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Abstract

This paper presents uniform estimation and inference theory for a large class of nonparamet-
ric partitioning-based M-estimators. The main theoretical results include: (i) uniform consis-
tency for convex and non-convex objective functions; (ii) optimal uniform Bahadur representa-
tions; (iii) optimal uniform (and mean square) convergence rates; (iv) valid strong approxima-
tions and feasible uniform inference methods; and (v) extensions to functional transformations
of underlying estimators. Uniformity is established over both the evaluation point of the non-
parametric functional parameter and a Euclidean parameter indexing the class of loss functions.
The results also account explicitly for the smoothness degree of the loss function (if any), and
allow for a possibly non-identity (inverse) link function. We illustrate the main theoretical and
methodological results with four substantive applications: quantile regression, distribution re-
gression, Lp regression, and Logistic regression; many other possibly non-smooth, nonlinear,
generalized, robust M-estimation settings are covered by our theoretical results. We provide
detailed comparisons with the existing literature and demonstrate substantive improvements:
we achieve the best (in some cases optimal) known results under improved (in some cases mini-
mal) requirements in terms of regularity conditions and side rate restrictions. The supplemental
appendix reports other technical results that may be of independent interest.
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1 Introduction

Let (y1,x1), (y2,x2), · · · , (yn,xn) be independent and identically distributed (i.i.d.) copies of the
random vector (Y,X) ∈ Y × X ⊆ R × Rd. Given a loss function ρ : Y × E × Q → R with Q ⊆ R
a connected compact set and E ⊆ R an open connected set, and η : R → E a strictly monotonic
transformation function, consider the functional parameter µ0 : X ×Q → R satisfying

µ0(·, q) ∈ argmin
µ∈M

E
[
ρ
(
yi, η

(
µ(xi)

)
; q
)]
, (1.1)

where the minimization is over the space of measurable functions from X to R (in particular, assume
that the minimum is achieved, which is true in most cases). This setup covers many settings of
interest in nonparametric statistics, econometrics, and data science, including generalized linear
models, robust nonlinear regression, and generalized conditional quantile regression. In practice,
the parameter of interest may be µ0 itself, or otherwise specific transformations thereof such as
η(µ0(xi)) or its partial derivatives.

Our main goal is to conduct uniform (over X ×Q) estimation and inference for µ0, and trans-
formations thereof, employing the partitioning-based series M -estimator

µ̂(x, q) = p(x)⊺β̂(q), β̂(q) ∈ argmin
b∈B

n∑
i=1

ρ
(
yi, η(p(xi)

⊺b); q
)
, (1.2)

where x 7→ p(x) = p(x; ∆,m) =
(
p1(x; ∆,m), . . . , pK(x; ∆,m)

)⊺
is a dictionary of K locally

supported basis functions of order m based on a quasi-uniform partition ∆ = {δl : 1 ≤ l ≤ κ̄}
containing a collection of open disjoint polyhedra in X such that the closure of their union covers
X , and B ⊆ RK is the feasible set of the optimization problem. The m parameter controls how well
µ0 can be approximated by linear combinations of the basis (Assumption 6); the partition being
quasi-uniform intuitively means that the largest size of a cell cannot get asymptotically bigger than
the smallest one (Assumption 4). We consider large sample approximations where d and m are
fixed constants, and κ̄→ ∞ (and thus K → ∞) as n→ ∞. As a consequence, appropriate choices
of ∆ and p(·) will enable valid nonparametric approximations of µ0, and transformations thereof.
See, e.g., [19] for a textbook introduction to partitioning-based methods, and Section 1.1 for prior
literature. Typical basis functions covered by our conditions include piecewise polynomials, splines,
and compactly supported wavelets, as well as those generated by certain decision tree methods.
Section 3 gives the precise conditions on p(·) and ∆ (Assumptions 4 and 5).

Provided that the vector-valued functional coefficient estimator β̂(q) satisfies the uniform con-
sistency requirement supq∈Q

∥∥β̂(q) − β0(q)
∥∥
∞ = oP(1), where ∥ · ∥∞ denotes the ℓ∞-norm and

β0 : Q → RK denotes coefficients such that β0(q)
⊺p approximates µ0 well enough uniformly over

X ×Q (Assumption 6), we present three main theoretical results for the partitioning-based series
M -estimator in (1.2):

(i) optimal Bahadur representation uniformly over X ×Q,

(ii) optimal convergence rates in mean square and uniformly over X ×Q, and

(iii) valid strong approximation and feasible distribution theory uniformly over X ×Q.

These results contribute to the literature (Section 1.1) by offering estimation and inference
methods that are uniformly valid over both X and Q, while allowing for a large class of possibly
non-smooth loss functions, and under improved side conditions on the tuning parameter K which
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is the number of elements in the approximation basis p(·). The closest antecedent to our work
is [2], which considers exclusively nonparametric conditional quantile series regression estimation
and inference uniformly over X × Q with η(u) = u, and under the side condition K4/n → 0, up
to polylog(n) terms, among other requirements. In contrast, for the special case of nonparametric
quantile regression, this paper allows for a non-identity (inverse) link function η(·), and establishes
convergence rates under the weaker conditions K/n→ 0 for piecewise polynomials and K2/n→ 0
for connected basis, while for uniform inference it requires the weaker condition K3/n → 0, in
all cases up to polylog(n) terms. We also weaken other assumptions imposed in prior work, as
discussed precisely throughout the manuscript. See Example 1 in Sections 2 and 7.1, and Sections
5.2 and 6.1.

More broadly, our paper allows for a large class of possibly non-smooth loss functions, beyond the
check function for quantile regression, and characterizes precisely how their degree of smoothness
affects the order of the remainder in the uniform Bahadur representation for µ̂, its convergence
rates, and the validity of the associated uniform inference procedures. As a consequence, our
general theory gives uniform estimation and inference results for new nonparametric estimators of
interest in statistics and data science. We demonstrate the broad applicability of our theoretical
results with the following new applications:

• Generalized Conditional Distribution Regression. [14] studies this problem in a parametric
setting (K fixed) for counterfactual analysis and causal inference. We give uniform estimation
and inference for nonparametric partitioning-based conditional distribution regression. In
particular, our uniform (over Q) results are useful for constructing nonparametric inference
procedures in treatment effect and policy evaluation settings. See Example 2 in Sections 2
and 7.2.

• Generalized Lp Regression Estimation. [26] studies Lp regression estimation with identity
transformation η(·) in a parametric setting (K fixed). We study uniform estimation and
inference for nonparametric partitioning-based generalized Lp regression with p ∈ [1, 2], cov-
ering the full interpolation between nonparametric generalized median regression (p = 1)
and nonparametric nonlinear least squares regression (p = 2), while also allowing for a non-
identity η(·). See Example 3 in Sections 2 and 7.3. These results are useful in nonparametric
robust statistics settings.

• Other Generalized, Nonlinear, Robust Regression Methods. Our results also cover other ap-
plication of interest such as nonparametric partitioning-based (quasi-) maximum likelihood
logistic regression, Poisson regression, censored and truncated regression, and Tukey and Hu-
ber regression, just to mention a few examples. In particular, Example 4 in Sections 2 and
7.4 considers the case of nonparametric partitioning-based logistic regression because of its
importance in classification and machine learning settings.

To our knowledge, uniform nonparametric partitioning-based estimation and inference for the ex-
amples mentioned so far (and many others) have not been studied in the literature before at the
level of generality we achieve. The only exception is nonparametric quantile regression [2] with
identity (inverse) link η(·), for which our general theoretical results substantially improve upon the
side rate conditions and other assumptions imposed previously.

A challenge in our analysis is that many examples of interest have non-convex objective func-
tions in (1.2), thereby requiring a more careful analysis when it comes to the construction of the
partitioning-based estimator µ̂(x, q). To address this challenge, we separate our theoretical work
into two parts. On the one hand, as already mentioned, our main uniform estimation and inference
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results are obtained under the high-level consistency assumption supq∈Q
∥∥β̂(q)−β0(q)

∥∥
∞ = oP(1),

which is agnostic about the shape features of the objective function and other optimization-related
aspects underlying the nonlinear partitioning-based estimator. On the other hand, we provide
primitive conditions to verify the high-level consistency condition depending on whether the loss
function θ 7→ ρ(y, η(θ); q) is convex or not. More precisely, when the loss function is convex, we
verify the high-level consistency condition with B = RK , leading to unconstrained optimization in
(1.2). When the loss function is non-convex, we verify the high-level consistency condition with
B = {b ∈ RK : ∥b∥∞ ≤ R} for some large enough fixed constant R > 0, leading to constrained
optimization in (1.2). Such a “box” constraint is arguably a mild assumption in practice, and
may be justified in theory under different regularity conditions. We also illustrate these high-level
consistency results in the context of our four motivating examples in Sections 2 and 7.

1.1 Prior Literature

Our paper contributes to the literature on nonparametric estimation [19, 18], focusing in particular
on series (or sieve) approximation methods.

The nonparametric series estimation literature is mature and well-developed for the very special
case of a square loss function ρ(y, η(θ); q) = (y − θ)2 with identity transformation η, which is not
a function of q ∈ Q. See, for example, [38], [22], [9], [3], [12], [10], [8] for pointwise and uniform
over X estimation and inference results at different levels of generality, and with increasingly
weaker technical conditions. The results in this strand of the literature explicitly exploit the
special structure of the square loss function and identity transformation function, which leads
to a closed-form solution of the estimator in (1.2), and hence are often obtained under minimal
assumptions and technical regularity conditions. To be more precise, up to polylog(n) terms and
some regularity conditions, the minimal requirement K/n→ ∞ has been shown to be sufficient for
optimal convergence rates for any d ≥ 1, and for strong approximations uniformly over X when
d = 1. Furthermore, valid strong approximations uniformly over X have been established for d > 1
under the requirement K3/n→ ∞, up to polylog(n) terms and mild regularity conditions.

Despite aiming for generality (i.e., allowing for a large class of loss functions with different levels
of smoothness and a non-identity transformation function), this paper establishes uniform over both
X and Q estimation and inference results under the weak assumption K2/n→ ∞ for convergence
rates, and under the same condition K3/n→ ∞ for strong approximations as in the special case of
square loss and identity transformation functions. Beyond the case of square loss function, [2] is the
closest prior work we are aware of, which focuses specifically on quantile regression with identity
transformation function, and imposes stronger assumptions than those herein. More broadly, we
are not aware of other prior results from the nonparametric sieve M-estimation literature at the
level of generality and under the weak conditions considered in this paper.

Our contributions can also be compared to recent work on nonparametric M-estimation employ-
ing other smoothing techniques. For example, [25] considers local polynomial methods, and [32]
considers smoothing spline methods. In Sections 5.2 and 6.1 we discuss precisely how our results
are either on par with or improve upon those prior contributions from the broader nonparametric
literature.

