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Abstract

Beta-sorted portfolios—portfolios comprised of assets with similar covariation to selected
risk factors—are a popular tool in empirical finance to analyze models of (conditional) expected
returns. Despite their widespread use, little is known of their statistical properties in contrast
to comparable procedures such as two-pass regressions. We formally investigate the properties
of beta-sorted portfolio returns by casting the procedure as a two-step nonparametric estimator
with a nonparametric first step and a beta-adaptive portfolios construction. Our framework
rationalizes the well-known estimation algorithm with precise economic and statistical assump-
tions on the general data generating process. We provide conditions that ensure consistency
and asymptotic normality along with new uniform inference procedures allowing for uncertainty
quantification and general hypothesis testing for financial applications. We show that the rate
of convergence of the estimator is non-uniform and depends on the beta value of interest. We
also show that the widely-used Fama-MacBeth variance estimator is asymptotically valid but
is conservative in general, and can be very conservative in empirically-relevant settings. We
propose a new variance estimator which is always consistent and provide an empirical imple-
mentation which produces valid inference. In our empirical application we introduce a novel
risk factor — a measure of the business credit cycle — and show that it is strongly predictive of

both the cross-section and time-series behavior of U.S. stock returns.
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1 Introduction

Deconstructing expected returns into idiosyncratic factor loadings and corresponding prices of risk
for interpretable factors is an evergreen pursuit in the empirical finance literature. When factors
are observable, there are two workhorse approaches that continue to enjoy widespread use. The
first approach, Fama-MacBeth two-pass regressions, have been extensively studied in the financial

econometrics literature.!

The second approach, which we refer to as beta-sorted portfolios, has
received scant attention in the econometrics literature despite its empirical popularity.?

Beta-sorted portfolios are commonly characterized by the following two-step procedure, which
incorporates beta-adaptive portfolios construction. In a first step, time-varying risk factor exposures
are estimated through (backwards-looking) weighted time-series regressions of asset returns on the
observed factors. The most popular implementation uses rolling window regressions, often with
a choice of a five-year window. In a second step, the estimated factor exposures, based on data
up to the previous period, are ordered and used to group assets into portfolios. These portfolios
then represent assets with a similar degree of exposure to the risk factors, and the degree of
return differential for differently exposed assets is used to assess the compensation for bearing this
common risk. Most frequently this is achieved by differencing the portfolio returns from the two
most extreme portfolios. Finally, an average over time of these return differentials is taken to infer
whether the risk is priced unconditionally—whether the portfolio earns systematic (and significant)
excess returns. Notwithstanding the simple and intuitive nature of the methodology, little is known
of the formal properties of this estimator and its associated inference procedures.

We provide a comprehensive framework to study the economic and statistical properties of beta-
sorted portfolios. We first translate the two-step estimation algorithm with beta-adaptive portfolio
construction into a corresponding statistical model. We show that the model has key features

which are important to consider for valid interpretation of the empirical results. For example, in

!See, for example, Jagannathan and Wang (1998), Chen and Kan (2004), Shanken and Zhou (2007), Kleibergen
(2009), Ang, Liu, and Schwarz (2020), Gospodinov, Kan, and Robotti (2014), Adrian, Crump, and Moench (2015),
Bai and Zhou (2015), Bryzgalova (2015), Gagliardini, Ossola, and Scaillet (2016), Chordia, Goyal, and Shanken
(2017), Kleibergen, Lingwei, and Zhan (2019), Raponi, Robotti, and Zaffaroni (2020), Giglio and Xiu (2021) and
many others. For a recent survey, see Gagliardini, Ossola, and Scaillet (2020).

2The empirical literature using beta-sorted portfolios is extensive. For a textbook treatment, see Bali, Engle, and
Murray (2016), and for a few recent papers see, for example, Boons, Duarte, De Roon, and Szymanowska (2020),
Chen, Han, and Pan (2021), Eisdorfer, Froot, Ozik, and Sadka (2021), Goldberg and Nozawa (2021), and Fan,
Londono, and Xiao (2022).



this setup, no-arbitrage conditions are not imposed and instead imply testable hypotheses. Within
this framework, we introduce general sampling assumptions allowing for smoothly-varying factor
loadings, persistent (possibly nonstationary) factors, and conditional heteroskedasticity across time
and assets. We then study the asymptotic properties of the beta-sorted portfolio estimator and
associated test statistics in settings with large cross-sectional and time-series sample sizes (i.e.,
n,T — 00).

We provide a host of new methodological and theoretical results. First, we introduce conditions
that ensure consistency and asymptotic normality of the full-sample estimator of average expected
returns. Importantly, we characterize precise conditions on the bandwidth sequence of the first-
stage kernel regression estimator, h, and the number of portfolios, J, relative to growth in n and
T. We show that the rate of convergence of the estimator depends on the value of beta that is
chosen. For beta values closer to zero the rate of convergence is faster and is slower otherwise;
in fact, for values of beta away from zero we show that the rate of convergence of the estimator
is only /T, despite an effective sample size of the order nT, reflecting specific properties of the
setting of interest. However, we also show that certain features of average expected returns such
as the discrete second derivative—which represents a butterfly spread trade—can be estimated
with higher precision through faster rates of convergence for all values of beta, namely, \/nT/J
for a single risk factor. This result also accommodates more powerful tests for testing the null
hypothesis of no-arbitrage. Finally, we also provide novel results on uniform inference for the
beta-sorted portfolio estimator for both a single period and the grand mean. This facilitates the
construction of uniform confidence bands which allows for inference on a variety of hypotheses of
interest such as monotonicity or inference on maximum-return trading strategies.

We also uncover some limitations of current empirical practice employing beta-sorted portfolios
methodology. First, as with all nonparametric estimators, the choice of tuning parameters, h
and J, are key to successful performance and are dependent on the sample sizes n and T. In
contrast, empirical practice often chooses window length in the first step and total portfolios in the
second step irrespective of the sample size at hand. Second, we show that the widely-used Fama and
MacBeth (1973) variance estimator, is not consistent in general but only when conditional expected
returns are constant over time for a fixed beta. However, we show that the Fama-MacBeth variance

estimator still leads to valid, albeit possibly conservative, inferences. Unfortunately, in empirically-



relevant settings it appears that the Fama-MacBeth variance estimator can be very conservative.
To address this limitation, we propose a new variance estimator which is always consistent and
provide an empirical implementation which produces valid inference. In our empirical application
we show that our new variance estimator provides much sharper inference than the Fama-MacBeth
variance estimator. We also show that differential returns for a single time period, often used as
inputs for assessing the time-series properties of conditional expected returns, are contaminated by
an additional term when risk factors are serially correlated.

From a theoretical perspective, beta-sorted portfolios present a number of technical challenges
originating from the two-step estimation algorithm with beta-adaptive portfolio construction, since
it relies on two nested nonparametric estimation steps together with a portfolio construction based
on a first-step nonparametric generated regressor. More precisely, the first-stage nonparametrically
estimated factor loadings enter directly into the (non-smooth) partitioning scheme further compli-
cating the analysis.? To our knowledge, we are the first to prove validity of such an approach.

This paper is most related to the large literature studying asset pricing models with observ-
able factors.? Given our focus on conditional asset pricing models with large panels in both the
cross-section and time-series dimension, this paper is most closely related to Gagliardini, Ossola,
and Scaillet (2016) (see also Gagliardini, Ossola, and Scaillet, 2020). Gagliardini, Ossola, and
Scaillet (2016) introduce a general framework and econometric methodology for inference in large-
dimensional conditional factors under no-arbitrage restrictions. They allow for risk exposures, which
are parametric functions of observable variables and provide conditions to consistently estimate,
and conduct inference on the prices of risk. Although the statistical model under study shares im-
portant similarities with the setup of Gagliardini, Ossola, and Scaillet (2016), there are substantial
differences, and the models explored previously in the literature do not nest our setup. For example,

the classical beta-sorted portfolio estimator implies a data-generating process that does not (nec-

3For analysis of partitioning-based nonparametric estimators see Cattaneo, Farrell, and Feng (2020) and references
therein. Partitioning-based estimators with random basis functions have been recently studied in Cattaneo, Crump,
Farrell, and Schaumburg (2020) and Cattaneo, Crump, Farrell, and Feng (2022), but in those papers the conditing
variables are observed, while here the conditioning variable is generated using a preliminary time-series smoothly-
varying coefficients nonparametric regression, and therefore prior results are not applicable to the settings considered
herein.

“See, for example, Goyal (2012), Nagel (2013), Gospodinov and Robotti (2013), or Gagliardini, Ossola, and Scaillet
(2020) for surveys. A related literature endeavors to jointly estimate factor loadings and latent risk factors. See,
for example, Connor and Linton (2007), Connor, Hagmann, and Linton (2012), Fan, Liao, and Wang (2016), Kelly,
Pruitt, and Su (2019), Connor, Li, and Linton (2021), and Fan, Ke, Liao, and Neuhierl (2022), among others.



essarily) exclude arbitrage opportunities and supposes risk exposures which are smoothly-varying.
Furthermore, we show that valid estimation and inference can be achieved without requiring an
assumption of the functional form of the conditional expectation of the risk factors. See Section 2
for more details.

Our paper is also related to the financial econometrics literature on nonparametric estimation
and inference. In particular, the two steps of the beta-sorted portfolio algorithm align individually
with Ang and Kristensen (2012), who study kernel regression estimators of time-varying alphas
and betas, and Cattaneo, Crump, Farrell, and Schaumburg (2020) who study portfolio sorting
estimators given observed individual characteristic variables. However, the linkage between the two
steps, including the role of the generated (nonparametrically estimated) regressor in the second-
stage nonparametric partitioning estimator has not been studied before. Finally, our paper is also
related to Raponi, Robotti, and Zaffaroni (2020) who study estimation and inference of the ex-post
risk premia. In analogy, we show that estimation and inference in our general setting are sensitive
to the specific object of interest chosen. For example, we show that a faster convergence rate of
the estimator can be obtained by centering at realized systematic returns rather than conditional
expected returns. See Section 4 for more details.

In our empirical application we introduce a novel risk factor — a measure of the business credit
cycle — and show that it is strongly predictive of both the cross-section and time-series behavior of
U.S. stock returns. Moreover, we show the effectiveness of our new variance estimator as inference
is much sharper relative to the Fama-MacBeth variance estimator.

This paper is organized as follows. In Section 2, we introduce our general data-generating
process and show how it rationalizes the two-step algorithm used to construct beta-sorted portfolios.
In Section 3, we study the theoretical properties of the first-step estimators of the time-varying
risk factor exposures. Using these results, in Section 4 we establish the theoretical properties
of the second-step nonparametric estimator. To facilitate feasible inference, Section 5 introduces
pointwise and uniform inference procedures for the grand-mean estimator including characterizing
the properties of the commonly-used Fama-MacBeth variance estimator. Section 6 presents an
empirical application, and Section 7 concludes. Detailed assumptions and proofs of the results are

relegated to a Supplemental Appendix (hereafter, SA).



Notation and conventions

It is useful to introduce the following notation. For a constant & € N and a vector v = (v1,...,vq) ' €
R?, we denote |v], = (X% [vi|*)Y*, [v| = |v]z and |v]s = maxj<q|v;|. For a matrix A =
(aij)1<i<ma<j<n, we define the spectral norm [Alz = maxp,—; [Av|, the max norm [Alpax =

maxi<i<m,1<j<n |Gij|, |Al1 = maxi<j<n > it a;j, and |Alsc = maxi<i<m Z;‘:l a; ;. For a func-
tion f, we denote |f|oo = sup,cy |f(z)|, where X' denotes the support. We set (a, : n > 1) and
(bp, : m > 1) to be positive number sequences. We write a, = O(b,) or a, < b, (resp. a, =< by)
if there exists a positive constant C' such that a, /b, < C (resp. 1/C < a, /b, < C) for all large
n, and we denote a, = o(b,) (resp. a, ~ by), if ap/bp, — 0 (resp. a,/b, — C). Limits are
taken as n,T — oo unless otherwise stated explicitly. plimX, = X means that X,, —p X. —
denotes convergence in law. Define X,, = Op(ay) : lim,,oP(|X,| > dcan) — 0 Ve > 0. Define
Xn =op(ay) : Ve,d >0 3IN.; such that P(|X,| > da,) <e Vn > N.s5. Let X,, Sp a,, means

Xn = Op(an).

2 Model setup

We introduce a general statistical model of asset returns and show how the proposed model naturally
aligns with the two steps that comprise the beta-sorted portfolio algorithm. We discuss the relevant
properties of the model especially with respect to the potential presence of arbitrage opportunities.

2.1 Modeling returns

Let R;; denote the return of asset i at time t.> We assume that asset returns are generated by the

linear stochastic coefficient model,

Rit:ait+/8;trft+€it7 izl?"'anta t:17"‘,T, (21)

where a;; € R and B € R? (d > 1) are random coefficients which are measurable to a filtration

based on the past information, f; is a vector of observable risk factors, and ¢; is an idiosyncratic

5Thlroughout we will assume that R;: represent excess returns. In the case when R;; represent raw returns then
1¢(0) may be interpreted as the zero-beta rate at time ¢.



error term.® We allow for an unbalanced panel, but assume that n < n; < n, and n < n,, so that
each cross-section contributes to the asymptotic properties of the estimator.

We define the filtration F, r¢—1 = U((ait)?;’it:l, (ﬁit)?;’itzl, (f)izl, (azt)?;f;il) Hereafter, we
suppress the n and T" as in F,, 7:—1 and denote it as F;_; for simplicity of notation. We define an-
other cross-sectional invariant filtration G,_1. Suppose that 8;; = Gg(n:, 91, -, ge—1, f1, -+, fi—1, wit),
where 7); is independent and identically distributed (i.i.d.) over ¢, g; are i.i.d. factors over ¢, and w;;
are i.i.d. over t and i. Then, the cross-section invariant sigma field is G, = o(f1, -+, fi, 91, , gt)-
This setup may appear restrictive but is in fact general: we can always increase the dimension of the
random variables entering the sigma field to accommodate more complex designs. Consequently,
without loss of generality, we assume E(f;|Gi—1) = E(f¢|Fi—1)-

To obtain the structural form of our model, we denote () as the conditional expected return

of an asset with risk exposure 5. Thus,
E(Rit|Fi—1) = pe(Bit), (2.2)
so that using equation (2.1) we have,
11e(Bit) = it + By E(fe] Fi1)- (2.3)
Finally, combining equations (2.1) and (2.3), we obtain the structural form
Rir = p(Bit) + Bit (fe — ELfel Fooa]) + it (2.4)

To distinguish conditional expected returns, p;(S;), from systematic realized returns, we define

My(Bit) = me(Bit) + By (fr — Elfel Fem1]) = cvir + Biy fr

to represent the latter object.
Equation (2.4) may be compared to the standard beta pricing model (e.g., Cochrane, 2005,

Chapter 12) and generalizations thereof (e.g., Cochrane, 1996; Adrian, Crump, and Moench, 2015;

5For an alternative example of a random coefficient model tailored to a financial application, see Barras, Gagliar-
dini, and Scaillet (2022).



Gagliardini, Ossola, and Scaillet, 2016). The most noteworthy difference between equation (2.4) is
the presence of the (possibly) nonlinear, time-varying function puy (5;;). When R;; represent excess
returns then the no-arbitrage restriction implies that py (8i) = B\ for some \; (Gagliardini,
Ossola, and Scaillet, 2016). Our model nests, but does not require, the imposition of the absence

of arbitrage opportunities so that

Ry = m(Bit) + By (fr — E[fe| Fea]) + e,

= (w(Bi) — Bar)  + B+ Bat (fi — Blfel Fioa]) + eir-

deviation from no-arbitrage

The presence of this additional term representing the deviation from no-arbitrage restrictions can be
motivated by appealing to structural models which feature violations of the law of one price. Such
a setup as in equation (2.4) could arise, for example, in the margin-constraints model of Garleanu
and Pedersen (2011) under the assumption that the security’s margin is a nonlinear function of its
past beta.

To see why equation (2.4) rationalizes the beta-sorted portfolio algorithm, consider the two

steps in the case when d = 1.

