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Abstract. This article discusses the poparms command, which implements two
semiparametric estimators for multivalued treatment effects discussed in Cattaneo
(2010, Journal of Econometrics 155: 138–154). The first is a properly reweighted
inverse-probability weighted estimator, and the second is an efficient-influence-
function estimator, which can be interpreted as having the double-robust prop-
erty. Our implementation jointly estimates means and quantiles of the potential-
outcome distributions, allowing for multiple, discrete treatment levels. These es-
timators are then used to estimate a variety of multivalued treatment effects. We
discuss pre- and postestimation approaches that can be used in conjunction with
our main implementation. We illustrate the program and provide a simulation
study assessing the finite-sample performance of the inference procedures.
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1 Introduction

This article introduces the poparms (short for potential-outcome parameters) command
for estimating causal effects of multivalued treatments under ignorability, that is, un-
der the selection-on-observables and common support assumptions. In particular, this
command implements the two flexible, semiparametric-efficient estimation procedures
proposed in Cattaneo (2010) to conduct joint inference on mean and quantile treatment
effects. For recent reviews on the vast literature of treatment effects, see, among others,
Heckman and Vytlacil (2007), Imbens and Wooldridge (2009), and Wooldridge (2010)
in economics; Morgan and Winship (2007) in sociology; and van der Laan and Robins
(2003) and Tsiatis (2006) in biostatistics.

Many multivalued treatment effects are constructed by contrasting the parameters
of the distributions that the outcome variable would have had under each level of treat-
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ment. These distributions are called the potential-outcome distributions and are iden-
tifiable from the observed data under the selection-on-observables or unconfoundedness
assumption. Under this assumption, Cattaneo (2010) derives the large-sample prop-
erties of inverse-probability weighted (IPW) estimators and efficient-influence-function
(EIF) estimators for the means, quantiles, and other features of the potential-outcome
distributions when the treatment variable can have multiple distinct values. Using ei-
ther of these estimators, which are shown to be semiparametric efficient under certain
regularity conditions, one can construct a wide variety of treatment-effects estimators
as well as valid inference procedures for multivalued treatment effects.

In this article, we describe the new poparms command, which implements these
IPW and EIF estimators to estimate the means and quantiles of each potential-outcome
distribution as well as the associated standard-error estimators. Different contrasts of
these estimated parameters are then used to produce semiparametric-efficient estima-
tors with valid standard-error estimators for average and quantile multivalued treatment
effects. These procedures require implementing nonparametric series estimators to flex-
ibly approximate certain nonparametric functions. We discuss in detail several pre- and
postestimation procedures for the analysis of mean and quantile treatment effects.

The discussed methods crucially rely on the selection-on-observables assumption
to identify and estimate the parameters of the potential-outcome distributions. This
assumption maintains that after one controls for observed covariates, the potential-
outcome distributions are independent of the treatment level, and therefore rules out
that some unobservable factor correlated with treatment assignment affects the poten-
tial-outcome distributions. This assumption is strong and may not be valid in some
applications, although it is popular and frequently used in empirical work. While it is
testable in some special cases, this assumption is fundamentally untestable in general.
It automatically holds under treatment randomization, in which case the results in
this article lead to more efficient estimators than the usual parametric estimators. We
further discuss this assumption and its implications below.

In the remainder of the article, we discuss the implemented methods with notation
and formality, an example, the syntax of the poparms command, and the methods and
formulas implemented in the command.

2 Setup, parameters, and estimators

2.1 Model and sampling

We consider a standard cross-sectional setting where we observe a random sample of
size n from a large population in which each individual has been assigned one of J + 1
possible treatment levels j = 0, 1, . . . , J . For each individual i = 1, 2, . . . , n, we observe
the random vector zi = (yi, wi,x

′
i)

′, where yi is the observed outcome variable, wi

denotes the treatment level administered, and xi is a kx × 1 vector of covariates. We
also introduce the indicator variables di(j) = 1(wi = j), which take the value 1 if unit i
received treatment j and the value 0 otherwise. 1(·) denotes the indicator function, the
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observed vectors zi, i = 1, 2, . . . , n, are independent and identically distributed draws
of the vector z = (y, w,x′)′, and d(j) = 1(w = j).

To describe the estimands and estimators of interest, we use the classical potential-
outcome framework in the context of multivalued treatment effects. This model distin-
guishes between the observed outcome yi and the J + 1 potential outcomes yi(j) for
each treatment level j = 0, 1, . . . , J . In this framework, the observed outcome variable
is given by

yi = di(0)yi(0) + di(1)yi(1) + · · ·+ di(J)yi(J)

where {yi(0), yi(1), . . . , yi(J)}′ is an independent and identically distributed draw from
{y(0), y(1), . . . , y(J)}′ for each individual i = 1, 2, . . . , n in the sample. The distribution
of each y(j) is the distribution of the outcome variable that would occur if individuals
were given treatment level j; it is known as the potential-outcome distribution of treat-
ment level j. Many treatment effects of interest reduce to contrasts between parameters
of these distributions. Because it is central to parameter interpretation, we highlight the
fact that the potential-outcome distributions are marginal distributions with respect to
the covariates used in the analysis.

Only one of the J +1 possible potential outcomes can be observed for each individ-
ual in the sample because each individual can receive only one treatment level. Holland
(1986) termed this situation the fundamental problem of causal inference. From this per-
spective, estimating the parameters of the potential-outcome distribution is a missing-
data problem because we can see only one outcome per individual. The observed y
are draws from distribution of y(j) conditional on w = j, and hence, we need further
assumptions to identify the unconditional distribution of y(j) from the observed data.
The following assumption, known as ignorability, is a combination of the selection-on-
observables assumption and a no-empty-cell assumption, and it allows us to recover the
parameters of the unobserved unconditional distribution from the observed conditional
distribution.

Assumption 1. For all j = 0, 1, . . . , J :
(a) (Selection-on-observables) y(j) ⊥⊥ d(j)|x.
(b) (No-empty-cell) 0 < pmin < pj(x) with pj(x) = P(w = j|x).

Assumption 1(a) implies that the distribution of each potential outcome y(j) is
independent of the random treatment d(j), conditional on the covariates x. This as-
sumption has a long history; see, among many others, Heckman, Ichimura, and Todd
(1998), Imbens (2004), Heckman and Vytlacil (2007), Imbens and Wooldridge (2009),
and Wooldridge (2010). This condition imposes conditional (on observables) random
assignment for each treatment level: among individuals with the same observable char-
acteristics, treatment assignment should be independent of the potential outcome. This
assumption, although weaker than plain random assignment, is indeed strong because
it rules out the presence of observed characteristics that could affect both treatment
and outcomes. Nonetheless, in some empirical contexts, this assumption is reasonable
and often imposed to estimate treatment effects.
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Assumption 1(b) says that for every possible x in the population, there is a strictly
positive probability that someone with that covariate pattern could be assigned to each
treatment level. Intuitively, we need to see individuals of each covariate type in each
treatment level to recover potential-outcome distribution for individuals of that type.
The function p(x) = {p0(x), p1(x), . . . , pJ (x)}′ is called the generalized propensity score
(GPS). Imbens (2000) provides an extensive discussion on identification of multivalued
mean treatment effects under ignorability (also see Hirano and Imbens [2004]).

2.2 Estimands and estimators

Using assumption 1, Cattaneo (2010) proposes two flexible, semiparametric-efficient
estimation procedures for a large class of multivalued treatment effects. These esti-
mands are obtained by first estimating the corresponding population parameters for
each potential-outcome distribution and then combining these estimates. The general
estimators are implicitly defined by a collection of possibly overidentified, nonsmooth
moment conditions. We focus on implementing these estimators for the special, im-
portant cases of means and quantiles of the potential-outcome distributions. Contrasts
between these parameters lead to interesting population parameters in the context of
multivalued treatment effects, which extend the usual average and quantile treatment
effects from the binary treatment literature.1

To clarify, we will let Fy(j)(y) be the distribution function of the potential outcome
y(j), j = 0, 1, . . . , J . The J + 1 means of the potential-outcome distributions are

μ = (μ0, μ1, . . . , μJ )
′

where μj = E{y(j)} =
∫
y dFy(j)(y). The τth quantiles of the J +1 potential outcomes

are
q(τ) = {q0(τ), q1(τ), . . . , qJ (τ)}′

where qj(τ) = F−1
y(j)(τ) with τ ∈ (0, 1), and Fy(j)(y) is assumed to be continuous

and strictly increasing in a neighborhood of qj(τ). We do not discuss regularity con-
ditions in detail, but we note that they imply that the outcome variable should be
continuous. Intuitively, if the potential-outcome distributions Fy(j)(y) are identifiable
from observed data, then so are the population parameters of interest because they
are just the means and quantiles of Fy(j)(y) for each j. Assumption 1 implies that
Fy(j)(y) = E{Fy(j)|x(y|x)} = E{Fy(y|x, w = j)} for each treatment level j, where
Fy(j)|x(y|x) denotes the distribution function of y(j)|x, and Fy(y|x, w = j) denotes the
distribution function of y|x, w = j, the latter distribution being identifiable from the
observed data. Thus μj and qj(τ) can be shown to be identifiable under appropriate
regularity conditions.

The implemented methods identify and estimate parameters of the potential-out-
come distributions that have been marginalized over the covariate distributions. In

1. Cattaneo (2010) labels the collection of means and quantiles as marginal mean treatment effects
and marginal quantile treatment effects, respectively. In this article, however, we will only use
the term “treatment effect” to refer to contrasts (pairwise or other) between different means and
quantiles to avoid possible confusions.
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this sense, they are population-averaged or marginal parameters. The quantiles of
the marginal potential-outcome distributions y(j) differ from the means of the condi-
tional quantiles of the potential-outcome distributions: qj(τ) = F−1

y(j)(τ) �= E{qj(τ |x)},
where the marginal distribution Fy(j)(τ) = E{Fy(j)|x(y|x)} and the conditional quan-

tiles qj(τ |x) are defined by qj(τ |x) = F−1
y(j)|x(τ). In contrast, the mean of the marginal

distribution is the mean of the conditional mean distributions, a fact that underlies the
popular regression-adjustment estimators for μj . The implemented methods identify
and estimate quantiles of the marginal potential-outcome distributions y(j).

This identification discussion is associated with the ideas of projection and imputa-
tion, which could be used to construct (multivalued) treatment-effect estimators (see,
for example, Hahn [1998]; Imbens, Newey, and Ridder [2007]; Chen, Hong, and Tarozzi
[2004, 2008]; and Cattaneo and Farrell [2011]). Alternatively, Cattaneo (2010) proposes
two Z-estimators, one constructed using an inverse-probability-weighting scheme and
the other constructed using the full functional form of the EIF, which are shown to
be consistent, asymptotically Gaussian, and semiparametric efficient under appropri-
ate conditions. (Thus the two estimators are asymptotically equivalent to first order.)
These estimators are referred to as IPW and EIF, respectively. In the rest of this subsec-
tion, we provide some brief intuition for these estimators, but we relegate most of the
technical and implementation details to section 7.