1.2 Notation

We employ standard notation in probability, statistics and empirical process theory [4, 17, 23, 35].
For any vector a = (a1, · · · , aM ) ∈ RM , we write ∥a∥ = (

∑M
j=1 a

2
j )

1/2 and ∥a∥∞ = max1≤j≤M |aj |.
For any real function f depending on d variables (t1, . . . , td) and any vector v = (v1, · · · , vd) of
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nonnegative integers, denote f (v) = ∂|v|

∂t
v1
1 ...∂t

vd
d

f where |v| =
∑d

k=1 vj . For functions that depend

on (x, q), the multi-index derivative notation is taken with respect to the first argument x, unless
otherwise noted. We say a function f is α-Hölder on a set I if for some constant C > 0 and α > 0,
|f(x1)−f(x2)| ≤ C∥x1−x2∥α for any x1,x2 ∈ I. For any two numbers a and b, a∨ b = max{a, b},
and a ∧ b = min{a, b}. Let En[g(xi)] =

1
n

∑n
i=1 g(xi) and Gn[g(xi)] =

1√
n

∑n
i=1(g(xi) − E[g(xi)]).

For sequences, an = O(bn) or an ≲ bn denotes lim supn |an/bn| is finite, an = OP(bn) denotes
lim supϵ→∞ lim supn→∞ P[|an/bn| ≥ ϵ] = 0, an = o(bn) denotes an/bn → 0, and an = oP(bn)
denotes an/bn →P 0, where →P is convergence in probability. Limits are taken as n → ∞, and
the dependence on n is often suppressed, e. g. K = Kn. Also, we say a random variable ξ is
sub-Gaussian conditional on X if for some constant σ2 > 0, P(|ξ| ≥ t|X = x) ≤ 2 exp(−t2/σ2) for
all t ≥ 0 and x ∈ X .

1.3 Organization

Section 2 presents our four motivating examples, which motivates our general theoretical work
and demonstrates its applicability. Section 3 presents the slightly simplified high-level technical
assumptions used throughout the paper; their most general form is given in the supplemental ap-
pendix. Section 4 gives sufficient conditions for the uniform consistency requirement supq∈Q

∥∥β̂(q)−
β0(q)

∥∥
∞ = oP(1), depending on whether the objective function is convex or not. Sections 5 and 6

present our main general theoretical results: Bahadur representation, rates of convergence, strong
approximation, and uniform inference. Section 7 demonstrates how our general sufficient condi-
tions are verified for each of our motivating examples. Section 8 discusses how our results can be
extended to cover other parameters of interest. Finally, Section 9 concludes.

The supplemental appendix collects all the technical proofs, and also presents other theoreti-
cal results that may be of independent interest. In particular, (i) we allow for Q to be a set of
vectors rather than scalars, which can be useful in other examples beyond those studied in this pa-
per; (ii) we consider more complex (VC-type) classes of loss and transformation functions, thereby
covering a broader class of settings than those studied herein, but at the cost of additional, cum-
bersome notation and technicalities; and (iii) we present new strong approximation results for a
class of K-dimensional linear stochastic processes indexed by X × Q under standard complexity
and smoothness conditions, leveraging a conditional Strassen’s Theorem [31, 13] and generalizing
prior Yurinskii’s coupling results in the literature [36, 2].

2 Motivating Examples

We discuss four examples of interest covered by our theoretical results. Section 7 demonstrates
how our high-level assumptions, introduced in Section 3, are verified for these examples in order
to obtain uniform estimation and inference results; the supplemental appendix collects omitted
details.

Our first example generalizes the work of [2], who studies the large sample properties of non-
parametric conditional quantile series regression with η(u) = u. We allow for non-identity trans-
formation under substantially weaker technical conditions.

Example 1 (Generalized Conditional Quantile Regression). The quantile regression loss function
is

ρ(y, η; q) = (q − 1(y < η))(y − η),

where q ∈ Q = [ε0, 1 − ε0] denotes the quantile position, with ε0 > 0. Then, η(µ0(x, q)) is the
q-th conditional quantile function of Y given X = x, and the partitioning-based quantile regression

4



estimator is η(µ̂(x, q)) as defined in (1.2). In the classical case, η(·) is the identity function, but
our theory accommodates other transformations. Interest lies on the quantile process estimator
(η(µ̂(x, q)) : (x, q) ∈ X ×Q), which can be used to characterize heterogeneous effects of covariates
on the outcome distribution and to conduct specification testing. See Section 7.1 for our main
results, and for Section 8 for results on transformations. ▲

[14] obtains large sample estimation and inference results for parametric (K fixed) generalized
conditional distribution regression, and applies them to counterfactual analysis and causal inference.
The following example presents a novel nonparametric partitioning-based generalized conditional
distribution regression estimator.

Example 2 (Generalized Conditional Distribution Regression). Non-linear least squares condi-
tional distribution regression employs

ρ(y, η; q) = (1(y ≤ q)− η)2,

where we can, for example, use the complementary log-log link η(a) = 1−exp(− exp(a)). Estimand
of interest are η(µ0(x)), which corresponds to the conditional distribution function of Y given
X = x (i.e., FY |X(q|x) = E[1(Y ≤ q)|X = x]), and derivatives thereof. Uniform estimation and
inference results based on (η(µ̂(x, q)) : (x, q) ∈ X ×Q) are useful for a variety of purposes, including
heterogeneous treatment effect estimation and specification testing. See Section 7.2 for our main
results, and Section 8 for transformations of µ̂(·, ·). ▲

The next example considers a novel class of nonparametric partitioning-based estimators in the
context of robust Lp regression. For comparison and background, see [26] for the latest results on
parametric (K fixed) Lp regression estimation.

Example 3 (Generalized Lp Regression). The (possibly nonlinear) Lp regression estimator is de-
fined by taking

ρ(y, η) = |y − η|p,

for a fixed p > 0. In particular, p = 2 leads to nonlinear least squares, and p = 1 leads to generalized
least absolute deviations, when a non-identity transformation function η is used. The estimand of
interest is usually the transformed regression function η(µ0(x)), which needs to be interpreted in
context. Our general theory applies to any choice p ∈ [1, 2], delivering uniform estimation and
inference methods based on (µ̂(x) : x ∈ X ), and transformations thereof. See Section 7.3 for our
main results, and Section 8 for transformations. ▲

The final example considers (nonparametric) Generalized Linear Models [30]. For specificity,
we focus on (quasi-)maximum likelihood logistic regression, but our results cover many other ex-
amples within this class such as regression models with limited dependent variables (e.g., Poisson,
fractional, censored and truncation regression).

Example 4 (Generalized Linear Models). The classical logistic regression model, or binary classi-
fication with sigmoid (inverse) link, employs

ρ(y, η) = −y log η − (1− y) log(1− η), η(a) = exp(a)/(1 + exp(a)),

with Y = {0, 1}. The estimand η(µ0(x)) characterizes the conditional probability of Y = 1 given
X = x. See Section 7.4 for uniform estimation and inference methods based on (µ̂(x) : x ∈ X ),
and Section 8 for transformations thereof. Furthermore, our results also cover other related quasi-
maximum likelihood (and non-linear least squares) problems such as fractional regression where
Y = [0, 1]. ▲
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The four examples introduced so far cover the main different settings of interest from a technical
perspective. To be precise, in Example 1 uniformity over X ×Q is of interest, and the loss function
is non-smooth as a function of x ∈ X but smooth as a function q ∈ Q. Example 2 is the “dual” of
Example 1 in the sense that uniformity over X ×Q is also of interest, but now the loss function is
smooth as a function of x ∈ X and non-smooth as a function q ∈ Q. In Example 3 only uniformity
over X is of interest because q ∈ Q is not present in the loss function, but its smoothness depends on
p ∈ [0, 1]; the a. e. derivative of η 7→ ρ(y, η) ranges from discontinuous (p = 1), to Hölder continuous
(p ∈ (1, 2)), to linear (p = 2). Likewise, Example 4 only involves uniformity over X because q ∈ Q
is not present in the loss function, but now the loss function is smooth and well-behaved; this
last example serves as a benchmark for our theoretical development, in addition to being of broad
practical interest. All of the examples above have a convex loss function when η(u) = u, but can be
non-convex when η(·) is not the identity function: our theoretical work will either explicitly take
into account the presence of non-convexity, or circumvent this challenge altogether.

The theoretical results in this paper cover many other examples of practical interest. For
instance, Tukey and Huber regression are popular methods in robust statistics, and our theory al-
lows for their generalizations to nonparametric partitioning-based uniform estimation and inference.
Specifically, Tukey regression employs the loss function ρ(y, η; q) = q2(1−[1−(y−η)2/q2]3)1(|y−η| ≤
q) + q21(|y − η| > q), while Huber regression uses the loss function ρ(y, η; q) = (y − η)21(|y − η| ≤
q) + q(2|y − η| − q)1(|y − η| > q), where q is treated as a tuning parameter that balances the
robustness and the bias of the estimation. We do not discuss these and other examples to avoid
repetition.

3 Assumptions

Our theoretical work proceeds under five general assumptions. The first three assumptions con-
cern the data generating process and the loss function, the next two assumptions concern the
partitioning-based estimation method, and the last assumption links the statistical model and
partition-based approximation.

3.1 Statistical Model

Our first assumption imposes basic regularity on the model.

Assumption 1 (Data Generating Process).

(i) ((yi,xi) : 1 ≤ i ≤ n) is a random sample satisfying (1.1).

(ii) The distribution of xi admits a Lebesgue density fX(·) which is continuous and bounded away
from zero on support X ⊂ Rd, where X is the closure of an open, connected and bounded set.

(iii) The conditional distribution of yi given xi admits a conditional density fY |X(y|x) with support
Yx with respect to some (sigma-finite) measure M, and sup

x∈X
sup
y∈Yx

fY |X(y | x) <∞.

(iv) x 7→ µ0(x, q) is m ≥ 1 times continuously differentiable for every q ∈ Q, x 7→ µ0(x, q) and its
derivatives of order no greater than m are bounded uniformly over (x, q) ∈ X ×Q, and

sup
x∈X

sup
q1 ̸=q2

|µ0(x, q1)− µ0(x, q2)|
|q1 − q2|

≲ 1.
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Assumption 1 imposes standard conditions from the nonparametric regression literature, in-
cluding basic support and smoothness restrictions. Minimal additional regularity is imposed to
accommodate uniformity over q ∈ Q, and different types of conditional distributions of Y |X (e. g.,
absolutely continuous, discrete or mixed) are allowed.

The next assumption requires regularity conditions on the loss and transformation functions.
Define Bq(x) = {ζ : |ζ − µ0(x, q)| ≤ r} for some fixed (small enough) constant r > 0, which is a
“ball” around the true value µ0(x, q) with radius r.

Assumption 2 (Loss Function).

(i) Let Q ⊂ R be a connected compact set. For each q ∈ Q, y ∈ Y, and some open connected
subset E of R not depending on y, η 7→ ρ(y, η; q) is absolutely continuous on closed bounded
intervals within Iη, and admits an a. e. derivative ψ(y, η; q).