Step 1: Estimation of a;; and ;. For each individual asset, we calculate the local constant

estimator for ay; and B as,

(aito,@to) (tole ((t —to)/(Th) X, X[ ) (tole ((t —t0)/(Th))XiRit),  (25)

where X; = (1, f;)7, K(-) is a kernel function and h a positive bandwidth determining the length
of the rolling window. This construction purposely does not have “look-ahead bias”; moreover,
the estimators a;, and Bz‘to do not use data from time ¢y in their construction (a “leave-one-out”
estimator). This estimation of the time-varying random coefficients can be interpreted as a kernel
regression of equation (2.1) for each cross-section unit. When K (-) takes on a constant value for
the most recent prior H time periods, and zero otherwise, we obtain the familiar rolling window

regression estimator with window size H. W



Step 2: Sorting portfolios using estimated ;. To see that this comprises cross-sectional
nonparametric estimation observe that, for fixed ¢, Equation (2.2) is the conditional mean of in-
terest.” We define B =[f;, B,] as the support of the possible realizations of 3;; across i and t. For

eacht=1,...,T, let us define a beta-adaptive partition of this support as

Pjt = [B(\ne(i=1)Je))ts Blnej /T )t) j=1,...Ji—1
Pjt = [Bilns(7-1)/71)t Bine)i)s j=J

where |.] denotes the floor function and B(Z)t denotes the fth order statistic of the estimated betas
in the first step across i for fixed ¢, i.e., the order statistics of {th :1=1,...,m¢}. The number of
portfolios J;, and their random structure (i.e., break-point positions based on estimated (;;), vary

for each time period. Then, define
Dit(8) = 1{B € Py},

with 1{-} the indicator function, and </I\>t = [&)i:ji]ItM the matrix with element </15m-7t = ﬁjt(@t).

We also let pj¢(8) be pj; in later sections. We can then obtain

~

Gy = (2@ )1 (B Ry),
which represent the average returns of assets in ﬁjt for j = 1,...,J; at time ¢. Define @j; as the
jth element of ;.

Letting a;; and a,; be the portfolio returns of the two extreme portfolios, a common object of

interest is the differential average returns in the most extreme portfolios:

T | T
g Ayt — Qi) = T; (Mt Bu) ﬁt(ﬂz)),
where
Jt
(8) = > pir(B)aje. (2.6)
=1

"Cattaneo, Crump, Farrell, and Schaumburg (2020) provide a detailed discussion of how sorted portfolios represent
a nonparametric estimate of a conditional expectation. See also, Fama and French (2008), Cochrane (2011), and
Freyberger, Neuhierl, and Weber (2020).



More generally, many other estimators of interest in finance can be defined as transformations of
the stochastic processes (fi(53) : 5 € B), for each cross-section.
Similarly, other estimators of interest can be considered by averaging across time. These esti-

mators can be thought of as transformations of the stochastic process (fi(3) : § € B) with

T Ji

T
S B = 3 B (27)
t=1

t=1j=1

A(8) = =

M|

For example, we can estimate conditional expected returns for all values of 3 rather than only values
near f; and f,. Correspondingly, fi:(/5) and f(8) may be directly interpreted as nonparametric

estimators of expected returns. W

A few comments are in order. First, the above two steps are completely in line with the
empirical finance literature. Importantly, at no point in the two-step algorithm is the requirement
to estimate the conditional expectation of the risk factors, E[f|F:—1], and so the researcher remains
agnostic about the dynamics of these risk factors. We will revisit this issue in the next section.
Second, the practice of moving-window regressions to accommodate time variation in §;; suggests
a slowly-varying coefficient model as previously used in finance applications such as in Ang and
Kristensen (2012) and Adrian, Crump, and Moench (2015). However, in contrast to these previous
formulations, we do not condition on the realizations of the random processes o and ;. Instead,
we retain the randomness in these objects so that the second-stage beta-sorted portfolio estimator
can have a well-defined limit as n, T — oo. Third, an alternative to the smoothly-varying coefficients
approach is to specify (;; as a functions of individual characteristics and possibly also of economy-
wide variables (see, for example, Gagliardini, Ossola, and Scaillet, 2020, and references therein).
Our approach can straightforwardly accommodate such settings by modifying the kernel regressions
appropriately.

Finally, the more general estimation approach described in equations (2.6) and (2.7), with more
details in Section 4, does not constitute spurious generality. The conventional implementation of
beta-sorted portfolios relies on a constant choice of J; = J Vt and so averages J portfolios across all
time periods. However, if the cross-sectional distribution of the §;; are changing over time then there

is no guarantee that each portfolio represents assets with sufficiently similar betas. For example,



it may be that assets with values of § near 1/2 fall in the sixth portfolio at times and the fifth
portfolio at other times and so on. Thus, the conventional estimator will be, in general, both more
biased and more variable than the estimators suggested in equations (2.6) and (2.7), all else equal.
This is of special importance when we are interested in expected returns for intermediate values of

betas and also in situations where tests of monotonicity or shape restrictions are of interest.

3 First step: rolling regressions

The first step involves a kernel regression of a linear stochastic coefficients model. Recall that

X = (1, ft) and define b;; = (cut, Bit). Then, we can rewrite equation (2.1) as
L = X Tp. )
R’Lto — Xto bzto + Eitg -

We assume that E(e;|Fi—1) = Ei—1(eiz) = 0 and, because «;; and [3;; are measurable with respect

to Fi—1, then aj, and S, can be identified as
bitg = E(Xto X gy [ Fro—1) " E( Xt Rito| Frg—1)-

The kernel estimator from (2.5) is then by, = (@it Bity) |- In order to accommodate the random
coefficients we exploit the fact that Y001 K ((t—to)/(Th)) X, X, and Y107 K((t—t9)/(Th)) X Ri
are close, in the appropriate sense, to S P E[K ((t — to)/(Th)) X, X, | Fi—1] and Y0 P EIK((t —
to)/(Th))XRit|Fi—1], since their difference are summands of martingale difference sequences.

To formalize the intuition and establish uniform consistency and asymptotic normality of @to we
require technical, but relatively standard, assumptions on the underlying data generating process.
We report these assumptions in the Appendix (Assumptions 16-21) and discuss them briefly here.
Assumption 16 ensures that the one-sided kernel K(-) satisfies standard properties such as being
nonzero on a compact support and twice continuously differentiable. The one-sided kernel ensures
that we do not have any look-ahead bias, so the procedure can be interpreted as real-time estimation,
and also to define the appropriate conditional moments for the second step discussed in the next
section. Assumption 17 imposes some structure on the time series properties of the factor f; but is

quite general and allows for certain forms of nonstationary behavior. We could relax some of these

10



assumptions to allow for even more complex time-series properties at the expense of more detailed
notation and proofs. Assumption 17 also imposes moment conditions on the idiosyncratic error
term, €;;. Assumption 18 ensures that b;,, is well defined for all ¢y. Assumptions 19 and 21 are
regularity conditions on the rate of decay of the time-series dependence of the risk factors. Finally,
Assumption 20 ensures that the alphas and betas, although random, are sufficiently smooth over
time (i.e., satisfying a Lipschitz-type condition). Similar assumptions are generally imposed in
varying coefficient models (see, for example, Zhang and Wu, 2015).

We first provide a uniform consistency results of our estimator Bito over ¢ and t. We require this
result to precisely control the effect of estimating 3;; in the first step when entering the second-step
estimator. We establish this consistency on a compact interval of a trimmed support with trimming

length |Th]. Let ¢ denote the parameter in Assumption 17.

Theorem 3.1. Suppose Assumptions 16-21 hold, and let rp = (Th)~" (T + /ThlogT) — 0,
h — 0, and log(n,T)/Th — 0. Then,

max sup ’bito — bito‘ <p o,
I<i<n | pp|<to<T—|Th)|

where 6p = (rp + /log(n,T)/VTh + h).

Theorem B.6 provides uniform rates of convergence for the first-stage kernel estimators of the
betas. Naturally, these rates depend on n, T, and h but are also directly dependent on ¢ which
represents the number of bounded moments of the idiosyncratic error term. For very large g,
essentially the uniformity is attained at rate only slower by a log(7") factor. Importantly, the
theorem shows that we attain the same uniform rate for the leave-one-out estimator which ensures
our theoretical results mimic empirical practice exactly.

Although estimation of p(-) is generally of interest, there are some situations where inference on
Bi directly is instead the primary goal. To introduce the necessary results we need to present some
additional useful notation. To allow for a flexible class of time series processes we model the factor,
ft, as a sum of two components, f; = 7 + x;, where 7y is a smoothly-varying process and x; is a

strictly stationary process.® Then we can define 7, = 7/(¢/T) for a smooth function 7’ : [0,1] > R.

8We could allow for even more general behavior in x;; however, for simplicity we maintain the strict stationarity
assumption.

11



Also define, ¥, = E[(1,2¢)(1,2¢) '], 7(to/T) = (1,7 (to/T))". We let X4 = 3, + 7(to/T)7(to/T) T,
Sp = 02 E(Xy, X)) [0 K2(s)ds. £ = 5,05, = £3'02 [°) K*(s)ds. With these definitions

in place, we next show asymptotic normality of our estimator Eito.

Theorem 3.2 (Asymptotic Normality). Let hv/hT — 0, h — 0, Th — oo, rar + 7 — 0 then,

under Assumptions 16-21, we have that
VTRS, ' (bisy — birg) =2 N(0, ). (3.1)

where r o7 s defined in the Appendiz.

We show in the appendix that the limiting asymptotic distribution is invariant to whether the
leave-one-out or general kernel estimator is used. The results in Theorem B.7 can to be extended
to distribution results which are uniform over t; however, we don’t pursue this here as our main
focus is on the beta-sorted estimator. Finally, note that to construct a confidence interval for by,
based on gito, we require a consistent estimator of the asymptotic variance of git(). Using residuals

from the initial step, i.e., &, o7 can be estimated by

o o ,to_lnth—t()
(O-t()?gt()) = argmin Z Z ( Th

€Ol =1 =1

)(E = co—ealt — o) /7).

So 3, can be obtained by T'A(to) 5 (to/T) fol K?(w)dw.

4 Second step: beta sorts

The second step of the estimation procedure is to sort assets by their value of Bit obtained from

the procedure described in the previous section. Recall that the structural form of our model is

Rit = (ue(Bie) + By (fr — E(fel Fie1)) + €at

= M;(Bit) + €t

and under our assumptions we have E(e;|F;—1, Bit) = E(it|Fi—1) = 0.
To gain intuition, suppose that the g;; were observed. The second equality makes clear that,

for a fixed t, we can only nonparametrically estimate the unknown function M, (-) rather than the

12



direct object of interest p(-). However,
1 & 1 & 1 &
O MU(B) =2 m(B) + 7 D BT (fe — E(fil Fr)). (4.1)
= r= Ti=

The second term has summands, 8" (f; — E(f;|F;—1)), which are a martingale difference sequence
with respect to F; and so we would expect this sample average to converge to zero in probability;
consequently, this would ensure that 7= S°7_ M;(8) and T-' 21| 1i;() are uniformly (in 3) close
in probability for large T'. A further complication, of course, is introduced by using an estimated
Bit in the second-stage nonparametric regression. Nevertheless, in this section, we will make these
arguments rigorous and provide appropriate conditions for consistency and asymptotic normality
for the beta-sorted portfolio estimator.

To motivate the assumptions we introduce shortly, note that we may rewrite our model as
Rt = ais + By E(fil Fee1) + €it,

where &;; = B;} (fi — E(fi|Fi—1)) + i represents the sum of two different martingale difference
sequences. This form makes clear that we require assumptions on «;; and 3;; to be able to approx-
imate the grand mean, T-' 3", 1;(/3), with high probability.

We assume that £ = B;(¢t/T, Fi—1) (c.f. Assumption 20 in the appendix), which is a smooth
random function over time. We will further assume that (;; are, conditional on G;_1, i.i.d. over
i. This sampling assumption was introduced in Andrews (2005) and has been utilized in the
financial econometrics literature by Gagliardini, Ossola, and Scaillet (2016) and Cattaneo, Crump,
Farrell, and Schaumburg (2020). Under this assumption, for a fixed time ¢, 8;; follows a conditional
distribution Fpg¢(-) = P(Bix < :|Gi—1) for each time period ¢. Thus, we define the transformed
variable U;; = Fj4(B;t), which are i.i.d. uniform [0, 1] random variables over ¢ conditioning on G;_.
Define Fg,,4(-) = n% ity B < -} and Fy i,t as the empirical counterparts of the conditional
CDF and quantile functions Fjz; and Fﬁ_ tl The order statistics of §;; over ¢ for fixed t is denoted
as By = Fy Tllt(z/nt) In our setup, we have that a; is a function of 8;;, and thus a continuous

function of Uy, that is,

Qi = a(ﬁz‘t) = a(Fﬁ,t(Uit))
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and the function a(Fp(.)) will be smooth with respect to Uy; similarily, 55 can be regarded as a
smooth functional of Fg(.).

To gain intuition for the procedure, assume again (temporarily) that we could observe ;.
Define @7, = 1(Fﬁ_tl((j - 1)/J) < B < Fﬁ_tl((])/Jt)) which corresponds the event where (3 is
realized between these two conditional quantiles.” These represent the (infeasible) basis functions
which underpin the partitioning estimator. We can then define the population best linear predictor
as,

A1ty Ayt

ai = (ai, - ,aj*]tt)—r =arg min E[(Rit - i ajt<1>j7j,t>2‘gt71]- (4.2)
j=1

We can then rewrite equation (2.4) as

Jt
Rip = al®};; +bit + i,
i=1
where b = p(Bit) — 3-]‘:1 aj,®; ; , represents the approximation bias term.

In order to characterize the theoretical properties of the portfolio estimator it is necessary
to introduce some additional notation to present the different basis functions which underpin
our analysis. Define ®; ;¢ = 1(Uix € [U((j=1)ne/J))t> U(lGne/ e )t)) = 1(Fﬁ*711t((j - 1)/J) <
Bit < Fﬁ_}lt((j)/Jt)) and, for estimated [, its counterpart Cfi’j,t = l(FE_it((] —1)/Jy) < By <
F=' (j/Jy)). Finally, we denote the stacked elements as ®;; = [®; ], P = [(f)m,t]j and

B,n,t
P, = [®] 4], for Jp x 1 vectors and stack further as J; x ny matrices denoted by ®; = [®7;,];; and
similarly for EISt and ®,.
To obtain a feasible estimator we cannot rely on ®; but instead, as introduced in Section 2.1,
we utilize ®;. Recall that @, = {®®, } {®;R;} and for any 3 € [B, 8] and the grand mean
estimator fi(8) = T~ 1, 5¢(B) Tay is given in (2.7). Let by = [by¢];. To analyze the rate of the

beta sorted estimator a;, we shall prove that under certain conditions,

ar = {0 } (D[ @] aj + & + b))},

= a; + {n; 'O 0; 1} (ng @78 + {ng @701 T} T (g @iy + 0p(1).

9We assume that, at time point ¢ the partition intervals are, [(j —1)/J:,5/J:) for j € 1,---,J; — 1 and
((Jt — 1)/Jt, 1] fOI‘ J = Jt.
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To make these statements precise, we require additional assumptions (formally stated in the
Appendix). Assumption 22 imposes regularity conditions on the conditional distribution of the 3;
ensuring that it is sufficiently well behaved. These assumptions ensure the partitioning estimator
is well defined with the probability of empty portfolios vanishing asymptotically and, furthermore,
that ; is of the order J~! where §j; = fg((:j)“) fp+dB with kjy = |nyj/Ji]. . Assumption 23
sets the properties of the uniform convergené:e rate of B;; and corresponds directly to the results in
Theorem B.6. Assumption 9 imposes restrictions on the relative rate of n; and J; . Assumption 24
assumes the smoothness of the function «f(.), and ensures that the « is a well-behaved function of
5. Assumption 25 imposes some additional moment and smoothness conditions on the conditional
distribution of 3;;. In the SA we establish that, under our assumptions, we may ignore the generated
errors of the first-stage estimation of the §;; when analyzing the second stage portfolio sorting
estimator.

We now have laid the necessary foundation to obtain a linearization of the grand mean estimator:

Theorem 4.1 (Leading term linearization). Suppose Assumptions 22-23 and 24-26 hold. Then,

uniformly in 3,

T T
=Y (B) — 1(B)} = 7 Y B i) i ]+ O((T TV R)) + 0p(T72)

t=1 t=1

where the first term is the leading term and the second term is the bias term. Moreover,
1 X
7 2 pi(B) " [diag(q;) " ny 7]
t=1
1z
=7 > b 1(8)" diag(q;e) Z(I)Z +Eit
=1

T
Z dlag qjt Z‘I’ Bt (fe — E(fe| Fi—1))-

’ﬂ \

Theorem B.14 introduces the key properties of the grand mean estimator. Importantly, the
theorem shows the leading term is comprised of two elements: the first term would appear in
any generic nonparametric problem whereas the second term is specific to the asset pricing setup.
Importantly, the second term is of the order OP(T_l/ 2) representing the summation of the product

of the conditional beta and the deviation of the factor from its conditional mean, (f; — E[fi|Fi—1]).
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Thus, despite an effective sample size of nT in concert with a nonparametric procedure with
tuning parameter J, the grand mean estimator, for some values of §, achieves only a /T rate of
convergence. That said, for values of 8 near zero, the second term becomes degenerate and the

first term dominates leading to a faster rate of convergence, namely, Op(\/J/nT).

