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Abstract

The density weighted average derivative (DWAD) of a regression function is a canonical

parameter of interest in economics. Classical first-order large sample distribution theory for

kernel-based DWAD estimators relies on tuning parameter restrictions and model assumptions

that imply an asymptotic linear representation of the point estimator. These conditions can

be restrictive, and the resulting distributional approximation may not be representative of the

actual sampling distribution of the statistic of interest. In particular, the approximation is not

robust to bandwidth choice. Small bandwidth asymptotics offers an alternative, more general

distributional approximation for kernel-based DWAD estimators that allows for, but does not

require, asymptotic linearity. The resulting inference procedures based on small bandwidth

asymptotics were found to exhibit superior finite sample performance in simulations, but no

formal theory justifying that empirical success is available in the literature. Employing Edge-

worth expansions, this paper shows that small bandwidth asymptotic approximations lead to

inference procedures with higher-order distributional properties that are demonstrably superior

to those of procedures based on asymptotic linear approximations.
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1 Introduction

Identification, estimation, and inference in the context of semiparametric models has a long tradition

in econometrics (Powell, 1994). Canonical two-step semiparametric estimands are finite dimensional

functionals of some other unknown infinite dimensional parameters in the model (e.g., a density

or regression function). A leading example of such a finite dimensional estimand is the density

weighted average derivative (DWAD) of a regression function. This paper seeks to honor the many

contributions of Jim Powell to semiparametric theory in econometrics by juxtaposing the higher-

order distributional properties of Powell et al.’s (1989) two-step kernel-based DWAD estimator

under two alternative large sample approximation regimes: one based on the classical asymptotic

linear representation, and the other based on a more general quadratic distributional approximation

known as small bandwidth asymptotics.1

In a landmark contribution, Powell et al. (1989) proposed a kernel-based DWAD estimator and

obtained first-order, asymptotically linear distribution theory employing ideas from the U-statistics

literature in statistics to develop valid inference procedures in large samples. This work sparked a

wealth of subsequent developments in the econometrics literature: Robinson (1995) obtained Berry-

Esseen bounds, Powell and Stoker (1996) considered mean square error expansions, Nishiyama and

Robinson (2000, 2001, 2005) developed Edgeworth expansions, and Newey et al. (2004) investigated

bias properties, just to mention a few contributions. The two-step semiparametric estimator in

this literature employs a preliminary kernel-based estimator of a density function, which requires

choosing two main tuning parameters: a bandwidth and a kernel function. The “optimal” choices

for these tuning parameters depend on the goal of interest (e.g., point estimation vs. inference), as

well as on the features of the underlying data generating process (e.g., smoothness of the unknown

density and dimension of the covariates).

Classical first-order distribution theory for kernel-based DWAD estimators has focused on cases

where tuning parameter restrictions and model assumptions imply an asymptotic linear representa-

tion of the two-step semiparametric point estimator (see Bickel et al., 1993; Newey and McFadden,

1994; Ichimura and Todd, 2007, for overviews). That is, the two-step estimator is approximated

by a sample average based on an influence function. This approach can be used to construct semi-

parametrically efficient inference procedures, but requires potentially high smoothness levels of the

underlying unknown functions, thereby forcing the use of higher-order kernels or other debiasing

techniques. Further, the implied distributional approximation may not be “robust” to tuning pa-

rameter choices and/or model features. More specifically, the limiting distribution emerging from

the asymptotic linear representation of the centered and scaled point estimator is invariant to the

way that the preliminary nonparametric estimators are constructed. At its core, an asymptotic

linear approximation assumes away the contribution of additional terms forming the statistic of

1Jim Powell’s contributions to semiparametric theory are numerous. Honoré and Powell (1994), Powell and Stoker
(1996), Blundell and Powell (2004), Aradillas-Lopez et al. (2007), Ahn et al. (2018), and Graham et al. (2023) are some
of the most closely connected to the our work: these papers employ U-statistics methods for two-step kernel-based
estimators similar to those considered herein. See Powell (2017) for more discussion and references.
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interest, despite the fact that these terms do contribute to the sampling variability of the two-step

semiparametric estimator and, more importantly, do reflect the impact of tuning parameter choices

in finite samples.

Cattaneo et al. (2014a) proposed an alternative distributional approximation for kernel-based

DWAD estimators that allows for, but does not require, asymptotic linearity. The idea is to

capture the joint contribution to the sampling distribution of both linear and quadratic terms

forming the kernel-based DWAD estimator, because the quadratic term explicitly captures the

effect of the choice of bandwidth and kernel function. To operationalize this idea, Cattaneo et al.

(2014a) introduced an asymptotic experiment where the bandwidth sequence is allowed (but not

required) to vanish at a speed that would render the classical asymptotic linear representation

invalid because the quadratic term becomes first order even in large samples, which they termed

small bandwidth asymptotics. This framework was carefully developed to obtain a distributional

approximation that explicitly depends on both linear and quadratic terms, thereby forcing a more

careful analysis of how the nonparametric first stage contributes to the sampling distribution of the

statistic.

Inference methods based on small bandwidth asymptotics for kernel-based DWAD estimators

were found to perform well in simulations (Cattaneo et al., 2010, 2014a,b), but no formal justifica-

tion for this finite sample success is available in the literature. Methodologically, this alternative

distributional approximation leads to a new way of conducting inference (e.g., constructing con-

fidence interval estimators) because the original standard error formula proposed by Powell et al.

(1989) must be modified to make the asymptotic approximation valid across the full range of allow-

able bandwidths (including the region where asymptotic linearity fails). Theoretically, however, the

empirical success of small bandwidth asymptotics could come from two distinct sources: (i) it could

deliver a better distributional approximation to the sampling distribution of the point estimator;

or (ii) it could deliver a better distributional approximation to the sampling distribution of the

studentized t-statistic because the standard error formula is modified.

Employing Edgeworth expansions (Bhattacharya and Rao, 1976; Hall, 1992), this paper shows

that the higher-order distributional properties of inference procedures motivated by the small band-

width asymptotics approximation framework are demonstrably superior to those of procedures mo-

tivated by asymptotic linear approximations. We study both standardized and studentized estima-

tors and show that those emerging from the small bandwidth regime offer higher-order corrections,

as measured by the second cumulant underlying their Edgeworth expansions. An immediate impli-

cation of our results is that the small bandwidth asymptotic framework simultaneously enjoys two

advantages: delivering a better distributional approximation (Theorem 1, standardized t-statistic)

and leading to a better standard error construction (Theorem 2, studentized t-statistic). Therefore,

our results have theoretical and practical implications for empirical work in economics, in addition

to providing a theory-based explanation for prior simulation findings documenting better numerical

performance of inference procedures motivated by small bandwidth asymptotics relative to those

motivated by classical asymptotically linear distributional approximations.
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The closest antecedent to our work is Nishiyama and Robinson (2000, 2001), who also studied

Edgeworth expansions for kernel-based DWAD estimators. Their expansions, however, were mo-

tivated by the asymptotic linear approximation of the point estimator, and hence cannot be used

to compare and contrast to the distributional approximation emerging from the alternative small

bandwidth asymptotic regime. Therefore, from a technical perspective, this paper also offers novel

Edgeworth expansions that allow for different standardization and studentization schemes, thereby

allowing us to plug-and-play when juxtaposing the two asymptotic approximation frameworks.

More specifically, Theorem 1 below concerns a generic standardized t-statistic and is proven based

on Theorem A in the appendix, which may be of independent technical interest due to is generality.

In contrast, Theorem 2 below concerns a more specialized class of studentized t-statistic because

establishing valid Edgeworth expansions is considerably harder when dealing with studentization.

The idea of employing more general asymptotic approximation frameworks that do not enforce

asymptotic linearity for two-step semiparametric estimators has also featured in other contexts:

(i) semi-linear series-based, many covariates, and many instruments estimation (Cattaneo et al.,

2018a,b), (ii) non-linear two-step semiparametric estimation (Cattaneo et al., 2013; Cattaneo and

Jansson, 2018; Cattaneo et al., 2019; Cattaneo and Jansson, 2022), and (iii) network estimation

(Matsushita and Otsu, 2021). While our theoretical developments and results focus specifically on

the case of kernel-based DWAD estimation, our main conceptual conclusions can be extrapolated to

those settings as well. The main takeaway is that employing alternative asymptotic frameworks can

deliver improved inference with smaller higher-order distributional approximation errors, thereby

offering more robust inference procedures in finite samples. Furthermore, our theoretical and

methodological results can also be leveraged to study the higher-order distributional properties of

bootstrap-based methods for inference. Although a complete theoretical analysis is beyond the

scope of this paper, we provide further discussion about the bootstrap in Section 4.

The paper continues as follows. Section 2 introduces the setup and main assumptions. Section 3

reviews the classical first-order distributional approximation based on asymptotic linearity and the

more general small bandwidth distributional approximation, along with their corresponding choices

of standard error formulas. Section 4 presents the main results of our paper. Section 5 concludes.

The appendix is organized in three parts: Appendix A provides a self-contained generic Edgeworth

expansion for second-order U-statistics, which may be of independent technical interest, Appendix

C gives the proof of Theorem 1, and Appendix D gives the proof of Theorem 2.