IPW estimation follows the work of Hirano, Imbens, and Ridder (2003) and Firpo
(2007) for binary mean and quantile treatment effects and extends the idea of inverse-
probability weighting to a multivalued treatment context (also see Imbens [2000]). The
estimator is motivated by simply noting that for each treatment level j,

E

{
d(j) (y − μj)

pj(x)

}
= E

[
E{d(j)|x} E{y(j)− μj |x}

pj(x)

]
= E{y(j)− μj} = 0

and, similarly,

E

(
d(j) [1{y ≤ qj(τ)} − τ ]

pj(x)

)
= E[1{y(j) ≤ qj(τ)} − τ ] = 0

These calculations lead to a collection of moment conditions based on observed data
only. For the mean of potential-outcome distribution j, we have

E [ψIPW,j{zi;μj , pj(xi)}] = 0 with ψIPW,j{zi;μj , pj(xi)} =
di(j) (yi − μj)

pj(xi)

Similarly, for each τth quantile of jth potential-outcome distribution, we have

E [ψIPW,j{zi; qj(τ), pj(xi)}] = 0 with

ψIPW,j{zi; qj(τ), pj(xi)} =
di(j) [1{yi ≤ qj(τ)} − τ ]

pj(xi)

The only unknown functions for the IPW estimators are the conditional probability
functions pj(x), j = 0, 1, . . . , J , forming the GPS p(x), which can be estimated para-
metrically or nonparametrically. If we let p̂(x) = {p̂0(x), p̂1(x), . . . , p̂J (x)}′ be one such
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estimator, a plug-in approach leads to the following estimators discussed in Cattaneo
(2010) for the mean and τth quantile (of the jth potential-outcome distribution), re-
spectively,

μ̂IPW,j s.th.
1

n

n∑
i=1

ψIPW,j {zi; μ̂IPW,j , p̂j(xi)} = 0

and

q̂IPW,j(τ) s.th.
1

n

n∑
i=1

ψIPW,j {zi; q̂IPW,j(τ), p̂j(xi)} = 0

To gain some intuition, we notice that in the case of the jth mean, the estimator
can be expressed in closed form:

μ̂IPW,j =

{
n∑

i=1

di(j)

p̂j(xi)

}−1 n∑
i=1

di(j) yi
p̂j(xi)

This shows that this approach leads to IPW estimators with proper reweighting. We
further discuss this feature in the next subsection.

The moment conditions for the EIF use the complete form of the EIF of the estimands
rather than just one portion of it. This approach involves other nonparametric functions
that need to be estimated, but it enjoys certain robustness properties that may be
appealing from a practical point of view, as we further discuss in section 2.3. To
describe these estimators in the special case of means and quantiles, we first introduce
the following additional functions,

ej(xi;μj) = E{yi(j)− μj |xi} = E(yi − μj |xi, wi = j)

and

ej{xi; qj(τ)} = E[1 {yi(j) ≤ qj(τ)} − τ |xi] = E[1 {yi ≤ qj(τ)} − τ |xi, wi = j]

for each treatment level j. These conditional expectations can be estimated from the
observed data.

The EIF estimator is then constructed using the following moment conditions for the
mean and τ quantile of the jth potential outcome,

E [ψEIF {zi;μj , pj(xi), ej(·;μj)}] = 0 with

ψEIF {zi;μj , pj(xi), ej(·;μj)} =
di(j) (yi − μj)

pj(xi)
− ej(xi;μj)

pj(xi)
{di(j)− pj(xi)}
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and

E (ψEIF[zi; qj(τ), pj(xi), ej{·; q(τ)}]) = 0 with

ψEIF[zi; qj(τ), pj(xi), ej{·; qj(τ)}]

=
di(j) [1{yi ≤ qj(τ)} − τ ]

pj(xi)
− ej{xi; q(τ)}

pj(xi)
{di(j)− pj(xi)}

As in the case of the IPW estimator, the EIF estimator uses these moment condi-
tions, replacing expectations by sample averages and unknown functions by appropriate
(parametric or nonparametric) estimators, leading to the estimates

μ̂EIF,j s.th.
1

n

n∑
i=1

ψEIF {zi; μ̂EIF,j , p̂j (xi) , êj (·; μ̂EIF,j)} = 0

and

q̂EIF,j(τ) s.th.
1

n

n∑
i=1

ψEIF [zi; q̂EIF,j(τ), τ, p̂j(xi), êj {·; q̂EIF,j(τ)}] = 0

for the jth mean and τ quantile, respectively.

There are, of course, several important implementation details surrounding these
procedures, including the choice of (non) parametric estimators p̂j(xi), êj(·;μj), and
êj{·; qj(τ)}, numerical optimization issues, and standard-error estimators. We address
all the details in section 7.

2.3 Some features of the implemented procedures

In this section, we offer some remarks on the estimands and implemented estimators
considered in this article.

1. Under standard regularity conditions, the IPW and EIF estimators are consistent,
asymptotically normal, and semiparametric efficient when nonparametric estima-
tors are used to approximate the unknown functions introduced above. Thus, from
a semiparametric perspective, these estimators are asymptotically equivalent. We
discuss these results and how we use them to conduct asymptotically valid joint
inference on multivalued mean and quantile treatment effects in section 7. In that
section, we detail our variance–covariance matrix estimator (VCE).

2. Because we construct the joint VCE, we can conduct joint inference on the mean
and quantile of the potential-outcome distributions, and hence, we can also con-
duct valid inferences on many other treatment-effect parameters of interest. We
illustrate this process in some detail in section 5.
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3. Both the IPW and EIF estimators can be used to construct simple inference pro-
cedures for joint means and quantiles of the potential-outcome distributions and
combinations thereof. While the average treatment effect in binary-treatment con-
texts, or more generally the difference in means of potential outcomes in the case
of a multivalued treatment, is probably the most frequently used measure of a
treatment effect, such a central tendency measure is only one of many interesting
possibilities. Differences in the quantiles of potential-outcome distributions can
uncover effects of a treatment that differ importantly from those measured by
the average treatment effect or its analogue in the context of multivalued treat-
ments. Indeed, the treatment effects may differ remarkably at low, middle, and
upper quantiles of the potential-outcome distribution; thus conducting inferences
on quantile treatment effects allows applied researchers to investigate the existence
of such potential differences.

Importantly, and as it is well known, differences in quantiles need not always
correspond to quantile treatment effects. Specifically, qj(τ)− ql(τ), for some pair
of distinct treatment levels j and l, is usually understood as a measure of how the
τth quantile of the distribution of the outcome variable would change if everyone
in the population were given treatment j instead of treatment l, even though the
quantile of the differences need not coincide with the differences in the quantiles.

4. While the IPW and EIF estimators are semiparametric efficient and asymptoti-
cally equivalent, we recommend using the EIF estimator because it enjoys the
so-called double-robust property when viewed from a (flexible) parametric imple-
mentation perspective (the IPW estimator does not have this property). See, for
example, van der Laan and Robins (2003), Imbens and Wooldridge (2009), and
Wooldridge (2010) for reviews. The EIF estimator can be interpreted as a non-
parametric version of the doubly robust estimators: although we interpret the
estimators p̂j(·), êj(·;μj), and êj{·; qj(τ)} as consistent nonparametric estimators
of their population counterparts, from a more (flexible) parametric perspective,
the EIF estimators require only that either i) p̂j(·) or ii) êj(·;μj) and êj{·; qj(τ)}
be “correctly specified”. Thus, from this perspective, the EIF estimator could be
argued to possibly dominate the IPW estimator. In poparms, the EIF estimator
is the default. (For further discussion on the double-robust property, also see
Kang and Schafer [2007] and the accompanying comments and rejoinder.)

5. While the IPW estimator may be preferred over the EIF because of its simplicity,
it is important to note that the VCE for the IPW estimator requires implementing
all the ingredients of the EIF estimator. Thus the IPW estimator is simpler only
as a point estimator. See section 7 for more details.

6. The IPW estimator is well known and has a long tradition in the literature of
missing data, treatment effects, and measurement error and survey, at least since
the work of Horvitz and Thompson (1952). The implementation considered here
is slightly different from the standard one because the resulting estimators use
a different weighting scheme: the weights associated with the propensity score
sum to 1. Busso, DiNardo, and McCrary (2013) report Monte Carlo evidence
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suggesting that IPW estimators that divide by the sum of the weights perform
better than IPW estimators that divide the number of observations when some
of the predicted propensity scores are very small; also see Millimet and Tchernis
(2009). Thus the estimators implemented in poparms, which are motivated from a
theoretical Z-estimation perspective, are expected to exhibit a good performance
in applications because they divide by the sum of the weights.

7. It may be useful to extend the methods in Cattaneo (2010) to include population
parameters for subpopulations of interest such as treated and control groups.
These estimands would be useful to generalize the average treatment effect on the
treated and the quantile treatment effect on the treated from the binary treatment
effect literature to the case of multivalued treatment effects. We plan to address
these extensions in future work.

3 The poparms command

This section describes the syntax of the poparms command to conduct point estimation
and inference across and between mean and quantiles of the different potential-outcome
distributions.

3.1 Syntax

poparms (treatvar gpsvars) (depvar cvars)
[
if
] [

in
] [

, quantiles(numlist)

vce(vcemethod
[
, vceoptions

]
) ipw

]
treatvar is a categorical variable indicating treatment.

gpsvars are the covariates in the equations for the GPS.

depvar is the outcome variable.

cvars are the covariates on which conditional moments are calculated in the EIF esti-
mator.

gpsvars and cvars may contain factor variables.

3.2 Description

poparms estimates the means and quantiles of the potential-outcome distributions of
depvar corresponding to each level of the treatment variable treatvar.

You must specify both the polynomial in the covariates for the GPS in gpsvars and
the polynomial in the covariates for the conditional mean in cvars; see section 5 for an
example.
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We discuss how to use the bfit command to select the variables for gpsvars and
cvars in section 5. We discuss the syntax of bfit in section 4.

3.3 Options

quantiles(numlist) specifies the quantiles of the potential-outcome distributions that
are to be estimated jointly with the means. By default, only the means are es-
timated. The values in the number list must be greater than 0 and less than 1.
By default, method vce(bootstrap) is used when quantiles() is specified. We
strongly recommend not using vce(analytic) when quantiles() is specified.

vce(vcemethod
[
, vceoptions

]
) specifies the method for estimating the variance–co-

variance of the estimator. The three available methods are bootstrap, analytic,
and none. With method bootstrap, the vceoption reps(#) specifies the number
of bootstrap repetitions to perform. With method analytic, the vceoptions are
bwscale(#), bwidths(matname), and densities(matname). These suboptions
are mutually exclusive. By default, poparms uses an analytic estimator when only
means are estimated but uses a bootstrap estimator when quantiles are estimated.
The analytic method for quantiles requires estimating the density of each potential
outcome evaluated at each (estimated) quantile level. We implement this estimator
using a nonparametric kernel-based density estimator, which requires a choice of
bandwidth. See section 7 for details. In our Monte Carlo simulations (section 6),
the resulting analytic standard-error estimator performed poorly, exhibiting great
sensitivity to the bandwidth choice; therefore, we cannot recommend using this
analytic method when quantiles are specified.