Remark 4.2. An alternative approach that could be considered is to center the estimator, T=' S, [is(8)
at T=2S°F  My(B), rather than T S°L | us(B). This would have the advantage of producing a uni-
form rate of convergence of the estimator as the second term in equation (4.1) is removed from the
asymptotic distribution. This is analogous to centering the estimator at the ex-post risk premia (see,
e.g., Raponi, Robotti, and Zaffaroni (2020)) and can be thought of as centering at average realized
systematic returns. However, inference on this object appears to be of less interest, in general, and

so we do not pursue this approach further.

Next we provide a pointwise central limit theorem for ji(3) which allows us to make pointwise

inference on the estimator of 7' Y27, 1,(.). We define E,, ; = q]tlE( 7 ;4Bit|Gi—1). Recall that

Theorem 4.3 (Pointwise central limit theorem). Suppose Assumptions 16-21, 22-23 and 24-26

hold. Then, pointwise in 3,

—= 2 {1 (B) — pe(B)} — bias(3)
VT t=1 t]E(a-(ﬁ))l/Q —r N(O, 1),
where
6(8) =0s(B) +0e(B)
with
T Ji
or(8) =T33 piu(B)En, ; Var(fi — B(fil Fir)),
t=1 j=1
T Jt
lzznt Zpﬂt q]t zj,tgzzt|gt—1)7
t=1j5=1
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and

-1

T
bias(B) =T~ " Zﬁt(ﬁ)T(n;1¢f®fT) (ny 1 ®7by)
t=1

T
+ T " pi(B) " diag(gy) " (ng (2@, — 2407 )ay),
t=1

which is a term of order (J=1V h).

The theorem provides the basis of our feasible inference procedures discussed in the next section.
It is important to note that the two components of the appropriate standard deviation, o () and
oc(B), are orthogonal. We will exploit this property to conduct feasible inference without assuming

a specific functional form for E( f;|F;—1).

Remark 4.4 (Extension to multivariate 3). The algorithm and proof are written for the case
of d = 1. It would not be hard to develop for multivariate 5 corresponding to fixed d > 1. For
multiple-characteristic portfolios we can adopt the Cartesian products of marginal intervals. That is,
we first partition each characteristic into Jy intervals, using its marginal quantiles, and then form
J¢ portfolios by taking the Cartesian products of all such intervals. The pointwise convergence
results of the beta-sorted portfolio estimator could be extended to this general case. Note also, the

curse of dimensionality could be avoided by assuming additively separability.

5 Feasible (uniform) inference for the grand mean

In order to conduct feasible inference on the grand mean we require a consistent estimator of
the asymptotic variance given by Theorem B.15. In existing empirical applications, the so-called
Fama-MacBeth variance estimator is utilized. In this section we discuss the properties of both the
Fama-MacBeth variance estimator and also a simple new plug-in variance estimator. We show that
both variance estimators provide valid inference. The plug-in variance estimator is as simple to
implement as the Fama-MacBeth variance estimator and, as we show in the next section, appears
to provide much more precise inference in empirical applications.

Accurate inference is vital in order to assess whether observed realized returns of a specific

trading strategy withstand statistical scrutiny. We link these practical questions with rigorous
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formation of uniform statistical tests. We highlight three important types of uniform inference
hypotheses that corresponds to trading a specific, high-minus-low or butterfly trade portfolio re-
spectively. We provide a valid uniform inference procedure for the grand mean estimator using
the Fama-MacBeth variance estimator. This will allow us to conduct inference on more complex
hypotheses of interest such as tests of monotonicity or tests of nonzero differential expected returns

across the support of (5.

5.1 A plug-in variance estimator

We can use the results in Theorems B.14 and B.15 to construct a plug-in variance estimator. To
see the logic of our approach, first consider the case where we observe E(f;|F;—1). Then a natural

plug-in variance estimator is,

T J 2
ap1(B) :Tilzznt_ijt <Zp]t )Djt(Bit) ﬁzt) (fe — E(fe| Fi1))?
t=1j=1
T J
+7T lzznt q]t ijt B)pjt(Bit)é zta (5.1)
t=1j5=1

where §j; = ny " S0 Pie(Bi) {0, §je(Bir) # 0}. Of course, Gpr(f) is infeasible. As a feasible

alternative, consider

T J 2
p1(B) :T_lzznt_2q]t <Zpyt )Djt (Bit th) (ft = hea (9 ))2
t=1j=1
T Ji
+ T_l Z Z nt_2(jjt ijt p]t 521& ztv (52)
t=1j=1

where hy_1(0) is a feasible parametric estimate of E(f;|F;_1) using only information contained
in G;—1. Importantly, even if this estimator is misspecified p1(/3) will still produce valid, albeit
conservative, inference because of the asymptotic orthogonality of the two terms in Theorems B.14

and B.15.
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5.2 The Fama-MacBeth estimator

Recall the definition of of fi,(5) and fi(5) as in equation (2.6) and (2.7). The Fama-Macbeth

variance estimator may then be constructed as

(S % Z (,ut )2. (5.3)

t=1

The estimator may be motivated by the classical sample variance estimator where fi,(3) for ¢ =
1,...,T serve as the sample “observations.” Following similar reasoning, we shall denote an esti-

mator of Cov(fi(f51), 11(B2)) as the following. For any (i, S,

Seu((81). 7(B)) = = i ((81) = (B1) ) (7ie(B2) = il 52))- (5.4)

t:1

Note that in the special case of 81 = 2 we obtain ogu(3). To discuss the asymptotic properties of
this variance estimator we need to define some specific population counterparts.

First, define

T
or(Br,B2) = T Y E[{pu(B1) " diag(de) 'E(@}5ulGi-1)}
t=1

x {pe(Ba) " diag(Gje) " E(®}BitlGe—1) YE{(f: — E(ft|]'—t71))2}]-

The quantity o (81, B2) represents the first-order asymptotic variance utilizing the results in Theo-

rems B.14 and B.15. We also need to define the additional population objects, o,(8) = T~ "7 E[(u(8)—
TS () and 0, (B, B2) = T~ 01y Elpaa (B1) =T~ 30020 e(B1)) (e (B2) =T~ Sy e (B2)]-
Then, 0,(8) and o,,(51, f2) represent the population average time variation and co-variation in the
conditional expected returns. Finally, denote J as a set which collects the appropriate js (iden-

tity of the relevant bin) over time. Thus, J; indicates the bins that ; falls into for each time

t for t = 1,...,T. With these objects defined, we can now state the following properties of the

Fama-MacBeth variance estimator.

Lemma 5.1. Under the conditions of Theorem B.6 and B.14, for 81, B2 corresponding to Ji, Jo
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respectively, we have

sup  |oem((61), B(B2)) — o f(B1, B2) — ou(B1, B2)| = op(1//log J).
B1,B2€[B1,8u]

Note that the above results implies that

sup |om(5) — Uf(ﬁ) - Uu(ﬁ)‘ = op(1/+/log J).

BG[IBZ’BH]

Lemma B.16 shows that the asymptotic limit of the Fama-MacBeth variance estimator is comprised
of two terms. The first term is the population target, o¢(f) and (51, 52), respectively, which
represents the limiting variance from Theorem B.15. The second term is an extraneous term, o, ()
and 0,,(31, 52), respectively, which are non-negative by definition. Intuitively, we can understand
this result from the following decomposition of the summands of the Fama-MacBeth variance

estimator:

1 1

T
72 ((8) = e(8)) + (pe(8) -

t=1

N

T T
Au(8) = 7 D" () = (u(B) — () - > wl6)
t=1 t=1

It is the third term in this equation that contributes the additional term to the probability limit of
oru(B). Consequently, the Fama-MacBeth variance estimator overstates the true asymptotic vari-
ance of the estimator by exactly this extraneous term. In the special case when p;(3) is constant
over time then o,(8) and o,(81, f2) are equal to zero and Lemma B.16 establishes uniform consis-
tency of the Fama-MacBeth variance estimator. Otherwise, the variance estimator will overstate
the true variance and lead to a conservative inference.

However, Lemma B.16 has the positive implication that the Fama-MacBeth variance estimator
is consistent for the asymptotic variance of the expression T~ S, (fis(8) — p(B)) where pu(3) =
plimy . T~ ' S fis(B). That said, this facilitates inference only on an object, u(3), that is
arguably of less interest than 7! ZtT:1 ue(B). This latter object, representing the sample average
conditional expected returns, is of more direct relevance to economic inference since there can be

no further information available for a given sample of T" time series observations.

Remark 5.2. It is important to note that Lemma B.16 also implies that valid inference may be

conducted on the average conditional expected returns without the need to stipulate the form of
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the conditional expectation of the risk factors. This stands in contrast to alternative estimation
approaches in, for example, Adrian, Crump, and Moench (2015) and Gagliardini, Ossola, and
Scaillet (2016), where a first-order Markovian structure is imposed. In practice, specifying the
correct functional form including the appropriate conditioning variables for the risk factor dynamics

is a challenge. This is one notable advantage of the estimation approach we study here.

5.3 Uniform inference of the grand mean estimator

The estimator of the grand-mean function offers us the chance to test the hypothesis regarding price
anomaly. In this subsection, we provide a rigorous formulation of a uniform test for the grand-mean
estimator. This facilitates us to conduct various uniform tests related to the grand-mean estimator.

Namely, we aim to test the following null hypothesis,

Ho : u(B8) = 0,VB € [B1, Bul,

against the alternative,

Ha : u(B) # 0, for some 3.

Before we present a theorem which gives us the critical value of the uniform test, we shall discuss
the estimator of the elements of variance-covariance matrix for the grand mean estimator in the
strong approximation theorem. As indicated by Theorem B.14, the long-run variance of the lead
term 77137, Z}']t:1 Pit(B)(fe —E(f1)) Enyj + T 31—y Z] L Dt (B) T diag(qje) "m0 ®7 ;i icit

is defined as follows

&(615/62) = O-f(/BbﬁQ)
T T Ji Js

F 2SS S B[ (EAIF ) — B BUIFs 1) — BU) B B i (51)51s(5)]

tlsljlll

T
+1 1227%2215{% £1) q]t (q)*,]tgzt’gt 1)1{B1 = P2}}
t=1j=1
" T g
op(B1,B2) + ou(Br. B2) + T~ > 0 Y E{pi(B1) 35 E(®]63:1Gi-1)1{B1 = B2} }.
t=1j=1 7
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And o (81, B2) = op(Br, B2) + T~ iy Sy g2 S BB (B1)35, E(D7 1 ,£5]Ge-1)}1{B1 = f2}. In
particular, the variance is 5(3) = &(8,8), with o(8) = o(5,8) and 0,(8) = 0.(8,8). We
define E[o(8)]"/2Gr(B) as a Gaussian process on a proper probability space with covariance
Elo(61)] " /*Elo (81, 52)|E[0(82)] 7"/, and similarly for E[5(5)]7/2Gr(5) relative to

E[6(51)]/?E[5 (51, B2)|E[G(82)] 71/, We define 7(8) (5(51, B2)) as an estimator of a(8) (o(51, 52))
as well. From Lemma B.16 the Fama-Macbeth variance is close to &(81,82) rather than to

o(B1,P2). We now provide a corollary facilitating the uniform inference on the function p(f)

or TV Y pu(B).

Lemma 5.3. Under the conditions of Theorem B.6, B.14, Assumption 29 and VT (1/JV h) = 0,

we have,

T
sup [P( sup \m 3 (#(8) ~ m(B))| < x) ~B(sup[Gr(A)| <z)| 0. (55)

By the above lemma, we shall expect the asymptotic distribution of supgep ‘m Z?:l (7:(B)) ‘

under the null hypothesis to be approximated by the one of supgep |G ()| This result facilitates
constructing a critical value of our proposed test statistic. Lemma B.21 allows us to form an asymp-
totically valid uniform inference for the grand mean function. We can obtain uniform confidence
bands and test the hypothesis Hg. To construct the uniform confidence band, it is implied from the
Lemma B.21 that if we define Ly (8) = i(8) — 0(8)/?qa/VT, and Ur(B) = i(B) + () ?qa/VT.

We have, with a prefixed confidence level «,

T
P( 3 1(8) € [Lr(8), Ur(8)), for all 8 € B) > 1 —a.
t=1

N

Therefore, [Ly(-), Ur(-)] is the uniform confidence band of the estimator fi(-). To make inference
on u(-), and functionals thereof, we can replace the variance estimator 6(/3) by the corresponding
variance estimator of &(3). In addition to the confidence interval, Lemma B.21 also provides formal
justification for a uniform inference procedure. In particular, the critical value to test Hg utilizing
the statistics supg 1(3)/ 5(B)'/? can be obtained by simulating the quantile of the maximum of a
Gaussian random vector. The Gaussian random vector shares the same variance-covariance struc-

ture as Gr(f) on a set of preselected discrete points. Therefore to make inference on p(3) to test
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Hp we can follow the procedure:

Algorithm 1 Uniform inference for averages over fi(f3).

Require: n;, T > 0
1: Estimate ¥ as X.
2. Simulate standard normal random variables Z() of J, x 1 dimension for s = 1,---,S times,
where S is the number of bootstrap samples
3: Multiply Z(*) = %1/2Z(5) where 3 = dlag( )~ 125, diag(® ) 172,
4: Obtain the 1 — « quantlle of ]Z |0 from the above sample, and we denote it as qi_q.
5: Create the confidence band [fi(3) — (8 B 2G1—a/VT, i(B) +5(8)/%G1—o/VT), where Ly(B) =

i(B) — 6(8)2G1_o/VT and Ur(B) = (B) — (8)/?G1_o/VT. If 0 is within the confidence
band we cannot reject Hg.

5.4 Uniform inference for the high-minus-low estimator

Besides the test regarding the simple null hypothesis Hg, we further show several additional tests
that utilize the grand mean estimator. The most common inference procedure in the empirical
finance literature is to compare the time-average of returns from the two extreme portfolios (i.e.,
the portfolios which encompass the evaluation points 5; and (3,,) as discussed in Section 2. The goal
is to assess whether a long-short portfolio trading strategy earns statistically significant returns, i.e.,
has a nonzero unconditional risk premium. However, we can use our general framework and new
theoretical results to formulate a more powerful test to assess the properties of expected returns.

In particular, consider the following null and alternative hypotheses,

HLY . — inf 0, 5.6
0 Zlelgﬂ(ﬁ) égBM(ﬁ) (5.6)
versus,
HY < sup () — inf u(B) # 0. (5.7)
BeB BeB

In words, under the null hypothesis there is no profitable long-short strategy available. In the
special case when p(f) is monotonic, then this null hypothesis is equivalent to p(8,) — u(5;) = 0.
Thus, we nest the popular high minus low portfolio inference approach but instead test for the

presence of any profitable long-short strategy.
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The high-minus-low statistics can also be re-expressed in the following form,

sup () — inf fi(8) = sup fi(B) + sup —i(3)
BeB peB BeB BeB

1 T Jt T Jt

= Zlég (f ;;ﬁjt(ﬁ)aﬁ) + zlélli; ( - % ;j;@dﬁ)@ﬁ)
where we denote * as the point attaining supﬁeg(% Z?:l thzl pjt(B)aj) and B** as the point
attaining supﬂeg(—%Zthl Z}-]’;l Djt(B)aje)). Similar to the previous section, we can obtain a
strong approximation results which implies a critical value test H(()l) and a uniform confidence
band for the proposed high-minus-low estimator. To this end, we define the statistics, Tp =

T UST S0 e B) @505 )) =T~ (S S0, 5ie(8) =)}/ (6(8°)+5 (87 ~26(6%, 67) /2
and T, = [Gr(8*)o(8**) — Gr(8*)a(8))/(0(5*) + o (87%) — 20(5%, 8**))"/2.

Lemma 5.4. Under the conditions of Theorem B.6, B.14, Assumption 29 and /T (1/JV h) — 0,
we have,

sup P(|7r| <o) - P(IT:] <z)| = 0. (5.8)

We note that the above lemma is implied by Corollary B.8.1. The above results also imply
that we can approximate the quantile of ‘7}‘ by the quantile of |T,| uniformly well. Therefore
the test based on the statistics supgep fi(8) — infgep i(3) can obtain critical values by simulation
from their Gaussian counterparts. The confidence interval can also be obtained similarly from
the previous section. We summarise the test procedure in the following algorithm. In short, the
algorithm remains quite similar to the previous section, except that the quantiles are obtained from

a different vector of Gaussian vectors corresponding to the lemma above.

5.5 Uniform inference for the difference-in-difference estimator

In this section we introduce one final testing setup with the associated test statistic. The null
hypothesis and the test statistic can be motivated by a "butterfly” trading strategy which is a
generalization of the long-short trading strategy, which represents a discrete first derivative, to
that of a discrete second derivative. As discussed earlier, the discrete second derivative also directly

links the model to the presence (or absence) of arbitrage opportunities. Moreover, along with the
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Algorithm 2 Algorithms for inference of the high-minus-low portfolio.