2 Setup and Assumptions

Suppose Zi = (Yi, X
′
i)
′, i = 1, . . . , n, is a random sample from the distribution of the random vector

Z = (Y,X ′)′, where Y is an outcome variable and X takes values on Rd with Lebesgue density f .

We consider

θ := E[f(X)ġ(X)], g(X) := E[Y |X],
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the DWAD of the regression function g, where, for any (differentiable) function a, ȧ(x) denotes

∂a(x)/∂x, and where existence of θ is implied by parts (b) and (c)) of the following assumption,

which collects the regularity conditions under which our subsequent analysis will proceed.

Assumption 1. For some S ∈ N, the following are satisfied:

(a) E[|Y |3] <∞;

(b) f is (S + 1) times differentiable, and f and its first (S + 1) derivatives are bounded;

(c) g is (S + 1) times differentiable and its first three derivatives are bounded;

(d) e and its first (S + 1) derivatives are bounded, where e(X) := f(X)g(X);

(e) E[V(Y |X)f(X)] > 0 and Σ := V[ψ(Z)] is positive definite, where ψ(Z) := 2[ė(X)−Y ḟ(X)−θ]
and where V[·] denotes the variance;

(f) v is twice differentiable, its first two derivatives are bounded, and vḟ and E[|Y |3|X]f(X) are

bounded, where v(X) := E[Y 2|X];

(g) lim sup||x||→∞[1 + v(x)]f(x) = 0, where || · || is the Euclidean norm; and

(h) Cramér Condition: For every v ∈ Rd,

lim sup
|t|→∞

|E [exp (itψv(Z))]| < 1,

where ψv(Z) := v′ψ(Z) and i2 := −1.

Under Assumption 1 and using integration by parts, the DWAD vector can be expressed as

θ = −2E[Y ḟ(X)],

which motivates the celebrated plug-in analog estimator of Powell et al. (1989) given by

θ̂ = −2n−1
∑

1≤i≤n

Yi
∂

∂x
f̂i(Xi), f̂i(x) = (n− 1)−1

∑
1≤j≤n
j ̸=i

1

hd
K

(
Xj − x

h

)
,

where f̂i(·) is a “leave-one-out” kernel density estimator employing a symmetric and differentiable

kernel function K : Rd → R and a positive vanishing (bandwidth) sequence h.

The estimator θ̂ can be expressed as a second-order U-statistic with an n-varying kernel:

θ̂ =

(
n

2

)−1 ∑
1≤i<j≤n

Uij , Uij := −h−d−1K̇

(
Xi −Xj

h

)
(Yi − Yj). (2.1)
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Our analysis of θ̂ is based on this representation and proceeds under the following assumption about

the kernel function.2

Assumption 2. For some P ≥ 2 and some {µa : a ∈ Zd
+, [a] = P} ⊆ R, the following are satisfied:

(a) K is even, differentiable, and K̇ is bounded;

(b)
∫
Rd K̇(u)K̇(u)′du is positive definite; and

(c)
∫
Rd |K(u)|(1 + ∥u∥P )du+

∫
Rd ∥K̇(u)∥(1 + ∥u∥2)du <∞ and

∫
Rd

uaK(u)du =


1, if [a] = 0,

0, if 0 < [a] < P

µa, if [a] = P,

where a ∈ Zd
+ is a multi-index.

3 First-Order Distribution Theory

Before presenting our main results concerning the higher-order distributional properties of different

statistics based on θ̂, we review conventional and alternative first-order asymptotic distributional

approximations, as well as the distinct variance estimation methods emerging from each of those

approximation frameworks. Limits are taken as h → 0 and n → ∞ unless otherwise noted, →P

denotes convergence in probability, and ⇝ denotes convergence in law.

3.1 Distributional Approximation

Under appropriate restrictions on h and K, the estimator θ̂ is asymptotically linear with influ-

ence function ψ and asymptotic variance Σ. More precisely, Powell et al. (1989) showed that if

Assumptions 1 and 2 hold and if nh2(P∧S) → 0 and nhd+2 → ∞ (where a ∧ b denotes min(a, b)),

then
√
n(θ̂ − θ) = n−1/2

∑
1≤i≤n

ψ(Zi) + oP(1)⇝ N (0,Σ). (3.1)

A proof of (3.1) can be based on the U -statistic representation in (2.1) and its Hoeffding decom-

position θ̂ = E[Uij ] + L̄+ Q̄, where L̄ and Q̄ are mean zero random vectors given by

L̄ := n−1
∑

1≤i≤n

Li, Li := 2(E[Uij |Zi] − E[Uij ]),

2In Assumption 2 (c) and elsewhere, we employ standard multi-index notation: For a := (a1, . . . , ad)
′ ∈ Zd

+,
we have (i) [a] := a1 + · · · + ad, (ii) a! := a1! . . . ad!, (iii) xa := xa1

1 . . . x
ad
d for x := (x1, . . . , xd)

′ ∈ Rd, and (iv)
∂aq(x)/∂xa := ∂[a]q(x)/(∂xa1

1 . . . ∂x
ad
d ) for (sufficiently smooth) q : Rd → R.
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and

Q̄ :=

(
n

2

)−1 ∑
1≤i<j≤n

Qij , Qij := Uij − E[Uij |Zi] − E[Uij |Zj ] + E[Uij ],

respectively: because E[Uij ] = θ +O(hP∧S) and V[Q̄] = O(n−2h−d−2), we have

√
n(θ̂ − θ) = n−1/2

n∑
i=1

Li +OP

(√
nhP∧S +

1√
nhd+2

)
,

from which the result (3.1) follows upon noting that V[Li − ψ(Zi)] = O(hP∧S). Using Edgeworth

expansions, Nishiyama and Robinson (2000, 2001) studied the quality of the distributional approx-

imation implied by (3.1); their result is contained as a special case of our Theorem 1.

The Hoeffding decomposition and subsequent analysis of each of its terms shows that the esti-

mator admits a bilinear form representation in general, which then is reduced to a sample average

approximation by assuming a bandwidth sequence and kernel shape that makes both the misspecifi-

cation error (smoothing bias) and the variability introduced by Q̄ (a “quadratic” term) negligible in

large samples. As a result, provided that such tuning parameter choices are feasible, the estimator

will be asymptotically linear.

Asymptotic linearity of a semiparametric estimator has several distinct features that may be

considered attractive from a theoretical point of view. In particular, it is a necessary condition

for semiparametric efficiency, and it leads to a limiting distribution that is invariant to the choice

of the first-step nonparametric estimator entering the two-step semiparametric procedure (Newey,

1994). However, insisting on asymptotic linearity may also have its drawbacks because it requires

several potentially strong assumptions, and because it leads to a large sample theory that may

not accurately represent the finite sample behavior of the statistic. In the case of θ̂, asymptotic

linearity requires P > 2 unless d = 1; that is, the use of higher-order kernels or similar debiasing

techniques (see, e.g., Chernozhukov et al., 2022, and references therein) is necessary in order to

achieve asymptotic linearity. In addition, asymptotic linearity leads to a limiting experiment which

is invariant to the particular choices of smoothing (K) and bandwidth (h) tuning parameters

involved in the construction of the estimator. As a result, large sample distribution theory based

on (or implying) asymptotic linearity is silent with respect to the impact that tuning parameter

choices may have on the finite sample behavior of the two-step semiparametric statistic.

To address the aforementioned limitations of distribution theory based on asymptotic linearity,

Cattaneo et al. (2014a) proposed a more general distributional approximation for kernel-based

DWAD estimators that accommodates, but does not enforce, asymptotic linearity. The idea is

to characterize the joint asymptotic distributional features of both the linear (L̄) and quadratic

(Q̄) terms, and in the process develop a more general first-order asymptotic theory that allows for

weaker assumptions than those imposed in the classical asymptotically linear distribution theory.

Formally, if Assumptions 1 and 2 hold, and if (nhd+2 ∧ 1)nh2(P∧S) → 0 and n2hd → ∞, then

V[θ̂]−1/2(θ̂ − θ)⇝ N (0, I), (3.2)
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where V[θ̂] = V[L̄] + V[Q̄] with

V[L̄] = n−1
[
Σ +O

(
hP∧S)]

and

V[Q̄] =

(
n

2

)−1

h−d−2
[
∆ +O(h2)

]
, ∆ := 2E[V(Y |X)f(X)]

∫
Rd

K̇(u)K̇(u)′du.

This more general distributional approximation was developed explicitly in an attempt to better

characterize the finite sample behavior of θ̂. The result in (3.2) shows that the conditions on

the bandwidth sequence may be considerably weakened without invalidating the limiting Gaussian

distribution, although the asymptotic variance formula changes. Importantly, if nhd+2 is bounded

then θ̂ is no longer asymptotically linear and its limiting distribution will cease to be invariant with

respect to the underlying preliminary nonparametric estimator. In particular, if nhd+2 → c > 0

then θ̂ is root-n consistent, but not asymptotically linear. The bias of the estimator is also controlled

in a different way because the bandwidth is allowed to be “smaller” than usual, which may remove

the need for higher-order kernels. Interestingly, (3.2) allows for the point estimator to not even be

consistent for θ, which occurs for sufficiently small bandwidth sequences.

