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Confounding by Unobservables

• In observational studies, treated and untreated units may not be directly
comparable, even after adjusting for observed characteristics.

• Key challenge: unobserved confounding variables.

• The difference-in-differences estimator eliminates time-invariant unobservable
differences between treated and nontreated.

• Identifying assumption relies on “parallel trends”.

• Synthetic control methods generalize the DiD framework by allowing for
time-varying unobservable confounders.

• Identifying assumptions depend on specific method considered.

• Many “estimation” methods are available.

• Few, often unprincipled, uncertainty quantification methods are available.
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Synthetic control (SC) method

• Units of analysis: few aggregate entities, only one receives treatment.

• Causal effect of a treatment on a single unit.

• Popular in comparative case studies.

• German reunification, California Tobacco Control, Compulsory Voting, etc.

• Key idea: Predict Y (0) of treated unit by linear combination of control units.

• Today: canonical single treatment unit case.

• Paper/Software: multiple treatment units, staggered treatment adoption, more.

Our work focuses on uncertainty quantification for synthetic controls methods.

• Prediction Intervals for treatment effect on the treated.

• Two sources of uncertainty.

• Non-asymptotic coverage guarantees.

• Practical guidance.
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Data Structure: Single Treatment Unit

Treatment: Dit = 0, 1 Outcome: Yit = Yit(1)Dit + Yit(0)(1−Dit)

pre-treatment

unit



✓ ✓ · · · ✓ ✗ · · · ✗

✓ ✓ · · · ✓ ✓ · · · ✓
...

...
...

...

✓ ✓ · · · ✓ ✓ · · · ✓


→ treated

→ untreated

time

Y (0) : ✓; Y (1) : ✗
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Synthetic Control: Basics

Yit =


Yit(0) if i = 2, . . . N + 1

Yit(0) if i = 1 and t ∈ {1, 2, . . . , T0}
Yit(1) if i = 1 and t ∈ {T0 + 1, . . . , T0 + T1} .

Treatment effect on the treated (random!)

τT = Y1T (1)− Y1T (0), for T > T0

Find {wi}
N+1∑
i=2

wiYit(0) ≈ Y1t(0), for t = 1, · · · , T0,

Hopefully,
N+1∑
i=2

wiYiT (0) ≈ Y1T (0), for T > T0.

• Intuition: stable cross-sectional relation over time
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Synthetic Control: Basics

Yit =


Yit(0) if i = 2, . . . N + 1

Yit(0) if i = 1 and t ∈ {1, 2, . . . , T0}
Yit(1) if i = 1 and t ∈ {T0 + 1, . . . , T0 + T1} .

Treatment effect on the treated (random!)

τT = Y1T (1)− Y1T (0), for T > T0

Find {wi}
N+1∑
i=2

wiYit(0) ≈ Y1t(0), for t = 1, · · · , T0,

Canonical SC

ŵ = argmin
w∈W

T0∑
t=1

(
Y1t(0)− x′

tw
)2

,

• W = {w ∈ RN :
∑N+1

i=2 wi = 1, wi ≥ 0, ∀i ≥ 2} xt = (Y2t(0), · · · , YN+1,t(0))
′

5/28



Synthetic Control: Basics

Yit =


Yit(0) if i = 2, . . . N + 1

Yit(0) if i = 1 and t ∈ {1, 2, . . . , T0}
Yit(1) if i = 1 and t ∈ {T0 + 1, . . . , T0 + T1} .

Treatment effect on the treated (random!)