Require: n:, T > 0
1: Estimate .
2. Simulate standard normal random variables Z(®) of J, x 1 dimension for s = 1,--- ,S times.

3: Obtain [i(fmax) = maxg 71 Zthl Lt (Bmax) and [(Bmin) = ming 71 Zthl ﬁt(ﬁmi&). Dengte
J as the indices of j over time corresponding to a specific value of 5. Obtain J* and J**
correspondingly. And iy = [i(Smax) — (Brmin)-

. ) ~1/2 —(o) _ ~1/2 (®) Cas) ()

4: Multiply ¥, we get Z\¥ =% Z¥. Obtain Zj — ZX

J**
5. Obtain the 1 — o quantile of ‘Zjﬁf) — ngfh from the above sample, and we denote as §1_q. (Zjﬁf)

ngfi are the Gaussian limit corresponding to Smax and Biin repectively.)

6: Create the confidence band [fi(3) — 5(3)Y/%q, a/\ﬁ u( ) +6(8)Y2G1—0o/VT], where Lp(83) =
i(8) — 6(8)Y2G1—a/VT and Ur(8) = 1i(8) — 6(8)Y2G1—a/VT. If 0 is within the confidence

band we cannot reject Hg.

practical relevance of testing for the presence of a profitable butterfly trade, we observe that the
statistical properties of the inference procedure are different from those of the preceding inference
procedures introduced in this section. In particular, in the previous section we observe that the
estimator fi(f) has a non-uniform rate of convergence. This arises for exactly the same reason
that for fixed ¢ we can only consistently estimate M;(f) rather than the preferred estimand p(/3).

However, by taking a discrete second derivative we can eliminate this first-order term because

My (B1) — My (B2) — (M (B2) — My (83)) = pt (B1) — pe (B2) — [pe (B2) — e (B3)]

whenever 81 — 2 = f2 — B3 with three distinct points (1, B2, B3 € [5, fu]. As mentioned early, this
object can be interpreted as a “butterfly” trade where one goes long one unit of each of two assets
(one with 81 and one with f83) and short two units of an asset (with $3). The null hypothesis can

then be formulated as

1 X
Ho,airs sup T Z[Mt(ﬁl) + e (Bs) — 2Mt(52)]| =0
B1+B3—262=0 =1
versus the alternative one
1 X
Haaire :  sup Z pe(B1) + pe(Bs) — 2/%(52)]‘ #0
B1+B3—2082=0 t:l
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In words, under the null hypothesis, there does not exist a profitable version of this trading

approach. Thus, we adopt the following test statistic involving;:

L Z{Mt B1) + fie(B3) — 27ie(B2)}-

To have valid conference bands and critical values for the test, we shall study the asymptotic
distribution of fi:(81) + fit(B3) — 2fi¢(H2). Under the conditions of Theorem B.14, we have the

following leading term expansion

{7t (B1) + He(Bs) — 20e(B2) — (ue(B1) + pe(B3) — 2¢(B2)) }

Jt

+ iy
T ne
Z ni YD i(Br) + Pie(Bs) — 29je(B2))d; ' Py jegie + Op(h v I 7).

i=1j=1

Before we show the theoretical results implying the critical value of a test, we first define
the normalized variance both in an estimated form and in its population version. As mentioned
already, unlike previous subsections, since the term involving f; — E(f;|F;—1) is differenced out,
we have a better rate of convergence for all values of 3. Namely, we have /T v/ V/J without
the rile of the v/T rate induced by the factor term as discussed above. Define the variance of
T=U ST T/ T(fie(Br) + fin(Bs) — 2fie(B2)) is approximately by
Gp(B1,B3, B2) = T~ ST g V7t S0 (5 B{(Bje (B1) + Bie(Bs) — 2pje(B2))2d; *(®F;,02))}. We let
B1.2,3 as an abbreviation for g1, 82, 3 and ﬂ{&g as an abbreviation for 1, 85, 35. We define the

limit as the following

T ntg Jt

COV(51,2,3,5123 ZZZE{ZM Pr23 pjt(6123)qg ( ”tUt)}

where recall that o7 is defined in Assumption 28.

Define
D5t (B1, B2, B3) = pjt(B1) + Pjt(B3) — 2pji(B2)-
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Recall 0]2 = (jj_laf/Jt. Assume that exist a o(f1, 52, 83) < 00, such that

T Ji

= Z > E([pje(Br, B2, B3))°03) = 0p(B12,3)-
t 1j5=1
_ J 1
Define oq(8) = T 3021 35t E(07d; 'Dje(8))-
The following theorem states that we can use the quantile of the Gaussian process supg, g, 3, |G(B1,52, B3)|
to approximate the distribution of our statistics of interest under the null. Thus the corresponding

algorithm is listed as well afterwards.

Theorem 5.5. Assume the conditions of Theorem B.6, B.1/, Assumption 29, 27 and \/Tn,/J(1/JV
h) — 0. Also we define G(f1, B2, 33) as a Gaussian process with a finite number of jumps corre-
sponding to the value of B, P, B3, within each piece a standard normal distribution and across

different points of the process has correlation

Cov(P1,2,3, 51,2,3)/(UD(51,2,3)1/20D(51,2,3)1/2)-

sup [P(|_sup [T~ IZ\/Tnt/Jt{Nt B1) + fie(B3) — 2fie(B2)

B1,B82,83

—(pe(B1) + e (B3) — 2/~Lt(52))}/0'D(61,2,3)1/2 >x) — ]P’(ﬁ Sgpﬁ |G(B1,82,B3)| > x)| = 0,

Algorithm 3 Algorithms for inference for the difference-in-difference estimator.

Require: ny,T >0
1: Estimate op(B1,2,3) and Cov(S1,23, 81 23)- Select a grid of 81 (J,) and B3(# f1) (Ja) and then
fix the relationship 262 = (1 + Gs.
2. Simulate standard normal random variables Z(8) of Jo(Jo — 1) x 1 dimension for s = 1,---,8
times.

3: Obtain ji(31) = T! Zle Djt(B1)aj¢ (similar for By and f3). And ZT(ﬁLg’g) = sup51’2y3{ﬂ(61) +
(8s) — 271(B2)}.

4: Multiplying % Dl Yp is a matrix with element as the correlation
Cov(12.3 5129/ @4 (5122075 (B 2))) + we get 26 = 57 2. Obtain |20y

5: Obtain the 1 — a quantile of |Z 8)|max from the above sample, and we denote as q1_q-

6: Create the confidence interval [ZT(617273) — 8D(5172’3)1/2 ming §1— o/ Ji/ V0T,

7: ZT(ﬁ17273) +3D(617273)1/2 maxy §i—av/J¢/VnT]. We cannot reject Hy 4;77 if 0 is contained in the
confidence interval.
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Remark 5.6. The grand mean allows for inference on unconditional risk premia but we would
also like to accommodate inference on conditional risk premia. For example, a risk factor may
be associated with a significant risk premium in certain time periods but unconditionally earns
no risk premium. Conversely, the conditional risk premium may be zero under some conditions
but not unconditionally. Drawing inferences about conditional risk premia can provide additional
information to understand the economic mechanisms underpinning the risk-return trade-off. In

particular, we aim to test the following null hypothesis:

Ho Y+ e (B1) — pe(B2) — [1e(Ba) — pe(B3)] = 0. (5.9)

Corollary B.11.1 in the Appendix provides justification for the inference procedure below to test
ng‘f T Essentially, the test statistic is a maximum constructed over a finite number of points
Bj, Bjr. As for the previous tests, we shall work with a fized grid [3;];. Then there are Jy x
(Jy — 1)/2 total number of such points. Thus, for a vector of B, which are taken in every par-

tition, we can formulate the test statistics as |Bj,M|oo, where My = [M\t(ﬁj)]j, where By, is a

Ji(Jy — 1)/2 x Jy dimensional matriz with row entries corresponding to the linear combinations of

‘Mt (1) — M (Ba) — [Mt (B2) — M, (ﬂ?))} ‘ = My(Br2.3)-

Algorithm 4 Algorithm for uniform inference concerning ng‘f !

Require: ny,T >0
1: Pick 81 € B, and B3(# 1) € By, then By follows . Calculate the residuals &;;. Obtain 64(51,2,3)

2: Simulate standard normal random variables By, [diag(5;)]Z®) of J; x 1 dimension for s =
1,---,5 times, where S is the number of bootstrap samples. Obtain the 1 — a quantile of
|Bj,[diag(5;)]Z®)| o from the above sample, and we denote as i—a.;-

3: Create the confidence band for u:(51) — pe(B2) — [1e(B2) — pe(53)], i-e.

& [Mt(ﬁlvz’i)\ = Qo iV T/, My (Bra3) + Ti—aVJt//ni].  We reject the null H[()dsz) if
V1B, My /N Jiloo > Q1-at-

6 Empirical Application

In this section, we introduce a novel risk factor and show that it is strongly predictive of both

the cross-section and time-series behavior of U.S. stock returns. We also utilize this application to
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illustrate the practical advantages of the novel theoretical results presented earlier in the paper.

Our risk factor is a new measure of the business credit cycle. The business credit cycle is
commonly evaluated by means of ratios of credit aggregates to measures of output. Although
theoretically appealing, a drawback to these approaches is that it is difficult to parse out movements
in credit ratios that are arising from composition changes in the aggregates as compared to all
other movements. Here we take a different approach. We rely on the Federal Reserve’s Senior
Loan Officer Opinion Survey!? (SLOOS) as our proxy for the “credit” portion of the ratio and
the ISM Manufacturing Index as our measure of the “output” portion. This has three distinct
advantages. First, as the SLOOS and ISM are both diffusion indices, they have uniform behavior
across their history even in the face of changes in the structure of the economy. Second, they are
much more timely than credit aggregates and national accounts data which tend to be released
with a substantial lag. Third, they are not subject to revision. Thus we have a timely factor which
we can evaluate in real time with no look-ahead bias.

Our factor is simply constructed as
1
CCW; = (2 -SLOOS; + 50) + ISM, (6.1)

where SLOOS; is the net percentage of large domestic banks tightening standards for commercial
and industrial loans to all firms and ISM; is the ISM index.'! Although both the SLOOS and the
ISM are diffusion indices, they are scaled differently and so the affine transformation of the SLOOS
is implemented so that they are both on the same scale (between 0 and 100). To understand why
this is (the inverse of) a credit-to-output type measure note that a fall in the SLOOS corresponds to
easier lending standards (higher credit growth) and a fall in the ISM to less output. Thus, when the
CCW variable is low, credit-to-output is high. A similar logic applies for when the CCW variable
is high. Our factor is available starting in January 1965 when the first SLOOS was implemented.
As a preliminary check for the validity of our factor we assess its ability to predict future

market returns. Specifically, a implication of our setup (see equation (2.1)) is that if the factor is

9The properties of the SLOOS were first studied in Schreft and Owens (1991), Lown, Morgan, and Rohatgi (2000),
and Lown and Morgan (2002, 2006). See also Crump and Luck (2023).

"The Senior Loan Officer Opinion Survey is currently conducted on a quarterly basis. To construct a monthly
series we keep the SLOOS value constant until a new value is available. For the period from 1984m1 through 1990m1,
the credit standards question was not included in the SLOOS. For this period we use as a replacement the net
willingness to make consumer installment loans by large domestic banks.
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serially correlated then lagged values should be predictive of future equity returns. To show this,

we consider the standard predictive regression setup and run predictive regressions of the form,
Terh =@+ bz + vy (6.2)

We utilize the standard predictors obtained from Welch and Goyal (2008) as a benchmark compar-
ison along with our risk factor. In Table 1 we present in-sample R? from predictive regressions for
forecast horizons of 1, 3, 6, and 12 months ahead. The first fourteen rows present the results for
the benchmark predictors investigated in Welch and Goyal (2008). The next row, labelled “CGP”
reports results using only the SLOOS portion of our risk factor as in Chava, Gallmeyer, and Park
(2015). Finally, The last row, labelled “CCW?” provides the results for our new risk factor. The
results are stark. The in-sample R? from our new risk factor far outstrips that of the other predic-
tors considered. To ensure our results are not a consequence of overfitting, in Table 2 we present
out-of-sample R? results using a training sample up to the end of 1989. Again, the results are stark
with our risk factor outperforming each of the other predictors by a wide margin.

We can now investigate how our risk factor performs in explaining the cross-section of equity
returns. We implement our estimators as described in Sections 3 and 4. We use monthly data
from the Center for Research in Security Prices (CRSP) over the sample period January 1926 to
December 2019. We restrict these data to those firms listed on the New York Stock Exchange
(NYSE), American Stock Exchange (AMEX), or Nasdaq and use only returns on common shares
(i.e., CRSP share code 10 or 11). To deal with delisting returns we follow the procedure described
in Bali, Engle, and Murray (2016). When forming market equity we use quotes when closing
prices are not available and set to missing all observations with 0 shares outstanding. For our risk
factor we use a measure of the business credit cycle described in equation (6.1). For simplicity,
we utilize five-year rolling regressions to estimate betas and we choose the number of portfolios as
Jy=J1-(ng/ nmax)% where J; = 10. The latter choice can be motivated by appealing to Cattaneo,
Crump, Farrell, and Schaumburg (2020) as the optimal choice of portfolios under the simplifying
assumption that all 8;; were known.

We first consider pointwise inference. Figure 1 presents our estimate of the grand mean, fi(3) =

T-'S°T | 4:(B) in the black line. There is a clear downward slope in the relationship between j
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Table 1: In-sample Predictive Regressions: R? This table reports R? (in percent) from predic-
tive regressions of excess stock returns on an individual predictor variables from Welch and Goyal
(2008) for horizons of 1, 3, 6, and 12 months ahead. The row labelled “CGP” reports results for
the SLOOS only portion of our risk factor as studied in citeCGP2015. The row labelled “CCW?”
reports results for our proposed risk factor. The sample period is 1965m1-2019m12.

| h=1 h=3 h=6 h=12
(log) Dividend Price Ratio 0.09 030 0.72 1.41
(log) Dividend Yield 0.11 032 0.75 1.44
(log) Earnings Price Ratio 0.03 0.04 0.06 0.26
(log) Dividend Payout Ratio | 0.02  0.20  0.57  0.69

Stock Variance 1.06 0.13 0.13 0.66
Book-to-Market Ratio 0.00 0.01 0.06 0.12
Net Equity Expansion 0.14 0.21 0.44 1.24
Treasury Bill Yield 0.40  0.81 1.13 1.58

Long Term Treasury Yield 0.13 0.18 0.17 0.00
Long Term Treasury Return | 1.08  0.66 1.82 1.31

Term Spread 0.51 1.39 2.44 7.30
Default Yield Spread 0.25 0.78 213 3.06
Default Return Spread 0.30 0.25  0.30 0.03
(lagged) Inflation 0.01 048 1.88 2.21
CGP 1.28 3.06 3.65 4.30
CCW 2.87 7.81 10.55 13.21

and expected returns — although it does not appear to be linear. The grey vertical lines in Figure
1 depict pointwise confidence intervals at each selected point in the support of 5. The top chart in
Figure 1 uses the plug-in variance estimator we introduced in equation (5.2) whereas the bottom
chart uses the Fama and MacBeth (1973) variance estimator. To implement our plug-in variance
estimator we use an AR(1) specification in our risk factor. We can clearly see the difference in the
precision for drawing inferences from the data. The confidence intervals based on our new plug-in
variance estimator are substantially shorter than those of the FM variance estimator. This shows
clear evidence that the conservativeness of the FM estimator that was proven in Section 5 has
practical implications for empirical work. We can see this even more clearly in Table 3 where we
present the point estimate for selected values of § along with lower and upper bounds for confidence
intervals constructed with the two different variance estimators. The results are striking. Across all
values of 8 and for both nominal coverage rates, the confidence intervals formed using our plug-in
variance estimator are approximately 30% of the length of those using the FM variance estimator.