With method bootstrap, you may change the number of repetitions from the default
2,000 by specifying vce(bootstrap, reps(#)). The specified number of repetitions
must be an integer greater than 49.

With method analytic, you may rescale the ad hoc rule-of-thumb (ROT) band-
widths used to estimate the densities by specifying vce(analytic, bwscale(#)).
The specified number must be in the interval [0.1, 10].

With method analytic, you may specify the bandwidths used to estimate the den-
sities by specifying vce(analytic, bwidths(matname)), where matname specifies
a Stata row vector with the number of columns equal to the number of quantiles
times the number of treatment levels.

With method analytic, you may specify the value of each density at each quantile
level used by specifying vce(analytic, densities(matname)), where matname
specifies a Stata row vector with the number of columns equal to the number of
quantiles times the number of treatment levels.

ipw specifies that poparms use the IPW estimator instead of the default EIF estimator.
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4 The bfit command

4.1 Syntax

bfit regress depvar indepvars
[
if
] [

in
] [

, corder(#) sort(bic | aic)
coptions

]
bfit logit depvar indepvars

[
if
] [

in
] [

, corder(#) sort(bic | aic) coptions
]

bfit poisson depvar indepvars
[
if
] [

in
] [

, corder(#) sort(bic | aic)
coptions

]
4.2 Description

Each bfit subcommand sorts a set of fitted candidate regression models by an infor-
mation criterion, puts the best-fitting model in ereturn, and displays a table showing
the ranking of the models. The Bayesian information criterion (BIC) is the default, and
the Akaike information criterion (AIC) may optionally be specified.

bfit regress fits the candidate linear-regression models by ordinary least squares
(OLS). bfit logit fits the candidate multinomial logit models (MLMs) by maximum
likelihood. bfit poisson fits the candidate Poisson regression models by maximum
likelihood.

For each bfit subcommand, the candidate models are a series of polynomials in
indepvars. The smallest of the candidate models includes only the first variable specified
in indepvars. The largest of the candidate models is a fully interacted polynomial of
the order specified in corder(). See 7.1 for details on the set of candidate models.

4.3 Options

corder(#) specifies the maximum order of the covariate polynomial. The default is
corder(2), which specifies a fully interacted second-order polynomial.

sort(bic | aic) specifies the information criterion by which the candidate models are
to be sorted. The default is sort(bic), which sorts the fitted candidate models by
the BIC. sort(aic) sorts the fitted candidate models by the AIC.

coptions are passed to the estimation command. The allowable options depend on
the estimation command invoked by the subcommand. For example, base() may
be specified only with the logit subcommand. See [R] regress, [R] logit, and
[R] poisson for the allowable command options.



418 Multivalued treatment effects

5 A numerical example

In spmdata, we have some simulated data from a fictitious study that allows us to
illustrate how to make some of the modeling choices and how to interpret the parameters.
The goal of this imaginary study was to estimate the population effects of harder tests
on student performance. Suppose that at the beginning of the year, each student is
assigned to one of three possible class types: a class with normal tests (w = 0), a class
whose tests included some hard questions (w = 1), or a class whose tests included even
harder questions (w = 2). At the end of the year, student performance was measured
by tests and interviews, the results of which were combined into a normalized index,
spmeasure. The end-of-year tests were the same over all three class types. In this
fictional study, we want to know whether some hard questions (w = 1) or even harder
questions (w = 2) increase student performance relative to the control level of w = 0.

We assume that the potential outcomes of spmeasure were independent of the as-
signment of students to classes after controlling for the continuous variables parental
status, pindex, and the student’s environment, eindex.

As mentioned above, the estimators implemented in poparms require that we specify
a model for the GPS and for the conditional mean. We first discuss and select a model
for the GPS and then for the conditional mean.

The estimators in poparms use an MLM to predict the probability of each treatment
level as a function of covariates. Cattaneo (2010) treats this estimator as nonparamet-
ric; the purpose is to predict the treatment probabilities, while the coefficients in the
MLM are of no interest in themselves. From a theoretical perspective, it is assumed
that a sufficient number of terms in a polynomial of the covariates are included in the
MLM. The practical implication of this approach is that we must find an MLM for treat-
ment probabilities before using poparms. We use our bfit command to automate this
procedure.

In section 4, we discuss the syntax and implementation of bfit. At this point, we
provide only the details required for our example. We select the MLM that minimizes
the AIC from a set of candidate models. Our set of models are MLMs with increasingly
rich polynomials in the covariates.

5.1 Preestimation analysis

In the output below, we specify the logit subcommand with the bfit command to cause
bfit to search among candidate MLMs. The covariates pindex and eindex follow the
outcome variable w. The option corder(3) specifies that bfit should fit a sequence of
models that builds up to a fully interacted, third-order polynomial in the two covariates.
We specify the option base(0) so that w=0 will be the base category for the candidate
MLMs. Finally, we specify option aic to select the model that minimizes the AIC instead
of using the default BIC.
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. use spmdata

. bfit logit w pindex eindex, corder(3) base(0) sort(aic)

bfit logit results sorted by aic

Model Obs ll(null) ll(model) df AIC BIC

_bfit_5 5000 -5492.867 -5445.067 12 10914.13 10992.34
_bfit_6 5000 -5492.867 -5443.451 14 10914.9 11006.14
_bfit_9 5000 -5492.867 -5438.61 20 10917.22 11047.56
_bfit_8 5000 -5492.867 -5440.768 18 10917.54 11034.85
_bfit_7 5000 -5492.867 -5443.339 16 10918.68 11022.95
_bfit_3 5000 -5492.867 -5458.089 8 10932.18 10984.32
_bfit_4 5000 -5492.867 -5456.19 10 10932.38 10997.55
_bfit_2 5000 -5492.867 -5478.629 6 10969.26 11008.36
_bfit_1 5000 -5492.867 -5488.85 4 10985.7 11011.77

Note: N= used in calculating BIC
(results _bfit_5 are active now)

The above output shows that bfit estimated the parameters of nine different MLMs
and that the fifth model, stored in memory under the name bfit 5, minimizes the
AIC. The output also indicates that the results from model bfit 5 are the results in
ereturn.
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To see these results, we use the replay feature of mlogit in the output below.

. mlogit

Multinomial logistic regression Number of obs = 5000
LR chi2(10) = 95.60
Prob > chi2 = 0.0000

Log likelihood = -5445.067 Pseudo R2 = 0.0087

w Coef. Std. Err. z P>|z| [95% Conf. Interval]

0 (base outcome)

1
pindex .119614 .0516415 2.32 0.021 .0183986 .2208295
eindex .1648585 .0515396 3.20 0.001 .0638428 .2658742

c.pindex#
c.pindex .2932857 .0551735 5.32 0.000 .1851476 .4014238

c.pindex#
c.eindex .0730155 .0774321 0.94 0.346 -.0787487 .2247797

c.eindex#
c.eindex .1875037 .0537868 3.49 0.000 .0820835 .2929238

_cons -.2040544 .0497818 -4.10 0.000 -.3016248 -.106484

2
pindex .1629716 .0517606 3.15 0.002 .0615227 .2644205
eindex .242823 .0514467 4.72 0.000 .1419893 .3436567

c.pindex#
c.pindex .3263785 .0551118 5.92 0.000 .2183614 .4343957

c.pindex#
c.eindex .1426304 .0771243 1.85 0.064 -.0085305 .2937913

c.eindex#
c.eindex .2385979 .0534097 4.47 0.000 .1339169 .3432789

_cons -.2727777 .0503034 -5.42 0.000 -.3713705 -.1741848

We see that bfit selected a fully interacted, second-order polynomial. We consider
this our working model for the GPSs, despite the fact that the 2 interaction terms are
not significantly different from 0 at the 5% level.

Before we proceed, we need to check that all the predicted probabilities are suf-
ficiently greater than 0 and less than 1. If some predicted probabilities from the se-
lected MLM are too close to either 0 or 1, the parameters may not be identifiable.
Khan and Tamer (2010) give a theoretical discussion on the potential pitfalls of small
propensity scores, and Busso, DiNardo, and McCrary (2013) provide simulation evi-
dence. Drukker and Wiggins (2004) argue that even for identifiable estimands, a con-
sistent estimator may not work well in all possible samples, which in the present context
suggests that when the predicted probabilities are too small, the combination of esti-
mator and sample may lead to an ill-performing inference procedure.
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Following Busso, DiNardo, and McCrary (2013), we discuss how to use overlap plots
to look for potential problematic cases. For each treatment level j, an overlap plot de-
picts the estimated density of the predicted probabilities for treatment level j conditional
on each possible treatment level. If any estimated density displays a sufficient mass near
0 or 1, the predicted probabilities are too close to 0 or 1, and the semiparametric es-
timators will probably not perform well in finite samples, even when assumption 1(b)
holds.

In the output below, we compute the predicted probabilities for each treatment level
and summarize each predicted probability conditional on each treatment level.

. predict double (phat0 phat1 phat2), pr

. sort w

. by w: summarize phat0 phat1 phat2

-> w = 0

Variable Obs Mean Std. Dev. Min Max

phat0 1666 .3441123 .0504371 .0926236 .4011283
phat1 1666 .3339166 .0174793 .3133332 .4420854
phat2 1666 .3219711 .0349155 .2852155 .5207362

-> w = 1

Variable Obs Mean Std. Dev. Min Max

phat0 1685 .3302699 .0628426 .0480128 .4012017
phat1 1685 .3379785 .0200443 .3133551 .4608249
phat2 1685 .3317516 .0460445 .2852104 .6110826

-> w = 2

Variable Obs Mean Std. Dev. Min Max

phat0 1649 .3251693 .0661943 .0321425 .4012229
phat1 1649 .3391154 .0207652 .3133495 .4424814
phat2 1649 .3357154 .0488648 .2852087 .652054

While the above summaries would catch flagrant cases, overlap plots are also help-
ful. For instance, do the small minimums for phat0 likely indicate a problem? Below
we estimate the conditional densities of the predicted probability of treatment level 0
conditional on each treatment level observed. We use option nograph to suppress the
graph and use the generate() option to store the abscissa and density values because
we want to plot the three densities on a single graph. The n(5000) option causes the
density estimates to be based on all the observations, and we specify kernel(triangle)

because this kernel has finite support.