τT = Y1T (1)− Y1T (0), for T > T0

Find {wi}
N+1∑
i=2

wiYit(0) ≈ Y1t(0), for t = 1, · · · , T0,

Canonical SC

ŵ = argmin
w∈W

T0∑
t=1

(
Y1t(0)− x′

tw
)2

,

• For a post-intervention T ≥ T0, the SC estimator is τ̂T = Y1T −
∑N+1

i=2 ŵiYiT
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Example: 1990 German Reunification

Source: Abadie (2020)
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Example: German Reunification

West Synthetic OECD
Germany West Germany Sample

(1) (2) (3)

GDP per-capita 15808.9 15802.24 13669.4
Trade openness 56.8 56.9 59.8
Inflation rate 2.6 3.5 7.6
Industry share 34.5 34.5 34.0
Schooling 55.5 55.2 38.7
Investment rate 27.0 27.0 25.9

Note: First column reports Y1(0), second column reports x′
tŵ, and

last column reports a simple average for the 16 OECD countries in
the donor pool. GDP per capita, inflation rate, and trade openness
are averages for 1981–1990. Industry share (of value added) is the
average for 1981–1989. Schooling is the average for 1980 and 1985.
Investment rate is averaged over 1980–1984.
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Example: German Reunification

country j [ŵ]j country j [ŵ]j
Australia 0 Netherlands 0.10
Austria 0.42 New Zealand 0
Belgium 0 Norway 0
Denmark 0 Portugal 0
France 0 Spain 0
Greece 0 Switzerland 0.11
Italy 0 United Kingdom 0
Japan 0.16 United States 0.22
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Uncertainty Quantification

• The quantity of interest: τT = Y1T (1)− Y1T (0), T > T0, the effect of the
intervention on the treated unit.

• Random variable unless potential outcomes are assumed fixed (Neyman, Fisher)!

• How do we quantify uncertainty? Popular answer: Permutation-Based Inference.

• Abadie et al. (2010) propose inference approach for the synthetic control
framework based on permutation methods.

• A permutation distribution can be obtained by iteratively reassigning the
treatment to the units in the donor pool and estimating “placebo effects” in each
iteration.

• The effect of the treatment on the unit affected by the intervention is deemed to be
significant when its magnitude is extreme relative to the permutation distribution.

• The permutation distribution is more informative than mechanically looking at
p-values alone.

• Depending on the number of units in the donor pool, conventional significance
levels may be unrealistic or impossible.

• Often, one sided inference is most relevant.
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Example: California tobacco control program
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Example: California tobacco control program
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Permutation-Based Inference
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Example: California tobacco control program
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Permutation-Based Inference in Synthetic Controls

• This mode of inference reduces to classical randomization inference (Fisher,
1935) when the intervention is randomly assigned, a rather improbable setting.

• More generally, this mode of inference evaluates significance relative to a
benchmark distribution for the assignment process, one that is implemented
directly in the data.

• But, it is not based on an a known assignment mechanism.

• It is often difficult to articulate the nature of the assignment mechanism or even
the specific nature of a placebo intervention (France reunifies with whom?).

• Even if a plausible assignment mechanism exists, estimation of the assignment
mechanism is often hopeless, because many studies feature a single or a small
number of treated units.

• Potential outcomes are more naturally conceptualized as random variables in most
applications (interval vs. external validity).
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Prediction Intervals

Treatment effect on the treated

τT = Y1T (1)− Y1T (0), τ̂T = Y1T (1)− x′
T ŵ, T > T0

Prediction interval (PI) for random τT

P
{
P
[
τT ∈ I

∣∣∣ H
]
≥ 1− α

}
≥ 1− π

• I: prediction interval

• H : conditioning σ-algebra

• unconditional if H is trivial

• This paper: {xt : 1 ≤ t ≤ T}

• (1− α): conditional coverage prob., e.g., 95%

• π: failure over H
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Prediction Intervals

Treatment effect on the treated

τT = Y1T (1)− Y1T (0), τ̂T = Y1T (1)− x′
T ŵ, T > T0

Prediction interval (PI) for random τT

non-asymptotic: P
{
P
[
τT ∈ I

∣∣∣ H
]
≥ 1− α

}
≥ 1− π

asymptotic: P
[
τT ∈ C

∣∣∣ H
]
≥ 1− α− oP(1)

• Link the two

• Consider π = o(1) (as T0 → ∞)
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Two Sources of Uncertainty