(ii) The first-order optimality condition E[ψ(yi, η(µ0(xi, q)); q)|xi] = 0 holds; the function
E[ψ(yi, η(µ0(xi, q)); q)

2|xi = x] is continuous in both arguments (x, q) ∈ X×Q, bounded away
from zero, and Lipschitz in q uniformly in x; there is a positive measurable envelope function
ψ(xi, yi) such that supq∈Q |ψ(y, η(µ0(x, q)); q)| ≤ ψ(xi, yi) with supx∈X E[ψ(xi, yi)

ν |xi = x] <
∞ for some ν > 2.

(iii) ψ(y, η(θ); q) = φ(y, η(θ); q)ϖ(θ), where η(·) is strictly monotonic and twice continuously
differentiable, and ϖ(·) is continuously differentiable and strictly positive or negative. Fur-
thermore, for some fixed constant α ∈ (0, 1], for any (x, q) ∈ X × Q, and a pair of points
ζ1, ζ2 ∈ Bq(x), φ(·) satisfies the following (constants hidden in ≲ do not depend on x, q, ζ1,
ζ2):

• if M is the Lebesgue measure, then

sup
λ∈[0,1]

sup
y ̸∈[η(ζ1)∧η(ζ2),η(ζ1)∨η(ζ2)]

|φ(y, η(ζ1 + λ(ζ2 − ζ1)); q)− φ(y, η(ζ2); q)| ≲ |ζ1 − ζ2|α,

sup
λ∈[0,1]

sup
y∈[η(ζ1)∧η(ζ2),η(ζ1)∨η(ζ2)]

|φ(y, η(ζ1 + λ(ζ2 − ζ1)); q)− φ(y, η(ζ2); q)| ≲ 1;

• if M is not the Lebesgue measure, then

sup
λ∈[0,1]

sup
y∈Y

|φ(y, η(ζ1 + λ(ζ2 − ζ1)); q)− |φ(y, η(ζ2); q)| ≲ |ζ1 − ζ2|α.

(iv) Ψ(x, η; q) = E[ψ(yi, η; q)|xi = x] is twice continuously differentiable with respect to η,

sup
x∈X ,q∈Q

sup
ζ∈Bq(x)

|Ψk(x, η(ζ); q)| <∞, Ψk(x, η; q) =
∂k

∂ηk
Ψ(x, η; q), k = 1, 2,

and

inf
x∈X ,q∈Q

inf
ζ∈Bq(x)

Ψ1(x, η(ζ); q)η
(1)(ζ)2 > 0.

Assumption 2 is carefully crafted to accommodate all the examples discussed in Section 2, and
many others. Part (i) allows for different degrees of smoothness in the loss function, assuming
only absolute continuity (with respect to η). Part (ii) formalizes the idea that µ0(x, q) may not
be a unique (global) minimizer in (1.1), and consequently it is only required to be a root of the
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(conditional) first-order condition; the rest of the assumptions in that part are mild regularity
conditions. In some applications, µ0(x; q) can be the unique minimizer; see, for example, [28], [29],
and references therein.

Part (iii) of Assumption 2 imposes additional structure on the a. e. first derivative of the loss
function, allowing for all types of outcome data (discrete, mixed, and continuous) and rescalings
emerging in some of the motivating examples. Importantly, this part characterizes precisely the
role of (Hölder) smoothness, which is controlled by the parameter α ∈ (0, 1]. We illustrate the full
power of this general assumption in Section 7, where α = 1 in Examples 1 and 2, α = p − 1 in
Example 3 when p > 1, and α = 1 in Example 4. Furthermore, the special multiplicative structure
of ψ(·) plays a key role in Example 4, as shown in Section 7.4 and in the supplemental appendix.
Finally, part (iv) of Assumption 2 collects mild regularity conditions on the smoothed-out a. e.
derivative of the loss function.

Assumptions 1 and 2 have restricted basic aspects of the statistical model, imposing standard
support, moment, and smoothness conditions, in addition to other minimal structure required on
the loss and transformation functions. These conditions are sufficient for pointwise estimation and
inference, but more is needed for uniform over X × Q results. In the supplemental appendix, our
theoretical results are established under one more condition that governs the complexity of the loss
function and related function classes (see Assumption B.2(iv)). To avoid giving this long list of
complexity bounds here, we present a more restrictive but simpler assumption motivated by the
examples discussed in Section 2. Specifically, we will consider a loss function ρ(y, η; q) that can be
expressed as a linear combination of certain simply described functions.

Assumption 3 (Simplified Setup).

(i) q 7→ µ0(x, q) is non-decreasing, and ρ(y, η; q) =
∑4

j=1 ωjρj(y, η; q), where (ω1, ω2, ω3, ω4) are
constants, and the functions (ρ1(·), ρ2(·), ρ3(·), ρ4(·)) are of the following types.

• Type I: ρ1(y, η; q) = (f1(y) +D1η)1(y ≤ η),

• Type II: ρ2(y, η; q) = (f2(y) +D2η)1(y ≤ q),

• Type III: ρ3(y, η; q) = (f3(y) +D3η)q,

• Type IV: ρ4(y, η; q) = T (y, η),

where fj are fixed continuous functions, Dj are universal constants, and η 7→ T (y; η) is
differentiable.

(ii) If ω1 ̸= 0, then the following conditions hold:

(a) η 7→ E[τ(yi, η)|xi = x] is differentiable, where τ(y, η) = ∂
∂ηT (y, η).

(b) τ(y, η) and ∂
∂ηE[τ(yi, η)|xi = x] are continuous in their arguments and α-Hölder contin-

uous (α ∈ (0, 1]) in η for η in any fixed compact subset of E with the Hölder constants
independent of (y,x).

(c) supq∈Q |τ(y, η(µ0(x, q)))| ≤ τ̄(x, y) with supx∈X E[τ̄(xi, yi)
ν |xi = x] <∞ for some ν > 2.

(iii) If ω2 ̸= 0, then FY |X is differentiable with a Lebesgue density fY |X , and fY |X is continuous
in both arguments and y 7→ fY |X(y|x) is continuously differentiable.

This third assumption imposes an additional weak monotonicity condition on µ0(x, q) as a
function of q, which is compatible with all the examples in Section 2. Finally, the key restriction
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emerging from Assumption 3 is on the structure of the loss function, which allows for linear com-
binations of smooth loss functions of y and η, and non-smooth loss functions involving indicator
functions of either y and η, or y and q. These restrictions are still general enough to cover all
examples discussed before: the loss function in Example 1 is a combination of Type I and Type III
functions with f1 and f3 being linear functions of y; the loss function in Example 2 is a combination
of Type II and Type IV functions; the loss function in Example 3 is of Type IV for p > 1 and
corresponds to median regression for p = 1; and the loss function in Example 4 is usually a Type
IV function. See Section 7 and the supplemental appendix for details.

3.2 Partitioning-Based Methodology

The next two assumptions concern the regularities of the partition and the local basis constructed
on it, which are the core ingredients for the partition-based M-estimator in (1.2). The conditions
assumed are the same as those imposed for the special case of least squares partitioning-based series
methods [22, 10].

Assumption 4 (Quasi-uniform partition). The ratio of the sizes of inscribed and circumscribed
balls of each δ ∈ ∆ is bounded away from zero uniformly in δ ∈ ∆, and

max{diam(δ) : δ ∈ ∆}
min{diam(δ) : δ ∈ ∆}

≲ 1

where diam(δ) denotes the diameter of δ. Further, for h = max{diam(δ) : δ ∈ ∆}, assume h = o(1)
and log(1/h) ≲ log n.

Assumption 4 requires the partition ∆ be quasi-uniform: the elements in the partition ∆ do
not differ too much in size asymptotically. As a consequence, we can use the maximum diameter h
as a universal measure of mesh sizes.

The next assumption requires the basis be “locally supported”, non-collinear, and bounded in
a proper sense. A function p(·) on X is active on δ ∈ ∆ if it is not identically zero on δ.

Assumption 5 (Local basis).

(i) For each basis function pk, k = 1, . . . ,K, the union of elements of ∆ on which pk is active is
a connected set, denoted by Hk. For all k = 1, . . . ,K, both the number of elements of Hk

and the number of basis functions which are active on Hk are bounded by a constant.

(ii) For any a = (a1, . . . , aK)⊺ ∈ RK ,

a⊺
∫
Hk

p(x; ∆,m)p(x; ∆,m)⊺dx a ≳ a2kh
d, k = 1, . . . ,K.

(iii) Let |v| < m. There exists an integer ς ∈ [|v|,m) such that, for all ς, |ς| ≤ ς,

h−|ς| ≲ inf
δ∈∆

inf
x∈cl(δ)

∥∥p(ς)(x; ∆,m)
∥∥ ≤ sup

δ∈∆
sup

x∈cl(δ)

∥∥p(ς)(x; ∆,m)
∥∥ ≲ h−|ς|,

where cl(δ) is the closure of δ.

Condition (i) implies that each basis function in p(x) is supported by a region consisting of a
finite number of cells in ∆ (independent of n). Then, as κ̄ → ∞, all basis functions are locally
supported relative to the whole support of the data. Condition (ii) can be read as “non-collinearity”
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of the basis functions in p(x). Since local support condition has been imposed, it suffices to require
the basis functions are not too collinear “locally”. Condition (iii) controls the magnitude of the
local basis in a uniform sense.

Assumptions 4 and 5 implicitly relate the number of approximating series terms, the number of
cells in ∆, and the maximum mesh size: K ≍ κ̄ ≍ h−d. These conditions are easily verified for local
nonparametric methods such as piecewise polynomial regression, splines, and compactly supported
wavelets: see [22], [9], [3], [10], [8], and references therein. Furthermore, the conditions can be used
to justify employing estimators based on tree methodology: X-adaptive tree constructions [16] and
certain other recursive adaptive partitioning methods [37] may be accommodated under additional
restrictions (e.g., via sample splitting).

3.3 Uniform Approximation

Our final assumption concerns the approximation power of the basis p(·) in connection with the
underlying functional parameter.

Assumption 6 (Approximation Error). There exists a vector of coefficients β0(q) ∈ RK such that
for all ς satisfying |ς| ≤ ς in Assumption 5,

sup
q∈Q

sup
x∈X

∣∣µ(ς)0 (x, q)− β0(q)
⊺p(ς)(x; ∆,m)

∣∣ ≲ hm−|ς|.

The vector β0(q) can be viewed as a pseudo-true value, and does not have to be unique.
The existence of such β0(q) can be established using approximation theory or related methods,
and necessarily depends on the specific underlying structure of the statistical model (determining
µ0(x, q)) and the partitioning-based method (determining p(ς)(x; ∆,m)). For more disucssion, see
[22], [9], [3], [10], [8], and references therein.

4 Consistency

We show that the partitioning-based M -estimator is consistent, which is the starting point for
establishing its main point estimation and inference asymptotic properties. We endeavor to impose
the weakest possible conditions, which requires careful consideration of the specific shape of the
loss function in (1.2): we thus consider two cases, either the loss function ρ(y, η(θ); q) is convex
with respect to θ or not; in the latter case, we will have to restrict the feasibility region B.

4.1 Convex Loss Function

For the case of convex θ 7→ ρ(y, η(θ); q), consistency can be established for general unconstrained
estimators (B = RK in (1.2)) under mild conditions. The proof is deferred to the supplemental
appendix (Lemma D.1).