422 Multivalued treatment effects

. kdensity phat0 if w==0, generate(xp00 den00) nograph n(5000) kernel(triangle)

. kdensity phat0 if w==1, generate(xp01 den01) nograph n(5000) kernel(triangle)

. kdensity phat0 if w==2, generate(xp02 den02) nograph n(5000) kernel(triangle)

. twoway line den00 xp00 || line den01 xp01 || line den02 xp02,
> legend(label(1 "w==0") label(2 "w==1") label(3 "w==2"))
> title("Conditional densities for probability of treatment level 0")
> name(pw0)

After computing the predicted densities, the twoway command plots the three den-
sities on a single graph, shown in figure 1.
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Figure 1. Densities for treatment level 0

This graph presents no evidence that there is any mass of observations with predicted
probabilities close to either 0 or 1. None of the predicted densities show any mass for
values too close to 0 or 1.

In the output below, we perform the analogous calculations to estimate the condi-
tional densities for treatment levels 1 and 2.

. kdensity phat1 if w==0, generate(xp10 den10) nograph n(5000) kernel(triangle)

. kdensity phat1 if w==1, generate(xp11 den11) nograph n(5000) kernel(triangle)

. kdensity phat1 if w==2, generate(xp12 den12) nograph n(5000) kernel(triangle)

. kdensity phat2 if w==0, generate(xp20 den20) nograph n(5000) kernel(triangle)

. kdensity phat2 if w==1, generate(xp21 den21) nograph n(5000) kernel(triangle)

. kdensity phat2 if w==2, generate(xp22 den22) nograph n(5000) kernel(triangle)
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Now we use twoway to plot the estimated densities in two graphs, shown in figures 2
and 3.

. twoway line den10 xp10 || line den11 xp11 || line den12 xp12,
> legend(label(1 "w==0") label(2 "w==1") label(3 "w==2"))
> title("Conditional densities for probability of treatment level 1")
> name(pw1)

. twoway line den20 xp20 || line den21 xp21 || line den22 xp22,
> legend(label(1 "w==0") label(2 "w==1") label(3 "w==2"))
> title("Conditional densities for probability of treatment level 2")
> name(pw2)

0
10

20
30

40
de

ns
ity

: P
r(w

==
1)

.3 .35 .4 .45 .5
Pr(w==1)

w==0 w==1
w==2

Conditional densities for probability of treatment level 1

Figure 2. Densities for treatment level 1
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Figure 3. Densities for treatment level 2

Neither graph shows any mass too close to 0 or 1 in our artificial dataset. Given
that the overlap plots of the predicted probabilities from our selected model show no
cause for concern, we proceed with bfit 5 as our model for the predicted probabilities.

Having selected a model for the predicted probabilities, we then select a model for
the conditional means. In the output below, we specify the regress subcommand with
the bfit command to cause bfit to search among candidate models whose parame-
ters can be estimated by OLS. The covariates pindex and eindex follow the outcome
variable spmeasure. The option corder(3) specifies that bfit should fit a sequence of
models that builds up to a fully interacted, third-order polynomial in the two covariates.
These models specify nonlinear regression functions that are linear in the parameters
permitting the use of the OLS estimator.

. bfit regress spmeasure pindex eindex, corder(3)

bfit regress results sorted by bic

Model Obs ll(null) ll(model) df AIC BIC

_bfit_5 5000 -9459.868 -7572.222 6 15156.44 15195.55
_bfit_6 5000 -9459.868 -7568.105 7 15150.21 15195.83
_bfit_7 5000 -9459.868 -7565.506 8 15147.01 15199.15
_bfit_9 5000 -9459.868 -7560.053 10 15140.11 15205.28
_bfit_8 5000 -9459.868 -7564.766 9 15147.53 15206.19
_bfit_4 5000 -9459.868 -7885.959 5 15781.92 15814.5
_bfit_3 5000 -9459.868 -8036.736 4 16081.47 16107.54
_bfit_2 5000 -9459.868 -8253.596 3 16513.19 16532.74
_bfit_1 5000 -9459.868 -8933.951 2 17871.9 17884.94

Note: N= used in calculating BIC
(results _bfit_5 are active now)
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The above output shows that bfit estimated the parameters of nine different regres-
sion models by OLS and that the fifth model, stored in memory under the name bfit 5,
minimizes the BIC. The output also indicates that the results from model bfit 5 are
the results in ereturn.

To see these results, we use the replay feature of regress in the output below.

. regress

Source SS df MS Number of obs = 5000
F( 5, 4994) = 1126.38

Model 6825.47129 5 1365.09426 Prob > F = 0.0000
Residual 6052.36854 4994 1.21192802 R-squared = 0.5300

Adj R-squared = 0.5295
Total 12877.8398 4999 2.57608318 Root MSE = 1.1009

spmeasure Coef. Std. Err. t P>|t| [95% Conf. Interval]

pindex .9996322 .0221043 45.22 0.000 .956298 1.042966
eindex 1.026162 .0222179 46.19 0.000 .9826049 1.069719

c.pindex#
c.pindex .5426225 .0224409 24.18 0.000 .4986285 .5866166

c.pindex#
c.eindex .5762576 .0319718 18.02 0.000 .5135788 .6389365

c.eindex#
c.eindex .5781937 .0223753 25.84 0.000 .5343283 .6220591

_cons .0932159 .0221566 4.21 0.000 .0497793 .1366526

We see that bfit selected a fully interacted, second-order polynomial. Because the
output presents no indication of any problems, we accept this model as our model for
the conditional mean. Note that for simplicity, we use the same flexible specification
for both regression functions.
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For easy access, bfit stores the varlist of the selected model in the local macro
r(bvlist). Below we show how to replicate the above regress results to illustrate this
feature; see [U] 18.3.1 Local macros if you are not familiar with local macros.

. quietly bfit regress spmeasure pindex eindex, corder(3)

. regress spmeasure `r(bvlist)´

Source SS df MS Number of obs = 5000
F( 5, 4994) = 1126.38

Model 6825.47129 5 1365.09426 Prob > F = 0.0000
Residual 6052.36854 4994 1.21192802 R-squared = 0.5300

Adj R-squared = 0.5295
Total 12877.8398 4999 2.57608318 Root MSE = 1.1009

spmeasure Coef. Std. Err. t P>|t| [95% Conf. Interval]

pindex .9996322 .0221043 45.22 0.000 .956298 1.042966
eindex 1.026162 .0222179 46.19 0.000 .9826049 1.069719

c.pindex#
c.pindex .5426225 .0224409 24.18 0.000 .4986285 .5866166

c.pindex#
c.eindex .5762576 .0319718 18.02 0.000 .5135788 .6389365

c.eindex#
c.eindex .5781937 .0223753 25.84 0.000 .5343283 .6220591

_cons .0932159 .0221566 4.21 0.000 .0497793 .1366526

5.2 Mean effects

Having selected models for both the predicted probabilities and the conditional mean,
we now use poparms to estimate the means of the potential-outcome distributions for
each value of w in the sample. While we discuss the complete syntax of poparms in
section 3.1, the output below illustrates that poparms takes two equations. The first
equation specifies the model for the predicted probabilities; the second equation specifies
the model for the conditional expectations (for the means and quantiles).

. poparms (w c.(pindex eindex)##c.(pindex eindex))
> (spmeasure c.(pindex eindex)##c.(pindex eindex))

Treatment Mean and Quantiles Estimation Number of obs = 5000
(efficient influence function)

analytic
spmeasure Coef. Std. Err. z P>|z| [95% Conf. Interval]

w
0 .1983929 .0114294 17.36 0.000 .1759916 .2207942
1 .5277476 .022959 22.99 0.000 .4827488 .5727464
2 .9149628 .0336986 27.15 0.000 .8489147 .981011
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The above output reports the estimated means for each of the three potential-
outcome distributions of the outcome variable spmeasure. The output indicates that
the means of the potential-outcome distributions are increasing in the treatment level.
In this case, we are more interested in contrasts of these parameters than in the param-
eters themselves.

In the output below, we replay the poparms results with the coeflegend option
to see the parameter names. The resulting output reveals that the parameter names
use factor-variable notation. This convention makes the contrast command work after
poparms. Thus we then use contrast to estimate the population-averaged treatment
effects of getting treatment 1 instead of 0 and treatment 2 instead of 1.

. poparms, coeflegend

Treatment Mean and Quantiles Estimation Number of obs = 5000
(efficient influence function)

spmeasure Coef. Legend

w
0 .1983929 _b[0bn.w]
1 .5277476 _b[1.w]
2 .9149628 _b[2.w]

. contrast ar.w, nowald
Warning: cannot perform check for estimable functions.

Contrasts of marginal linear predictions

Margins : asbalanced

Contrast Std. Err. [95% Conf. Interval]

w
(1 vs 0) .3293547 .025636 .2791091 .3796003
(2 vs 1) .3872153 .0300574 .3283037 .4461268

The above output indicates that the estimated average treatment effect of going from
class-type 0 to class-type 1 is 0.3294 and is statistically different from 0. Similarly, the
output indicates that the estimated average treatment effect of going from class-type 1
to class-type 2 is 0.3872 and is statistically different from 0. The overlapping confidence
intervals suggest that we will not reject the null hypothesis that these two treatment
effects have the same value. We further discuss this in the upcoming subsections.



428 Multivalued treatment effects

Below we use contrast to estimate the average treatment effects of changing the
treatment level from 0 to 1 and from 0 to 2.

. contrast r.w, nowald
Warning: cannot perform check for estimable functions.

Contrasts of marginal linear predictions

Margins : asbalanced

Contrast Std. Err. [95% Conf. Interval]

w
(1 vs 0) .3293547 .025636 .2791091 .3796003
(2 vs 0) .71657 .0355852 .6468241 .7863158

These results show the estimated average treatment effects of treatment-level 1 ver-
sus the control level of 0 and the estimated average treatment effects of treatment-level
2 versus the control level of 0. The results for 1 versus 0 are the same as above. The
output indicates that the estimated average effect of changing the treatment level from 0
to 2 is 0.7166 and that it is statistically different from 0. The nonoverlapping confidence
intervals suggest also that we will reject the null hypothesis that these two treatment
effects have the same value, as discussed below.

Although it may not be the goal of our fictional study, another common task is to
estimate all pairwise comparisons. Below we use margins to compute the estimates and
use marginsplot to plot the three estimated effects and their confidence intervals.

. margins i.w, pwcompare
Warning: cannot perform check for estimable functions.

Pairwise comparisons of adjusted predictions
Model VCE : analytic

Expression : Linear prediction, predict()

Delta-method Unadjusted
Contrast Std. Err. [95% Conf. Interval]

w
1 vs 0 .3293547 .025636 .2791091 .3796003
2 vs 0 .71657 .0355852 .6468241 .7863158
2 vs 1 .3872153 .0300574 .3283037 .4461268
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. marginsplot, unique plotopts(connect(none))

Variables that uniquely identify margins: _pw

_pw enumerates all pairwise comparisons; _pw0 enumerates the reference
categories; _pw1 enumerates the comparison categories.