Treatment effect on the treated

τT = Y1T (1)− Y1T (0), τ̂T = Y1T (1)− x′
T ŵ

For a pseudo-true value w0

Y1T (0) = x′
Tw0 + uT

A simple decomposition

τ̂T − τT = Y1T (0) − x′
T ŵ

= (x′
Tw0 + uT ) − x′

T ŵ

= uT − x′
T (ŵ −w0)

• In-sample error: x′
T (ŵ −w0)

• Out-of-sample error: uT

• Non-asymptotically, both are important
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Two Sources of Uncertainty

Treatment effect on the treated

τT = Y1T (1)− Y1T (0), τ̂T = Y1T (1)− x′
T ŵ

For a pseudo-true value w0

Y1T (0) = x′
Tw0 + uT

A simple decomposition

τ̂T − τT = Y1T (0) − x′
T ŵ

= (x′
Tw0 + uT ) − x′

T ŵ

= uT − x′
T (ŵ −w0)

• x′
T (ŵ −w0): in-sample uncertainty coming from constructing SC weights using

pre-treatment information.

• uT : out-of-sample uncertainty coming from misspecification plus any additional
noise occurring at the post-treatment period T > T0.

17/28



What is w0?

Definition of w0 relies on

• Constraint W

• Assumptions on {Y1t(0),xt}

• Conditioning set H (w0 may be random)

Examples

• (Y1t(0),xt) stationary

w0 = argmin
w∈W

E
[ 1

T0

T0∑
t=1

(
Y1t(0)− x′

tw
)2∣∣∣H ]

• (Constrained) best linear prediction

• Y1t(0),xt ∼ I(1) (integrated process)

• Cointegration: Y1t(0)− x′
tw0 ∼ I(0)

• (1,−w0): cointegrating vector (unique given w0 ∈ W)
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Prediction Intervals: Basic Construction

τ̂T − τT = uT − x′
T (ŵ −w0)

• In-Sample Error: with prob. ≥ 1− π1 (over H )

P
[
M1,L ≤ x′

T (w0 − ŵ) ≤ M1,U

∣∣∣ H
]
≥ 1− α1

• Out-of-Sample Error: with prob. ≥ 1− π2 (over H )

P
[
M2,L ≤ uT ≤ M2,U

∣∣∣ H
]
≥ 1− α2

Prediction Interval for τT : with prob. ≥ 1− π1 − π2 (over H )

P
[
M1,L +M2,L ≤ τ̂T − τT ≤ M1,U +M2,U

∣∣∣H ]
≥ 1− α1 − α2

• Conservative, but offer non-asymptotic probability guarantee
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In-Sample Error: Stationary Case

√
T0(ŵ−w0) = argmin

δ∈
√
T0(W−w0)

ℓ(δ), ℓ(δ) = δ′
( 1

T0

T0∑
t=1

xtx
′
t︸ ︷︷ ︸

Q̂

)
δ− 2

( 1√
T0

T0∑
t=1

x′
tut︸ ︷︷ ︸

γ̂

)
δ

• Assume W is convex

• Possibly misspecified: γ := E[γ̂|H ] ̸= 0

• By optimality of ŵ and w0,

√
T0(ŵ −w0) ∈

{
δ ∈ ∆ : δ′Q̂δ − 2(γ̂ − γ)′δ ≤ 0

}
, ∆ =

√
T0(W −w0)

• Q̂ is fixed conditional on H

• Approximate γ̂ − γ
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In-Sample Error: Distributional Approximation

Goal: bound x′
T (ŵ −w0), e.g.