Beyond the aforementioned technical considerations, the result in (3.2) can conceptually be

interpreted as a more refined first-order distributional approximation for θ̂, which by relying on a

quadratic approximation (i.e., accounting for the contributions of both L̄ and Q̄) is expected to

offer a “better” distributional approximation than approximations relying on asymptotic linearity

(i.e., accounting only for the contribution of L̄). The idea of standardizing a U-statistic by the

joint variance of the linear and quadratic terms underlying its Hoeffding decomposition can be

traced back to the original paper of Hoeffding (1948, p. 307). Simulation evidence reported in

Cattaneo et al. (2010, 2014a,b) corroborated those conceptual interpretations numerically, but no

formal justification is available in the literature. Theorem 1 below will offer the first theoretical

result in the literature highlighting specific robustness features of the distributional approximation

in (3.2) by showing that such approximation has a demonstrably smaller higher-order distributional

approximation error.

3.2 Variance Estimation

Motivated by the asymptotic linearity result (3.1), Powell et al. (1989) also proposed the “plug-in”

variance estimator

Σ̂ := n−1
∑

1≤i≤n

L̂iL̂
′
i, L̂i := 2

[
(n− 1)−1

∑
1≤j≤n
j ̸=i

Uij − θ̂
]
,

and proved its consistency (i.e., Σ̂ →P Σ) under the same bandwidth sequences required for asymp-

totic linearity (i.e., assuming nh2(P∧S) → 0 and nhd+2 → ∞). Combining this consistency result
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with (3.1), we obtain the following result about a studentized version of θ̂:

V̂
−1/2
AL (θ̂ − θ)⇝ N (0, I), V̂AL := n−1Σ̂. (3.3)

Using Edgeworth expansions, Nishiyama and Robinson (2000, 2001) studied the quality of the

distributional approximation implied by (3.3); their result is contained as a special case of our

Theorem 2.

Complementing the small bandwidth asymptotic representation (3.2), Cattaneo et al. (2014a)

showed that

V̂AL = n−1[Σ + oP(1)] + 2

(
n

2

)−1

h−d−2[∆ + oP(1)],

which implies among other things that the consistency result Σ̂ →P Σ is valid only if nhd+2 → ∞;

otherwise, Σ̂ is in general asymptotically upwards biased relative to V[θ̂] in (3.2). Because Σ̂ is

asymptotically equivalent to the jackknife variance estimator of θ̂, Cattaneo et al. (2014b) also

noted that the asymptotic bias of Σ̂ is a consequence of a more generic phenomena underlying

jackknife variance estimators studied in Efron and Stein (1981). See also Matsushita and Otsu

(2021) for related discussion.

To conduct asymptotically valid inference under the more general small bandwidth asymptotic

regime, Cattaneo et al. (2014a) proposed several “debiased” variance estimators, including

V̂SB := n−1Σ̂ −
(
n

2

)−1

h−d−2∆̂, ∆̂ := hd+2

(
n

2

)−1 ∑
1≤i<j≤n

UijU
′
ij ,

and showed that ∆̂ →P ∆ under the same bandwidth sequences required for (3.2) to hold (i.e.,

assuming nh2(P∧S) → 0 and n2hd → ∞). The estimator ∆̂ is asymptotically equivalent to the

debiasing procedure proposed in Efron and Stein (1981). By design, the result

V̂
−1/2
SB (θ̂ − θ)⇝ N (0, I) (3.4)

holds under more general conditions than those required for (3.3), suggesting that inference proce-

dures based on V̂SB are more “robust” than procedures based on V̂AL.

Conceptually, robustness manifests itself in two distinct ways. First, the underlying Gaussian

distributional approximation holds under weaker bandwidth restrictions, a property achieved in part

by employing a standardization factor depending explicitly on tuning parameter choices. Second,

the new variance estimator V̂SB is obtained from the more general small bandwidth approximation

and explicitly accounts for the contribution of terms regarded as higher-order under asymptotic

linearity.

While not reproduced here to conserve space, the in-depth Monte Carlo evidence reported in

Cattaneo et al. (2010, 2014a,b) also showed that employing inference procedures based on (3.4) lead

to remarkable improvements in terms of “robustness” to bandwidth choice and other tuning inputs,
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when compared to classical asymptotically linear inference procedures based on (3.3). Theorem

2 below will show formally that the distributional approximation (3.4) has demonstrably smaller

higher-order errors than the distributional approximation (3.3), thereby providing a theory-based

explanation for the empirical success of feasible inference procedures developed under the small

bandwidth approximation framework.

4 Higher-Order Distribution Theory

Letting v ∈ Rd be a fixed vector and defining θ̂v := v′θ̂, this section presents Edgeworth expansions

for standardized and studentized statistics based on θ̂v. Section 4.1 studies standardized statistics

of the form (θ̂v−θv)/ϑv, where θv := v′θ and ϑv is an approximate standard deviation of θ̂v; that is,

ϑv is positive, non-random, and such that (θ̂v−θv)/ϑv is asymptotically standard normal. The main

purpose of studying standardized statistics is to allow us to compare the quality of the distributional

approximations (3.1) and (3.2) based on asymptotic linearity and small bandwidth asymptotics,

respectively. Section 4.2 then studies studentized statistics of the form (θ̂v − θv)/ϑ̂v, where ϑ̂2v is

(random and) equal to either v′V̂ALv or v′V̂SBv. The main purpose of studying studentized statistics

is to allow us to investigate the impact of variance estimation on the quality of the distributional

approximations (3.3) and (3.4) based on asymptotic linearity and small bandwidth asymptotics,

respectively.

Nishiyama and Robinson (2000, 2001) obtained valid Edgeworth expansions for the distribution

of the standardized and studentized statistics employing ϑ2v = v′Σv/n and ϑ̂2v = v′Σ̂v/n, respec-

tively. Those results were obtained under assumptions implying asymptotic linearity. Although

our main interest is in standardization and studentization schemes whose (first-order) validity does

not require asymptotic linearity, we retain the assumption of asymptotic linearity to ensure a fair

comparison; that is, our results are derived under the same assumptions as those imposed in prior

work, in which case all inference procedures are asymptotically valid, and therefore amenable to

juxtaposition. While beyond the scope of this paper, allowing for departures from asymptotic

linearity is an interesting topic for future research.

4.1 Standardized Statistics

Suppressing the dependence on v and ϑv, let

F (x) := P

[
θ̂v − θv
ϑv

≤ x

]
, x ∈ R,

be the cumulative distribution function (cdf) of (θ̂v− θv)/ϑv, where ϑv is positive and non-random.

Letting Φ denote the standard normal cdf, it follows from (3.2) that

sup
x∈R

|F (x) − Φ(x)| = o(1) (4.1)
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under assumptions implying in particular that ω2
v/ϑ

2
v → 1, where

ω2
v := V[θ̂v] = n−1

[
σ2v +O

(
hP∧S)]+

(
n

2

)−1

h−d−2[δ2v +O(h2)],

with σ2v := v′Σv and δ2v := v′∆v.

Our first theorem provides a refinement of (4.1). To state the theorem, let

ḟv(X) := v′ḟ(X), φv(Z) := ψv(Z) + 2θv, ηv(Z2) := lim
n→∞

E[φv(Z1)v
′U12|Z2],

and define the following quantities (all of which are finite under the assumptions of Theorem 1):

βv := 2(−1)P
∑

a∈Zd
+,[a]=P

µa
a!

E
[
g(X)

∂a

∂xa
ḟv(X)

]
, κ1,v := E[ψv(Z)3],

κ2,v := E[φv(Z)η̇v(Z)] − E[φv(Z)2]θv − V[φv(Z)]θv.

Also, let ϕ denote the standard normal probability density function.

Theorem 1 (Standardization). Suppose Assumptions 1 and 2 hold with S ≥ P , and that nh2P → 0

and nhd+2/ log9 n→ ∞. If ϑv is positive and non-random with ω2
v/ϑ

2
v → 1, then

sup
x∈R

|F (x) −G(x)| = o(rn), rn :=
√
nhP +

1

nhd+2
+

1√
n
,

with

G(x) := Φ(x) − ϕ(x)

[√
nhPβv
σv

+
ω2
v/ϑ

2
v − 1

2
x+

κ1,v + κ2,v
6
√
nσ3v

(x2 − 1)

]
.

The proof of the theorem proceeds by verifying the high-level conditions of more general results

presented in Appendix A. The general results establish a valid Edgeworth expansion for a generic

class of U-statistics with n-varying kernels and may be of independent theoretical interest. Theorem

1 generalizes Nishiyama and Robinson (2000, Theorem 1) by allowing for a generic standardization

factors ϑv instead of their specific choice
√
v′Σv/n = σv/

√
n. The latter generalization is important

for our purposes, as it enables us to compare the different distributional approximations implied

by (3.1) and (3.2).

As is customary with Edgeworth expansions, the square-bracketed term in the function G is a

“correction” term capturing the extent to which the first three cumulants of the statistic differ

from those of the standard normal distribution. To be specific, the first and third terms correct for

bias and skewness, respectively. None of these correction terms depend on the particular ϑv used

for standardization purposes. In contrast, and as was to be expected, the variance correction term

does depend on ϑv, being proportional to ω2
v/ϑ

2
v − 1.