Figure 4 shows the graph produced by marginsplot.
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Figure 4. Estimated effects and confidence intervals

Although this example is trivial, the marginsplot command becomes increasingly
useful as the number of treatment levels increases.

5.3 Quantile effects

poparms estimates not only the means but also the quantiles of the potential-outcome
distributions. As discussed in section 2.3, we need the rank-preservation assumption to
interpret the differences in the quantiles estimated by poparms as quantiles of treatment
effects. Here rank preservation means that a student who would score at the, say, 50th
percentile if all students received treatment 1 would also score at the 50th percentile
if all students received treatment 2 or 3 (and similarly for all other students). This
estimation is indeed done jointly, as we discuss in the next subsection.
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In the output below, we use the quantile() option to jointly estimate the means,
0.25 quantiles, and the 0.75 quantiles of the 3 potential-outcome distributions.

. set seed 12345671

. poparms (w c.(pindex eindex)##c.(pindex eindex))
> (spmeasure c.(pindex eindex)##c.(pindex eindex)),
> quantile(.25 .5 .75)

Treatment Mean and Quantiles Estimation Number of obs = 5000
(efficient influence function)

bootstrap
spmeasure Coef. Std. Err. z P>|z| [95% Conf. Interval]

mean
w

0 .1983929 .011701 16.96 0.000 .1754594 .2213263
1 .5277476 .0226869 23.26 0.000 .483282 .5722132
2 .9149628 .0344245 26.58 0.000 .847492 .9824337

q25
w

0 .0078533 .0008762 8.96 0.000 .006136 .0095707
1 -.1401748 .0123894 -11.31 0.000 -.1644575 -.1158921
2 -.4078067 .0281641 -14.48 0.000 -.4630073 -.3526061

q50
w

0 .0481364 .0029476 16.33 0.000 .0423592 .0539136
1 .1251076 .0157332 7.95 0.000 .0942711 .1559441
2 .2726521 .0384106 7.10 0.000 .1973687 .3479355

q75
w

0 .1930453 .0118169 16.34 0.000 .1698846 .2162059
1 .7353868 .0445843 16.49 0.000 .6480031 .8227705
2 1.567837 .0638119 24.57 0.000 1.442768 1.692907

The above output shows that the estimated 0.25 quantiles of the potential-outcome
distributions corresponding to treatment levels 0, 1, and 2 are 0.0079, −0.1402, and
−0.4078, respectively. Similarly, the output shows that the estimated 0.75 quantiles of
the potential-outcome distributions corresponding to treatment levels 0, 1, and 2 are
0.1930, 0.7354, and 1.5678, respectively.

As stated in the output, the VCE was estimated by a bootstrap. We used the default
number of 2,000 repetitions. We recommend using the bootstrap method to estimate
the VCE when estimating quantiles, as discussed in section 7.3.

As in the case of means, our interest lies in differences of a given quantile across
the potential-outcome distributions. The following questions describe some examples
of why these comparisons may be of interest: Is the 0.25 quantile of the potential-
outcome distribution at treatment level 1 the same as the 0.25 quantile of the potential-
outcome distribution at treatment level 0? Is the 0.25 quantile of the potential-outcome
distribution at treatment level 2 the same as the 0.25 quantile of the potential-outcome
distribution at treatment level 0? The same questions can be recast for other quantiles.
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In the output below, we use the margins command to formally estimate the differ-
ences of interest for the 0.25 quantile. This command uses the predict(equation(#2))
option to specify the second equation (that is, the 25th quantile) in the output obtained
above from poparms.

. margins i.w, pwcompare predict(equation(#2))
Warning: cannot perform check for estimable functions.

Pairwise comparisons of adjusted predictions
Model VCE : bootstrap

Expression : Linear prediction, predict(equation(#2))

Delta-method Unadjusted
Contrast Std. Err. [95% Conf. Interval]

w
1 vs 0 -.1480281 .0124135 -.1723582 -.123698
2 vs 0 -.41566 .0281952 -.4709216 -.3603984
2 vs 1 -.2676319 .0287559 -.3239924 -.2112714

The output shows that the estimated difference between the 0.25 quantile of the
population potential-outcome distribution when everyone gets class-type 1 and the 0.25
quantile of the population potential-outcome distribution when everyone gets class-
type 0 is −0.1480. The estimated difference between the 0.25 quantile of the population
potential-outcome distribution when everyone gets class-type 2 and the 0.25 quantile
of the population potential-outcome distribution when everyone gets class-type 0 is
−0.4157.

Next we look at the median, which is the third equation in the output from poparms

above. Thus we obtain

. margins i.w, pwcompare predict(equation(#3))
Warning: cannot perform check for estimable functions.

Pairwise comparisons of adjusted predictions
Model VCE : bootstrap

Expression : Linear prediction, predict(equation(#3))

Delta-method Unadjusted
Contrast Std. Err. [95% Conf. Interval]

w
1 vs 0 .0769712 .0159921 .0456273 .1083151
2 vs 0 .2245157 .038555 .1489493 .300082
2 vs 1 .1475445 .0365091 .0759879 .219101
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Finally, for the 0.75 quantiles we simply obtain:

. margins i.w, pwcompare predict(equation(#4))
Warning: cannot perform check for estimable functions.

Pairwise comparisons of adjusted predictions
Model VCE : bootstrap

Expression : Linear prediction, predict(equation(#4))

Delta-method Unadjusted
Contrast Std. Err. [95% Conf. Interval]

w
1 vs 0 .5423415 .0463722 .4514537 .6332294
2 vs 0 1.374792 .0652904 1.246825 1.502759
2 vs 1 .8324507 .0660554 .7029844 .9619169

The output shows that the estimated difference between the 0.75 quantile of the
population potential-outcome distribution when everyone gets class-type 1 and the 0.75
quantile of the population potential-outcome distribution when everyone gets class-
type 0 is 0.5423. The estimated difference between the 0.75 quantile of the population
potential-outcome distribution when everyone gets class-type 2 and the 0.75 quantile of
the population potential-outcome distribution when everyone gets class-type 0 is 1.3748.

The two sets of quantile results present different pictures of the program’s effects than
the one presented by the mean results. The mean results indicate that assigning students
to class-type 1 instead of class-type 0 increased student performance on average. The
mean results also indicate that assigning students to class-type 2 instead of class-type
0 increased student performance on average by even more.

The 0.25 quantile results indicate that assigning students to class-type 1 instead of
class-type 0 decreases the performance of lower-end students. The 0.25 quantile results
also indicate that assigning students to class-type 2 instead of class-type 0 decreases the
performance of lower-end students by even more.

In contrast, the 0.75 quantile results indicate that assigning students to class-type
1 instead of class-type 0 increases the performance of upper-end students. The 0.75
quantile results also indicate that assigning students to class-type 2 instead of class-
type 0 increases the performance of upper-end students by even more.

This fictional example illustrates an important benefit to estimating quantile treat-
ment effects in addition to mean treatment effects. Some treatments affect those at the
lower end of the distribution differently than they affect those in the middle or those at
the upper end. In this fictional case, implementing the policy on the basis of the positive
mean treatment effects might have caused unintended consequences on lower-quantile
individuals.
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5.4 Joint mean and quantile effects

poparms also allows for hypothesis testing within and across treatment levels and pa-
rameters of interest. To provide some illustrative examples, we first consider figure 5,
which depicts the estimated means and quantiles for each treatment level with their
corresponding 95% confidence intervals. The do-file that produces this figure can be
downloaded from the Statistical Software Components; type findit poparms for a
link.
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Figure 5. Estimated means and quantiles for treatment levels 0, 1, and 2

This figure shows that the parameters of the potential-outcome distributions have
different trajectories over treatment levels. The means and medians increase almost
linearly, the 25th quantiles decrease nonlinearly, and the 75th quantiles increase non-
linearly. These patterns imply that the spread of the distribution is growing as, in this
case, the treatment level increases.

Next, motivated by figure 5, we illustrate how to perform three joint hypothesis
tests within and across treatment levels. First, consider a hypothesis associated with
zero-incremental treatment effects across means and quantiles. For example, consider
the hypothesis that none of the parameters change over treatment level:

H0 : μ0 = μ1 = μ2

q0(0.25) = q1(0.25) = q2(0.25)

q0(0.50) = q1(0.50) = q2(0.50)

q0(0.75) = q1(0.75) = q2(0.75)
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This joint hypothesis is implemented using the test command as follows:

. test (_b[mean:0.w] = _b[mean:1.w] = _b[mean:2.w])
> (_b[q25:0.w] = _b[q25:1.w] = _b[q25:2.w])
> (_b[q50:0.w] = _b[q50:1.w] = _b[q50:2.w])
> (_b[q75:0.w] = _b[q75:1.w] = _b[q75:2.w])

( 1) [mean]0bn.w - [mean]1.w = 0
( 2) [mean]0bn.w - [mean]2.w = 0
( 3) [q25]0bn.w - [q25]1.w = 0
( 4) [q25]0bn.w - [q25]2.w = 0
( 5) [q50]0bn.w - [q50]1.w = 0
( 6) [q50]0bn.w - [q50]2.w = 0
( 7) [q75]0bn.w - [q75]1.w = 0
( 8) [q75]0bn.w - [q75]2.w = 0

chi2( 8) = 1246.68
Prob > chi2 = 0.0000

As indicated by figure 5, we strongly reject this hypothesis.

Now consider the hypothesis that the increments, as opposed to the levels, across
consecutive treatment levels are constant. The null hypothesis takes the form

H0 : μ1 − μ0 = μ2 − μ1

q1(0.25)− q0(0.25) = q2(0.25)− q1(0.25)

q1(0.50)− q0(0.50) = q2(0.50)− q1(0.50)

q1(0.75)− q0(0.75) = q2(0.75)− q1(0.75)

which is implemented in this case as follows:

. test (_b[mean:1.w] - _b[mean:0.w] = _b[mean:2.w] - _b[mean:1.w] )
> (_b[q25:1.w] - _b[q25:0.w] = _b[q25:2.w] - _b[q25:1.w] )
> (_b[q50:1.w] - _b[q50:0.w] = _b[q50:2.w] - _b[q50:1.w] )
> (_b[q75:1.w] - _b[q75:0.w] = _b[q75:2.w] - _b[q75:1.w] )

( 1) - [mean]0bn.w + 2*[mean]1.w - [mean]2.w = 0
( 2) - [q25]0bn.w + 2*[q25]1.w - [q25]2.w = 0
( 3) - [q50]0bn.w + 2*[q50]1.w - [q50]2.w = 0
( 4) - [q75]0bn.w + 2*[q75]1.w - [q75]2.w = 0

chi2( 4) = 24.91
Prob > chi2 = 0.0001

We also strongly reject the null hypothesis of constant increments. This result is
consistent with the nonlinear patterns in figure 5.