Lemma 1 (Consistency, convex case). Suppose that Assumptions 1–6 hold, ρ(y, η(θ); q) is convex
with respect to θ with left or right derivative ψ(y, η(θ); q)η(1)(θ), B = RK in (1.2), and m > d/2.
Furthermore, assume that one of the following two conditions holds:

(i) (logn)
ν

ν−1

nh
2ν
ν−1 d

= o(1), or

(ii) (logn)3/2

nh2d = o(1) and ψ(xi, yi) is sub-Gaussian conditional on xi.
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Then

sup
q∈Q

∥∥β̂(q)− β(q)
∥∥ = oP(1), (4.1)

sup
x∈X

sup
q∈Q

∣∣µ̂(v)(x, q)− µ
(v)
0 (x, q)

∣∣ = oP(h
−|v|), (4.2)

sup
q∈Q

∫ (
µ̂(v)(x, q)− µ

(v)
0 (x, q)

)2
fX(x) dx = oP(h

d−2|v|). (4.3)

Lemma 1 shows that the function estimator µ̂ is uniform-in-q consistent for the true value µ0
in both L2-norm and sup-norm over X , whereas for the derivative estimator µ̂(v) (with |v| > 0)

the lemma only provides a bound on its deviation from the estimand µ
(v)
0 . Technically, all we need

from this lemma to establish the Bahadur representation later is the uniform-in-q consistency of the
coefficients estimator β̂(q) for the pseudo-true coefficients β0(q) in sup-norm, i.e., ∥β̂(q)−β(q)∥∞ =
oP(1), which is immediate from (4.1), the uniform-in-q consistency in the Euclidean norm.

Two kinds of rate restrictions are imposed in Lemma 1, depending on the moment condition
assumed for the generalized residual ψ(yi, η(µ0(xi, q)); q). In the best case when the residual has
a sub-Gaussian envelope, we need 1/(nh2d) ≍ K2/n = o(1), up to polylog(n) terms, while in the
worst case when the envelope of ψ(yi, η(µ0(xi, q)); q) has a bounded ν-th moment with ν close to
2, we roughly need 1/(nh4d) ≍ K4/n = o(1), up to polylog(n) terms.

These restrictions are comparable to, or improve upon, the existing results in the literature. For
example, for quantile regression with tensor-product of B-splines, Corollary 1 of [2] implies that
the L2-consistency (4.3) can be obtained under 1/(nh2d) ≍ K2/n = o(1), and Corollary 2 therein
implies that the uniform consistency (4.2) can be obtained under 1/(nh4d) ≍ K4/n = o(1). In
contrast, noting the generalized residual from quantile regression has a sub-Gaussian envelope, we
only need 1/(nh2d) ≍ K2/n = o(1) to establish both kinds of consistency, substantially improving
the requirements for uniform consistency.

Moreover, when an unconnected basis is used or the loss function is strongly convex and smooth
(e.g., the square loss for mean regression), the weakest possible restriction suffices: 1/(nhd) ≍
K/n = o(1), up to polylog(n) terms. See Section 4.3 for details. This is on par with the existing best
results for series-based least squares regression [3, 10] in the literature, but our results can also cover
other nonlinear cases such as piecewise-polynomial-based quantile, nonlinear, or robust regression.
Whether it is possible to establish consistency under the weakest condition 1/(nhd) ≍ K/n = o(1)
for general partitioning-based M -estimators remains an open question.

Another important feature of Lemma 1 is that no constraints are imposed on the coefficients
in the optimization procedure, which allows the estimation space to be, for example, piecewise
polynomials. In contrast, many studies of series (or sieve) methods restrict the functions in the
estimation space to satisfy certain smoothness conditions, e.g., Lipschitz continuity, to derive the
uniform consistency [e.g., 15], which may contradict common practical implementations.

4.2 Non-Convex Loss Function

Consider the case when the loss ρ(y, η(θ)) is possibly non-convex with respect to θ. This set-
ting is practically relevant because it naturally arises, for example, in nonlinear regression when
ρ(y, η(θ); q) = (y − η(θ))2 with η(·) non-identity: while η 7→ ρ(y, η; q) is a square loss function,
hence convex, introducing a transformation function η such as the (inverse) logistic link will often
make θ 7→ ρ(y, η(θ)) non-convex.

A proof of consistency for the unconstrained estimator in (1.2) with non-convex loss function
is not available, but we are able to establish consistency of a minimally regularized M -estimator.
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Specifically, we add a fixed “box” constraint: for some fixed constant R > 0,

β̂(q) ∈ argmin
∥b∥∞≤R

n∑
i=1

ρ(yi, η(p(xi)
⊺b); q).

In the supplemental appendix we show that the pseudo-true coefficients β0(q) from Assumption 6
are bounded in sup-norm by a universal constant: supq∈Q ∥β0(q)∥∞ ≲ 1 (because p(x)⊺β0(q) have
to be close to µ0(x, q) which is uniformly bounded). Therefore, we can always choose a sufficiently
large constant R in the optimization procedure, making the box constraint set contain β0(q) as an
interior point. The following lemma, proven in the supplemental appendix (Lemma D.5), establishes
consistency of the constrained estimator.

Lemma 2 (Consistency, non-convex case). Suppose that Assumptions 1–6 hold, B = {b ∈ RK :
∥b∥∞ ≤ R} with R ≥ 2 supq∈Q ∥β0(q)∥∞ in (1.2), m > d/2, and that there exists some constant
c > 0 such that inf Ψ1(x, ζ; q) > c, where the infimum is over x ∈ X , q ∈ Q, ζ between η(p(x)⊺β)
and η(µ0(x, q)), and β ∈ B. Furthermore, assume one of the following two conditions holds:

(i) (logn)
ν

ν−1

nh
2ν
ν−1 d

= o(1), or

(ii) (logn)3/2

nh2d = o(1) and ψ(xi, yi) is sub-Gaussian conditional on xi.

Then (4.1), (4.2), and (4.3) hold.

Two additional restrictions are imposed in this lemma. The first one, R ≥ 2 supq∈Q ∥β0(q)∥∞,
can be theoretically justified by Lemma D.4 in the supplemental appendix, and in practice a large
enough R is recommended. The other restriction concerns a lower bound for Ψ1, which implies that
the (population) loss function is strongly convex in a neighborhood of the true value η(µ0(x, q)),
making the (constrained) minimizer well defined. (Note that this condition does not break because
of the shape of η(·), in contrast with the convexity of ρ(y, η(θ); q) in θ.) The other conditions in
this lemma are the same as those in the convex case, and thus all improvements discussed before
also apply to this second consistency result.

4.3 Weaker Conditions for Special Cases

In the supplemental appendix we provide additional consistency results for two special cases of
theoretical and practical relevance:

• the loss function is strongly convex and smooth (i.e., the second “derivative” of ρ(y, η(·); q)
is bounded and bounded away from zero), or

• an “unconnected” basis (i.e., each basis function is supported on a single cell of ∆) is employed.

The first case covers, for example, the usual least squares regression, and the second case covers
any M -estimation problem based on, for example, piecewise polynomials. Notably, in these two
scenarios the key consistency result ∥β̂(q) − β(q)∥∞ = oP(1) can be established for any m and d,
so the prior requirement m > d/2 is unnecessary, under the seemingly minimal rate restrictions

1/(nhd) ≍ K/n = o(1) in the sub-Gaussian case, and 1/(nh
ν

ν−1
d) ≍ K

ν
ν−1 /n = o(1) in the bounded

ν-th moment case, up to polylog(n) terms. See Section D in the supplemental appendix for more
details.
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5 Bahadur Representation and Convergence Rates

This section presents our first main result for uniform estimation and inference: a novel uniform
Bahadur representation for partitioning-based M -estimators. The Bahadur representation is

L(v)(x, q) = −p(v)(x)⊺Q̄−1
q En

[
p(xi)η

(1)(µ0(xi, q))ψ(yi, η(µ0(xi, q)); q)
]

where

Q̄q = En

[
p(xi)p(xi)

⊺Ψ1(xi, η(µ0(xi, q)); q)[η
(1)(µ0(xi, q))]

2
]
.

The following theorem takes the sup-norm consistency of the coefficient estimators β̂(q) as a
high-level assumption, and thus avoids imposing any of the specific sufficient conditions discussed
in Section 4. The proof is provided in the supplemental appendix (Theorem E.10).

Theorem 1 (Bahadur representation). Suppose that Assumptions 1–6 hold. Furthermore, assume
the following four conditions:

(i) supq∈Q
∥∥β̂(q)− β0(q)

∥∥
∞ = oP(1);

(ii) there exists a fixed constant c > 0 such that {b ∈ RK : ∥b− β0(q)∥∞ ≤ c, q ∈ Q} ⊆ B;

(iii) (logn)d+2

nhd = o(1);

(iv) either (logn)d

n1−2/νhd = o(1) or ψ(xi, yi) is sub-Gaussian conditional on xi.

Then

sup
q∈Q

sup
x∈X

∣∣µ̂(v)(x, q)− µ
(v)
0 (x, q)− L(v)(x, q)

∣∣ ≲P h
−|v|

( (log n)d
nhd

) 1
2+(α

2 ∧ 1
4 )

log n+ hm−|v|. (5.1)

If, in addition, supy∈Y,q∈Q |φ(y, η(ζ1); q) − φ(y, η(ζ2); q)| ≲ |ζ1 − ζ2|α without any restrictions
on y in Assumption 2(iii), then

sup
q∈Q

sup
x∈X

∣∣µ̂(v)(x, q)− µ
(v)
0 (x, q)− L(v)(x, q)

∣∣ ≲P h
−|v|

( (log n)d
nhd

) 1+α
2

log n+ hm−|v|. (5.2)

The Bahadur representation (5.1) applies to the case where the “derivative” ψ(·, ·; q) of the loss
function may be discontinuous. One typical example is quantile regression (Example 1), where the
“derivative” ψ(y, η; q) = 1(y − η < 0) − q, as a function of (y − η), is piecewise constant with a
jump at zero. In this case we can let α = 1, and (5.1) implies that the order of the remainder in the
Bahadur representation for partitioning-based quantile regression is O(h−|v|(nhd)−3/4 + hm−|v|),
up to polylog(n) terms. Another example is Lp regression with p ∈ (1, 2), Example 3, where the
derivative of the loss function is given by ψ(y, η) ≡ ψ(y − η) = p|y − η|p−1sgn(η − y) with sgn(·)
denoting the sign function. As a function of (y − η), ψ(·) is α-Hölder on [0,∞) or (−∞, 0] for all
α ∈ (0, p− 1] but not for α > p− 1. Thus, (5.1) applies with the order of the remainder depending
on p, which is the same as that for quantile regression when p ≥ 3/2.

On the other hand, the Bahadur representation (5.2) applies to the case where the “derivative”
of the loss is a continuous function of (y − η). Nonlinear least squares regression (Example 2
and quasi-maximum likelihood estimation of generalized linear models (Example 4) fall into this
category with the Hölder parameter α = 1. In such cases, (5.2) implies that the order of the
remainder in the Bahadur representation is O(h−|v|(nhd)−1 + hm−|v|), up to polylog(n) terms,
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which is a tighter upper bound than that implied by (5.1). See Section 7 and the supplemental
appendix for more details.