The asymptotic linearity result (3.1) suggests setting ϑ2v = σ2v/n. Doing so, and in agreement

10



with Nishiyama and Robinson (2000, Theorem 1), we have

ω2
v/ϑ

2
v − 1 ≈ 2δ2v

nhd+2σ2v
,

the approximation error being o(rn). In the display, the term on the right hand side involves

δ2v = limn→∞ hd+2V[v′Qijv] and is therefore interpretable as a variance correction term intrinsically

associated with approximations based on asymptotic linearity, as such approximations ignore the

contribution of the “quadratic” terms Qij to the variability of θ̂. Unlike (3.1), the small bandwidth

formulation (3.2) explicitly accounts for the presence of “quadratic” terms and the standardization

factor ϑ2v = V[θ̂v] = ω2
v suggested by the small bandwidth formulation is one for which the variance

correction term in G vanishes altogether.

Although the details of the results reported here are specific to DWAD estimation, one important

qualitative conclusion appears to generalize: the feature that it can be advantageous (in a higher-

order sense) to capture the full variability of a statistic when approximating its distribution is known

to be shared by certain statistics arising in the context of nonparametric kernel-based density and

local polynomial regression inference; for details, see Calonico et al. (2018, 2022).

In isolation, Theorem 1 is mostly of theoretical interest, the reason being that it is concerned with

standardized (as opposed to studentized) estimators. The consequences of employing studentization

(i.e., replacing ϑv with an estimator) will be explored in the next subsection. One important

qualitative conclusion of that subsection concerns inference. That conclusion can be anticipated

with the help of Theorem 1. We conclude this subsection by doing so.

For any α ∈ (0, 1), a natural (albeit infeasible) 100(1 − α)% two-sided confidence interval for θv

has endpoints given by θ̂v±cαϑv, where cα := Φ−1(1−α/2) and where ϑ2v is an approximate variance

of θ̂v. Under the assumptions of Theorem 1, the coverage probability of this interval satisfies

P
[
θ̂v − cαϑv ≤ θv ≤ θ̂v + cαϑv

]
= 1 − α− (ω2

v/ϑ
2
v − 1)ϕ(cα)cα + o(rn),

so to the order considered the coverage error is proportional to the term ω2
v/ϑ

2
v − 1 discussed

previously and our conclusions about this term therefore apply directly. In particular, the coverage

error of an infeasible interval using ϑ2v = V[θ̂v] (as suggested by the small bandwidth asymptotic

result (3.2)) is o(rn), while the coverage errors of an infeasible intervals using ϑ2v = σ2v/n (as

suggested by the asymptotic linearity result (3.1)) or its pre-asymptotic counterpart ϑ2v = V[v′Li]/n

are of larger magnitude.

4.2 Studentized Statistics

Next, we investigate the role of variance estimation by obtaining Edgeworth expansions for studen-

tized versions of θ̂. For specificity, and inspired by (3.3) and (3.4), we compare

F̂AL(x) := P

[
θ̂v − θv

ϑ̂AL,v
≤ x

]
, ϑ̂2AL,v := v′V̂ALv

11



and

F̂SB(x) := P

[
θ̂v − θv

ϑ̂SB,v
≤ x

]
, ϑ̂2SB,v := v′V̂SBv.

Studying F̂AL, Nishiyama and Robinson (2000, Theorem 3) found that if the assumptions of Theorem

2 below are satisfied, then

sup
x∈R

∣∣∣F̂AL(x) − ĜAL(x)
∣∣∣ = o(rn),

with

ĜAL(x) := Φ(x) − ϕ(x)

[(√
nhPβv
σv

− 3κ1,v + 2κ2,v
6
√
nσ3v

)
− δ2v
nhd+2σ2v

x− 2κ1,v + κ2,v
6
√
nσ3v

(x2 − 1)

]
,

where, once again, the three terms in square brackets correct for bias, variance, and skewness,

respectively. In light of the results of the previous subsection, one would expect the Edgeworth ap-

proximation to F̂SB to be similar to ĜAL, the only (possible) difference being the variance correction

term. The following result shows that this is indeed the case.

Theorem 2 (Studentization). Suppose Assumptions 1 and 2 hold with S ≥ P and E[Y 6] < ∞,

and that nh2P → 0 and nhd+2/ log9 n→ ∞. Then

sup
x∈R

∣∣∣F̂SB(x) − ĜSB(x)
∣∣∣ = o(rn),

with

ĜSB(x) := Φ(x) − ϕ(x)

[(√
nhPβv
σv

− 3κ1,v + 2κ2,v
6
√
nσ3v

)
− 2κ1,v + κ2,v

6
√
nσ3v

(x2 − 1)

]
This theorem shows that employing studentization based on small bandwidth asymptotics offers

demonstrable improvements in terms of distributional approximations for the resulting feasible t-

test: the variance correction term present in ĜAL is absent from ĜSB. As in Nishiyama and Robinson

(2000, 2001), the result is obtained under the somewhat stronger moment condition E[Y 6] < ∞
than the condition E[|Y |3] <∞ of Theorem 1, the purpose of the strengthened condition being to

help control the contribution of the random denominator of the studentized version of θ̂.

The main practical implication of Theorem 2 can be illustrated by analyzing the coverage error

of 100(1 − α)% confidence intervals with endpoints θ̂v ± cαϑ̂v. Setting ϑ̂v = ϑ̂AL,v and applying

Nishiyama and Robinson (2000, Theorem 3), we have

P
[
θ̂v − cαϑ̂AL,v ≤ θv ≤ θ̂v + cαϑ̂AL,v

]
= 1 − α+

2δ2v
nhd+2σ2v

ϕ(cα)cα + o(rn),

whereas setting ϑ̂v = ϑ̂SB,v and applying Theorem 2 gives

P
[
θ̂v − cαϑ̂SB,v ≤ θv ≤ θ̂v + cαϑ̂SB,v

]
= 1 − α+ o(rn).

In other words, confidence intervals based on (3.4) are demonstrably superior to those based on (3.3)

12



from a higher-order asymptotic point of view. This finding provides a theoretical explanation of the

simulation evidence reported in Cattaneo et al. (2014a,b, 2010), where feasible confidence intervals

based on small bandwidth asymptotics were shown to offer better finite sample performance in terms

of coverage error than their counterparts based on classical asymptotic linear approximations.

4.3 Discussion and Bootstrap-Based Inference

In the previous subsections, we investigated the higher-order performance of large sample distri-

butional approximations under two alternative asymptotic frameworks: asymptotic linearity and

small bandwidth asymptotics. We found that the choice of studentization matters in terms of

distributional approximation errors, even under conditions guaranteeing that asymptotic linearity

holds (nhd+2 → ∞), in which case both asymptotic frameworks are first-order valid. As a conse-

quence, our Edgeworth expansions (reported in Theorems 1 and 2) provide alternative validation of

the main conclusions obtained by Cattaneo et al. (2010, 2014a) using first-order distributional ap-

proximations: in terms of distributional approximation accuracy, the small bandwidth framework

justifying (3.2) and (3.4) dominates the asymptotic linear framework justifying (3.1) and (3.3).

It is natural to ask whether a similar ranking emerges when employing bootstrap-based infer-

ence procedures. Cattaneo et al. (2014b) studied the first-order properties of the nonparametric

bootstrap under small bandwidth asymptotics for the kernel-based DWAD estimator, and showed

that a similar first-order pattern emerges in that case: Under slightly stronger assumptions than

Assumptions 1 and 2, they showed that if (nhd+2 ∧ 1)nh2(P∧S) → 0 and if n2hd → ∞, then

V∗[θ̂∗]−1/2(θ̂∗ − θ̂)⇝P N (0, I),

where ⇝P denotes weak convergence in probability,

V∗[θ̂∗] = V∗[L̄∗] + V∗[Q̄∗], V∗[L̄∗] = n−1 [Σ + oP(1)] , V∗[Q̄∗] = 3

(
n

2

)−1

h−d−2 [∆ + oP(1)] ,

and

n−1Σ̂∗ = n−1[Σ + oP(1)] + 4

(
n

2

)−1

h−d−2[∆ + oP(1)], ∆̂∗ = ∆ + oP(1),

with θ̂∗, L̄∗, Q̄∗, Σ̂∗ and ∆̂∗ denoting nonparametric bootstrap analogs of θ̂, L̄, Q̄, Σ̂ and ∆̂,

respectively, and V∗[·] denoting the variance computed conditional on the original data. It follows

from those results that under small bandwidth asymptotics the bootstrap consistently estimates

the distribution of a studentized version of θ̂ when V̂SB is used for studentization purposes, but

not when V̂AL is. These conclusions are in perfect agreement with those discussed in Section 3, the

only notable difference in the details being that the variability induced by the bootstrap is larger

outside the asymptotic linear regime because V∗[Q̄∗]/V[Q̄] = 3 + oP(1). Furthermore, the second

term of the bootstrap-based jackknife variance estimator Σ̂∗ is asymptotically doubled relative to

the second term of the jackknife variance estimator Σ̂.
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Nishiyama and Robinson (2005) used Edgeworth expansions to study the properties of inference

procedures based on the nonparametric bootstrap under assumptions implying asymptotic linear-

ity. Based on the findings in this paper and those in Cattaneo et al. (2014b), we conjecture that

analogous conclusions to those obtained herein will be valid for the case of bootstrap-based infer-

ence. While the conceptual parallelism between bootstrap-based inference and the results reported

in this paper are clear, formalizing our conjecture requires substantial additional technical work due

to the added complications associated with the data resampling, and hence we leave the theoretical

analysis for future work.