√
T0x

′
T (ŵ −w0) ≤ sup

δ∈Mγ̂−γ

x′
T δ

Mγ̂−γ =
{
δ ∈ ∆ : δ′Q̂δ − 2(γ̂ − γ)′δ ≤ 0

}
Reduce to distributional approximation of γ̂ − γ: for any κ,

sup
δ∈Mγ̂−γ

x′
T δ ≤ κ ⇔ γ̂ − γ ∈ Aκ

• Normal approximation: Berry-Esseen bound

P(γ̂ − γ ∈ Aκ) ≈ P(G ∈ Aκ), G ∼ N(0,V[γ̂|H ])
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In-Sample Error: Plug-in Approximation

P(
√
T0x

′
T (ŵ −w0) ≤ κ) ≥ P(γ̂ − γ ∈ Aκ) ≈ P(G ∈ Aκ), G ∼ N(0,V[γ̂|H ])

≈ P(Ĝ ∈ Aκ), Ĝ ∼ N(0, V̂[γ̂|H ])

Basic approximation strategy:

sup
{
x′

T δ : δ ∈ ∆, δ′Q̂δ − 2(γ̂ − γ)′δ ≤ 0
}

⇓

sup
{
x′

T δ : δ ∈ ∆, δ′Q̂δ − 2G′δ ≤ 0
}

⇓

sup
{
x′

T δ : δ ∈ ∆⋆, δ′Q̂δ − 2Ĝ′δ ≤ 0
}

• ∆⋆: locally equivalent to ∆ =
√
T0(W −w0)

• Thresholding
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In-Sample Error: Non-Stationary Case

T0(ŵ −w0) = argmin
δ∈T0(W−w0)

ℓ(δ), ℓ(δ) = δ′
( 1

T 2
0

T0∑
t=1

xtx
′
t︸ ︷︷ ︸

Q̂

)
δ − 2

( 1

T0

T0∑
t=1

x′
tut︸ ︷︷ ︸

γ̂

)
δ

Cointegrated system, e.g.,

Y1t(0) = x′
tw0 + ut, xt = xt−1 + ϵt, (ut, ϵt) ∼ i.i.d I(0)

Again, bound T0(ŵ −w0) by simulating

sup
{
x′

T δ : δ ∈ ∆⋆, δ′Q̂δ − 2Ĝ′δ ≤ 0
}
, Ĝ ∼ N(0, V̂[γ̂|H ])

• Q̂ fixed conditional on H

• Probably E[ut|H ] ̸= 0

• Non-stationarity affects the analysis of Q̂ and V[γ̂|H ]
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Out-of-Sample Error

Three approaches:

• Concentration inequalities, e.g. subgaussian

P
(
|uT − E[uT |H ]| ≥ ϖu|H

)
≤ 2 exp

(
− ϖ2

u

2σ2
H

)
• Location-scale model

ut = E[ut|H ] + (V[ut|H ])1/2et, {et} ⊥⊥ H

• Quantile regression: model conditional quantiles of ut given H

Sensitivity analysis

• To cancel out the effect, how large does uT need to be?
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Example: Proposition 99 (California)

SC prediction
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Example: Proposition 99 (California)

SC prediction with PI, in-sample error
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Example: Proposition 99 (California)

SC prediction with PI for Y1T (0), concentration-based
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Example: Proposition 99 (California)

SC prediction with PI for Y1T (0), local-scale model
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Example: Proposition 99 (California)

SC prediction with PI for Y1T (0), quantile-based
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General Form

Some extensions

• Match on multiple predictors

• Add more covariates to regression

• Other constraints W

Goal: find w = (w2, · · · , wN+1)
′ and rj = (r1,j , · · · , rk,j)′

Aj︸︷︷︸
treated

T0×1

≈ Bj︸︷︷︸
untreated

T0×N

w + Cj︸︷︷︸
covariates

T0×K

rj , for j = 1, · · · ,M,

(ŵ, r̂) = argmin
w∈W,r∈R

(A−Bw −Cr)′(A−Bw −Cr)

A =


A1

A2

...
AM

 , B =


B1

B2

...
BM

 , C =


C1 0 · · · 0

0 C2 · · · 0
...

. . . 0
0 0 · · · CM
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Conclusion

• Prediction Intervals for general SC methods.

• Conditional validity.

• Non-asymptotic probability guarantees.

• Two sources of uncertainty.

• Joint prediction intervals for staggered treatment adoptions (e.g., multiple
treatment units).

• Principled tuning parameter selection.
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