The improved precision of our new variance estimator is replicated when we shift to uniform
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Table 2: Out-of-Sample Predictive Regressions: R? This table reports out-of-sample R?
from expanding window predictive regressions of excess stock returns on an individual predictor
from Welch and Goyal (2008) for horizons of 1,3,6, and 12 months ahead. The row labelled “CGP”
reports results for the SLOOS only portion of our risk factor as studied in Chava, Gallmeyer,
and Park (2015). The row labelled “CCW?” reports results for our proposed risk factor. Positive
values have been bolded. The training period is 1965m1-1989m12 and the evaluation sample is
1990m1-2019m12.

| |h=1 h=3 h=6 h=12
(log) Dividend Price Ratio -1.75  -3.78  -6.75  -12.77
(log) Dividend Yield -1.83  -3.73 -6.83 -12.27
(log) Earnings Price Ratio -0.96 -1.98 -3.27 -6.91
(log) Dividend Payout Ratio | -1.33 -1.23  -0.07  0.82

Stock Variance -0.91  -0.50 -0.52 0.67
Book-to-Market Ratio -0.58 -1.15  -2.07 -5.30
Net Equity Expansion -2.34 -6.43 -13.70 -20.44
Treasury Bill Yield -0.00 077 1.72 2.36

Long Term Treasury Yield -0.02 -0.22 -0.65  -4.85
Long Term Treasury Return | -1.18 -0.59 -1.08  -1.66

Term Spread -0.88 -1.15 0.49 6.94
Default Yield Spread -2.28 -3.85 -4.12 -3.04
Default Return Spread -1.10  0.70 0.45 0.22
(lagged) Inflation -0.17 1.44 3.88 3.50
CGP 1.77 4.51 5.22 4.75
CCW 3.76 9.62 11.66 8.74
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Figure 1: Pointwise Inference on Expected Returns.
estimate, i(3) = T~ 1, is(8) (black line) with associated pointwise confidence intervals (grey
vertical lines). The top chart constructs confidence intervals using the plug-in variance estimator
introduced in equation (5.2) while the bottom chart uses the Fama-MacBeth variance estimator.

The nominal coverage is 95%. The sample period is 1965m1-2019m12.

(a) Plug-In Variance Estimator

2.4

22

Percent

0.8

0.6

2.4

(b) Fama-MacBeth Variance Estimator

Percent

0.6

This figure shows the grand mean

confidence bands for the grand mean rather than pointwise confidence intervals. Figure 2 is the
counterpart to Figure 1 with uniform confidence bands constructed as discussed in Section 5. The

bottom chart shows the uniform confidence bands formed using the FM variance estimator. The
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bands are so wide as to be essentially uninformative. In contrast, the top chart displays the
confidence bands formed using our new variance estimator. We can reject a constant function
and also clearly reject a monotonically decreasing relationship. In contrast, we fail to reject a

monontonically decreasing relationship — either linear or nonlinear.

Table 3: Pointwise Inference: This table presents the grand mean estimate, f(8) =
T-1 Zthl ft(8) along with pointwise upper and lower bounds for nominal coverage of 95% and
99%. Confidence intervals constructed using the plug-in variance estimator introduced in equation
(5.2) are denoted by “PI-LB” abd “PI-UB” whereas those using the Fama-MacBeth variance esti-
mator are denoted by “FM-LB” and “FM-UB”.The sample period is 1965m1-2019m12.

90% Coverage 95% Coverage

B 4(g) PI-LB PI-UB FM-LB FM-UB | PI-LB PI-UB FM-LB FM-UB

-1.00 1.68 1.50 1.87 1.00 2.26 1.47 1.90 1.00 2.37
-0.50 1.72 1.57 1.87 1.06 2.27 1.54 1.90 1.06 2.38
-0.25  1.53 1.41 1.65 1.01 1.97 1.39 1.67 1.01 2.05
0.00 1.24 1.19 1.30 0.88 1.55 1.18 1.31 0.88 1.61
0.25 1.26 1.15 1.37 0.80 1.65 1.13 1.39 0.80 1.72
0.50 1.18 1.05 1.31 0.66 1.62 1.03 1.34 0.66 1.70
1.00 1.17 1.03 1.31 0.64 1.61 1.00 1.34 0.64 1.70
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Figure 2: Uniform Inference on Expected Returns. This figure shows the grand mean esti-
mate, 2(8) = T~ .1, i:(8) (black line) with associated uniform confidence bands (shaded area).
The top chart constructs uniform confidence bands using the plug-in variance estimator introduced
in equation (5.2) while the bottom chart uses the Fama-MacBeth variance estimator. The nominal
coverage is 95%. The sample period is 1965m1-2019m12.

(a) Plug-In Variance Estimator

(b) Fama-MacBeth Variance Estimator
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7 Conclusion

Beta-sorted portfolios are a commonly used empirical tool in asset pricing. In a first step, time-
varying factor exposures are estimated by weighted regressions of asset returns on an observable risk
factor to ascertain how returns co-move with the variable of interest. In a second step, individual
assets are grouped into portfolios by similar factor exposures and differential returns are assessed
as a function of differential exposures. Yet the simple and intuitively appealing algorithm belies
a more complicated statistical setting involving a two-step estimation procedure where each stage
involves non-parametric estimation.

We provide a comprehensive statistical framework which rationalizes this commonly-used esti-
mator. Armed with this foundation we study the theoretical properties of beta-sorted portfolios
linking directly to the choice of estimation window in the first step and the number of portfolios
in the second step which serves as the tuning parameters for each nonparametric estimator. We
introduce conditions that ensure consistency and asymptotic normality for a single cross-section
and for the grand mean estimator. We also introduce new uniform inference procedures which allow
for more general and varied hypothesis testing than currently available in the literature. However,
we also discover some limitations of current practices and provide new guidance on appropriate

implementation and interpretation of empirical results.
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In this subsection, we show the theoretical properties of the first-step estimation of a;: and ;¢ as in the model
(2.1). For a time series X;;, we define X¢i = gi(&, &1, ,§—00)- Ogm(X 1) = max; [ Xey — X, llq with
X/, as a process with & replaced by & (i.i.d. copy of &). We define ©,,0 ,(f) = > . o0gm(f), with m?
as an integer. Without loss of generality, we shall assume that n < n; < n, (and withoug loss of generality n.
and n, are of the same order) throughout the section. Define A(to) = Zt]E(XtXtTLFt_l)w(t, to) and B;i(ty) =
Zt E(XtRit|Fe—1)w(t, to). Define A(to) = Zt XtXtTw(t, to) and B;(to) = Zt Xt Rizw(t, to). Recall that w(t,to) =
h='K((t — to)/(Th)). We suppress the dependency of to by the elements as in A(to), Bi(to), A(to). We define
Bi(to) = Bi(to) = >, E(X: X, | Fim1)w(t, to)bit, = Abir,. We define ro = (Th)" (T + (ThlogT)'/?), for an
integer g > 4.

Assumption 1. We assume that the bounded differentiable one-sided kernel function K(.) takes support in [-1,0],
and satisfies ffl K(u)du=1. K(.) € C?*[-1,0]. T — 0o,h — 0,Th — cc.

Assumption 2. Assume that fi = 7'(t/T) + x+, where x+ is a stationary process. The trend function 7'(.) is
bounded by ¢, and is second order differentiable. E(z¢) = 0. We assume that E(ei|Fi—1,2¢) = 0 and it im-
plies that E(ey|Fi—1) = 0. We define E(e?,|Fi—1,2¢) = o(Fi—1,t/T)? = 0f, and define Ex; = 0. ||cit]l2q < c.
E(e|Feo1, 1) = E(e5|Fi—1). 020 = E(e?,) = E(07,) > 0. The error term g1, has finite qth moment with q > 4.
(1) 'ny/ < h.

It shall be noted that T2/ qflni/ 9 < h favors a high moment condition for example if ¢ = 8, we just need
T=3/4p4 <« h.

Assumption 3. There exists a constant ¢, Ca max such that ming, Amin (T T E(A(t9))) > ¢! > 0, ¢ < ming, Amin (T EA(to)) <
maxs, Amaz (T TEA(t0)) < Camax and ming Amin (T E(Bi(to))) > ¢! > 0. maxy, Amax (T E(Bi(to))) < Cs for a

positive constant Cp.

Assumption 4. We define o2 = E(mf) < 00 and g4 = E(m?) < 00, and we assume that they are both bounded
by a positive constant cyq. We define the constant ¢, = 202 ffl K(s)?ds. We denote X, = E[(1,2:) (1,24)],
F(to/T) = (1,7 (to/T)) . We let Ta = Sy + 7(to/T)7(to/T) ", 5 = 02 E(Xt X4)) ffl K?(s)ds. Assume that both

Y4 and X g has eigenvalues bounded from the below and the above.

Assumption 5. (Lipschitz condition) We assume that the a;e = a;i(t/T, Fi—1) and Bix = Bi(t)T, Fi—1) satisfying for
anyt,t’" € [Th, T—=Th], |aix—a| < Co(Fe1)[t—t'|/T and |Bit—PBir| < Cp(Fe—1)|t—t'|/T, where Co(Fi-1), Cp(Fi-1)
are two Fi—1 measurable functions. Moreover,

maxy |Co(Fi—1)|, maxs |Ca(Fi—1)| are bounded by constants Co,Cs. Assume .z, Bit are bounded uniformly over i,t .

v

Assumption 6. In particular for any positive integer m, we assume that Om 24(ft) = m™" and maxy || fill2q s

bounded, for 2v > 1/2 —1/q, with q¢ > 4, for a positive constant v.
Define rr = (Th)~ (T 4 (ThlogT)"?). Let gn = Ju Vnu, VT . hV rr V \/log(gn)/VTh = ér.

Assumption 7. Fg.(z) is continuously differentiable on the compact interval Bs = [Bi — dr,[u + 07] (01 is a
positive constant). Bix are i.i.d. conditioning on Gi_1(sigma field of time invariant factors). e; are independent
conditioning on all three of the filtration U(Fi—1,0(ft)), Gi—1 and Fi—1 respectively. The condition density of Bit
is denoted as fg(x). Cgmaz > Max; MaXgeny f3,¢(C) > ming mingep, fg,:(x) > cg,min > 0, which is also first

order continuous differentiable with bounded derivatives. E(B:®};|Ge—1) =<p J; ', miny, Ee_1(®];, 165) <p J; ' and

~ F/;j(’{j) - —1
95y = fFﬂ( foedB =p Jy .
Bt

Define anr = max¢(v0rcn,v//nt) V V/10g T\/nfl, where ¢, 1 is a positive constant.

Kj—1)

Assumption 8. We let maxin: < ny, n < ng, J < Jp < Ju, Ju X J and ny, <X n. Recall rp = (Th)’l(Tl/q +
(Thlog T)1/2), with ¢ > 4. We assume that Assumptions 16 to 21 are maintained such that max; sup, |Z3\1t — Bit| Sp o
and J;7t >

Vv log(gn)

N . 0r =0, rr — 0. We assume that anr — 0.

41



We note that the above assumption implies that Jlog ¢, /n < 1. Define § = (67 + anr)'/%\/10g ¢n //10-
Assumption 9. J(61 + anr)Y/?VIog qn//n < 1.

Assumption 10. We assume that a(B) is continuously differentiable of the first order, and with the first derivative
bounded from the above by positive constant cq .

t—1
to=1

We first order observations as £ = £(i,t) = >
field of B¢ up to the order of £ — 1.

ne+14, 1 <i<ng, 1 <tg <T. We let ]-'5671 denote the sigma

Assumption 11. We let BLJ' = Bej — Fﬁ_t1 (kj). BLJ‘ are different over time, however the dependence can still
decay as the series of Bir. We assume that 1(—u < Bo; < u) = e ;(u). We assume that maxe; E(87 ;1(—u <
Bej < u)|.7-—f_1) < CB%u, max; E(e21(—u < Boj < u)|}"f_1) < CB2u, for a constant C. Moreover we assume that
I masx; E(v.; ()| F2)) g < u/"Cquc, [max; B, ;(w)B.51F 1 )lla.c < u'/9Cq ¢, for an integer q > 4.

Define 07 = v/1og ¢n /V/nT V h V \/log(gn)/v/nTh.
Assumption 12. (anT/\/T—&—gT) V J(ant + 5T)1/2/\/nT <hvJlx \/T_l.

We shall give an example on the plausible rate of n, T, J, h which is admissible to the above assumptions. For
example, we can assume that n =T, J = O(T'/?) and h = O(T~/3).

We notice that the conditions || max; E(¢b. ;(u)B.|F” )llgc < ul/qCé,C are easily satisfied. Let us illustrate for
the stationary case of 8. For example if we assume that fg,t(ﬁ\.rf_l) is differentiable with respect to 8 and its i.i.d.

innovation eo (slightly abuse of notation), then we can derive that,

E(W.;(u)Be;|F, 1) — B (w)Bes| Fy ")
u+Fl;1(nj) u+Fl;1(nj)
/ B 5.0 (BIFE )6 — Bfa.0(BIFE",)aB

u+Fl;1(nj) —7J‘+Fﬁ_j("‘”~j)

2uleo — £5/|Budf (B Fe-1)/(9200B),

IA

where (3 is a point between the intersection of N, (—u+FB_; (k5), u—l—Fﬁ_t1 (k;7)), and Fy_1 is the filtration with o replaced
by some value. We take the |.|| norm of the above object. If we can ensure that |eo — &||8u||0f (B|Fe-1)/(02008)|lq
decrease sufficient fast according to the lag ¢, then the conditions holds. We let &' = Ar/ VT. Define Ny =
Uiero. 2 Novw 87 = V108 ¢ /VnT V bV \/l0g(gn) /V/nTh.

~1/2

Assumption 13. Let 5,]°(B1,2,3) be a consistent estimator for op(Bi,2,3) satisfying op(B1,2,3)"% — op(B1,2,3)"? =

or(r1,2,3), and the rate 1,23 — 0. 04(B) is bounded from the below and the above uniformly over 8. max; ¢ ||<I>f,j,t5itq~;1 e <
Jrova

Since we have 1/JyxJ,2(Jo = (51 +ant)+V/0rT 2 (n; 2 ;%)) = 08(82) and (1/Jy(In. 1 /ra+J; ) JE (lnw /re) Iy J2) =
op(01). Recall that 01 = Vant + 07Jt/\/Nt + anT + 7, 02 = 07 + anT + VT COp 12 g2

Assumption 14. Let €;x =q ot conditional on Fi—1, with 0',52 = E(E?t|]:t_1), and mi¢ be a standard Gaussian
random variable defined on a proper probability space. Exists two positive constants c¢,C > 0,

¢ <mino; <maxo; < C.
J J

And we have d117 + d21r << 1/+/Tog J. nt_l/2+1/(2q)\/jt << \/Jifl. Moreover, \/ni/Ji(h V J;l) — 0.

Assumption 15. Assume that with probability one, En, j/ojs are bounded from the below and the above for all
t,]. supﬂ{a(ﬁ)l/?’ —o(B)Y?} = Os(rs) for some constant ro. Assume reTV/2H1/20 5120 0 gnd r, — 0. ¢ <
infg o(8) = supgo(B) < C. ¢ < ming 5(8) = supg 5(8) < C. [|En,j — Eny j—1ll2q < cJt, for a positive constant
¢ > 0. ||[fe—E(fe| Fe-1)ll2q¢ < C, for a positive C > 0. Assume that the grid is B, = [B1, B2, -+, B./5]. This corresponds
to Ju,5 distinct value of B. We shall assume that for avoiding singularity of the variance covariance matriz. We need
to ensure that o(B;, ;1) # o(B;,8;) or (B, By). Let [0(Bi, Bir) /3" *(B:)a(Bir) *lisir = £, 5.5,5- We shall
assume that ¢ < Amin(E7,.5) < Amax(S,.5) < C', with C',¢ > 0. Let Jo 5 < exp(T* ), with e’ = 1/9.
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A Setup

A.1 Assumptions

In this subsection, we show the theoretical properties of the first-step estimation of «;; and B;;. For a
time series X;;, we define X;; = ¢1(&, &1, 1€—0). Ogm(X ;) = maxy || Xy — X;m’lHq with X7, as
a process with & replaced by & (i.i.d. copy of &). We define ©,,0 ,(f) = Y07 o 0q.m(f), with m® as
an integer. Without loss of generality, we shall assume that n < n; < n, (and without loss of generality
ne and n, are of the same order) throughout the section. Define A(ty) = Ethl E(X: X, |Fi_1)w(t, to) and
Bi(to) = S B(X Rt | Fi_1)w(t, to). Define A(to) = 1, X: X, w(t, to) and Bi(te) = iy Xi Ruw(t, to).
Recall that w(t,tg) = h K ((t — to)/(Th)). We suppress the dependency of ty by the elements as in
Alto), Bi(to), A(to). We define

Bi(to) = Bi(to) = Sory B(X, X | Fi1)w(t, to)bir, = Absy,. We define rp = (Th)~ (T + (Thlog T)'/?),
for an integer ¢ > 4.

Assumption 16. We assume that the bounded differentiable one-sided kernel function K(.) takes support
in [-1,0], and satisfies f_ol K(u)du=1. K(.) € C?[-1,0]. T — co,h — 0,Th — c<.

Assumption 17. Assume that f; = 7/(t/T) + x¢, where x; is a stationary process. The trend function 7'(.)
is bounded by ¢, and is second order differentiable. E(x;) = 0. We assume that E(ey|Fi—1,2¢) = 0 and
it implies that E(e;| Fi—1) = 0. We define E(e%|Fi—1,2t) = o(Fi—1,t/T)* = 07. |gitll2q < ¢, and ¢ > 0.