5 Conclusion

Employing Edgeworth expansions, we compared the higher-order properties of two first-order dis-

tributional approximations and their associated confidence intervals for the kernel-based DWAD

estimator of Powell et al. (1989). We showed that small bandwidth asymptotics not only give

demonstrably better distributional approximations than those implied by asymptotic linearity, but

also justifies employing a variance estimator for studentization purposes that improves the distri-

butional approximation. The main takeaway from our results is that in two-step semiparametric

settings, and related problems, alternative asymptotic approximations that capture higher-order

terms, which are ignored by more traditional asymptotic linearity-based approximations, can de-

liver better distributional approximations and, by implication, more accurate inference procedures

in finite samples. See Cattaneo et al. (2018a) for related discussion.

While beyond the scope of this paper, it would be of interest to develop analogous Edgeworth

expansions for more general linear and non-linear two-step semiparametric procedures employing

either Gaussian or resampling approximations under both conventional and alternative asymptotic

frameworks (Cattaneo et al., 2013; Cattaneo and Jansson, 2018; Cattaneo et al., 2019; Cattaneo

and Jansson, 2022). In particular, for the special case of kernel-based DWAD estimators, which is

a linear two-step kernel-based semiparametric estimator, Nishiyama and Robinson (2005) already

obtained Edgeworth expansions for bootstrap-based inference procedures under asymptotic linear-

ity that could be contrasted with those obtained under small bandwidth asymptotics (Cattaneo

et al., 2014b), after establishing more general Edgeworth expansions accounting for the bootstrap.

A Second-Order U-Statistics

Let Un be a second-order U-statistic with n-varying kernel:

Un :=

(
n

2

)−1 ∑
1≤i<j≤n

un(Zi, Zj),

where Z1, Z2, . . . are i.i.d. copies of a random vector Z and where, for each n ≥ 2, un is a permuta-

tion symmetric R-valued function. The main result of this section concerns the distribution of the
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(approximately) standardized statistic (Un − θn)/ϑn, where θn ∈ R and ϑn > 0 are non-random.

To be specific, dropping the subscript n to simplify notation and defining

F (x) := P
[
U − θ

ϑ
≤ x

]
, x ∈ R,

our objective is to obtain a valid Edgeworth expansion for F .

When stating and proving the result, it is useful to employ the Hoeffding decomposition

U − θ = B + L+Q,

where

B := E[U ] − θ, L := n−1
n∑

i=1

ℓi, Q :=

(
n

2

)−1 ∑
1≤i<j≤n

qij ,

and where, for 1 ≤ i < j ≤ n,

ℓi := 2(E[u(Zi, Zj)|Zi] − E[u(Zi, Zj)])

and

qij := u(Zi, Zi) −
1

2
(ℓ(Zi) + ℓ(Zj)) − E[u(Zi, Zj)].

Also, it is useful to define σ2ℓ := E[ℓ21], σ
2
q := E[q212], κ1 := E[ℓ31], and κ2 := E[ℓ1ℓ2q12], and to note

that

ω2 := V[U ] = V[L] + V[Q] = n−1σ2ℓ +

(
n

2

)−1

σ2q = n−1σ2ℓ
[
1 +O(n−1σ2q/σ

2
ℓ )
]
.

Theorem A.1. For some p ∈ (2, 3], let the following conditions hold:

(a) E
[
|ℓ1/σℓ|3

]
= O(1) and E[|q12/σℓ|p] <∞;

(b) n−1σ2ℓ /ω
2 → 1 and ω2/ϑ2 → 1;

(c) For every c, c̄ > 0,

lim sup
n→∞

sup
c<|t|≤c̄ logn

|E[exp(itℓ1/σℓ)]| < 1.

Then

sup
x∈R

|F (x) −G(x)| = O

(
E +

1√
n log n

)
,

where G is the distribution function with characteristic function

χG(t) := exp

(
itγ1 −

t2

2

)1 +
∑

2≤j≤9

(it)j γj

 ,
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with

γ1 :=
B

ϑ
, γ2 :=

ω2 − ϑ2

2ϑ2
, γ3 :=

κ1 + 6κ2

6n2ϑ3
,

γ4 :=
ω2 − ϑ2

4ϑ4

(
n

2

)−1

σ2q , γ5 :=
1

12n2ϑ5

[(
n

2

)−1

κ1σ
2
q + 6

(
n−1σ2ℓ − ϑ2

)
κ2

]
,

γ6 :=
1

6n4ϑ6

[
κ1κ2 + 12

(
n

2

)−2(n
4

)
κ2
2

]
, γ7 := 0,

γ8 :=
n−1σ2ℓ − ϑ2

4n4ϑ8

(
n

2

)−2(n
4

)
κ2
2 , γ9 :=

1

12n6ϑ9

(
n

2

)−2(n
4

)
κ1κ2

2 ,

and where

E :=
1

nσ4ℓ
E[|ℓ21ℓ2q12|] +

1

n3/2σ5ℓ
E[|ℓ21ℓ22q12|] +

1

n3/2σ3ℓ
E[|ℓ1q212|] +

1

n3/2σ5ℓ
E[|ℓ1ℓ2ℓ3q13q23|]

+
1

n3/2σ7ℓ
|κ2|E[|ℓ21ℓ2q12|] +

1

n2σ8ℓ
|κ2|E[|ℓ21ℓ22q12|] +

logp n

npσpℓ
Mp(log n),

with

Mp(m) :=
(
mnE[q212]

)p/2
+mE

[
(nE[q212|Z1])

p/2
]

+mnE [|q12|p]

Corollary A.1. If the assumptions of Theorem A.1 hold and if γ1 → 0, then

sup
x∈R

∣∣F (x) − Ḡ(x)
∣∣ = O

(
γ21 + E +

1√
n log n

)
,

where Ḡ is the distribution function with characteristic function

χḠ(t) := exp

(
− t

2

2

)1 +
∑

1≤j≤9

(it)j γj

 , γ1 := B.

Remark A.1. For every k ∈ Z+,

1

2π

∫
R

exp

(
−itx− t2

2

)
(it)kdt = ϕ(x)Hk(x), k ∈ Z+,

where Hk(x) is the k-th order Hermite polynomial (i.e., H0(k) = 1, H1(x) = x, H2(x) = x2 − 1,

and so on). Therefore, the characteristic function χḠ from Corollary A.1 can be inverted to obtain

the following closed form expression for Ḡ:

Ḡ(x) = Φ(x) − ϕ(x)

 ∑
1≤j≤9

γjHj−1(x)

 .
⌟
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Remark A.2. Condition (c) of Theorem A.1 is implied by the following condition:

(c′) For every c > 0,

lim sup
n→∞

sup
|t|>c

|E[exp(itℓ1/σℓ)]| < 1.

Moreover, by the proposition following Petrov (1995, Lemma 1.4), condition (c′) is in turn implied

by the following condition:

(c′′) lim supn,|t|→∞ E[exp(itℓ1/σℓ)]| < 1.

When ℓ1 does not depend on n, conditions (c) and (c′) are equivalent and it is customary to replace

these conditions by (c′′), which itself reduces to the familiar Cramér condition on ℓ1, namely

lim sup
|t|→∞

E[exp(itℓ1)]| < 1. (A.1)

In contrast, when ℓ1 does depend on n, condition (c) is potentially easier to verify than (c′′). An

example where this potential is realized is given by the DWAD estimator studied in Theorems 1 and

2. In that example, it appears difficult to formulate simple conditions under which (c′′) holds, but

we are able to verify (c) with the help of the following observation: By (B.1), (c) holds whenever

there exists a fixed function λ satisfying

E[(ℓ1 − λ(Z1))
2] = o(1/ log2 n) and lim sup

|t|→∞
E[exp(itλ(Z1))]| < 1, (A.2)

a condition which is itself equivalent to (A.1) when ℓ1 does not depend on n.

To summarize, the condition (A.2) is equivalent to (c′′) when ℓ1 does not depend on n and more

generally it provides a simple sufficient condition for (c) when ℓ1 is mean square convergent. ⌟

Remark A.3. Suppose un does not depend on n and that

E[|ℓ1|3] <∞, E[|q12|3] <∞, and lim sup
|t|→∞

|E[exp(itℓ1)]| < 1.

If θ = E[u(Z1, Z2)] and if ϑ2 = n−1σ2ℓ , then the assumptions of Corollary A.1 are satisfied with

γ1 = 0 and E = O(n−1). Also, γ2 = O(n−1) and γj = O(n−1) for 4 ≤ j ≤ 9, so

Ḡ(x) = Φ(x) − ϕ(x)
γ3

6
√
n

(x2 − 1) +O(n−1), γ3 =
κ1 + 6κ2

σ3ℓ
,

uniformly in x ∈ R. In other words, we recover a variant of Bickel et al. (1986, Theorem 1.2). See

also Jing and Wang (2003). ⌟
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Remark A.4. If E
[
|ℓ1/σℓ|3

]
= O(1) and if n−1σ2q/σ

2
ℓ → 0, then the Hölder inequality implies

E ≲ 1

n
3
√
E[|q12/σℓ|3] +

(
1

n3/4
3
√
E[|q12/σℓ|3]

)2

+

(
log3 n

n
E
[
|q12/σℓ|2

])p/2

+
log1+p n

np/2
E
[
(E[(q12/σℓ)

2|Z1])
p/2
]

+
log1+p n

np−1
E [|q12/σℓ|p] ,

where a ≲ b denotes a ≤ Cb for some positive constant C. Thus, for p = 3 the majorant side of E
is o(1) iff

E
[
|q12/σℓ|2

]
= o(n/ log3 n), E

[
|q12/σℓ|3

]
= o(n2/ log4 n),

and if

E
[
(E[(q12/σℓ)

2|Z1])
3/2
]

= o(n3/2/ log4 n).