In both cases, the remainder of the Bahadur representation consists of two terms. The last term
hm−|v| corresponds to the error from approximating the function µ0 using the partitioning basis
(c.f., Assumption 6), whereas the first term arises from the (potential) nonlinearity underlying the
M -estimation, and reflects explicitly the role of non-smoothness of the loss function. Specifically,
when the “derivative” of the loss function has discontinuity points, the order of the remainder in
(5.1) is greater than that in the continuous case (5.2); with a smaller Hölder parameter α, the order
of the remainder in both cases could increase.

5.1 Rates of Convergence

Our novel uniform Bahadur representations (Theorem 1) can be used to establish convergence rates
for the general partitioning-basedM -estimators. We focus first on uniform convergence over x ∈ X
and q ∈ Q.

Corollary 1 (Uniform Rate of Convergence). Suppose that Assumptions 1–6 and the four condi-
tions (i)–(iv) in Theorem 1 hold. Furthermore, assume one of the following two conditions holds:

(i) (logn)d+
d+1

α∧0.5

nhd = O(1), and h(α∧0.5)m(log n)0.5d = O(1), or

(ii) the additional condition for (5.2) holds, (logn)d+
d+1
α

nhd = O(1), and hαm(log n)0.5d = O(1).

Then

sup
q∈Q

sup
x∈X

∣∣µ̂(v)(x, q)− µ
(v)
0 (x, q)

∣∣ ≲P h
−|v|

√
log n

nhd
+ hm−|v|. (5.3)

By setting h ≍
( logn

n

) 1
2m+d , Corollary 1 implies that the partitioning-based M -estimator can

achieve the uniform convergence rate
( logn

n

) m
2m+d . This matches the optimal rate of convergence in

sup-norm for nonparametric estimators of the conditional mean [34] and conditional quantiles [11].
In this sense, the rate of convergence in Corollary 1 is optimal and cannot be further improved at
our level of generality.

Theorem 1 can also be used to obtain the mean square convergence rate of the partitioning-based
M -estimator uniformly-in-q.

Corollary 2 (Mean Square Rate of Convergence). Suppose that Assumptions 1–6 and the four
conditions (i)–(iv) in Theorem 1 hold. Furthermore, assume one of the following two conditions
holds:

(i) (logn)d+
d+2

α∧0.5

nhd = o(1) and h(α∧0.5)m(log n)
d+1
2 = o(1), or

(ii) the additional condition for (5.2) holds, (logn)d+
d+2
α

nhd = o(1), and hαm(log n)
d+1
2 = o(1).

Then

sup
q∈Q

∫
X

(
µ̂(v)(x, q)− µ

(v)
0 (x, q)

)2
fX(x)dx ≲P

1

nhd+2|v| + h2(m−|v|). (5.4)

By setting h ≍ n−
1

2m+d , Corollary 2 implies that the partitioning-based M -estimator can also
achieve the L2 convergence rate n−

m
2m+d , uniformly over Q, thereby matching the optimal rate of
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convergence in L2-norm for nonparametric estimators of conditional means [33] and conditional
quantiles [11].

The convergence rates in (5.3) and (5.4) capture two contributions: the first term reflects the
variance of the estimator, while the second term arises from the error of approximating the unknown
µ0 by the partitioning basis. In the case of Corollary 2, it is possible to further leverage Theorem
1 to obtain a precise first-order asymptotic approximation for the integrated mean square error
of the partitioning-based M -estimator, uniformly over Q, which in turn could be used to develop
plug-in asymptotically optimal rules for selecting K ≍ h−d. See, for example, Theorem 4.2 in [10]
for a similar result in the special case of square loss and identity transformation functions. We do
not pursue this result here for brevity.

5.2 Comparison with Existing Results

To the best of our knowledge, our paper is the first to establish uniformly valid Bahadur repre-
sentations for partitioning-based M -estimators at the level of generality allowed for in Theorem 1,
and the implied convergence rates in Corollaries 1 and 2. The restriction on the tuning parameter
h required by the theorem is seemingly minimal: when the envelope of the generalized residual
ψ(yi, η(µ0(xi)); q) is sub-Gaussian (or its ν-th moment is bounded with a large ν), we roughly
only need 1/(nhd) ≍ K/n = o(1), up to polylog(n) terms. Having noted this, verification of the
high-level consistency assumption ∥β̂(q)−β0(q)∥∞ = oP(1) in the sub-Gaussian case may require a
more stringent condition on h, as discussed in Section 4. In the best scenario (e.g., an unconnected
basis is used), the “minimal” restriction 1/(nhd) ≍ K/n = o(1) suffices, while in the worst scenario
we need at most 1/(nh2d) ≍ K2/n = o(1), up to polylog(n) terms.

The rest of this section discusses precisely how our results improve on prior literature.

Mean Regression

The usual mean regression is a special case of our general setup where ρ(·) is the square loss, η(·) is
the identity link, andQ is a singleton. Bahadur representations for this special case were established
by [3] and [10]. Since the derivative of the square loss for mean regression is linear, the first term in
(5.1) or (5.2) does not show up in the uniform linearization of least squares series estimators. See,
for example, Lemma SA-4.2 of [10]; note that R1n,q defined therein has been implicitly included in
the leading variance term in (5.2) above. Theorem 1 substantially extends these prior results to
other nonlinear settings, under minimal additional conditions.

Finally, Corollaries 1 and 2 demonstrate the convergence rate optimality of general partitioning-
based series M -estimation, recovering in particular known results for mean regression [3, 10] under
essentially the same minimal conditions.

Quantile Regression

Theorem 1 improves upon prior theoretical results for nonparametric series quantile regression
estimators. The most recent advance in this literature is due to [2], which establishes a uniform
linear approximation for general series-based quantile regression estimators. In comparison, we
exploit the “local support” feature of the partitioning basis, and make improvements in (at least)
four aspects. To summarize these improvements without additional cumbersome notation, we set
v = 0 and ignore the smoothing bias hm in the Bahadur approximation remainders.

First, [2] shows that the order of the remainder in the Bahadur representation is
O((nhd)−3/4h−d/2), up to polylog(n) terms (see proofs of Theorem 2 and Corollary 2 therein for
details). In contrast, Theorem 1 implies that the remainder in the Bahadur representation for
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partitioning-based quantile regression estimators is O((nhd)−3/4), up to polylog(n) terms, which is
not only a much tighter bound but also matches the optimal parametric bound when taking nhd

as the effective sample size.
Second, the rate restriction 1/(nh4d) ≍ K4/n = o(1) is required for B-spline-based estimators

in [2]. In contrast, the restriction on h in Theorem 1 depends on the tail behavior of the generalized
residuals and becomes weaker as ν gets larger. In the best case (the residuals have a sub-Gaussian
envelope) we only need the seemingly weakest restriction 1/(nhd) ≍ K/n = o(1), up to polylog(n)
terms, along with the consistency condition for β̂(q). Recall that in the sub-Gaussian scenario
we need at worst 1/(nh2d) ≍ K2/n = o(1), up to polylog(n) terms, to satisfy the consistency
requirement.

Third, the restriction hm−d = o(n−ε) for some ε > 0 in [2] implicitly requires the smoothness
m of the conditional quantile function be greater than the dimensionality d of the covariates. In
contrast, the proof of Theorem 1 does not need such a restriction, though a weaker condition
m > d/2 might be needed to verify the consistency condition on β̂(q); see Lemmas 1 and 2.
Furthermore, when an unconnected basis (e.g., piecewise polynomials) is used for approximation,
the condition m > d/2 is unnecessary for consistency, and thus we have no constraint on the
relation between smoothness m and dimensionality d; see Section 4.3.

Fourth, compared to [2], we allow for a possibly non-identity link. Introducing a link function
may lead to non-convexity of the loss ρ(y, η(θ); q) with respect to θ, making the usual proof strategies
for consistency and Bahadur representation under convexity inapplicable. For example, non-convex
quantile regression is covered in Theorem 1 by virtue of our general consistency results in Lemma
2.

All of the aforementioned improvements are practically relevant. For example, they accommo-
date univariate quantile regression using the piecewise constant basis with the IMSE-optimal choice
of the mesh size h (in this case h ≍ n−1/3 and m = d), which was theoretical excluded in prior
literature.

Finally, Corollaries 1 and 2 establish the optimal rate of convergence for general partitioning-
based series M -estimation, which substantially improve on prior work on quantile series regression
in particular. More specifically, the conditions on the mesh size h, the smoothness m, and the
dimensionality d in both corollaries are weaker than in prior work. In the best case (e.g., an
unconnected basis is used and a sub-Gaussian envelope for residuals exists), we only require the
seemingly minimal restriction 1/(nhd) ≍ K/n = o(1), up to polylog(n) terms, and an arbitrary
relation between m and d is permitted. For comparison, in the special case of quantile regression,
[2] shows that series estimators achieve the fastest possible uniform-in-q rate in both L2-norm and
sup-norm (see Comments 3 and 4 therein), but under more stringent conditions: η is the identity
function, m > d, and 1/(nh4d) ≍ K4/n = o(n−ε) for some ε > 0 (see their Corollary 2).

Other Nonparametric Smoothing Methods

[25] establishes a similar Bahadur representation for kernel-based M -estimators using weakly sta-
tionary time series data. They consider a special case of our setup in Assumption 2: their loss
function class Q is a singleton, η is an identity function, and the “derivative” of the loss can be
written as ψ(y, η) ≡ ψ(y − η) and is assumed to be piecewise Lipschitz continuous. In a compa-
rable cross-sectional context with α = 1 and v = 0, the order of the remainder in our Bahadur
representation (5.1) is O((nhd)−3/4), up to polylog(n) terms, and thus Theorem 1 matches their
approximation error up to a minor difference in log n terms. Taking nhd to be the effective sample
size, the approximation rate can not be further improved at this level of generality, and hence
Theorem 1 establishes that the partitioning-based seriesM -estimator in (1.2) can achieve the same
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best Bahadur approximation as local polynomial kernel methods, up to polylog(n) terms.
Furthermore, compared to [25] or other similar contributions in the literature, Theorem 1 ex-

hibits (at least) two novel features. First, the Bahadur representations (5.1) and (5.2) hold uni-
formly not only over the evaluation point x ∈ X , but also over the loss function index q ∈ Q,
which may be important, for example, to study simultaneous quantile regression where the entire
conditional quantile process may be of interest. Second, Theorem 1 also covers the more general
setup where the “derivative” function may exhibit different degrees of smoothness, reflected by
discontinuity points and/or the Hölder parameter α, or admits a more complex structure so that
ψ(y, η; q) cannot be written as ψ(y − η; q). Thus, we cover more examples such as distribution re-
gression (Example 2) and Lp regression with p ∈ (1, 2) (Example 3). Finally, [25] does not discuss
convergence rates as we do in Corollaries 1 and 2.