Figure 5 also suggests constant increments for the means and medians, so we formally
test these hypotheses. For the means, we obtain

. test _b[mean:1.w] - _b[mean:0.w] = _b[mean:2.w] - _b[mean:1.w]

( 1) - [mean]0bn.w + 2*[mean]1.w - [mean]2.w = 0

chi2( 1) = 1.83
Prob > chi2 = 0.1763
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and fail to reject the null hypothesis of constant increments. For the medians, we obtain

. test _b[q50:1.w] - _b[q50:0.w] = _b[q50:2.w] - _b[q50:1.w]

( 1) - [q50]0bn.w + 2*[q50]1.w - [q50]2.w = 0

chi2( 1) = 2.95
Prob > chi2 = 0.0861

and only fail to reject the null hypothesis of constant increments at the 5% and 1%
levels but not at the 10% level.

Finally, we conduct a joint hypothesis within each treatment level. In particular,
we test whether the mean and the median are equal for all three potential-outcome
distributions. That is,

H0 : μ0 = q0(0.50)

μ1 = q1(0.50)

μ2 = q2(0.50)

This test yields

. test (_b[mean:0.w] = _b[q50:0.w]) (_b[mean:1.w] = _b[q50:1.w])
> (_b[mean:2.w] = _b[q50:2.w])

( 1) [mean]0bn.w - [q50]0bn.w = 0
( 2) [mean]1.w - [q50]1.w = 0
( 3) [mean]2.w - [q50]2.w = 0

chi2( 3) = 770.76
Prob > chi2 = 0.0000

which shows that these two parameters are indeed different across the three distribu-
tions, as expected from figure 5.

Many other point estimators and hypothesis tests can be easily constructed using the
output of poparms. This covers a large class of potentially interesting treatment-effects
estimands based on means and quantiles of the potential-outcome distributions.

6 Simulations

In this section, we discuss a series of Monte Carlo simulations that illustrate the finite-
sample performance of the implemented methods. Overall, we found that the point
estimates and the estimated VCE for the mean parameter estimators performed very
well. The point estimates for the quantile parameters also performed very well, but the
analytic estimator of the VCE, discussed in section 7.2, did not perform well because we
have not yet found a bandwidth selection method that provides a sufficiently reliable
estimator for the density used to estimate the VCE. A bootstrap estimator for the VCE

with mean and quantile parameter estimators performed very well. Thus we recommend
using the bootstrap estimator for the VCE of the quantile parameter estimator.
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We describe two types of Monte Carlo experiments. The first uses an analytic
estimator of the VCE, while the second uses a bootstrap estimator of the VCE. They
share the same basic design. Next we describe the design and analytic results followed
by the bootstrap results.

6.1 Basic simulation design

We consider four cases: i) the known functional form of nuisance functions pj(·),
ej(·;μj), and ej{·; qj(τ)}; ii) the known functional form of the GPS only; iii) the known
functional form of the regression functions ej(·;μj) and ej{·; qj(τ)} only; and iv) the
unknown functional form of all nuisance functions. In each case, we drew 10,000 repli-
cations from the data-generating process (DGP); each replication had a sample size of
2,000. In each replication, we performed estimation and inference for 9 parameters:
means, 0.25 quantiles, and 0.75 quantiles of 3 treatment levels (j = 1, 2, 3). For each
parameter, repetition, and case, we recorded the EIF point estimate, the EIF standard
error, a binary indicator of whether we reject the null hypothesis that the parameter
equals its true value using the EIF point estimate and standard error, the IPW point
estimate, the IPW standard error, and a binary indicator of whether we reject the null
hypothesis that the parameter equals its true value using the IPW point estimate and
standard error.

6.2 DGPs

We drew from four DGPs. After discussing the common features of all four, we discuss
how they differ.

In all four DGPs, the GPSs are generated from a multinomial logit, and the outcome
variable y comes from aWeibull distribution conditional on the treatment level w and the
two covariates x1 and x2. Each of the two covariates comes from a uniform distribution
over (−0.5, 0.5).

We chose a multinomial logit for the treatment levels w ∈ {1, 2, 3} because we are
interested in assessing what happens when we know the distribution from which the
treatments are generated but not the function of the covariates.

We chose a Weibull distribution for y conditional on x because it is unsymmetric and
specifies the mean and quantiles are nonlinear functions of the parameters of the distri-
bution. We used the Weibull distribution with scale parameter η and shape parameter
θ, which has mean ηΓ {(θ + 1) /θ} and τth quantile η[ln{1/(1 − τ)}](1/θ). By speci-
fying functional forms for the distribution parameters η(x, w) and θ(w), we obtained
a class of models for nonsymmetric distributions with analytic conditional means and
quantiles. We also note that models are conditionally heteroskedastic with variance
η(x, w)2

(
Γ [{θ(w) + 2} /θ(w)]− {Γ [{θ(w) + 2} /θ(w)]}2).

In DGP 1, the functional forms for both the GPS and the conditional mean are known.
In DGP 2, the functional form for the GPS is known, but the functional form for the
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conditional mean is unknown. In DGP 3, the functional form for the GPS is unknown,
but the functional form for the conditional mean is known. In DGP 4, the functional
forms for both the GPS and the conditional mean are unknown.

Here we discuss the functional forms used in each case. Below we discuss how the
estimation was performed. We use different functional forms for the cases of known and
unknown forms because we want the unknown forms to be outside the set of forms that
can be exactly represented.

We begin by describing how we generated the data on the treatment levels. Be-
cause there are three treatment levels (w ∈ {1, 2, 3}) and the true propensity score is a
multinomial logit (with treatment level 1 as base level),

P(wi = 1) =
1

qi
, P(wi = 2) =

ex2i
qi

, P(wi = 3) =
ex3i
qi

where ex2i is the functional form for the covariates for treatment level 2 at observation
i, ex3i is the functional form for the covariates for treatment level 3 at observation i,
and qi = 1 + ex2i + ex3i. Given the probabilities and the (0, 1) uniform variate uwi,

wi =

⎧⎨⎩
1 if uwi ≤ P(wi = 1)
2 if P(wi = 1) < uwi ≤ P(wi = 1) + P(wi = 2)
3 otherwise

When the functional form for the GPS is assumed known, we use

ex2i = exp {1.5 (−.2 + x1i + x2i)}
ex3i = exp {1.2 (−.1 + x1i + x2i)}

If we use a standard MLM, the functional form for the GPS function in the known
case is a polynomial in x1 and x2. If we use a standard MLM, the functional form for
the GPS function in the unknown case can only be approximated by a polynomial in x1
and x2.

When the functional form for GPS is assumed unknown, we use

ex2i = exp[0.1 {−0.8 + x1i + x2i + 3 exp(x1i + x2i)}]
ex3i = exp[0.2 {−0.8 + x1i + x2i + 2.5 exp(x1i + x2i)}]

We now describe how we generated yi conditional on xi and wi. In all cases, we
set θi = wi. When the functional form for the conditional mean function is assumed
known, we used ηi = (wi/3)(2 + x1i + x2 + x21i + x22i + x1ix2i). When the functional
form for the conditional mean function is assumed unknown, we used ηi = (wi/3)[2 +
x1i + x2i + exp{√w(1 + x1i + x2i)}].

The functional form for the conditional mean in the known case is a polynomial in
x1i and x2i. The functional form for the conditional mean in the unknown case can
only be approximated by a polynomial in x1i and x2i.
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6.3 Estimation procedures

In this section, we discuss how we performed the estimation and inference for each
repetition over the four cases.

For case 1, in which the functional forms for GPS and the conditional mean are
known, we specified these functional forms to the poparms command to obtain the EIF

and IPW parameter estimates. We used the poparms estimation results to perform the
Wald tests against the true null hypotheses.

For case 2, in which the functional form for GPS is known and the conditional mean
is unknown, we specified the known functional form for the GPS and the functional form
selected by bfit for the conditional mean to the poparms command to obtain the EIF

and IPW parameter estimates. We used the poparms estimation results to perform the
Wald tests against the true null hypotheses.

For case 3, in which the functional form for GPS is unknown and the conditional
mean is known, we specified the functional form selected by bfit for the GPS and the
known functional form for the conditional mean to the poparms command to obtain the
EIF and IPW parameter estimates. We used the poparms estimation results to perform
the Wald tests against the true null hypotheses.

For case 4, in which the functional forms for both GPS and the conditional mean
are unknown, we specified the functional forms selected by bfit for the GPS and for
the conditional mean to the poparms command to obtain the EIF and IPW parameter
estimates. We used the poparms estimation results to perform the Wald tests against
the true null hypotheses.

6.4 Results with analytic estimator for VCE

The detailed results are in tables 1–9.

Each table contains the results for a specific parameter. Each number in each table is
computed over 10,000 repetitions. In each table, the first column specifies the functional-
form case, the second column specifies the estimator, the third column gives the true
value for the parameter, the fourth column gives the mean of the point estimates over the
10,000 repetitions, the fifth column gives the standard deviation of the point estimates
over the 10,000 repetitions, the sixth column gives the mean of the estimated standard
errors over the 10,000 repetitions, and the seventh column gives the mean of the rejection
indicators over the 10,000 repetitions.

Ideally, the mean of the point estimates should be very close to the true value,
the standard deviation of the point estimates should be very close to the mean of the
standard errors, and the mean of the rejection indicators should be 0.05. Differences
from these ideal relationships indicate that the finite-sample behavior of the estimator
differs from the large-sample behavior.
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Both the EIF and the IPW estimators performed very well for all cases in estimating
the point estimates and the standard errors for the three mean parameters.

Both the EIF and the IPW estimators performed very well for all cases in estimating
the quantile parameters, but the analytic estimator for the VCE performed poorly.

As discussed in section 7.2, the analytic estimator for the VCE for the EIF and IPW

estimators of the quantile parameters requires a density estimator of the potential-
outcome variables at specific (estimated) points. We implemented an IPW-based non-
parametric kernel density estimator to construct these analytic quantile standard-error
estimators. These estimators require a choice of bandwidth for their implementation.
Following standard methods, we experimented with an ad hoc ROT bandwidth selector
to construct the weighted kernel density estimator at the estimated quantiles. This ROT

choice of bandwidth is ad hoc because it is constructed on the basis of the (asymptotic)
mean-square error of a kernel density estimator using the potential outcomes rather
than the observed outcomes (and using inverse-probability weighting). See section 7.2
for further details.

Tables 4–9 present the simulation results using the plug-in bandwidth discussed in
section 7.2 to construct an analytic VCE estimator. These results show that this analytic
approach performs poorly in some cases. We found in our simulations that the results
are highly sensitive to the specific choice of bandwidth, but the overall performance
of the procedures improves as the sample size increases. (We do not report additional
simulation results for different bandwidth choices and sample sizes to conserve space.)
To verify that estimating the density was the source of the poor performance of the
analytic VCE estimator, we reran the simulations, replacing the kernel density estimator
with the population value of the density implied by the DGP, and found that the analytic
VCE estimator using these infeasible density values performs very well in all the sample
sizes considered. Further research on bandwidth selection for quantile treatment effects
is underway. In the meantime, we recommend using the nonparametric bootstrap VCE

estimator discussed in section 7.3. In the next subsection, we report some simulation
results for this bootstrap estimator.

