € Neiogn)(8)} : ¢ € Q118 — Bo(@)lloo <7 |10]loo <en 6 €A}

satisfies the uniform entropy bound (A.3) with A < 1/e, and V < log?n.

The terms (fa(y) + Dan)1{y < ¢} and (f3(y) + D3n)q play no role in this verification because
they cancel out in the class described in Section E.2.

It is left to apply Lemma C.4.

The proof of Proposition 1.1 is finished.

J Other parameters of interest

This section formalizes the discussion in Section 8 of the paper. The following theorem is now a
simple corollary of the previous results presented in this supplemental appendix.

Theorem J.1 (Other parameters of interest).
(a) Suppose all the conditions of Theorem E.1(a) hold with v = 0, and all the conditions of
Theorem F.4(a) hold. Then

\Tioxz_ﬂ%ﬁiiﬁm sign {1 (s (x, @) }(x, 0,0) Zn (@)

— op(rswr) + Op (W (r2. + rBah))

sup sup
qeQ xeX

with Z,(q) defined in Theorem F.4.

(b) Fix any k € {1,...,d}. Suppose all the conditions of Theorem E.1(a) hold with v =
ey, where e, = (0,...,0,1,0,...,0)T € R? with 1 at the kth place, and all the conditions of
Theorem F.4(a) hold. Then

1D (fi(x, @) i) (x, @) — 1D (po(x, @) ™ (%, q)

‘77(1) (:UO (Xv q))| V Qek (X7 Q)

- sign{n(l) (NO(Xv q)) }z(x, q, ek)TZ" (q)

sup
q7x

= 0p(7str) + Op ( Vnhd (7"1210 + TBah + hruc))-
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(c) If (x;,v;) is o2-sub-Gaussian conditionally on x;, then in Assertions (a) and (b) rs can

sub

be replaced with 3.

Proof. (a) We have uniformly over q and x

n(E(x,q)) — n(po(x, q))

@

' (o (x, @) (i(x, @) — po(x, @) + === (fi(x, @) — po(x, a))*

= 1 (uo(x, ) (A(x, a) — po(x,q)) + Op (r.)

D 0D (o (x, @))E(x. @, 0)1/ S0 (x, @) /1 + Op (12 + r3an)

D0 a0, )/ Qox, )/ (. 0.0) + O (Vi (1 + 7)) ).

—~ —~
=2
=

Here, (a) is by Taylor expansion, with some & = {q x between [i(x, q) and po(x,q). In (b), we used
consistency (giving that 1n(®(¢) does not exceed a fixed constant not depending on q or x) and
Corollary E.2. (c) is by Theorem E.1(a) and since n(!)(ug(x,q)) is uniformly bounded. (d) is by
h=2VI=d <p infy « |Qy(x, q)| (by Lemma F.6) and since ‘n(l)(uo(x, q))| is bounded away from zero
by Assumption B.2(iii).

Rewriting, we obtain

n(i(x,q)) — n(po(x,q)) <. a.0
10 o @) Voo a0

It is left to combine this with Theorem F.4 and use the triangle inequality.
(b) We have uniformly over q and x

NIP) Vnhd (7"121(: + TBah) .

n(l)(A( Q) (x,q) — 77( (o (x, @) (x, q)

2 (o (x, @) (A (x, @) — ™ (x, )
( <@m>nmqu> ) (x, q)
2 D o, @) =1 @) 0 (@0 a) — ol @) (x, @)

+ 1) (Ax, q) — polx, @) A mm+wwﬂmm
0 (g (x, @) E(x, G, €1)/ Qe (x, @)/

+12(C)(filx, @) — polx, @) (A (x, @) — ™ (x, )

O (i(x, ) — po(x, @)™ (x, @) + Op (h ™' rpan)

&0 (a0 (x, @))E(x, 4, 1)/ Qe (5, @) /1 + Op (W (12, + Ppan) + )

(2 77(1) (NO(X7 q)) Qek (X q)/n{ (X q, ek) + O]P’ (hF( ( 121(; + TBah) + Tuc))] .

Here, (a) is just rewriting. In (b) we used the mean-value theorem, with some { = (qx between
fi(x,q) and po(x, q). In (c) we used Theorem E.1(a) with v = e, and that (! (uo(x, q)) is bounded
uniformly over q,x. (d) is just rewriting. In (e) we used consistency (giving that 7(?)(¢) does not
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exceed a fixed constant not depending on q or x), Corollary E.2 with v = 0 and v = e, and

uniform boundedness of first partial derivatives of (-, q). (f) is by A2V~ <p infq , [Qy(x, q)|

(by Lemma F.6) and since ‘n(l)(,ug(x, q))| is bounded away from zero by Assumption B.2(iii).
Rewriting, we obtain

1D (7i(x, @) (x, q) — 10 (uo(x, @) ™ (%, q)

sup = —t(x,q, ;)
ax N (po(x,9))/Qe, (x,9)
<p Vnhd (Tﬁc + TBah + hTuC)‘

It is left to combine this with Theorem F.4 and use the triangle inequality.

(c) The argument is the same as for Parts (i) and (ii) with 7, replaced by rSiP. O
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