In the context of nonparametric penalized smoothing spline methods, [32] also establishes a
uniform Bahadur representation (and other results) that can be compared to Theorem 1. However,
their paper imposes more stringent assumptions and hence cover a smaller class of settings: using
our notation, they assume that (i) Q is a singleton so their uniformity is only over X ; (ii) d = 1
so they consider only scalar covariate xi; and (iii) ρ(·, η(·)) is smooth so they rule out many
important examples such as quantile regression, and Tukey and Huber regression. Furthermore,
their results do not take explicit advantage of specific moment and boundedness conditions, or the
structure of the nonparametric estimator, and instead impose the generic side condition nh2 → ∞,
which is comparable to our condition K2/n → ∞, up to polylog(n) terms. Most importantly,
in the closest comparable case (d = 1, α = 1, and v = 0), and only focusing on the variance
component for simplicity, the order of the remainder in their uniform Bahadur representation (a
combination of Theorem 3.4 and Lemma 3.1 in [32]) is O((nh)−1h−(6m−1)/(4m)), while (5.2) in
Theorem 1 gives the optimal result O((nh)−1), thereby demonstrating a substantial improvement
over their result. Finally, as for convergence rates, Proposition 3.3 in [32] and our Corollary 2 are
essentially equivalent, both delivering optimal mean square convergence. They do not explicitly
discuss uniform convergence rates as we do in Corollary 1.

6 Strong Approximation and Uniform Inference

The uniform Bahadur representations in Theorem 1 can also be leveraged to establish uniform
distribution theory for µ̂(v). The infeasible conditional variance of the estimator can be written as

Ω̄v(x, q) = p(v)(x)⊺Q̄−1
q Σ̄qQ̄

−1
q p(v)(x),

where

Σ̄q = En

[
p(xi)p(xi)

⊺E[ψ(yi, η(µ0(xi, q)); q)
2|xi][η

(1)(µ0(xi, q))]
2
]

Accordingly, we define a feasible variance estimator as

Ω̂v(x, q) = p(v)(x)⊺Q̂−1
q Σ̂qQ̂

−1
q p(v)(x),

where Q̂q and Σ̂q are some estimators of Q̄q and Σ̄q, respectively, which are consistent in a sense

described below. Therefore, Ω̂v(x, q) is an estimator of the infeasible conditional variance Ω̄v(x, q).

Statistical inference on µ
(v)
0 usually relies on the following t-statistic process:

T (x, q) =
µ̂(v)(x, q)− µ

(v)
0 (x, q)√

Ω̂v(x, q)/n
, (x, q) ∈ X ×Q,
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where we drop the dependence of T (·) on v for simplicity.
Employing Theorem 1, or more precise arguments under slightly weaker conditions, it is easy

to show that T (x, q) converges in distribution to N(0, 1) for each (x, q) ∈ X × Q. However, the
stochastic process (T (x, q) : (x, q) ∈ X × Q) is generally not asymptotically tight and, therefore,
does not converge weakly in ℓ∞(X×Q), where ℓ∞(X×Q) denotes the set of all (uniformly) bounded
real functions on X ×Q equipped with uniform norm [35]. Nevertheless, we can carefully construct
a Gaussian process, in a possibly enlarged probability space, that approximates the entire process
T (·) sufficiently fast, which then can be used to characterize the finite sample distribution of the
function M -estimator µ̂(v)(·).

More precisely, under some mild consistency conditions on Q̂q and Ω̂v(x, q), our Theorem 1
guarantees that supq∈Q supx∈X

∣∣T (x, q)− t(x, q)
∣∣ →P 0 sufficiently fast, where

t(x, q) = −
p(v)(x)⊺Q̄−1

q√
Ω̄v(x, q)

Gn

[
p(xi)η

(1)(µ0(xi, q))ψ(yi, η(µ0(xi, q)); q)
]
.

It follows that, conditional on {xi}ni=1, the randomness of t(x, q) comes exclusively from the K-
dimensional vector Gn[p(xi)η

(1)(µ0(xi, q))ψ(yi, η(µ0(xi, q)); q)]. Thus, our proof strategy is to fur-
ther “discretize” this vector with respect to q ∈ Q, and then apply Yurinskii’ coupling [36] to
construct a (conditional) Gaussian process that is close to the original t-statistic process T (x, q)
uniformly over both x ∈ X and q ∈ Q. Our construction leverages a conditional Strassen’s the-
orem [13, Theorem B.2] to generalize prior coupling results [2, Lemma 36]. See Section F in the
supplemental appendix for details.

Our strong approximation approach is formalized in the next theorem. We employ high-level
conditions to ease the exposition, but those conditions can be verified using Corollaries 1 and 2, and
Theorem 1, as well as using the more general results in the supplemental appendix. Let rUC, rBR, rVC,
and rSA be positive non-random sequences as n → ∞. The proof is available in the supplemental
appendix (Corollary F.5).

Theorem 2 (Strong approximation). Suppose that Assumptions 1–6 with ν ≥ 3. Furthermore,
assume the following four conditions hold:

(i) supq∈Q supx∈X |µ̂(x, q)− µ0(x, q)| ≲P rUC.

(ii) supq∈Q supx∈X
∣∣µ̂(x, q)− µ0(x, q)− L(x, q)

∣∣ ≲P rBR.

(iii) supq∈Q supx∈X
∣∣Ω̂v(x, q)− Ω̄v(x, q)

∣∣ ≲P h
−2|v|−drVC, with rVC = o(1).

(iv) E
[∣∣ψ(yi, η(µ0(xi, q)); q)η

(1)(µ0(xi, q)) − ψ(yi, η(µ0(xi, q̃)); q̃)η
(1)(µ0(xi, q̃))

∣∣2∣∣xi

]
≲ |q − q̃|, for

all q, q̃ ∈ Q.

Then (provided the probability space is rich enough) there exists a stochastic process (Z(x, q) :
(x, q) ∈ X × Q) such that, conditional on Xn = (x1, · · · ,xn), Z is a mean-zero Gaussian process
with E[Z(x, q)Z(x̃, q̃)|Xn] = E[t(x, q)t(x̃, q̃)|Xn] for all (x, q), (x̃, q̃) ∈ X ×Q, and

sup
q∈Q

sup
x∈X

∣∣T (x, q)− Z(x, q)
∣∣ ≲P rSA +

√
nhd(rUC rVC + rBR).

where rSA = o(1) is any positive sequence satisfying( 1

nh3d

) 1
10
√
log n+

log n√
n1−2/νhd

= o(rSA).
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Furthermore, if ψ(xi, yi) is sub-Gaussian conditional on xi, then the same result holds with any
positive sequence rSA = o(1) satisfying( 1

nh3d

) 1
10
√
log n+

(log n)3/2√
nhd

= o(rSA).

The speed of strong approximation in Theorem 2 is determined by four factors: the uniform
convergence rate rUC, the order of the remainder in the Bahadur representation rBR, the convergence
rate rVC of the variance estimator Ω̂v, and the strong approximation rate rSA. Therefore, our strong
approximation results are established at a high-level of generality, building on our prior theoretical
results: Corollary 1 for rUC, and Theorem 1 for rBR, while rVC is a high-level condition that needs
to be verified on a case-by-case basis (see Sections 6.2 and 7 for more discussion.

With respect to strong approximation rate, Theorem 2 lays down two versions of lower bounds
on rSA, depending on the tail behavior of the generalized residuals. Such restrictions may not be
optimal, but are still weak enough to cover almost all partition size choices commonly used in
practice. In particular, the restriction on rSA in Theorem 2 allows for the MSE-optimal choice

h ≍ n−
1

2m+d in all cases except the unidimensional Haar basis approximation (m = d = 1); there
is also room for undersmoothing in order to make the smoothing bias negligible in all cases but
m = d = 1. The strong approximation for one dimensional partitioning-based series estimators
in the special case of square loss and identity transformation functions was studied in [10, 8] via
a different coupling strategy, which delivered tighter approximation results allowing for an MSE-
optimal choice of h. We conjecture those techniques could be adapted to cover the case m = d = 1
for general partitioning-based M -estimator in (1.2), but we do not pursue this line of research here
because it would require a different theoretical treatment.

6.1 Comparison with Existing Results

Theorem 2 is the first to establish strong approximation results for general partitioning-based
M -estimators at the level of generality considered in this paper. In the prior literature, similar
results are usually available only in specific scenarios such as least squares regression or quantile
regression. To be more precise, in the least squares context (Q is a singleton), [10] establishes
uniform inference theory for univariate regression (d = 1) and multivariate regression (d > 1)
separately via different strong approximation methods. In particular, when d > 1, the same
Yurinskii coupling technique is employed to obtain strong approximation for t-statistic processes,
leading to similar rate restrictions on h. Theorem 2 is a substantial generalization of results therein,
not just covering other loss functions, but also providing distributional approximation uniformly
over loss function index q ∈ Q.

In the quantile regression context, [2] provides two strong approximations for general series-
based estimators. When B-splines are used, their first strategy relies on a pivotal coupling, impos-
ing 1/(nh10d) = o(n−ε) and hm−d = o(n−ε) for some constant ε > 0 (see Theorem 11 therein), while
the second strategy uses a Gaussian coupling (as in this paper), imposing 1/(nh4d∨(2+3d)) = o(n−ε)
and hm−d = o(n−ε) (see Theorem 12 and Comment 13 therein). In comparison, our Theorem 2
requires weaker conditions on the tuning parameter h and the relation between the smoothness m
and the dimensionality d. Specifically, we assume 1/(nh3d) = o(1) up to polylog(n) terms for a valid
approximation. This improvement is practically relevant: for example, it allows for Gaussian ap-
proximation of linear-spline-based univariate quantile regression estimators with the MSE-optimal
mesh size h ≍ n−1/5. In addition, our general strategy to verify the consistency condition on β̂(q)
in Theorem 1 only requires m > d/2 (not required for the special case of unconnected basis), which

19



is weaker than m > d as implicitly assumed in [2]. In practice, this improvement can accommodate,
for example, the use of cubic splines for trivariate quantile regression.

Finally, [32] establishes uniform inference results for nonparametric penalized smoothing spline
M-estimators. As mentioned before, their work is more specialized because they assume that Q
is a singleton, d = 1, and ρ(·, η(·)) is smooth. Furthermore, their approach to constructing valid
confidence bands and related uniform inference methods relies on approximating the suprema of the
stochastic process directly via extreme value theory [32, Theorem 5.1], which leads to substantially
slower approximation rates and requires stronger assumption and side rate conditions; see [3] and
[10] for more discussion in the context of nonparametric least squares series estimation. In contrast,
Theorem 2, and our related uniform inference methods, provide a pre-asymptotic approximation
with better finite sample properties, faster approximation rates, and weaker regularity conditions.

6.2 Implementation and Feasible Uniform Inference

The approximation process (Z(x, q) : (x, q) ∈ X × Q) in Theorem 2 is still infeasible since its
covariance structure contains unknowns. In practice, two general strategies can be used: Plug-in
method or Bootstrap method. We discuss in detail the former approach, which we later employ in
Section 7 to develop feasible uniform inference in the context of our motivating examples. We also
briefly review the latter approach at the end of this section, but leave its theoretical analysis for
future research.