⌟

B Proof of Theorem A.1

Before presenting the formal proof, we outline the main steps involved, and compare our proof

strategy to the approach taken in Jing and Wang (2003) for second-order U-statistics with fixed

kernels (i.e., un not depending on n) and, more broadly, to the classical Edgeworth expansion

theory for sums of independent random variables (e.g., Bhattacharya and Rao, 1976; Hall, 1992).

We start from the following bound on the Kolmogorov distance between F and G:

ρ(F,G) := sup
t∈R

|F (t) −G(t)| ≲
∫
|t|≤

√
n logn

∣∣∣∣χF (t) − χG(t)

t

∣∣∣∣ dt+
1√

n log n
,

where χF is the characteristic function of F . The integral is then upper bounded over three different

frequency domains: Low frequency (LF), |t| ≤ log n; medium frequency (MF), log n < |t| ≤ c
√
n

(for a judiciously chosen c); and high frequency (HF), c
√
n < |t| ≤

√
n log n. In the case of MF

and HF, we further use the bound |χF (t) − χG(t)| ≤ |χF (t)| + |χG(t)| (i.e., the triangle inequality)

and deal with each term separately. At this level of generality the proof strategy is similar to the

canonical case of first-order U-statistics (e.g., Bhattacharya and Rao, 1976; Hall, 1992). However,

we need to proceed differently to control the influence of the quadratic term, for which a bound

follows almost exclusively from the linear part. For instance, for HF, we use Assumption (c) to find

a b > 0 such that for large n and for |t| ∈ (c
√
n,

√
n log n],∣∣∣∣χℓ

(
t

nϑ

)∣∣∣∣ ≤ 1 − b < exp(−b), χℓ(t) := E[exp(itℓ1)].

For the most interesting part, the LF domain, we begin by approximating χF (t) as follows:

χF (t) = exp

(
i
t

ϑ
B

)
E
[
exp

(
i
t

ϑ
L

)
exp

(
i
t

ϑ
Q

)]
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≈ exp

(
i
t

ϑ
B

)
E
[(

i
t

ϑ
L

)(
1 + i

t

ϑ
Q− t2

2ϑ2
Q2

)]
,

and then examine each term on the right hand side separately while controlling the approximation

error using Lemma E.1 and the bound∣∣∣∣∣∣exp(ix) −
∑

0≤j≤2

(ix)j

j!

∣∣∣∣∣∣ ≤ |x|p. (B.1)

When doing this, our proof departs from Jing and Wang (2003) because we do not know ex-ante

which term(s) are higher-order due to the possibly n-varying structure of the U-statistic kernel.

Therefore, we keep track of all terms, with special attention to the contribution of the terms

involving Q. Finally, we collect all (possibly) leading terms in the approximation to χF in χG and

arrive at a result of the form

|χF (t) − χG(t)| ≲ exp

(
− t

2

4

)
R(t) +

|t|p

n3p/2ϑp logp/2 n
Mp(log n), (B.2)

where

R(t) :=
t4

n3ϑ4
E[|ℓ21ℓ2q12|] +

|t|5

n4ϑ5
E[|ℓ21ℓ22q12|] +

|t|3

n3ϑ3
E[|ℓ1q212|] +

|t|5

n4ϑ5
E[|ℓ1ℓ2ℓ3q13q23|]

+
|t|7

n5ϑ7
|κ2|E[|ℓ21ℓ2q12|] +

t8

n6ϑ8
|κ2|E[|ℓ21ℓ22q12|],

and where n−1σ2ℓ /ϑ
2 → 1.

Technical Details. Letting g denote the Lebesgue density of G, application of a “smoothing

inequality” (e.g., Theorem 5.1 of Petrov, 1995) gives

ρ(F,G) ≲
∫
|t|≤υ

∣∣∣∣χF (t) − χG(t)

t

∣∣∣∣dt+
supx∈R |g(x)|

υ
, υ > 0.

Setting v =
√
n log n and using the fact that g is bounded (because

∑
2≤j≤9 |γj | → 0), it follows

from the triangle inequality that

ρ(F,G) ≲ I1 + I2 + I3 + I4 +
1√

n log n
, (B.3)

where, with c > 0 a constant to be chosen later,

I1 :=

∫
|t|≤logn

∣∣∣∣χF (t) − χG(t)

t

∣∣∣∣ dt, I2 :=

∫
logn<|t|≤c

√
n

∣∣∣∣χF (t)

t

∣∣∣∣dt,
I3 :=

∫
c
√
n<|t|≤

√
n logn

∣∣∣∣χF (t)

t

∣∣∣∣ dt, I4 :=

∫
|t|>logn

∣∣∣∣χG(t)

t

∣∣∣∣dt.
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In what follows, we bound each of these integrals in turn.

Bound for I1. We start by approximating

χL+Q

(
t

ϑ

)
:= E

[
exp

(
i
t

ϑ
L

)
exp

(
i
t

ϑ
Q

)]
.

First, using (B.1), we have∣∣∣∣χL+Q

(
t

ϑ

)
− E

[
exp

(
i
t

ϑ
L

)(
1 + i

t

ϑ
Q− t2

2ϑ2
Q2

)]∣∣∣∣ ≤ |τ |pnpE [|Q|p] , τ :=
t

nϑ
.

Also, since ℓ1, . . . , ℓn are i.i.d.,

E
[
exp

(
i
t

ϑ
L

)]
= E

exp

iτ
∑

1≤i≤n

ℓi

 = E

 ∏
1≤i≤n

exp (iτℓi)

 = χℓ(τ)n.

Finally, because ℓk is independent of qij when k ̸∈ {i, j},

(
n

2

)
E
[
exp

(
i
t

ϑ
L

)
Q

]
=

∑
1≤i<j≤n

E

qij ∏
1≤k≤n

exp (iτℓk)



=
∑

1≤i<j≤n

E

exp (iτ(ℓi + ℓj)) qij
∏

1≤k≤n
k ̸∈{i,j}

exp (iτℓk)


=

(
n

2

)
χℓ(τ)n−2E [exp (iτ(ℓ1 + ℓ2)) q12]

and (
n

2

)2

E
[
exp

(
i
t

ϑ
L

)
Q2

]

=
∑

1≤i<j≤n

E

q2ij ∏
1≤m≤n

exp (iτℓm)

+
∑

1≤i<j<l≤n

E

qijqjl ∏
1≤m≤n

exp (iτℓm)


+

∑
1≤i<j<k<l≤n

E

qijqkl ∏
1≤m≤n

exp (iτℓm)


=

(
n

2

)
χℓ(τ)n−2E

[
exp (iτ(ℓ1 + ℓ2)) q

2
12

]
+

(
n

3

)
χℓ(τ)n−3E [exp (iτ(ℓ1 + ℓ2 + ℓ3)) q12q23]

+

(
n

4

)
χℓ(τ)n−4 (E [exp (iτ(ℓ1 + ℓ2)) q12])

2 .
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Using the four preceding displays, we therefore have, uniformly in |t| ≤ log n,

χL+Q

(
t

ϑ

)
= χℓ(τ)n

+ χℓ(τ)n−2

[
iτnE [exp(iτ(ℓ1 + ℓ2))q12] −

τ2

2
n2
(
n

2

)−1

E
[
exp(iτ(ℓ1 + ℓ2))q

2
12

]]

− χℓ(τ)n−3 τ
2

2
n2
(
n

2

)−2(n
3

)
E [exp(iτ(ℓ1 + ℓ2 + ℓ3))q13q23]

− χℓ(τ)n−4 τ
2

2
n2
(
n

2

)−2(n
4

)
(E [exp(iτ(ℓ1 + ℓ2))q12])

2

+ |τ |pO (npE [|Q|p]) . (B.4)

Next, using degeneracy of qij and (B.1), we have

E [exp(iτ(ℓ1 + ℓ2))q12] = −τ2E [ℓ1ℓ2q12]

+ iτE [ℓ1 (exp(iτℓ2) − 1 − iτℓ2) q12 + ℓ2 (exp(iτℓ1) − 1 − iτℓ1) q12]

+ E [(exp(iτℓ1) − 1 − iτℓ1) (exp(iτℓ2) − 1 − iτℓ2) q12]

= −τ2κ2 + |τ |3O
(
E
[
|ℓ21ℓ2q12|

])
+ τ4O

(
E
[
|ℓ21ℓ22q12|

])
.

Similarly,

E
[
exp(iτ(ℓ1 + ℓ2))q

2
12

]
= E

[
q212
]

+ E
[
(exp(iτ(ℓ1 + ℓ2)) − 1) q212

]
= σ2q + |τ |O

(
E
[
|ℓ1q212|

])
and

E [exp(iτ(ℓ1 + ℓ2 + ℓ3))q13q23] = E

 ∏
1≤i≤3

(exp(iτℓi) − 1)

 q13q23


= |τ |3O (E [|ℓ1ℓ2ℓ3q13q23|]) .