E(e}|Feo1,2i1) = BE(e}|Fim1). 02 = E(e7,) = E(o7)) > 0. The error term ey, has finite qth moment with
g >4 (T)Q/qflni/q < h.

It shall be noted that 7/ q’lni/ ? < h favors a high moment condition for example if ¢ = 8, we just need

T-3/4p/4 <« h.

Assumption 18. There exists a constant c,Ca max such that ming Amin(T~'E(A(t))) > ¢ 1 >0, ¢! <
minto )\mzn(T_lE[A(to)]) < maxy, /\max(T_lE[A(to)]) < CA,max and minto )\min(T_lE(Bi(to))) >c >0
max;, Amax (T 1E(B;(t0))) < Cp for a positive constant Cp.

Assumption 19. We define 02 = E(z?) < oo and 0,4 = E(z}) < oo, and we assume that they are
both bounded by a positive constant c, 4. We define the constant ¢, = 202 fo K(s)*ds. We denote ¥, =
E[(1,2:) T (1, 2¢)], 7(to/T) = (1, 7' (to/T)) . Welet$a = Sp+7(to/T)7(to/T) T, U?OE(XtOXt—g) fi)l K?(s)ds.

Assume that both ¥4 and X g has eigenvalues bounded from the below and the above.

Assumption 20. (Lipschitz condition) We assume that the oy = o;(t/T, Fi—1) and By = Bi(t)T, Fi—1)
satisfying for any t,t" € [Th,T —Th], |yt — i | < Co(Fror)t —t'|/T and |Bir — Biv| < Ca(Fe1) |t —t'|/T,
where Co(Fi—1), Ca(Fi—1) are two Fi_1 positive measurable functions. Moreover,

max¢ |Co(Fi—1)|, maxy |Cg(Fi—1)| are bounded by constants Co,Cg. Assume oy, Bir are bounded uniformly

over i,t .

Remark A.1. Note that under our assumptions we have that

T T
ET! fow(t,to) =ol1r ! Zw(t,to) =2 (A.1)
t=1 t=1
And
T
T3 (/T w(t, to) = 7/ (to/T)* + O(h). (A.2)
t=1
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T

1 0
Var(v/h/T Y w(t,to)ef) = 02 o(or + 7/ (to/T)?) /_ 1 K(s)?ds + O(h). (A.3)

t=1

Thus we conclude T~'E(A) = X, + 7(to/T)7(to/T) " + O(h).

Remark A.2 (Admissible processes of 8). Suppose that Bir = Gg(1i, g1, , ge—1, 1, , frm1,wit—1), where
1; 18 1id overi, gy is i.i.d. factors overt, andw;—1 are i.i.d. overt andi. We denote the common factor sigma
field as Gi—1 = o(f1,-+ , fi—1,01, -+ ,gt—1). The function By shall be smooth over time, and conditional

i.9.d. conditioning on the sigma field Gy .

Assumption 21. In particular for any positive integer m, we assume that O, 24(fi) = m™" and maxy || f¢] 24

is bounded, for 2v > 1/2 —1/q, with q > 4, for a positive constant v.

Remark A.3. We shall see that Assumption 16 ensures the basic property of the kernel functions. The one-
sided kernel is adopted to avoid the look- ahead bias term. Also it is important for us to adopt the one-sided
kernel in this step, as in the second step, our theoretical results works with conditioning on the filtration in
the past. The generated error induced by estimating beta is thus fived with respect to the conditioned filtration.
Assumption 17 poses some general structure of the factor f; and also impose some basic assumptions of the
error term g4 to ensure the validity of our estimator. We set the factor to be a trend stationary process, and
we assume homoscedasticity over time for the simplicity of our analysis. It would be not hard to extend to
more general settings. Moreover, we also assume finite 2q th moment. Assumption 18 sets the proper behavior
of the matriz in the population. It is related to the identification of our estimator. Assumptions 19- 21 are
regular conditions on the decay rate of the dependency for factors. Note that we can relax the assumption on
the boundedness of a;r and Biy. Assumption 21 implies that ©,, o(E(f.|f 21)), Om.q(E(f|f -1)) are bounded
by constants cy, @m’q(f?) =m™", for a positive constant v. In sum, we shall assume that the alphas and

betas are suffiiciently smooth over time, and the temporal dependency of factors shall be weak.
Define rp = (Th)~(TY9 + (ThlogT)'/?). Let ¢, = JuVn, VT . hV rr V \/log(gn)/VTh = 6.

Assumption 22. Fjs,(z) is continuously differentiable on the compact interval Bs = [B; — o1, Bu + O1)

(01 is a positive constant). Bz are i.i.d. conditioning on Gi_1 (sigma field of time invariant factors). e

are independent conditioning on all three of the filtration U(Fi—1,0(ft)), Gi—1 or Fi_1 respectively. The

condition density of By is denoted as fg (). Cgmae > Max; maxzep; f5(x) > min mingep; fa(x) >

¢g,min > 0, which is also first order continuous differentiable with bounded derivatives. E(8;PF|Gi—1) =,
1 . — -1 - F_,l(" i) — -1

Jy, ming, ]Et—l(q)r,jt,tg?t) =p Jy* and gj, = sz(ﬁjil) fordB=p Jy .

Remark A.4 (Discussion of the conditional iid assumptions for S3;:.). Suppose Z;; and Z; are observable.

Let us look the simplest model

Riy = ot + Bicfr + it (A.4)

where «;y is a function of By. We see that Zy and Zy—1(U;) are measurable with respect to Fi—1. Suppose
that Uy are iid random variables over time (independent of any object as the above). In Gagliardini, Ossola,
and Scaillet (2019), they assume,

Bit(Ui) = B(Ui) Zy—1 + C(Ui) Z1—1(Uyr), (A.5)

where B(Uyt), C(Uir) are parameters which are solely functions of Us.
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We can observe that conditioning on Gi—1 = 0(Zi—1(.), Zi—1), Bit(Uir) will have only source of random-
ness from (Uiy)is and therefore are iid over i. We can express Bit(Uit) = g(Uit, Zi—1, Zi—1(.)). To ensure
that g(Ust, Zy—1, Z1—1(.)) is smooth over t. Furthermore the smoothness assumption on Zy—1 and Zy—1(Us)
over t is required for us and but NOT for required for Gagliardini, Ossola, and Scaillet (2019). However,
the structure in Equation (A.5) is not necessary for us, therefore there exist models where we can cover but

not covered by Gagliardini, Ossola, and Scaillet (2019). For example if we set, B; is a vector of Bir. ny = n,
Be = en—z + a(t/T)me—1, (A.6)

where ny are iid random vectors over t, and forms random smooth curve over t. a(t/T) is a smooth trend
function over time, such as a(t/T) = (t/T)?. n_1,1m—2 are measurable to F,_1. The structure in Gagliardini,
Ossola, and Scaillet (2019) is then violated.

Define a,r = max¢(v/orcn,v/v/nt) V V1og Ty /nt_l, where ¢, 7 is a positive constant.

Assumption 23. We let max;ng; < ng, n < ng, J < Jp < Jy, Ju < J and n, < n. Recall rp =

(Th)~Y(TY9 + (ThlogT)*/?), with ¢ > 4. We assume that Assumptions 16 to 21 are maintained such
that max; sup, |th — Bit| <p 67 and J;1 > 7V1igﬁ(lq") . 0pr =2 0, rp = 0. We assume that a,7 — 0.
We note that the above assumption implies that Jlogqn/n < 1. Define § = (67 + anr)" /%108 ¢n/ /1.

J(07 + ant) %\ /Tog ¢n/ /1 < 1.

Assumption 24. We assume that a(8) is continuously differentiable of the first order, and with the first

derivative bounded from the above by a positive constant c,.

Remark A.5. Asssumption 22 is regarding the property of the density of Bi. Assumption 23 sets the
property of the uniform rate of Bi;. We see that it corresponds to Theorem B.6. Assumption 23 assumes the

relative rate of ny and Jy . Assumption 24 assumes the smoothness of the function «f.).

Remark A.6. (Discussion of rate) We assume that q to be sufficiently large and the choice of h and n,, are

satisfied so that
Viog(n,T) > TY4(Th)~'/2,
then o7 = h + \/log(n,T)/VTh. Assume that

Viog(n,T)/vn < 1,
then anr = \/h/n++/logT/\/n. Thus o1 + anr = /1ogT/\/nV hV \/log(n,T)/VTh. Assumption 24 thus

assumes that
(V1ogT/v/nV bV \/log(n,T)/VTh)Y/?J/\/n; < 1.

We first order observations as ¢ = £(i,t) = Z=11 ng+1, 1 <i<ng,1<tg <T. Welet ff_l denote the

sigma field of By up to the order of £ — 1.

Assumption 25. We let s ; = B j —Fﬂ_’tl(,‘ij). Bm; are different over time, however the dependence can still
decay as the series of Bir. We assume that 1(—u < By ; < u) = ¢ ;(u). We assume that maxy,; E(szl(—u <
Bej < u)|.7-—f_1) < CP2u, maxy;E(e21(—u < fij < u)|.7:f_1) < CB2u, for a constant C. Moreover we
assume that || max; E(w](u)|}'ﬁ_1) lg.c <ut/1C, ¢, || max; E(w,,j(u)ﬁ,,j|]:f6_1)||q,4 < ul/qCéhC, for an integer
q > 4.
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Define 07 = v/Iog ¢, /vnT V hV \/log(g.)/VnTh.
Assumption 26. (a,7/VT +67)V J(anr + 5T)1/2/\/nT <hvJlx \/T_l.

Remark A.7. Following the rate discussion of Remark A.06, the above conditions can be implied by
V1og qn /(VnT) < b3/ v B2 g1,
{(log gn)/*/nt* v W% v (/log g /VTR)?} S VT (J7thv J72) < Vn.

We shall give an example on the plausible rate of n, T, J, h which is admissible to the above assumptions.
For example, we can assume that n =T, J = O(T'/3) and h = O(T~'/3).

For a positive constant Cj ., we notice that the conditions || max; E(w,’j(u)ﬁ,|]:.ﬂ_1)||q,c < ul/qu’LC
are easily satisfied. Let us illustrate for the stationary case of 8p. Let fg.(5].), F3,+(8|.) be density and
distribution function corresponding to different filtrations. For example if we assume that fs(8|F ) is
differentiable with respect to § and its i.i.d. innovation ¢ (slightly abuse of notation), then we can derive
that,

E(3. ;(w)Be,j1F,1) — B, ;(w)Be1F,")
u+Fﬁ_j(nJ-) quFﬁ_j(ﬁj)
/ B0 (BIFL,)dB - B4 (BIFE)dB

—u+F5 () —utFj (5;)

< 2uleo — 118,01 (81 Fe-1)/(9200P)],

where 3 is a point between the intersection of M;(—u + Fﬁitl(/ij),u + Fﬁftl(nj)), and F,_; is the filtration
with ¢ replaced by some value. We take the ||.||; norm of the above object. If we can ensure that |eg —
ellBullOf (B Fe-1)/(0200B)|4 decrease sufficient fast according to the lag ¢, then the conditions holds. We
let &' = Ap/v/T. Define N; = Uizt 2 No.- 57 = V1og ¢ /VnT V hV \/10g(qn)/V/nTh.

Remark A.8. Following the rate discussion of Remark A.G6, the above conditions can be implied by

Viog g,/ (VnT) < h*/? v /2 J1,
{(log g,)Y*/n** v B2 v (\/log ¢ /NTHh)Y?} S VnT(J7*h v J72) < /n.

Assumption 27. Let 81D/2(51’213) be a consistent estimator for op(f1,2,3) satisfying b'\D(517273)1/2*O’D(ﬂ11273)1/2 =
op(r1,2,3), and the rate r123 — 0. 0q(B) is bounded from the below and the above uniformly over (3.

max;,¢ ||(I>?,j,t5itqj'71”q < Jia,

Remark A.9. (Inconsistency of [iz(8) for fizred t.) To facilitate the inference for fix t we shall consider the
following procedure. Since by Theorem B.6,

@ — aj — ding(q;e)*ny & ] = 0p(1). (A7)

46



We see that
[, ' @7 12@ 7ty

= n;! Z(I);j,tﬂit(ft —E(fi|Fi-1)) +ny Z‘P;M&t,

i=1

= . Z{‘I’ i3, Bit — Etfl(q);j,tﬂit)}(ft = E(fe|Fi-1)) + nfl Z (I);:j,tsit
i=1
+{Et71( FiaBit) Y(fe — E(fe| Fe-1))-

Denote fy = (fi — E(fi|Fi_1)) and i ;. = {®F jiBit — E[(®F ; ,Bit)|Gi—1]}, then we have the leading term
in the dj; — aji as {Eq—1(®7;,Bi) }(fr — E(fe| Fi-1)), which is of order Op(1). So this term explains the
inconsistency of the estimator [i:(8) to u:(5).

Remark A.10 (Omitted factors). The omitted factor bias issue has been studied in Giglio and Xiu (2021).
In case of misspecification or mispricing, there exists non-smooth and non-exogenous components in c:. We
shall consider the following alternative procedure. Similar to Gagliardini, Ossola, and Scaillet (2016), we can
impose the following structure for the conditional expectation of the factor fi i.e., B[ fe| Gi—1] = G —l—\I'th{_l,

where ztffl is a vector of underlying factors, U, is the loading, and p; is a time-varying mean. Thus we have

Riv = i (Bit) + By (fr —E[fi| Gi-1]) + eae
= (Bit) + By (ft -G —=Y, Zt—l) + et
= [/it (Bit) — ;;Ct} + ;lt—ft - [ T‘I’th 1] + €t
— ~—~—
smooth constant term of interest

control variables

Following the above model, we can modify the estimation procedure by controlling for the factors \I/thtf_l.
T
Namely we run kernel regression of R;; on (1 f—'—7 szl) . Then the second step is the same as the previous

steps, we can sort portfolios based on Bit and take averages over time.

Remark A.11 (Leave tg out estimator.). In the beta sorting step, we shall use a leave ty out estimator to
ensure that py(B) is purely measurable to F;_1. This is a theoretical arrangement to facilitate our derivation
of the property of the beta sorted estimator. In this remark we show that this would not change the statistical

property of the estimator in the first step. We define the leave one out estimator to be

bit—t) = [D_ (w(t, t)) Xe XY w(t, to) Xe Ry}

t#to t#to

Since we are using a one sided kernel, the estimator@i(,to) only use information up to time to—1. Compared
to the estimator

’ﬂ

uo Z (t,t0) X X I{Z (t,t0) Xt Rt}

t=1
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We can derive that

/b\i _/b\i — oo
ol By Pito — Bit-to)]

T
gs?p|(Th)*1xtoxjo\OQ|T[Z(w(t,to)xtxT Mool T S (w(t, t0) X X, oo
0 t=1

t#£to
Hzl?oX|T Z (t,t0) Xt Rit)| oo
t#£to
+Supmax\(Th) Y X4 Rity oo [T Z w(t, t0) X X, ] oo

t#£to
Se (Th)™'TY Sy,

We now show that /l;i(_to) is close gz‘(—to) in a uniform sense. Thus Theorem B.6 and B.7 still hold under

the same conditions.

Since we have 1/Jt>th2(Jt_l(5T+anT)+\/6TT1/2‘1(n;1/2J;1/2)) = op(62) and (1/J; (L. /4T, ) T2 (Lo 1 /100) T,

oP(él).
Recall that 61 = Vanr + 07Ji/\/¢ + ant + 61, 02 = 07 + ant + \/5TT1/(2q)nt_l/2Jt1/2.

Assumption 28. Let e;; =4 oyni conditional on Fy,_y, with o? = E(e%|Fi_1), and i be a standard

Gaussian random variable defined on a proper probability space. Exists two positive constants ¢,C > 0,

¢ <mino; <maxo; < C.
J J

And we have §11 + dar << 1/+/Tog J. n{l/zﬂ/@q)\/jt << \/jt_l. Moreover, \/ng/J;(hV J71) = 0

Remark A.12. Following the remark A.6, o1 + anr = logT//nV hV \/log(n,T)/vVTh. The above

assumption implies that
TP\ any +0r/ /g < 1,

and )
ant + 07 < \/J;

Assumption 29. Assume that with probability one, E,, j/o;s are bounded from the below and the above
forallt,j. supﬁ{ﬁ(,@)l/2 —a(B)'/?} = Op(r,) for some constant r,. Assume roT—Y/2+1/24 7120 5 gngd
re — 0. ¢ <infgo(B) = supgo(B) < C. ¢ <ming(8) = supg(8) < C. ||En, j — En, j-1ll2qg < eJi
for a positive constant ¢ > 0. | fi — E(fi|Fi—1)ll2q < C, for a positive C > 0. Assume that the grid
is B, = [B1, B2, - ,Bc/g}. This corresponds to J, s distinct value of B. We shall assume that for avoiding
singularity of the variance covariance matriz. We need to ensure that o(5;, 5;:) # (B85, 8;) or o(Bj, Bjr).
Let [E(ﬁi,6,»:)/31/2(@)3(61-/)1/2]1-,1»/ =7, 5,Jas- We shall assume that ¢ < Anin(X7,,5) < Amax(2,,5) < ',
with C',¢ > 0. Let J, 5 < exp(T¢), with & =1/9.