Table 1. Mean, treatment 1

Case Estimator True Mean Standard Mean Rejection
value estimates deviation standard rate

estimates error

ps known cm known EIF 0.7222 0.7223 0.03017 0.02997 0.0536
ps known cm known IPW 0.7222 0.7223 0.03031 0.02997 0.0548
ps known cm unknown EIF 1.317 1.317 0.06333 0.06177 0.0586
ps known cm unknown IPW 1.317 1.317 0.06381 0.06177 0.0627
ps unknown cm known EIF 0.7222 0.7226 0.03386 0.03321 0.0602
ps unknown cm known IPW 0.7222 0.721 0.03356 0.03321 0.0592
ps unknown cm unknown EIF 1.317 1.318 0.06751 0.06627 0.0559
ps unknown cm unknown IPW 1.317 1.313 0.06623 0.06627 0.0542
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Table 2. Mean, treatment 2

Case Estimator True Mean Standard Mean Rejection
value estimates deviation standard rate

estimates error

ps known cm known EIF 1.28 1.28 0.02909 0.02884 0.0534
ps known cm known IPW 1.28 1.28 0.02905 0.02884 0.0523
ps known cm unknown EIF 3.454 3.454 0.09047 0.08976 0.0514
ps known cm unknown IPW 3.454 3.454 0.09013 0.08976 0.0499
ps unknown cm known EIF 1.28 1.28 0.02695 0.02682 0.0518
ps unknown cm known IPW 1.28 1.28 0.02701 0.02682 0.0528
ps unknown cm unknown EIF 3.454 3.453 0.09084 0.09012 0.0541
ps unknown cm unknown IPW 3.454 3.453 0.09191 0.09012 0.0571

Table 3. Mean, treatment 3

Case Estimator True Mean Standard Mean Rejection
value estimates deviation standard rate

estimates error

ps known cm known EIF 1.935 1.935 0.02917 0.02875 0.0543
ps known cm known IPW 1.935 1.935 0.02915 0.02875 0.0547
ps known cm unknown EIF 7.335 7.333 0.1633 0.163 0.0531
ps known cm unknown IPW 7.335 7.338 0.1661 0.163 0.0559
ps unknown cm known EIF 1.935 1.935 0.0265 0.02663 0.0497
ps unknown cm known IPW 1.935 1.936 0.02661 0.02663 0.051
ps unknown cm unknown EIF 7.335 7.332 0.157 0.1565 0.0502
ps unknown cm unknown IPW 7.335 7.352 0.1613 0.1565 0.0567

Table 4. Quantile 0.25, treatment 1

Case Estimator True Mean Standard Mean Rejection
value estimates deviation standard rate

estimates error

ps known cm known EIF 0.2016 0.2016 0.01512 0.01788 0.0208
ps known cm known IPW 0.2016 0.2016 0.01514 0.01788 0.0216
ps known cm unknown EIF 0.326 0.3258 0.02409 0.03012 0.0152
ps known cm unknown IPW 0.326 0.3257 0.02399 0.03012 0.0152
ps unknown cm known EIF 0.2016 0.2017 0.01765 0.02149 0.0181
ps unknown cm known IPW 0.2016 0.2013 0.0176 0.02148 0.0173
ps unknown cm unknown EIF 0.326 0.326 0.02823 0.03659 0.0121
ps unknown cm unknown IPW 0.326 0.3259 0.02803 0.03659 0.0109
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Table 5. Quantile 0.25, treatment 2

Case Estimator True Mean Standard Mean Rejection
value estimates deviation standard rate

estimates error

ps known cm known EIF 0.7429 0.742 0.03394 0.03559 0.0419
ps known cm known IPW 0.7429 0.742 0.03391 0.0356 0.0414
ps known cm unknown EIF 1.484 1.481 0.0773 0.08657 0.0279
ps known cm unknown IPW 1.484 1.482 0.0817 0.08659 0.0371
ps unknown cm known EIF 0.7429 0.742 0.02895 0.03035 0.042
ps unknown cm known IPW 0.7429 0.742 0.02892 0.03035 0.0414
ps unknown cm unknown EIF 1.484 1.483 0.06531 0.07275 0.0292
ps unknown cm unknown IPW 1.484 1.483 0.06591 0.07275 0.0308

Table 6. Quantile 0.25, treatment 3

Case Estimator True Mean Standard Mean Rejection
value estimates deviation standard rate

estimates error

ps known cm known EIF 1.357 1.355 0.03725 0.0386 0.0443
ps known cm known IPW 1.357 1.355 0.03723 0.0386 0.0449
ps known cm unknown EIF 3.172 3.165 0.1231 0.1399 0.026
ps known cm unknown IPW 3.172 3.167 0.134 0.14 0.0418
ps unknown cm known EIF 1.357 1.355 0.0338 0.0351 0.0432
ps unknown cm known IPW 1.357 1.355 0.03382 0.0351 0.044
ps unknown cm unknown EIF 3.172 3.166 0.1144 0.1291 0.0248
ps unknown cm unknown IPW 3.172 3.149 0.1187 0.129 0.0334

Table 7. Quantile 0.75, treatment 1

Case Estimator True Mean Standard Mean Rejection
value estimates deviation standard rate

estimates error

ps known cm known EIF 0.9892 0.988 0.04911 0.04751 0.0611
ps known cm known IPW 0.9892 0.988 0.04915 0.04751 0.0629
ps known cm unknown EIF 1.746 1.743 0.09621 0.09143 0.0677
ps known cm unknown IPW 1.746 1.743 0.09669 0.09144 0.0712
ps unknown cm known EIF 0.9892 0.9873 0.05577 0.05358 0.0664
ps unknown cm known IPW 0.9892 0.9853 0.05533 0.05347 0.0668
ps unknown cm unknown EIF 1.746 1.744 0.1054 0.1012 0.0665
ps unknown cm unknown IPW 1.746 1.74 0.104 0.1009 0.0657
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Table 8. Quantile 0.75, treatment 2

Case Estimator True Mean Standard Mean Rejection
value estimates deviation standard rate

estimates error

ps known cm known EIF 1.689 1.687 0.04718 0.04647 0.0578
ps known cm known IPW 1.689 1.687 0.04705 0.04648 0.0555
ps known cm unknown EIF 4.562 4.556 0.1644 0.1571 0.0646
ps known cm unknown IPW 4.562 4.556 0.1646 0.157 0.0657
ps unknown cm known EIF 1.689 1.688 0.04324 0.04292 0.0542
ps unknown cm known IPW 1.689 1.688 0.0433 0.04292 0.0531
ps unknown cm unknown EIF 4.562 4.555 0.161 0.1541 0.0638
ps unknown cm unknown IPW 4.562 4.556 0.1627 0.1542 0.0664

Table 9. Quantile 0.75, treatment 3

Case Estimator True Mean Standard Mean Rejection
value estimates deviation standard rate

estimates error

ps known cm known EIF 2.413 2.411 0.04449 0.04374 0.0552
ps known cm known IPW 2.413 2.411 0.04444 0.04375 0.056
ps known cm unknown EIF 9.547 9.546 0.3049 0.2963 0.0604
ps known cm unknown IPW 9.547 9.538 0.3102 0.296 0.0654
ps unknown cm known EIF 2.413 2.411 0.04072 0.04069 0.0528
ps unknown cm known IPW 2.413 2.412 0.04087 0.04071 0.0534
ps unknown cm unknown EIF 9.547 9.543 0.2898 0.2827 0.058
ps unknown cm unknown IPW 9.547 9.566 0.2985 0.2835 0.0628

6.5 Bootstrap VCE results

We recommend using at least 2,000 repetitions when using the bootstrap estimator of
the VCE discussed in this section. As a result, each repetition in our simulation study
takes a lot of time, and considering all possible designs becomes very time consuming.
To make the simulations feasible, we report only results for the EIF estimator in the
case of “ps known cm known”. (These simulations required more than seven days to
complete.)

Table 10 presents the results for this case. We found that the bootstrap VCE estima-
tor performed well, leading to confidence intervals with good empirical coverage rates in
all cases. For example, for the quantile 0.25 in treatment 1 (table 4), a 5% nominal test
exhibited an empirical rejection rate of 2.08% when using the analytic VCE estimator,
but the empirical rejection rate was 5.50% when using the bootstrap VCE estimator.
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Table 10. Bootstrap results

Parameter True Mean Standard Mean standard Rejection
deviation error rate

m1 0.7222 0.7213 0.03043 0.03005 0.058
m2 1.28 1.281 0.0285 0.02907 0.044
m3 1.935 1.935 0.02861 0.02887 0.048
q251 0.2016 0.2013 0.0147 0.01541 0.055
q252 0.7429 0.7422 0.03283 0.03445 0.046
q253 1.357 1.355 0.03651 0.03779 0.0585
q751 0.9892 0.9861 0.04931 0.04943 0.0605
q752 1.689 1.69 0.04676 0.04783 0.06
q753 2.413 2.411 0.04413 0.04424 0.067

Given the good performance of the EIF point estimator in the other cases and the
similar performance of the IPW estimator, we expect these results to be representative
for the other cases discussed in the previous section.

7 Details on implementation

This section discusses the details of implementing the IPW and EIF estimators, the
associated VCE, and the pre- and postestimation procedures discussed in the previous
sections.

7.1 bfit

bfit creates the set of candidate models for a given set of indepvars. The method is
the same for all subcommands.

1. bfit partitions the indepvars into discrete variables dvarlist and continuous vari-
ables cvarlist.

2. bfit uses factor-variable notation to define the fully interacted polynomial of the
specified order of the continuous variables.

For example, for continuous variables x1, x2, and corder(3), this step produces
c.(x1 x2)##c.(x1 x2)##c.(x1 x2).
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3. bfit uses fvexpand to expand the factor-variable notation version of the fully
interacted polynomial of the specified order of the continuous variables, which we
denote by fvclist.

For example, c.(x1 x2)##c.(x1 x2)##c.(x1 x2) expands to x1 x2 c.x1#c.x1

c.x1#c.x2 c.x2#c.x2 c.x1#c.x1#c.x1 c.x1#c.x1#c.x2 c.x1#c.x2#c.x2

c.x2#c.x2#c.x2.

4. bfit loops over the terms in fvclist, progressively building up the varlist clist. The
first time through the loop, clist contains only the first term in fvclist. The second
time through the loop, clist contains the first two terms in fvclist. The kth time
through the loop, clist contains the first k terms in fvclist.

For each step in the process of building up clist to be the same as fvclist, bfit
creates the following candidate models.

a. bfit defines a candidate model with the current variables in clist.

b. In a process analogous to the one used for the terms in fvclist, bfit progres-
sively builds up dlist from the list dvarlist.