The core idea behind the plug-in method is to estimate the covariance structure of Z(x, q)
and then simulate its feasible version Ẑ(x, q), a Gaussian process conditional on the data. If the
covariance estimate converges to the true covariance sufficiently fast, Ẑ(x, q) will be “close” to a
copy of Z(x, q). Thus, the the plug-in method follows the following blueprint.

The covariance structure of the process Z(x, q) in Theorem 2 is

E[Z(x, q)Z(x̃, q̃)|Xn] = ℓ(x, q)⊺Σ̄q,q̃ℓ(x̃, q), ℓ(x, q)⊺ =
p(v)(x)⊺Q̄−1

q√
Ω̄v(x, q)

(6.1)

for all (x, q), (x̃, q̃) ∈ X ×Q, where

Σ̄q,q̃ = En

[
Sq,q̃(xi)η

(1)(µ0(xi, q))η
(1)(µ0(xi, q̃))p(xi)p(xi)

⊺]

with Sq,q̃(x) = E
[
ψ(yi, η(µ0(xi, q)); q)ψ(yi, η(µ0(xi, q̃)); q̃)|xi = x]. Given context-specific estimates

Q̂q and x 7→ Ŝq,q̃(x), we can put

Σ̂q,q̃ = En

[
Ŝq,q̃(xi)η

(1)(µ̂(xi, q))η
(1)(µ̂(xi, q̃))p(xi)p(xi)

⊺],
and Ω̂v(x, q) = p(v)(x)⊺Q̂−1

q Σ̂q,qQ̂
−1
q p(v)(x) as above. The discussion about finding these pre-

requisite estimates Q̂q and x 7→ Ŝq,q̃(x) is deferred to Section 7. Then, a feasible Gaus-

sian approximation Ẑ(x, q) can be constructed as a Gaussian process conditional on the data
Dn = ((y1,x1), · · · , (yn,xn)) with conditional covariance structure

E[Ẑ(x, q)Ẑ(x̃, q̃)|Dn] = ℓ̂(x, q)⊺Σ̂q,q̃ ℓ̂(x̃, q̃), ℓ̂(x, q) =
p(v)(x)⊺Q̂−1

q√
Ω̂v(x, q)

,

for all (x, q), (x̃, q̃) ∈ X ×Q.
Once we have a feasible process Ẑ(x, q) that is “close” to a copy of Z(x, q) uniformly over

X ×Q conditional on the data, then Ẑ(x, q) can be used to make inference on the entire function
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µ0(x, q), and functionals thereof. For example, our strong approximation results can be converted
to convergence of Kolmogorov distance between the distributions of supq∈Q supx∈X |T (x, q)| and its

feasible Gaussian approximation supq∈Q supx∈X |Ẑ(x, q)|. Under some technical assumptions (see
Theorem G.7 for a formal statement),

sup
u∈R

∣∣∣∣P( sup
q∈Q

sup
x∈X

|T (x, q)| ≤ u
)
− P

(
sup
q∈Q

sup
x∈X

|Ẑ(x, q)| ≤ u
)∣∣∣∣ = oP(1).

In turn, this result leads to the asymptotically valid uniform confidence band for µ
(v)
0 given by

CB1−α(x, q) =
[
µ̂(v)(x, q)± c1−α

√
Ω̂v(x, q)

]
(6.2)

with c1−α satisfying

P
(
sup
q∈Q

sup
x∈X

|Ẑ(x, q)| ≤ c1−α

∣∣∣Dn

)
= 1− α+ oP(1),

provided the smoothing (or misspecification) bias relative to the standard error of the estimator
is small, which could be achieved by undersmoothing, bias correction [20], simply ignoring the
bias [21], robust bias correction [6, 7], or the Lepskii’s method [27, 5], among other possibilities.

Thus, under regularity conditions, it can be shown that the confidence band (6.2) covers µ
(v)
0 with

probability approximately 1− α in large samples, that is,

lim
n→∞

P
[
µ
(v)
0 (x, q) ∈ CB1−α(x, q), for all (x, q) ∈ X ×Q

]
= 1− α.

We illustrate these ideas, and general blueprint, in the next section when developing estimation
and inference methods for our four motivating examples introduced in Section 2. See also the
supplemental appendix.

An alternative strategy to approximate the distribution of the stochastic process Z(·, ·) in
Theorem 2 is bootstrapping. Various bootstrap-based methods are available to simulate a feasible
process Ẑ(x, q) conditional on the data, which might help avoid the estimation of a potentially
complex covariance structure. The bootstrap design has to ensure Ẑ(x, q) can be approximated
by the same process Z(x, q). To illustrate the main idea consider the weighted bootstrap method,
which relies on a set of weights (e1, · · · , en) that are i.i.d. draws from a distribution with mean
1 and variance 1, and are independent of the data Dn. For each draw of such weights, define a
weighted bootstrap draw of the partitioning-based M -estimator by

µ̂∗(x, q) = p(x)⊺β̂∗(q), β̂∗(q) ∈ argmin
b∈B

n∑
i=1

eiρ(yi, η(p(x
⊺
ib)); q).

Analogues of Theorems 1 and 2, and other theoretical results, can be established for the bootstrap
process (µ̂∗(x, q)− µ̂(x, q) : (x, q) ∈ X ×Q) or a Studentized version thereof, leveraging our general
technical results in the supplemental appendix. Consequently, conditional on the data Dn, and
under minimal additional regularity conditions, the bootstrap process will be close in distribution
to same (conditional) Gaussian process Z(x, q), and therefore it can be used to approximate the
desired critical value for valid uniform inference. We do not discuss this approach further to avoid
additional technicalities and repetitions.
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7 Verification of Assumptions in Examples

We focus attention on two issues for our four motivating examples (Section 2): (i) how the high-level
conditions imposed previously, including Assumptions 2 and 3, and Condition (iv) in Theorem 2,
can be verified under intuitive primitive assumptions; and (ii) how to implement uniform inference
based on our theory following the blueprint outlined in Section 6.2.

7.1 Example 1: Generalized Conditional Quantile Regression

This example considers generalized conditional quantile regression with a possibly non-identity link:
ρ(y, η; q) = (q − 1(y < η))(y − η), where q ∈ Q denotes the quantile position. Thus, let η(µ0(x, q))
be the conditional q-quantile of Y given X = x; we verify in the supplemental appendix that such
µ0 solves (1.1). For this example, the following simple proposition, proven in the supplemental
appendix (Proposition H.1), gives sufficient conditions to verify the general Assumptions 2 and 3,
and Condition (iv) in Theorem 2.

Proposition 1 (Quantile Regression). Suppose Assumption 1 holds with Q = [ε0, 1 − ε0] for
some ε0 ∈ (0, 0.5), the loss is given by ρ(y, η; q) = (q − 1(y < η))(y − η), the first moment
of Y is finite E[|Y |] < ∞. Assume further that η(·) : R → E is strictly monotonic and twice
continuously differentiable with E an open connected subset of R containing the conditional q-
quantile of Y |X = x, given by η(µ0(x, q)) for all (x, q); fY |X(η(µ0(x, q))|x) is bounded away from
zero uniformly over q ∈ Q and x ∈ X , and the derivative of y 7→ fY |X(y|x) is continuous and
bounded in absolute value from above uniformly over y ∈ Yx and x ∈ X . Then Assumptions 2–3
and Condition (iv) in Theorem 2 hold.

The additional conditions in this proposition are primitive and easy-to-interpret, only restricting
the conditional density of Y given X to be bounded and smooth in a mild sense. Our assumptions
are on par with or are weaker than those imposed in [2], despite the high level of generality of our
theoretical results.

We can implement uniform inference following the plug-in (or bootstrap-based) method de-
scribed in Section 6.2. For the plug-in approach, note that Sq,q̃(x) = q ∧ q̃ − qq̃ is known and
constant in x, so a natural plug-in estimator of Σ̄q,q̃ is

Σ̂q,q̃ = (q ∧ q̃ − qq̃)En

[
η(1)(µ̂(xi, q))η

(1)(µ̂(xi, q̃))p(xi)p(xi)
⊺].

On the other hand, the matrix Q̄q

Q̄q = En

[
p(xi)p(xi)

⊺fY |X(η(µ0(xi, q))|xi)[η
(1)(µ0(xi, q))]

2
]

depends on the unknown conditional density fY |X , and a plug-in estimator is not immediately
available. However, many estimation strategies have been proposed in the literature [24]. We do not
recommend a particular choice, but rather note that any estimator satisfying the mild convergence
rate requirement in Condition (iii) of Theorem 2 can be used. Alternatively, a weighted bootstrap
strategy could be used to construct an approximation process Ẑ(x, q), which avoids estimation of
the covariance function. See the discussion at the end of Section 6.2 for more details.

7.2 Example 2: Generalized Conditional Distribution Regression

The loss function is ρ(y, η; q) = (1(y ≤ q) − η)2 with a possibly non-identity inverse link function
η(·). The derivative function is ψ(y, η; q) = −2(1(y ≤ q) − η). The following proposition, proven
in the supplemental appendix (Proposition H.4), verifies our high-level assumptions under mild
regularity conditions on the conditional distribution function of Y given X.
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Proposition 2 (Distribution Regression). Let Q = [−A,A] for some A > 0. Suppose that As-
sumption 1 holds with the loss function ρ(y, η; q) = (1(y ≤ q)− η)2, η(·) : R → (0, 1) is strictly
monotonic and twice continuously differentiable, x 7→ FY |X(q|x) is a continuous function, and
FY |X(q|x) = η(µ0(x, q)) lies in a compact subset of (0, 1) for all q ∈ Q and x ∈ X (this subset does
not depend on q and x). Then Assumptions 2–3 and Condition (iv) in Theorem 2 hold.

Implementation of uniform inference in this example follows the blueprint described in Sec-
tion 6.2. To construct the prerequisite estimators, note that in this case Sq,q̃(xi) = 4FY |X(q ∧
q̃|xi)

(
1− FY |X(q ∨ q̃|xi)

)
. Therefore, a simple plug-in estimator of Σ̄q,q̃ is

Σ̂q,q̃ = 4En

[
p(xi)p(xi)

⊺η(µ̂(xi, q ∧ q̃))(1− η(µ̂(xi, q ∨ q̃)))η(1)(µ̂(xi, q))η
(1)(µ̂(xi, q̃))

]
.

In addition, a plug-in estimator of the matrix Q̄q is Q̂q = 2En[η
(1)(µ̂(xi, q))

2p(xi)p(xi)
⊺]. A

bootstrap-based method, as briefly discussed in Section 6.2, could be used as an alternative imple-
mentation approach.

7.3 Example 3: Generalized Lp Regression

The loss function is ρ(y, η) = |y − η|p, p ∈ (1, 2] with possibly non-identity link. The case p = 1 is
equivalent to quantile (median) regression discussed previously. The derivative function is ψ(y, η) ≡
ψ(y− η) = p|y− η|p−1sgn(η− y). In this example the family Q of the loss functions is a singleton,
and hence the dependence on the index q can be dropped to simplify notation.