Also, using arguments familiar from the Edgeworth expansion theory for sum of i.i.d. random

variables (e.g., Bhattacharya and Rao, 1976; Hall, 1992), we have, for k ∈ {0, 2, 3, 4},

χℓ(τ)n−k = exp

(
− t

2

2

)[
1 −

(
n−1σ2ℓ − ϑ2

ϑ2

)
t2

2
− i

κ1

n2ϑ3
t3

6
+

(
n−1σ2ℓ − ϑ2

ϑ2

)2

O(t4)

]

+ exp

(
− t

2

4

)
o

(
|t|3√
n

+
t6√
n

)
.
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Finally, using Lemma E.1, we have

E [|Q|p] ≲ Mp(n)

n2p
≲

Mp(log n)

n3p/2 logp/2 n
.

Plugging the displays from the previous paragraph into (B.4), we obtain (B.2) and therefore

I1 ≲
∫
|t|≤logn

exp

(
− t

2

4

)
|t|−1R(t)dt+

Mp(log n)

n3p/2ϑp logp/2 n

∫
|t|≤logn

|t|p−1dt

≲ R(1) +
logp/2 n

n3p/2ϑp
Mp(log n)

≲
1

nσ4ℓ
E[|ℓ21ℓ2q12|] +

1

n3/2σ5ℓ
E[|ℓ21ℓ22q12|] +

1

n3/2σ3ℓ
E[|ℓ1q212|] +

1

n3/2σ5ℓ
E[|ℓ1ℓ2ℓ3q13q23|]

+
1

n3/2σ7ℓ
|κ2|E[|ℓ21ℓ2q12|] +

1

n2σ8ℓ
|κ2|E[|ℓ21ℓ22q12|] +

logp/2 n

npσpℓ
Mp(log n),

where the last ≲ uses n−1σ2ℓ /ϑ
2 → 1.

Bound for I2. For 1 ≤ m < n, defining

Q(m) :=

(
n

2

)−1 ∑
1≤i<j≤n

i≤m

qij

and using (B.1), we have

|χF (t)| =

∣∣∣∣χL+Q

(
t

ϑ

)∣∣∣∣ ≤
∣∣∣∣∣∣E
exp

(
i
t

ϑ
(L+Q−Q(m))

) ∑
0≤k≤2

(it)k

k!ϑk
Q(m)k

∣∣∣∣∣∣+
|t|p

ϑp
E [|Q(m)|p] ,

where, using the fact that Q−Q(m) is a function of Xm+1, . . . , Xn, it can be shown that∣∣∣∣E [exp

(
i
t

ϑ
(L+Q−Q(m))

)
Q(m)k

]∣∣∣∣ ≲ (mn )k |χℓ(τ)|m−2kE[|q12|k], k ∈ {0, 1, 2},

and therefore, using n−1σ2ℓ /ϑ
2 → 1,

|χF (t)| ≲
∑

0≤k≤2

(
|t|m√
n

)k

|χℓ(τ)|m−2kE

[∣∣∣∣q12σℓ
∣∣∣∣k
]

+
|t|p

ϑp
E[|Q(m)|p]. (B.5)

Next, because E
[
|ℓ1/σℓ|3

]
= O(1) and n−1σ2ℓ /ϑ

2 → 1, there exists a c > 0 such that, for n

sufficiently large,

|χℓ(τ)| ≤ 1 − t2

3n
≤ exp

(
− t2

3n

)
, t ≤ c

√
n.

Setting m = ⌊15n log n/t2⌋ in (B.5), where ⌊·⌋ denotes the floor operator, and using the preceding
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display, we obtain (for n sufficiently large)

|χF (t)| ≲
∑

0≤k≤2

|t|k

n5−k
E

[∣∣∣∣q12σℓ
∣∣∣∣k
]

+
|t|p

ϑp
E[|Q(m)|p], log n < |t| ≤ c

√
n,

where, using Lemma E.1 and n−1σ2ℓ /ϑ
2 → 1,

|t|p

ϑp
E[|Q(m)|p] ≲ |t|p

n2pϑp
Mp(m)

≲
logp/2 n

np/2σpℓ
σpq + |t|p−2 log n

np−1σpℓ

[
E
[
(E[q212|Z1])

p/2
]

+
E [|q12|p]
np/2−1

]
, log n < |t| ≤ c

√
n.

As a consequence, using n−1σ2q/σ
2
ℓ → 0,

I2 ≲
∑

0≤k≤2

1

n5−3k/2
E

[∣∣∣∣q12σℓ
∣∣∣∣k
]

+
log1+p/2 n

np/2σpℓ
σpq +

log n

np/2σpℓ
E
[
(E[q212|Z1])

p/2
]

+
log n

np−1σpℓ
E [|q12|p]

= o(n−1) + o

(
logp n

npσpℓ
Mp(log n)

)
.

Bound for I3. By condition (c), there exists b > 0 such that, for n sufficiently large,

|χℓ(τ)| ≤ 1 − b ≤ exp(−b), c
√
n < |t| <

√
n log n.

Setting m = ⌊4 log n/b⌋ in (B.5) and using the preceding display, we obtain (for n sufficiently large)

|χF (t)| ≲
∑

0≤k≤2

|t|k logk n

n4+k/2
E

[∣∣∣∣q12σℓ
∣∣∣∣k
]

+
|t|p

ϑp
E[|Q(m)|p], c

√
n < |t| <

√
n log n,

where, using Lemma E.1 and n−1σ2ℓ /ϑ
2 → 1,

|t|p

ϑp
E[|Q(m)|p] ≲ |t|p

n2pϑp
Mp(m) ≲

|t|p

n3p/2σpℓ
Mp(log n), c

√
n < |t| <

√
n log n.

As a consequence, using n−1σ2q/σ
2
ℓ → 0,

I3 = o(n−2) +O

(
Mp(log n)

n3p/2σpℓ

∫
c
√
n≤|t|≤

√
n logn

|t|p−1dt

)

= o(n−2) +O

(
logp n

npσpℓ
Mp(log n)

)
.
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Bound for I4. For every j, we have∫
t>logn

tj−1 exp

(
− t

2

2

)
dt ≲

∫
t>logn

exp

(
− t

2

4

)
dt = o(n−1),

and therefore, using
∑

2≤j≤9 |γj | → 0,

I4 ≲
∫
|t|>logn

|t|−1 exp

(
− t

2

2

) ∣∣∣∣∣∣1 +
9∑

j=2

(it)j γj

∣∣∣∣∣∣ dt
≲

1 +
9∑

j=2

|γj |

∫
t>logn

t−1 exp

(
− t

2

4

)
dt = o(n−1).

C Proof of Theorem 1

We employ Corollary A.1 with u(Zi, Zj) = v′Uij and p = 3. Proceeding as in Cattaneo et al. (2010,

2014a,b), condition (a) of Theorem A.1 can be verified by direct calculations. Also, condition (b)

of Theorem A.1 holds because

σ2ℓ = σ2v + o(1), σ2q =
δ2v + o(1)

hd+2
, and nhd+2 → ∞,

while condition (c) of Theorem A.1 holds because (A.2) is satisfied with λ = ψv. The additional con-

dition γ1 → 0 of Corollary A.1 holds if nh2P → 0 because it follows from routine (bias) calculations

that E[θ̂v] − θv = hPβv + o(hP ).

Next, the law of iterated expectations, integration by parts, and Taylor series expansions can be

used to show that

κ1 = κ1,v +O(hP ), and κ2 = κ2,v +O(hP ),

and also that γ4 ≲ n−3h−d−2, γ5 ≲ n−2, γ6 ≲ n−1, γ8 ≲ n−3, and γ9 ≲ n−7/2.

Finally, by Cattaneo et al. (2014b, Supplemental Appendix), we have

E[q212]
3/2 ≤ E

[
(E[q212|Z1])

3/2
]
≲ h−3d/2−3 and E[|q12|3] ≲ h−2d−3.

Using these bounds and the Hölder inequality, we find that E = o(n−1h−d−2).
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D Proof of Theorem 2

Letting ℓi := v′Li and qij := v′Qij , occasionally suppressing the dependence on v, and using the

Hoeffding decomposition of θ̂v − θv along with the identity

ϑ

ϑ̂
= 1 − ϑ̂2 − ϑ2

2ϑ2
+

(ϑ̂+ 2ϑ)(ϑ̂2 − ϑ2)2

2ϑ2ϑ̂(ϑ̂+ ϑ)2
, (D.1)

we have
θ̂v − θv

ϑ̂SB,v
= T̃SB +RSB,

where

T̃SB :=
B + L+Q

ϑSB,v
−
ϑ̂2SB,v − ϑ2SB,v

2ϑ2SB,v

L+Q

ϑSB,v
,

with ϑSB,v is a judiciously chosen positive scalar,

B := E[θ̂v] − θv, L := n−1
∑

1≤i≤n

ℓi, and Q :=

(
n

2

)−1 ∑
1≤i<j≤n

qij ,

and where

RSB := −
ϑ̂2SB,v − ϑ2SB,v

2ϑ2SB,v

B

ϑSB,v
+

(ϑ̂SB,v + 2ϑSB,v)(ϑ̂
2
SB,v − ϑ2SB,v)

2

2ϑ2SB,vϑ̂SB,v(ϑ̂SB,v + ϑSB,v)2

B + L+Q

ϑSB,v

is a remainder term.