For each version of dlist, bfit does the following steps.

i. bfit creates a candidate model with dlist included as additive factors.
For example, for given dlist and clist, the candidate model is
i.(dlist) clist.

ii. bfit creates a candidate model with dlist fully interacted with clist.
For example, for given dlist and clist, the candidate model is
i.(dlist)##(clist).

7.2 poparms

In this section, we discuss the implementation details underlying the poparms command.

First, we are interested in conducting joint inference on the means and on the quan-
tiles of the (J + 1) potential-outcome distributions, so we need notation for the full
parameter vector. As can be seen in the poparms output presented above, we nest
treatment levels within parameter type, which yields the parameter vector

β = {μ′,q(τ1)′,q(τ2)′, . . . ,q(τkτ
)′}′

with the J + 1 means in μ = (μ0, μ1, . . . , μJ )
′ and the J + 1 τ� quantiles in q(τ�) =

{q0(τ�), q1(τ�), . . . , qJ (τ�)}′ for each τ1, τ2, . . . , τkτ
with kτ ≥ 0. Note that kτ = 0 means

that the quantiles are not considered. We have a total of (J +1)× (1+ kτ ) parameters,
and hence, β is 1× {(J + 1)(1 + kτ )}.

Second, using this notation, we define the stacked version of the observation-level
contributions to the moment conditions characterizing the asymptotic behavior of these
estimators. As mentioned above, these definitions are not needed to construct the point
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estimators but are essential to characterize the joint distribution of the estimators, thus
permitting joint inference within and across treatment levels. We define

ψEIF{zi;β,p(·), e(·;β)} =

⎡⎢⎢⎢⎣
ψEIF{zi;μ,p(xi), e(xi;μ)}

ψEIF[zi;q(τ1),p(xi), e{xi;q(τ1)}]
...

ψEIF[zi;q(τkτ
),p(xi), e{xi;q(τkτ

)}]

⎤⎥⎥⎥⎦
where ψEIFi

{zi;β,p(xi), e(xi;β)} is a (1 + kτ )(J + 1)× 1 column vector,

ψEIF{zi;μ,p(·), e(·;μ)} =

⎡⎢⎢⎢⎣
ψEIF{zi;μ0, p0(·), ej(·;μ0)}
ψEIF{zi;μ1, p1(·), ej(·;μ1)}

...
ψEIF{zi;μJ , pJ (·), ej(·;μJ )}

⎤⎥⎥⎥⎦
is a (J + 1)× 1 column vector, and

ψEIF(zi;q(τ�),p[xi), e{xi;q(τ�)}] =

⎡⎢⎢⎢⎣
ψEIF[zi; q0(τ�), p0(·), e0{·; q1(τ�)}]
ψEIF[zi; q1(τ�), p1(·), e1{·; q2(τ�)}]

...
ψEIF[zi; qJ (τ�), pJ (·), eJ{·; qJ+1(τ�)}]

⎤⎥⎥⎥⎦
is a (J + 1)× 1 column vector, for � = 1, 2, . . . , kτ , with

p(x) = {p0(x), p1(x), . . . , pJ (x)}′
e(x,μ) = {e0(x, μ0), e1(x, μ1), . . . , eJ (x, μJ )}′

e {x,q(τ)} = [ej{x; q0(τ)}, ej{x; q1(τ)}, . . . , ej{x; qJ (τ)}]′

Recall that pj(x) = P(w = j|x),

ej(x;μj) = E(y − μj |x, w = j), ej{x; qj(τ)} = E[1{y ≤ qj(τ)} − τ |x, w = j]

for each treatment level j.

Third, the semiparametric IPW and EIF estimators considered in poparms use poly-
nomial-regression series estimators to approximate the unknown functions p(x), e(x,μ),
and e{x,q(τ)}. Thus we denote zp(x) and ze(x) as the polynomial basis in x of a given
order used to approximate, respectively, the function p(x) and the two functions e(x,μ)
and e{x,q(τ)}. We use the same approximating basis for the latter two functions for
simplicity. Note that in the syntax diagram in section 3.1, the variables in zp(x) are
specified to poparms as gpsvars and that the variables in ze(xi) are specified to poparms
as cvars. Thus the poparms command allows for any basis of approximation, although
our implementation based on bfit focuses on polynomial regression, the terms of which
are selected in a preliminary step, as discussed above.
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To approximate the GPS p(x), we follow Cattaneo (2010) and use a nonlinear multi-
nomial logit sieve estimation approach. That is, the variables specified in gpvars, de-
noted here by zp(x), are assumed to be a sufficiently flexible polynomial in the con-
ditioning variables so that we can consistently estimate (or approximate) the GPS by
multinomial logit. Thus, given the zp(x), we estimate the multinomial logit parame-
ters by maximum pseudolikelihood: with the standard normalization that γ0 = 0, the
j = {1, . . . , J} vectors of multinomial logit parameters γj , we solve

γ̂j = argmax
γ

n∑
i=1

J∑
j=0

di(j) ln

[
exp{zp(xi)

′γj}∑J
j=0 exp{zp(xi)′γj}

]

where γ = (0′,γ′
1,γ

′
2, . . . ,γ

′
J)

′. Given these parameter estimates, each element of the
estimated GPS is

p̂j(x) =

[
exp{zp(x)′γ̂j}

1 +
∑J

j=1 exp{zp(x)′γ̂j}

]
, j = 0, 1, . . . , J

In the case of the conditional expectations e(x,μ) and e{x,q(τ)}, for each candidate
value of μ and q(τ), we approximate each component of the vector by using a linear
sieve based on the covariates provided in cvars, which we denote ze(x). If bfit is used
in a preliminary step, then the basis functions in ze(x) take the form of polynomials up
to the order selected. Thus, for each treatment level, we solve the problems

γ̂j(μj) = argmax
γj

n∑
i=1,wi=j

{yi − μj − ze(xi)
′γj}2

and

γ̂j{qj(τ)} = argmax
γj

n∑
i=1,wi=j

[1{y ≤ qj(τ)} − τ − ze(xi)
′γj ]

2

which gives the estimators, respectively,

êj(x;μj) = ze(x)
′γ̂j(μj), ej{x; qj(τ)} = ze(x)

′γ̂j{qj(τ)}

Once the nonparametric estimators have been constructed, the IPW and EIF pro-
cedures described above will lead to consistent, asymptotically normal, and semipara-
metric-efficient estimators of β under appropriate regularity conditions. Because the
generalized method-of-moments problem we consider is just identified, each point esti-
mator can be constructed separately, even though we will consider them all together to
discuss joint semiparametric inference. Following the notation and discussion above, we
denote the IPW estimators as β̂IPW and the EIF estimators as β̂EIF. In particular, for
each j, the analytic solution for μ̂EIF,j is

μ̂EIF,j =
1

n

n∑
i=1

[
di(j)

pj(xi)
yi −

{
di(j)

pj(xi)
− 1

}
ŷi(j)

]
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where ŷi(j) are the predicted values from regressing yi on xi for those observations with
di(j) = 1.

Under appropriate regularity conditions, it can be shown that

√
n
(
β̂IPW − β

)
→d N (0,VSPEB) and

√
n
(
β̂EIF − β

)
→d N (0,VSPEB)

where VSPEB = Γ−1VEIFΓ
−1 is the semiparametric efficiency bound for regular esti-

mators of β, and

VEIF = E [ψEIF{zi;β,p(·), e(·;β)} ψEIF{zi;β,p(·), e(·;β)}′]

Γ =

⎡⎢⎢⎢⎣
I(J + 1) 0 · · · 0

0 Γ1 · · · 0
...

...
. . .

...
0 0 · · · Γkτ

⎤⎥⎥⎥⎦ , I(J + 1) =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤⎥⎥⎥⎦
[(J+1)×(J+1)]

Γ� =

⎡⎢⎢⎢⎢⎢⎣
fy(0){q0(τ�)} 0 · · · 0

0 fy(1){q1(τ�)} · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · fy(J){qJ (τ�)}

⎤⎥⎥⎥⎥⎥⎦
for � = 1, . . . , kτ , where fy(j)(y) = dFy(j)(y)/dy is the density of the potential outcome
y(j) for all j = 0, 1, . . . , J .

It follows from the results above that under the appropriate regularity conditions,
the IPW and EIF estimators are asymptotically equivalent to first order in the sense that√
n(β̂IPW − β̂EIF) = op(1). Furthermore, these asymptotic results show that the same

standard-error estimator could be used for both estimators, which is given by

V̂SPEB/n = Γ̂
−1

V̂EIFΓ̂
−1
/n

where

V̂EIF =
1

n

n∑
i=1

ψEIFi

{
zi; β̂, p̂(·), ê

(
·; β̂

)}
ψEIFi

{
zi; β̂, p̂(·), ê

(
·; β̂

)}′

with β̂ = β̂IPW or β̂ = β̂EIF depending on the estimator considered, and the unknown

densities entering the matrix Γ are replaced by some consistent estimators f̂y(j)(y),
j = 0, 1, . . . , J , which are evaluated at q̂j(τ), where q̂j(τ) denotes a choice either in
{q̂IPW,j(τ1), . . . , q̂IPW,j(τkτ

)} or in {q̂EIF,j(τ1), . . . , q̂EIF,j(τkτ
)} for, respectively, the IPW

and EIF estimators.

We implement the estimators f̂y(j)(y) by using the IPW kernel density estimator

f̂y(j)(y) =

{
hn

n∑
i=1

di(j)

p̂j(xi)

}−1 n∑
i=1

di(j)

p̂j(xi)
K

(
yi − y

hn

)



448 Multivalued treatment effects

where hn denotes a positive vanishing bandwidth sequence for each treatment level j =
0, 1, . . . , J . To construct a feasible version of this estimator, we use the ROT bandwidth
choice ĥn = 2.3449 × σy(j) × n−1/5, where σ2

y(j) = V{y(j)} is replaced by a consistent
estimator. This choice may be justified using an integrated mean-squared error expan-
sion for the infeasible kernel density estimator f̃y(j)(y) =

∑n
i=1K{(yi(j)− y)/hn}/nhn.

However, the ROT bandwidth choice ĥn is ad hoc for the estimator f̂y(j)(y) and may not

perform well. Deriving an optimal (ROT) bandwidth choice for the estimator f̂y(j)(y)
is beyond the scope of this article. An alternative way of choosing the bandwidths hn
could be based on some cross-validation procedure tailored to the particular structure
of the IPW kernel density estimator f̂y(j)(y).

7.3 Bootstrap estimator for the VCE

Our (nonparametric) bootstrap estimator for the VCE uses the following standard al-
gorithm. For each of S bootstrap samples obtained using bsample (see [R] bsample),

estimate the parameters using poparms. Then V̂bs is the variance matrix computed from
these S random vectors. Under appropriate regularity conditions, it is possible to for-
mally establish that this standard nonparametric bootstrap estimator will be consistent
for the VCE.
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