The following proposition, proven in the supplemental appendix (Proposition H.5), provides a
set of simple regularity conditions that ensure our general theory can be applied to study generalized
Lp regression estimation and inference.

Proposition 3 (Lp Regression). Suppose that Assumption 1 holds with the loss function ρ(y, η) =
|y − η|p, p ∈ (1, 2], and η(·) : R → Iη is strictly monotonic and twice continuously differen-
tiable with Iη an open connected subset of R. Denoting by al and ar the left and right
ends of E respectively (possibly ±∞), assume that

∫
R ψ(y; al)fY |X(y|x)dy < 0 if al is finite,

and
∫
R ψ(y; ar)fY |X(y|x)dy > 0 if ar is finite. Also assume that E[|Y |ν(p−1)] < ∞ for some

ν > 2, and that x 7→ fY |X(y|x) is continuous for any y ∈ Y. In addition, assume that
η 7→

∫
R |η − y|p−1sgn(η − y)fY |X(y|x) dy is twice continuously differentiable with derivatives

dj

dηj

∫
R |η − y|p−1sgn(η − y)fY |X(y|x) dy =

∫
R |η − y|p−1sgn(η − y) ∂j

∂yj
fY |X(y|x) dy for j ∈ {1, 2}.

Moreover, the function
∫
R |η(ζ)− y|p−1sgn(η(ζ)− y) ∂

∂yfY |X(y|x) dy is bounded and bounded away
from zero uniformly over x ∈ X and ζ ∈ B(x) with B(x) = {ζ : |ζ−µ0(x)| ≤ r} for some r > 0, and

the function
∫
R |η(ζ) − y|p−1sgn(η(ζ) − y) ∂2

∂y2
fY |X(y|x) dy is bounded in absolute value uniformly

over x ∈ X and ζ ∈ B(x). Then Assumptions 2–3 and Condition (iv) in Theorem 2 hold.

For implementation, we can follow the blueprint in Section 6.2. Since Q is a singleton, depen-
dence on q can be dropped. Direct plug-in choices for estimating the prerequisite matrices take the
form

Q̂ = En[p(xi)p(xi)
⊺Ψ̂1,iη

(1)(µ̂(xi))
2] and Σ̂ = En[p(xi)p(xi)

⊺ψ(ϵ̂i)
2η(1)(µ̂(xi))

2],

where ϵ̂i = yi − η(µ̂(xi)) and Ψ̂1,i is some estimator of the function Ψ1(xi, η(µ0(xi))). In Lp

regression with p ∈ (1, 2], Ψ1(x, η) = p(p − 1)E[|Y − η|p−2sgn(η − Y )|X = x], and therefore a
simple plug-in choice is Ψ̂1,i = p(p − 1)|yi − η(µ̂(xi))|p−2sgn(η(µ̂(xi)) − yi). As an alternative,
bootstrap-based inference could be used.
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7.4 Example 4: Logistic Regression

For this final example, the loss function is ρ(y, η) = −y log η − (1 − y) log(1 − η), the inverse link
function is η(θ) = 1/(1+ e−θ), and the derivative function is ψ(y, η) = −y/η+(1− y)/(1− η), and
the loss function does not depend on q ∈ Q. The following proposition, proven in the supplemental
appendix (Proposition H.7), gives simple primitive conditions verifying the high-level assumptions
for our general theoretical results.

Proposition 4 (Logit Estimation). Suppose that Assumption 1 holds with the loss function
ρ(y, η) = −y log η − (1 − y) log(1 − η) and the inverse link η(θ) = 1/(1 + e−θ); Y = {0, 1};
P(Y = 1|X = x) is continuous and lies in the interval (0, 1) for all x ∈ X . Then Assumptions 2–3
and Condition (iv) in Theorem 2 hold.

It is easy to construct a feasible Gaussian process Ẑ(x) conditional on the data Dn with co-
variance structure

E[Ẑ(x)Ẑ(x̃)|Dn] = ℓ̂(x)⊺Σ̂ℓ̂(x̃), ℓ̂(x)⊺ =
p(v)(x)⊺Q̂−1√

Ω̂v(x)

where Ω̂v(x) = p(v)(x)⊺Q̂−1Σ̂Q̂−1p(v)(x), with Q̂ and Σ̂ estimators of Q̄ and Σ̄, respectively.
More precisely, standard choices are

Q̂ = En[p(xi)p(xi)
⊺η̂i(1− η̂i)] and Σ̂ = En[p(xi)p(xi)

⊺ϵ̂2i ],

where η̂i = η(µ̂(xi)) and ϵ̂i = yi − η̂i. A bootstrap strategy could also be used. See Section 6.2 for
more discussion.

8 Other Parameters of Interest

So far we have focused on uniform estimation and inference for the unknown function µ0 and
derivatives thereof. However, in some applications, the parameter of interest may be other lin-
ear or nonlinear transformations of µ0. For example, in generalized linear models usually the
goal is to estimate the function η(µ0(x, q)), or the marginal effect of a regressor on that function
∂

∂xk
η(µ0(x, q)) = η(1)(µ0(x, q))µ

(ek)
0 (x, q) with ek denoting the k-th unit vector (1 ≤ k ≤ d). Fur-

thermore, in treatment effect and causal inference settings [1, and references therein], interest often
lies in differences of such estimands across two or more subgroups: for two treatment levels j = 1, 2,
η(µ2(x, q)) − η(µ1(x, q)) can be interpreted as a mean, quantile, or other conditional (on (x, q))
treatment effect, where µj(x, q) is estimated using separately the subsample of, say, control (j = 1)
and treated (j = 2) units. Our results can be applied to all these cases of practical interest with
minimal additional effort.

We showcase the generality of our theory by briefly discussing uniform inference on the trans-
formed function η(µ0(x, q)), its first derivative, and differences thereof across subgroups. Given
the partitioning-based M -estimators µ̂(x, q) and µ̂j(x, q), j = 1, 2, where µ̂j is constructed using
only data from the subsample j of the full sample, we can immediately plug in to form the desired
estimators.

• Level Estimator : η(µ̂(x, q)).

• Marginal Effect Estimator : η(1)(µ̂(x, q))µ̂(ek)(x, q).
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• Conditional Treatment Effect Estimator : η(µ̂1(x, q))− η(µ̂2(x, q)).

Uniform consistency of the three estimators immediately follows from uniform consistency of µ̂(x, q)
(Corollary 1) because the transformation function η is twice continuously differentiable. Further-
more, a Bahadur representation for each of the transformation estimators is readily available by
Theorem 1 and a Taylor expansion. For example, for the level estimator,

sup
q∈Q

sup
x∈X

∣∣η(µ̂(x, q))− η(µ0(x, q))− LLE(x, q)
∣∣ ≲P rLE

with

LLE(x, q) = −η(1)(µ0(x, q))p(x)⊺Q̄−1
q En

[
p(xi)η

(1)(µ0(xi, q))ψ(yi, η(µ0(xi, q)); q)
]
,

and for the marginal effect of the kth regressor,

sup
q∈Q

sup
x∈X

∣∣η(1)(µ̂(x, q))µ̂(ek)(x, q)− η(1)(µ0(x, q))µ
(ek)
0 (x, q)− LME(x, q)

∣∣ ≲P rME

with

LME(x, q) = −η(1)(µ0(x, q))p(ek)(x)⊺Q̄−1
q En

[
p(xi)η

(1)(µ0(xi, q))ψ(yi, η(µ0(xi, q)); q)
]
,

where the approximation remainders from the Taylor expansion, and their uniform rates rLE and
rME, are precisely characterized in Theorem J.1 in the supplemental appendix. Of course, the
conditional treatment effect estimator is simply a difference of two level estimators, each employing
a disjoint sub-sample, and therefore it follows directly that

sup
q∈Q

sup
x∈X

∣∣(η(µ̂2(x, q))− η(µ̂1(x, q)))− (η(µ2(x, q))− η(µ1(x, q)))− LCTE(x, q)
∣∣ ≲P rLE

with LCTE(x, q) = LLE,2(x, q) − LLE,1(x, q) with LLE,j(x, q) denoting the Bahadur approximation
LLE(x, q) but when only using the sub-sample j.

Given the uniform Bahadur representations for each of the transformation estimators of inter-
est, strong approximations of t-statistic processes for the three transformation estimators can be
constructed the same way as in Section 6. For example, conditional on Xn, the stochastic process
(LLE(x, q) : (x, q) ∈ X ×Q) has mean zero and variance |η(1)(µ0(x, q))|2Ω̄0(x, q)/n. Then, applying
our strong approximation strategy, we can construct a conditional Gaussian process ZLE(x, q) that
approximates the t-statistic process of η(µ̂(x, q)):

sup
q∈Q

sup
x∈X

∣∣∣ η(µ̂(x, q))− η(µ0(x, q))

|η(1)(µ0(x, q))|
√

Ω0(x, q)/n
− ZLE(x, q)

∣∣∣ ≲P rSALE

with strong approximation rate rSALE as in Theorem 2. Similarly, we can also construct a conditional
Gaussian process ZME(x, q) that approximates the t-statistic process of the marginal effect estimator
∂

∂xk
η(µ̂(x, q)):

sup
q∈Q

sup
x∈X

∣∣∣η(1)(µ̂(x, q))µ̂(ek)(x, q)− η(1)(µ0(x, q))µ
(ek)
0 (x, q)

|η(1)(µ0(x, q))|
√
Ωek(x, q)/n

− ZME(x, q)
∣∣∣ ≲P rSAME

with strong approximation rate rSAME as in Theorem 2. These results are formalized in Theorem J.1
in the supplemental appendix. Of course, an analogous result holds for the conditional treatment
effect estimator.

Finally, for implementation we can construct feasible processes to approximate ZLE(x, q) and
ZME(x, q) via plug-in or bootstrap methods as discussed in Section 6.2, and illustrated in Section
7, which then can be employed to characterize distributions of the entire level process (η(µ̂(x, q)) :
(x, q) ∈ X ×Q), marginal effect process ( ∂

∂xk
η(µ̂(x, q)) : (x, q) ∈ X ×Q), and conditional treatment

effect process (η(µ̂2(x, q))− η(µ̂1(x, q)) : (x, q) ∈ X ×Q).
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9 Conclusion

This paper investigated the asymptotic properties of a large class of nonparametric partitioning-
based M-estimators, allowing for explicit degrees of non-smoothness in the loss function and a
possibly non-identity monotonic transformation function. Our main theoretical results include
uniform consistency for convex and non-convex objective functions, uniform Bahadur representa-
tions with optimal reminder under appropriate conditions, uniform and mean square convergence
rates achieving optimal approximation under appropriate conditions, uniform strong approximation
methods under general conditions, and uniform inference methods via plug-in approximations. We
illustrated our general theory with four substantive examples, and demonstrated how our results
substantially improve on prior literature, in many cases requiring minimal side rate conditions on
tuning parameters and achieving optimal approximation rates. The supplemental appendix col-
lects further theoretical results and generalizations that may be of independent interest. In future
work, we plan to investigate optimal tuning parameter selection, robust bias-corrected inference,
and validity of bootstrap-based approximations.
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