B Results

B.1 Preliminary Technical Lemmas

We first show some useful lemmas.
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Lemma B.1 (Burkholder (1988); Rio (2009)). Let ¢ > 1,¢' = min{q,2}, and My = Zthl &, where & € L7
are martingale differences. Then

T
1M < K2 Y lérlld,  where Ky = max{(¢ —1)7", /g — 1}.

t=1

Lemma B.2 (Freedman’s inequality). Let &, ; be a martingale difference sequence, F; be the filtration and
l
Vo =Y B(E2 ;| Fim1) and M, = maxi<i<n Y iy Eai, we have,

Plmay [Mal 2 2) < ;E"(?ﬁ} a2 ) + 2P(max Vo 2 v) 4 2 Aje—/ @020, (B.1)

For a p— dimensional random variable X, we define
X5, llg.c = supp, (Mo +1)° 32005y 0g.m (Xj,.) < oo

Lemma B.3 (Theorem 6.2 of Zhang and Wu (2017) Tail probabilities for high dimensional partial sums). For
a zero-mean p-dimensional random variable X, € RP, let S, = >"7_ | Xt and assume that ||| X |eo|lq,c < 00,

where ¢ >4 and ¢ > 0, and P2 . = max || X |2 < c0.
1<j<p

i) If ¢ > 1/2 — 1/q, then for x 2 \/nlogp®a + n'/9(log p)*/?|||X.|soll g

C, n(logp)?2||| X |so |2 —C, .x2
 Cusnosp I el |, (=Cocr®
x4 n<I>2’§

1) If 0 << < 1/2—1/q, then for x 2 /nlogp®s ¢ + n1/2’§(10gp)3/2|||X.|Oo||q’<,

IP>(|Sn|o<> > 73)

C, cn?2=59(log p)9/2|| X .| |2 _ 2
P(|Sn|ooZI)S q,S ( gp) H| | ||q,<<i>c,q7§ < CqSSC >

x4 n®3

Lemma B.4 (Uniform rate). By Assumptions 16- 21, we have

sup T YA(tg) — EA(to)|max Sp (Th) ™1 (TY9 + (Thlog T)Y?), (B.2)
|Th]<to<T—|Th]

sup T Y A(to) — BEA(to)|max <p (Th) (T 4 (Thlog T)'/?), (B.3)
\Th)<to<T—|Th)

max sup T Bi(to) — EB;(to) | max Sp (Th)™HTY 9 + (ThlogT)Y?), (B.4)

i |Th)<to<T—|Th|

sup T~ A(to) - A(to)‘max Sp Vog T/(\/T‘/E)7 (B.5)

\Th|<te<T—|Th)

max sup T~ |B;(to) — Bi(to)lmax Sp V1og(nuT)/(VTVh). (B.6)

v |Th]<to<T—|Th]
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Proof. As we have

71 sup |A;(to) — EA;(to)|max
|Th]<to<T—|Th)]
T T
= sup, [T~ Z{xtm: — E(ziz, ) Jw(t, to) | max + sup,, [T~ z:{a:t/\’(t/il’)T}w(t7 t0) | max
t=1 t=1
T
sup, [T~ AN (#/T)x] Jw(t, to)lmax
t=1
= L+L+1s.

Also by Assumption 21 we assume that ©,, 24(x. ;) =m™", for 2v > 1/2—1/q, then we have by Lemma A.3
as in Zhang and Wu (2012), we define r = (Th)~Y(T"/9 4 (ThlogT)"/?)

11,12,13 /Sp rT.

We note that this results holds for nonstationary z; as well. Similarly (B.3) holds. (B.4) holds give then

*
2.

fact that ||z &;. — z*ef || < l|leitl|2qllze — xf||2q for t # 0. Then we have ||e;]l24 < c.

The rate in (B.5) and (B.6) can be similarly proved by the Freedman’s inequality in B.2 and similar

bounding technique following lemma B.5. O
Lemma B.5 (Uniform rate). Assume u; and vy which are martingale differences overt (i € 1,--+ ,n, t €
1,---,T). Let 2v > 1/2 —1/q. For a positive constant C,, assume O, 2q(u.) < Cy , and maxy ||utll2q < Cy

for g > 4. Opoq(v.) < Cy. Assume Oy, 24(v;.) < Cyp , and maxy ||vit]|2q < M for ¢ > 4. Oy 04(v.) < Cy.
If we assume that T—1T2/9 <« h, then we have,

T
swp T Yt bl S, (T2 (108 T)' 2 (B.7)
[Th|<to<T—|Th| t=1

moreover if we have (T)?/9='n2/9 < h, then we have,

T
max sup T Z w(t, to)vir] <p (Th) ™2 (log T)'/2. (B.8)
v |Th]<to<T—|Th]| t=1

Proof. We have by summation by part

T ¢ to—1
ma. usw(t, < ma ma. U birw(t, to) — bj—qw(t — 1,¢t
t0x|(; w(tt)) < toxt:to_méegto—l‘; tllt EL;MM (t,t0) = bi—1w(t — 1,t0)]]
- — 0
to
+II}5%X| Z ut|w(t0,t0).
t:to—LThJ

Now since |Zi2:tThJ [bisw(t,to) — bir—1w(t — 1,t0)]| < |Th|/(Th) <1, due to the Lipschitz property of b,
and the definition of kernel. Now apply the Freedman’s inequality in B.2, to the term maxy, | Z?:to—LTh | o
and maxy, maX,_ | 7h|<e<to—1 | Zle ug|, then the results follows from the assumptions.

Let X\ be a positive constant. Since we know that for martingales, we have
P(max;, | 7nj<e<to—1 |Zf=t0—LThJ ug] > 2X) < P(] Zfzto—LThJ ug| > N), c.f. for example Theorem 2.4 Hall
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and Heyde (2014). Thus

¢ ¢
maxy, MaxXe, - Th|<e<to—1 | Doy—y Ul S MaXgoea|Th) 3\Th] - 7= Th) | 2o leg—7n) el O
Recall that a; = {CTJ @T}’1{<§ R}, we now derive a linearization for the estimator a} at each time point

t. Recall that g;; = [, Fia (530 fs.¢dB. []; denote the jth element of a vector.

Fy(R5-10)

B.2 Main Theorems

Theorem B.6. Suppose Assumptions 16-21 hold, and let rp = (Th)~Y(TY9+ /ThlogT) — 0, h — 0, and
log(n,T')/Th — 0. Then,

max sup |bity — bito | Sp O
1<i<n | Th|<to<T—|Th)|

where 07 = (rp + /log(n,T)/vTh + h).

Theorem B.7 (Asymptotic Normality). Let hv/hT — 0, h — 0, Th — oo, rar + rr — 0 then, under
Assumptions 16-21, we have that

VTR, (bity — biry) —2 N(O, I). (B.9)

where r a7 s defined in the Appendiz.

Lemma B.8 (Rate of B(kj)7t). Conditional on Gi;_1, we have under Assumptions 22 and 23,

mas (B~ F5 05)) Sp our (B.10)
II%%X(/B(kjt)yt — FB_,tl (Hjt)) S;D ant V Or. (Bll)

In the following lemma, we show the uniform rate of the order statistics of Bit. It shall be noted that due

to the Assumption 22, ﬁlts are conditionally independent and identically distributed conditioning on G; .

Recall that ¢;; = f Pt (30 fp.4dB <Sp Ji7t < J71 due to Assumption 22. In the following, we show a

(”J 1t)
few useful lemmas that facﬂltates further derivation. Denote o7 = (vIogT//n) V bV (y/log(n,T)/v/nTh).
To derive the rate of fi;, we shall define a few objects for the ease of derivations. We define k;; = [n.j/J¢ ],
kj = j/J¢. The following assumptions are imposed to ensure the proper rate of our estimator. We denote

T
Ng = thl ng. Assume n, < nT, and n, n, are of the same order.

Lemma B.9. Conditional on G;_1, given Assumptions 22 to 23, we have,

IP>(mjiﬂ 1Bk, o)t — B, “1o1/J) =0

P(min mjin 1Bt = Biiy—rotl > 25 minl /) =

Also we have the bias term, with a slow varying term cy,,
max | Z( 1(Bit € Py) — 1(Bi € Ppn))| Sp max \/ne\/ anr + o1 cn, + 1i(anr + or)/Je = ln1,
mgxx\bﬂoo Sp 1/ <1/
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Now we show the estimation accuracy of a few partial sums with the plugged in beta. Recall that
§ = (67 + anr)*/?v/10g ¢ /\/n. The following lemma is for fixed time point, and conditioning on G,_.

Lemma B.10. Conditional on G,_1, under Assumptions 22-24, we have,

Hy= n;'®3 —n; '@ =n;! Z((i)ztﬁzt —®7,Bit) Sp 0+ (01 + ant)/J = hy,

H, CUB B =B B =t Z( 3, — B7) Sp O = ha,

H; = nt_l(i)tTENt — nt_l(I):ENt = nt_l Z(éi,tfgit — (I)z t5zt) (5 + ((ST + anT)/J hi.
7

We take the ||.]|; norm of the above object. If we can ensure that |go — &§||Bul|0f (5] Fe—1)/(92008)]l,
decrease sufficient fast according to the lag £, then the conditions holds. We let &' = 6/v/T. Define
Ny =U=1... 7 Nu,- Recall that o1 = \10g qn /VnT V bV /log(gn)/VnTh.

Lemma B.11. Under Assumptions 22-23 and 24-25,

Hy = supT! Z{n;lﬁt(«Z)T(i)tBt —n, 'pi(z) " 07 B}
= SU.pT ' Znt ! Zpt 7, tﬁzt :’itﬂit) SP 6/ v (a’nT/\/T—i_ST)/J = hll’

Hy= T 712”;1{@ Bi—B B} =T 1Zn—1z <p O,
¢

Hsy = supT™! Z{nt_lﬁt(z)T@tTét —n; ' p(2) T ®FE}

—supT 1Znt Zpt (D08t — ©F Eit) Sp 8V (ant/VT +07)/(VTJ) = hi,

Hy= |maxT! ZZ (Bit € Pjr) — 1(Bix € Pjr))| Sp B4

JeBjy
Theorem B.12. Conditional on Gi_1, under Assumptions 22-2/,
[a; — a; — diag(g;e)~'n; D& = 0p(1). (B.12)

Assumption 30. Assume that supg |6(8)/E(6(8))—1| = Op((log(nT))™") and 0 < ¢ < ming |6(8)/E(6(8)| <
maxg |6(5)/E(6(8)| < C.

In the following, we present a lemma which shows the estimator 6(5) does not affect the accuracy when

plug in the the partial sums.

Lemma B.13. Under assumption 30, we have

T XA (B) = me(B)} = bias(B) = S {7 (8) — p(B)} — bias(B) |

sup | - - —, 0.
6(8)""” [E{(5))]172 !
Proof. Let
T Jt T Jt
E(s(p - ZZE pjt(B En, g Var(fi—E(fi|Fe-1)))+T~ ' Zznt ? Z]E pjt(B q]t ((I’;j,tgmgt—l))
t=1 j=1 t=1 j=1
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Since supg [6(3)/E(6(5 )) — 1] = supy [[{5(8)/E(&(8)}'/2 = 1][{5(8)/E(&(8))}'/? + 1]. The proof step
T e (B)—pe(B)}—bias(B) = 3 {Be(B) e (B)} —bias(8)

a(p)/? [E{&(B)}/? ’
The above two conditions imply the conclusion.

is close to

follows from showing first T 2.

O

Theorem B.14 (Leading term linearization). Suppose Assumptions 22-23 and 24-26 hold. Then, uniformly
in 3,

T T
7 ) b Z T[diag(d;e)~"ny @7 + Op((J MV R)) + 0p(T7H3),
t=1 t=1

where the first term is the leading term and the second term is the bias term. Moreover,
T
Z Tldiag(gj:) " 'n, @&
t=1

T diag(q;¢)~ Z 7 it

N =
HMH
§>

’ﬂ \

T
Z T diag(g;¢)” Zq)ztﬁzt Je —E(fel Fi-1)).

Theorem B.15 (Pointwise central limit theorem). Suppose Assumptions 16-21, 22-23 and 24-26 hold.

Then, pointwise in 3,

= S {7 (B) — 1u(B)} — bias(B)

N(0, 1
EG(3)17 e N
where
T Jt T Jf
6(6> =7 Z(Zﬁj’t( Ent Ni Var (ft|]:t 1 + T! Z Znt ij t q]t Zg,tgzzt|gt*1)
t=1 j=1 t=1 j=1
and let
6(B) =0s(B) +0o-(B)
and
T . T R R
bias(f3 Z (' @7 ®;T) " (ny yhy) + T 5i(B) T diag(@) T (ny (6@ — &,®; ay))
—1 t=1

which is a term of order (J=* V h).

B.3 On the accuracy of the variance estimator.

Lemma B.16. Under the conditions of Theorem B.6 and B.14, for (81, P2 corresponding to Iy, Jo respec-

tively, we have

sup  |om(fi(B1), 1(B2)) — o5 (B, B2) — 0u(B1, B2)| = op(1/+/log J)
B1,82€[B1,Bu]
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We define the residual as €; = R;; — fit(Bit). The first lemma shows that the residuals are uniformly

consistent to the true one and the variance estimator is valid as shown in the next lemma.

Lemma B.17. Under conditions of Theorem B.6 and T'/?% < Th,TY1 <« \/Th, we have the residuals
satisfying,
max [Eie, — €ito| Sp 67T = o(1). (B.13)
0

Recall that we define G; 1 as a filtration and (;; is conditionally iid conditioning on it. We define
E(}|Fi-1) = E(e}4Gi—1) = of. Let ¢, = Eem1(®5, ;) = E(®], 1|Ge—1), and E(®];, 1e3)|Gi—1) = 077,
We denote for any random variable X, E;_1(X) = E(X|G;_1). Define the variance estimator for a fixed time
point t as 62 = ny/Jy(3; i g k2)(3,; ®ijot) "2 Wesee that 02, = 1/J,(E,—1 (D}, ,63))(Be—1 (D), ,)) 72 =
Jt_laqu_tl. The variance estimator of L; (8) on the whole support of 3 is defined as 6+(5) = > i Die (B)&?t
targeting at o¢(8) = >_; bj, (B)o?, in the population.

From Assumptions 22, we have miny, J;G;, > ¢, and Jyminy, E; 1 (®; ;, ;%) > ¢ with probability 1. Let

01 = Vanr + 67Ji/\/1 + anr + 07, and 02 = 07 + anr + V6TT1/(2q)n;1/2Jt1/2'
Lemma B.18. Under the assumptions of Theorem B.12, \/(5TT1/(2‘1)n;1/2Jt1/2 — 0, we have,

maxSup |0(8) = 6:(B)| Sp 1 + 02 = o(1).

B.4 Test and theory on the difference estimator.

Next we discuss the procedure to test supg , g, _os, |1t (B1)— ¢ (B2) [t (B2) — pe (B3)] | = 0. Let 6¢(B1,2,3) =
225, B3, (BL) B3, (Bs) =205, (B2)]?63,. Also o¢(B12,3) = 32, [Bs, (B1)+Dj. (B3) —2p;, (B2)]* 05, . We shall consider
the test statistics

Tn,t(51,2,3) = i S;;Iiﬁ iy ‘f/t (51) - I:t (ﬁz) - [it (52) - f/t ([33)]

~{Le (B) = Lo (B2) = [Le (B2) = Le (Ba)}/164(Br 2.8)/7]].

Ti(B123) = sup (B¢ (B1) — 25 (B2) + p/ (Bs)){diaglq;]} " {n; '®je,}
B1,P2,83:81+B3=2532
/[Ut(51,2,3)1/2]\7

Zi(Br23) = sup 1> (0],(B1) — 20, (B2) + 5, (83)) Z5, 0,

B1,B2,83:81+P3=282 7

/[Ut(51,2,3)1/2]\7

where Zj, is a standard normal random variable.

Theorem B.19. Under conditions of Theorem B.6 and Assumption 28, we have

MB) ZMUB) _ o 5T (8) {dingldilod() ) (VT ) e}
BelBrBa) \ J10t(B) /e BEIBLBu]

+ 0p(1/\/Je V Jigh /N T N /e T Y.