Defining

F̃SB(x) := P
[
T̃SB ≤ x

]
and adapting the proof of Theorem A.1, we obtain

ρ(F̃SB, ĜSB) = o(rn) (D.2)

by applying a smoothing inequality followed by a split of the frequency domain of the resulting

integral, where bounding the various integrals requires some additional care due to the presence of

the variance estimator.

Also, using the strengthened moment condition E[Y 6] <∞, we obtain

P[|RSB| > rn/ log n] = o(rn), (D.3)

implying in turn that ρ(F̂SB, F̃SB) = o(rn) and therefore also that

ρ(F̂SB, ĜSB) ≤ ρ(F̂SB, F̃SB) + ρ(F̃SB, ĜSB) = o(rn).
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Technical Details. The identity (D.1) can be obtained as follows:

ϑ

ϑ̂
= 1 − ϑ̂− ϑ

ϑ

ϑ̂+ ϑ

ϑ̂+ ϑ
+

(ϑ̂− ϑ)2

ϑϑ̂

(ϑ̂+ ϑ)2

(ϑ̂+ ϑ)2

= 1 − ϑ̂2 − ϑ2

2ϑ2
+

ϑ̂− ϑ

2ϑ2(ϑ̂+ ϑ)
(ϑ̂2 − ϑ2) +

(ϑ̂2 − ϑ2)2

ϑϑ̂(ϑ̂+ ϑ)2

= 1 − ϑ̂2 − ϑ2

2ϑ2
+

(ϑ̂+ 2ϑ)(ϑ̂2 − ϑ2)2

2ϑ2ϑ̂(ϑ̂+ ϑ)2
.

Letting uij := v′Uij and defining

U :=

(
n

2

)−1 ∑
1≤i<j≤n

uij = θ̂v, W1 :=

(
n

2

)−1 ∑
1≤i<j≤n

u2ij ,

and

W2 :=

(
n

3

)−1 ∑
1≤i<j<k≤n

uijuik + uijujk + uikujk
3

,

if follows from Cattaneo et al. (2014b, Supplemental Appendix) that

ϑ̂2SB,v =

(
n

2

)−1

W1 +
4

n

n− 2

n− 1
W2 −

4

n
U2.

Also, for k ∈ {2, 3}, using Cattaneo et al. (2014b, Supplemental Appendix) and Lemma E.1,

E[|U − E[u12]|2k] ≲ n−k + n−2kh−(2p−1)d−2k,

E[|W1 − E[u212]|k] ≲ n−k/2h−k(d+2) + n−kh−(2k−1)d−2p,

E[|W2 − E[(E[u12|Z1])
2]|k] ≲ n−k/2 + n−kh−(k−1)d−2p + n−3k/2h−2(k−1)d−2k,

and therefore

E
[
|ϑ̂2SB,v − ϑ2SB,v|k

]
≲ n−2kE[|W1 − E[u212]|k] + n−kE[|W2 − E[(E[u12|Z1])

2]|k]

+ n−k
√
E[|U − E[u12]|2k]

≲ n−3k/2 + n−2kh−(k−1/2)d−2k + n−5k/2h−2(k−1)d−2k, (D.4)

where

ϑ2SB,v :=

(
n

2

)−1

E[u212] +
4

n
E[(E[u12|Z1])

2] − 4

n
E[u12]

2.

To prove (D.3), it suffices to show that V1 + V2 + V3 = o(rn), where

V1 := P

[
(ϑ̂SB,v + 2ϑSB,v)(ϑ̂

2
SB,v − ϑ2SB,v)

2

ϑ2SB,vϑ̂SB,v(ϑ̂SB,v + ϑSB,v)2
>

rn

log2 n

]
,
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V2 := P

[
|θ̂v − θv|
ϑSB,v

> log n

]
,

V3 := P

[
|ϑ̂2SB,v − ϑ2SB,v|

ϑ2SB,v

|B|
ϑSB,v

>

√
nhP

log n

]
.

First, using (D.4) and the Markov inequality,

V1 ≤ P
[
(ϑ̂2SB,v − ϑ2SB,v)

2 >
rnσ

4
v

n2 log2 n

]
+ o(rn) ≲

n3 log3 n

r
3/2
n

E
[
|ϑ̂2SB,v − ϑ2SB,v|3

]
+ o(rn)

≲
log3 n

r
3/2
n

(n−3/2 + n−3h−5d/2−6 + n−9/2h−4d−6) + o(rn) = o(rn).

Next, using Theorem 1 and the properties of the standard normal distribution,

V2 = 1 − P

[
θ̂v − θv
ϑSB,v

≤ log n

]
+ P

[
θ̂v − θv
ϑSB,v

< − log n

]
= 1 − Φ(log n) + Φ(− log n) + o(rn) = o(rn).

Finally, using (D.4) and the Markov inequality,

V3 ≲ nE
[
|ϑ̂2SB,v − ϑ2SB,v|2

]
log2 n

≲ (n−2 + n−3h−3d/2−4 + n−4h−2d−4) log2 n = o(rn).

Next, to prove (D.2) we begin by using a “smoothing inequality” to obtain the bound

ρ(F̃SB, ĜSB) ≲ Î1 + Î2 + Î3 + Î4 +
1√

n log n
,

where

Î1 :=

∫
|t|≤logn

∣∣∣∣∣χF̃SB
(t) − χ

ĜSB
(t)

t

∣∣∣∣∣dt, Î2 :=

∫
logn<|t|≤c

√
n

∣∣∣∣∣χF̃SB
(t)

t

∣∣∣∣∣dt,
Î3 :=

∫
c
√
n<|t|≤

√
n logn

∣∣∣∣∣χF̃SB
(t)

t

∣∣∣∣∣ dt, and Î4 :=

∫
|t|>logn

∣∣∣∣∣χĜSB
(t)

t

∣∣∣∣∣ dt.
Proceeding as in the proof of Theorem A.1, it can be shown that Î2 + Î3 + Î4 = o(rn). The proof

of (D.2) can therefore be completed by showing that Î1 = o(rn). We shall do so by adapting the

proof of Theorem A.1 to also account for the contribution of ϑ̂2SB,v to F̃SB.

Defining

VSB :=
1

2nϑ2SB,v
n−1

∑
1≤i≤n

(
ℓ2i − σ2ℓ + 4E[ℓjqij |Zi]

)
+

2

nϑ2SB,v

(
n

2

)−1 ∑
1≤i<j≤n

E[qikqjk|Zi, Zj ]
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and using Callaert and Veraverbeke (1981) and the Hölder inequality, it can be shown that

χ
F̃SB

(t) = E
[
exp

(
itT̃SB

)]
= χF (t) − itE

[
exp

(
it

L

ϑSB,v

)
VSB

L

ϑSB,v

]
+O(T1(t)), (D.5)

where χF was (defined and) analyzed in the proof of Theorem A.1 and where

T1(t) :=
|t|

nhd/2+1 + n3/2h3d/2+3
+

t2

nhd/2+1 + n3/2h3d/2+3
.

As in Nishiyama and Robinson (2001), the second term on the right-hand side of (D.5) admits

an expansion of the form

E
[
exp

(
it

L

ϑSB,v

)
VSB

L

ϑSB,v

]
= χℓ(τ)n−1κ1 + 4κ2

2n2ϑ3SB,v
− χℓ(τ)n−2 t

2

2

κ1 + 4κ2

n2ϑ3SB,v
+ χℓ(τ)n−3O(T2(t)), τ :=

t

nϑSB,v
, (D.6)

where χℓ(τ)n−k was (defined and) analyzed in the proof of Theorem A.1 and where

T2(t) :=
|t|

n+ hd+2−P
+

t2

n+ n3/2hd+2
+

|t|3

n
+

t4

n3/2 + n2hd+2
+

|t|5

n5/2hd+2
+

t6

n3hd+2
.

Combining (D.5) and (D.6) with the previously obtained expansions for χF and χℓ(τ)n−k, we obtain

an expansion of the form

χ
F̃SB

(t) = χ
ĜSB

(t) + F(t),

where

Î1 :=

∫
|t|≤logn

∣∣∣∣F(t)

t

∣∣∣∣ dt = o(rn).

E Auxiliary Lemma

Lemma E.1. If S ⊆ {(i, j) : 1 ≤ i, j ≤ n} and if p ≥ 2, then

E

∣∣∣∣∣∣
∑

{i,j}∈S

qij

∣∣∣∣∣∣
p ≲ (s1E[q212]

)p/2
+ sp/2E

[
(E[q212|Z1])

p/2
]

+ s1E[|q12|p],

where

ss := max

 ∑
1≤i≤n

 ∑
1≤j≤n

1({i, j} ∈ S)

s

,
∑

1≤i≤n

 ∑
1≤j≤n

1({j, i} ∈ S)

s .
Proof. By Giné et al. (2000, Proposition 2.4), the inequality holds for the decoupled version of qij ,

defined as q̃ij := q(Z
(1)
i , Z

(2)
j ) where {Z(k)

i : 1 ≤ i ≤ n, 1 ≤ k ≤ 2} are i.i.d. copies of Z. Finally, we
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can apply the decoupling inequalities in de la Peña and Montgomery-Smith (1995) to obtain the

result at the expense of increasing the constant without altering the order of the upper bound; for

further details, see Giné et al. (2000, Section 2.5).
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