To approximate the quantile, we have,

sup IP( sup  Zn,(8) < x) —P( sup  Zi(B) < ;v)‘ — 0.
z€R BE[BL,Bu] BE[BL,Bu]
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Corollary B.19.1. Under the conditions of Theorem B.19 and Assumption 28, we have, conditional on
]:t—17

sup V) T\ Tt (Br23) — Te(Br2s)l Sp 1/ TV A/meh/ N/ Te V /e Je

B1,82,B3:81+B3=2B2

sup V1) T Tt (Br2s) — Ze(Br2s)| Sp LV Te V Vh/ TV /e[ oIt

B1,82,B3:81+B3=2B2

And

sup |P( sup Zn,(Pr,2,3) < ) —IP( sup Zi(Pr2,3) < @) = 0. (B.14)
z€R B1,B2,83:81+B3=282 B1,B2,03:81+B3=202

Adopting the conditions and proofs as in Theorem B.12. It is not hard to derive that, [{®,®; } =1 {®,(®; T LF)}—
Lﬂmax Sp Jtln,T/nta |{(i)t(i);r}71{(i)tot‘max SP I/Jt7 and

|{<i)t(i);r}_1[{(i)tgt}_{q):gt}ﬂmax Sp Jelnr /100 |({n;l(i)ti):}_l_diag{%t}_l){n;lq)zgt}‘max S |n;1q):§5t|max\/10g Jtth/Z/\/ﬁ?
The following corollary provides the theoretical support of the uniform confidence band.

We define Z;(8) = _;, Dj,+(B)Zj,, where Zj,s are standard normal random variables.
Corollary B.19.2. Under conditions of Theorem B.12, and Assumption 28,

B(oup /i Tea (8) = Z4(5) 2 6 v VI o,
Bloup v/ne/ F(E4(5) - L3 )6Y2(8) = Zu(8) = ouv VT ) =0,

B(oup /[T La(B) ~ Lu()")/07/(9) — 2u(6) 2 6 v VI ) =

Moreover, the above the results implies that,

Sl;pP(Sl;p( e/ Te(B) > ) — ]P’(s%p Zy(B > x) =0, (B.15)
sup B(sup v/me/J,(Le(8) - Lo(B)™)/61(8)"/? > ) — P(sup Z:(8) > #) = 0, (B.16)
sup F(sup e/ Ji(Lo(B) — Lo(B)™) )61(8)"/? = ) — P(sup Z,(8) > =) = 0. (B.17)

In the following we discuss how to make uniform inference on 77! ", 1:(3) by applying a strong ap-
proximation of the leading term 77! 3", >, Dt (B)(fe — E(fe| Fe—1)) En, j, of T {f(B) — ue(B)}, (and
recall that E,, ; = (jj_tI]E(@;"j’tﬂﬂgt_l)). As we can see that it is a partial sum of martingale difference
sequence. The term ji(3) — p(3) is dominated by 77! 3", >, Dint(B)(fe —E(ft))En, j, though. Let Ji and
J2 be two sequence of indices corresponding to two distinct evaluation point 81 and B5. We shall provide

results on approximating the maximum over a finite number of points.

Lemma B.20. We define By, = (E,, j,)t, where j; € I1. And Ej, = (En, j,)¢ (T x 1), where j; € Js.
Yy = diag(Var(fy — E(fi|Fi-1))). Therefore Cy, 3, = limp_oc T 'Ef ¥¢Ey, > 0. Recall that J, = |By
are the cardinality of By. So let ¥ be a matriz of dimension J, x J, with element Cy, 1,. Cyy = diag(X).
Assume that Zy follows a normal distribution with N (0, diag(X)~Y/?Sdiag(X)~'/?). Under the conditions of
Theorem B.12, B.1/ and ~/T(1/J V h) = 0, we have

-1/2 —1/205 % _ 7
sup, |P(max | T Zt:(oj,w (@0 = aj,0)| = @) = Pmax |Z5] = 2)| = 0. (B.18)
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B.5 Theorems on the uniform inference for time average estimators

Lemma B.21. Under the conditions of Theorem B.6, B.1/, Assumption 29 and ~/T(1/JV h) — 0, we have,

sup ]P’(sup ‘ \/72 (B ))‘ < x) (sup |GT < x)} — 0. (B.19)

z€R BeB BeB
Lemma B.22. Under the conditions of Theorem B.6, B.14, Assumption 29 and \/T(1/JV h) — 0, we have,

sup IP(‘TT’ S:E) —IP’<|TZ| Sx)‘ — 0. (B.20)
zeR

The following theorem states that we can use the quantile of the Gaussian process supg, g, 5, |G(81,52, £3)]
to approximate the distribution of our statistics of interest under the null. Thus the corresponding algorithm
is listed as well afterwards.

Theorem B.23. Assume the conditions of Theorem B.6, B.1/, Assumption 29, 27 and \/Tn,/J(1/JVh) —
0. Also we define G(B1, P2, 83) as a Gaussian process with a finite number of jumps corresponding to the
value of B1, B, B3, within each piece a standard normal distribution and across different points of the process

has correlation

Cov(Br,2,3, B1.2.3)/ (0D (B1,2,3) 20D (B 2.5)"?).

14y

stm1p|]P’(| sup |71 Z\/m{ﬂt B1) + Be(Bs) — 271 (B2)

B1,B2,83

—(pe(B1) + pe(B3) — 2#:&(52))}/0D(51,z,3) 12 > q) — P(ﬁ S;lpﬁ |G (B1,B2,83)| = x)| — 0,

C Proofs

C.1 Proof of Theorem B.6.

Proof. We shall abbreviate sup| ¢, |<¢,<7—|7h| @s supy, in the following steps. Since

B, = Yo E(Xe R | Fe—1)w(t, to) = ZtJE(XtXﬂ}}_l)bitw(t, to), due to the assumption 17. And by summa-
tion by part max; T~ B; — Biloo S T3, B(X: X, | Fi—1)w(t, to)|oo

max; | D, \Th|<t<to— 1(bit — biz—1))|. Because max; | EtofLThjgtStgfl(bit —bi¢t—1))| < hCpg by assumption
20, we have T~ |B; — Biloo ST 2, E(Xe X, | Fio1)Cpw(t, to)|sch-

As by assumption 16 to 20,

sup|IE 121@ (X X, | Fio1]Caw(t, to)]|eo < C, (C.1)

where C' is positive constant only depend on cy,Cs, and ¢y 4.

Moreover, [T~ S AE[X, X, | Fi—1] —E(X: X, ) w(t, to)]oo Sp (Th)~Y/2V(Th)~1*+1/4, by Assumption 21, and
theorem 2 of Wu and Wu (2016). The <, depends on ¢y. And similar uniform arguments as in Lemma B.4,
supy, [TV S ARX X, | Fio1] — E(Xe X, )}w(t, to)|so Sp r7. Thus we know max;sup,, T~*B; — Bileo =
O, (h), provided that rr = 0,(1). Also we have

max sup |A™H(B; — B)|oo < |AT Al o max |T71 Z (bit = bit—1))]00 < hCp. (C.2)
bt ! to—|Th]<t<to—1
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Then we look the following term,

A7'B; —A7'B;= —A"Y (A - A)A7'B; + A7Y(B; - B)). (C.3)

We denote |A|max = max; ; [(4); ;|, where (); ; denote the element on ith row and jth column of a matrix,
and [Alose = max; ) (A),;.

Recall assumption 17 and 19. We define the constant ¢, = 202 f?l K(s)?ds. sp1 = 3o, (fi—E(fi| Fi1))w(t, to),
and sp2 = 3, (ff — E(ff|Fi-1))w(t, to).

A—A=10,s51;5m,Ss2)- (C4)

Following Freedman’s inequality as in Lemma B.2 and similar argument as in Lemma B.4 in the Ap-

pendix, we have,

sup | 37 (f: = E(ilFi-1))uw(t, )| S, erv/ary/Tlog T/ v, (C.5)
0 t
for some large enough constant cy.
Spa = 22(5% = Ee1(2e—1))N (t/T)w(t, to)

+ 3" (a? — B3I Fi)}ult, to),

0
Sp N(to/T)\/T/hy/czer + \/T/h\/IE(xf) /71 K(s)2dscy.

Moreover sup,, sp2 <p N(to/T)\/TlogT/hy/czer + \/TlogT/h\/E(xf) fi)l K(s)2dscy as derived in
Lemma B.4. Also

supT A~ Al Sp ¢ logT/(Th) = rar, (C.6)
to

where ¢ depends on cr, /¢y, \/E(xf) f81 K(s)2ds and N (to/T).
Now we look at B; — B;. Assume E(fie5|Fi—1) = 0, (implied by E(ey|Fi_1,2¢) = 0 and E(ey|Fi_1) = 0

in Asssumption 17). We can see that similarly for B; — B;, we have,

B;— Bi =Y _ Xeqw(t,to) + Y (XX, — B 1 X X, )w(t, to)bis. (C.7)
t t

>, Xieqw(t, o) is a summand of martingale difference sequence. Recall that we denote o2(i/T) = E(£7),
02y =E(e},). Thus again by Lemma B.2 and B.4, we have

T 0
masxsup| S et t0)] <, cﬁ o2y B [ gez(s)as, ()
7 t 1

0 ¢=1

And according to Assumption 17, Lemma B.2 and B.4, we have E(¢?,|F;_1, ;) = 02(t/T, Fi—1), and Ez; = 0.

T 0
maxsup | 3 fieww(t, to)] Sp {202 0N (lo/T) V 0,020} / K?(s)ds\/Tlog(nD)/h.  (C.9)
7 + 1

0 t=1

o7



Moreover if ra7 — 0,

max sup T (XX — B X X, )w(t, to)bie — (A — A)bigg lmax < sup |A — Alpaxh = Op(rarh) (C.10)
4 0 7 0

by Assumption 20.
Thus we have

max sup |B; — B;la Sp rar,
i to

due to the rate of |(A— A)|5 and the boundedness of b, as in Assumption 20. Assume that Ayin (7 'E(A)) >

¢t > 0, for a constant c. Since A and E(A) are symmetric real matrices. We then have P(|TA™t|y <

Amin(T71A)7 <€) K PAin(T71A) > ¢71). Now since Ayin (T714) = min|,|,—1 T~ Av|y > min|,|,—; [E(T-1A)v|a—
max|,|,=1 [T~ {A —E(A)}v|z. Since minj,,—1 [T 'E(A)v]z = Amin (T 'E(A)) > ¢!, we need to show that
Max|y|,—1 T~ A —E(A)}v|z > ¢c1/2 with probability approach 1. This is shown in Lemma B.4.

We now write
max sup |A_1Bi — A_l.éib < Qmax SupT|A_1|2T_1|A — A~|2T‘A~_1|2T_1‘Bi|2T‘A_1|2
i to i to

+2maxsup T|A™ 2T B; — Byl
4 to

The rate of T71|A — /~1|2 is in view of equation (C.11), note that for fixed dimension matrix, the norm
as equivalent. Also we have T|A71ls < (Apmin(T71A))"! < ¢ by Assumption 18. maxy, T|/~1’1|2 <
(mingy Apin (T71A) —maxs, Apax (T~ H(A—A)))"1 <, (¢! —rar) ™!, which is bounded by a positive constant

as T'— oo. Regarding the rate of sup, max; T~ B;|2, we have
sup max T~ Byo
3
< sup maXT |B¢ - Bi‘g + sup max T*1|Bi — EB;l2 + sup max E(B;)
to ? to ?

to

Sp rar +rr+ Cg,

which is due to Lemma B.4 and assumption 18.
Thus we have max; sup,, |A~1B; — A™'B;|» <, (r7 + \/log(nT)/VTh + h).

C.2 Proof of Theorem B.7

Next we provide a pointwise central limit theorem for fi(5) which allows us to make pointwise inference on
the estimator of T~! 23:1 pe(.). We define E,,, ; = qu_tlE(fI)z"j’tﬁmgt_l), which may degenerate for some j.
Recall that E;—1(®; ;, ) = Gjr = E(®] ;, ;| Fi-1)-

Let f; = fi — E(fi| Fi1),

e, (B) = EE(B) T2 pit(BY FiBon, g, + @' mi ' > @, 18it).
Jt

i

Define
Zp], t 6' ) 1/2f Z ft ft|ft 1 q]t ny 1Z© ide, fﬂlt
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and

ijn 6' ))71/2@71 Z q_tlnt ! Z (I) ,]t,tgzt

Then we have
To1(8) + Toa(8) =E@(B) VT 33 palB)(FiBue e + G5 V30 @0, i50)
t 4y i
- \/fil Z nt,nt (ﬂ)
t

Define an integer ¢ > 2 + 2§. Recall that d,,,(X ) = max || Xy — X[, ||, where X[, is replaced with
an iid copy at time point 0. Define ©,,,4(X.) = >, 5, dg,m(X.). Let £ > 0 be a positive constant. Recall

the definition of the dependence adjusted norm:

mant ||ﬁjta»(5)f~Entajt ||Q»f = mant Squozo mg@m07q(pjt7- (ﬁ)f Entvjt) and Similarly for maxi,jt ||‘I)f,jt,.5i. ||q1£'

Proof. Since we have already proved that max;sup,, |A=Y(B; — B;)|so < hCj5. We just need look at the

term,

~

(bito — bit,)

=A'B; - A7'Bi= AN (A - A)A'B; + A7Y(B; — B;) + O,(h),
=AY A-ADA B, + A7Y(B; — B;) + 0,(h),

=AY A - DA N(B; — Aby,) — A7H{(A — A)by, — (Bi — B))} + 0,(h),
= T + L2 + Oy(h).

From the proof of Theorem B.6, we have |I11]o Sp rarh. T = =AY, w(t, to)ei X+ Op(rarh). Thus
we shall apply a martingale central limit theorem on the term
-1/h/T Zt t to EZtXt, which correspond to the leading term of VT ( ito — Dit ). We shall prove

that it is close to — “LVRIT S wt, to)en X
For this purpose we check,

T(A™ — (BA)™) = —(I+ (T'EA)'T 1A -EA) (T'EA)'T (A - EA) (T 'EA)~!

By Assumption 18, ¢! < Xpin (T 'EA) < Aoz (T7'EA) < C4 max. Since we proved that T-HA-EA|y <,
rar V rr by Lemma B.4. So we have

T_1|A_ (EA) 1|2 <c ’I“AT(l (T_llA — EA|2>_1) Sp CQTAT V ro.

Thus \/7| AT w(t to)enXe — E(A) Y, w(t, to)eiwXelo Sp rar Vrr. As Op((rar V rp V

h) = op(1), by the assumption of this theorem. Then we have the elements of \/72_1/2(@,50 — bit,) =
h/TEb_l/zEA > Xpw(t, to)eir + Op(1) as a martingale difference with respect to F;_; by Assumption 17.
We shall use Corollary 3.1 in Hall and Heyde (2014), with 5 therein as 1. The following two assumption are

needed to be verified. For a constant ¢ > 0,
) Elh/T Y, E(eZw(t, to)*(e] T, 2 (Za) 1 X,)?|Fimr) — 1| = 0,
i) 3o, h/TE[(3uw(t, to)2(e] 3y /2 (54) 7 X0) 21 {V heww(t, to) (¢ 3, /2 (S4) 7 X0) VT > e})|Fioa] = 0
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For i) we have,
BT Y S E(uwt,to)* (6] By 2 X0)% Fioa)
t

= ¢/ 5,125,526 + O(h)
=1+ O(h).

Therefore i) holds under Assumption 16- 21 and hvhT — 0. ii) holds obviously when 1/Th — 0 under
Assumption 16- 21 and w(t,t9)? < h=2. The desired results follow.
O

C.3 Proof of Lemma B.8.

Proof. Recall from Theorem B.6 we have the rate max; sup, |Bi — Bi¢| Sp Cny (h+ (Th)~1/2(log T)V/?) = 6.
Recall that we let kj; = [nj/J¢|, kje = j/Ji. According to for example Corollary 21.5, page 307, Van der
Vaart (2000).

Bt = F5 2 05i0) = — (B (F5 2 0ie)) = B (B Nosgo)) 5, (F 2oge)) + 0p(1/ /). (C.11)

Let the set Nj, = {ng_tl("ﬁjt)}jf,:l,--- J,- We denote G, g+(x) = /1 (Fgni(x) — Fi(x)). For sufficient large
constant ¢, ¢, we have,

|(F

by (530)) = B ((F5 1 (50)))/ F5,(F5 ()]

< maxegly,  sup (0 PIGupa(e 4+ u) = Gup @) +n; | Grpa(a)))
|u|<or,xEN,

<Sp max C/;inin\/éT log Jicn, i /v/ne + Op(/log(T vV Jt)m_l) = anr,

where the second last line is due to Assumption 22 and the fact that \Fg_:(fijt) — Fﬁ_tl(njt)| Sp Or; the last
line is due to the modulus of continuity by Lemma 2.3 as in Stute (1982), the Assumption 22 and the uniform

inequality in Massart (1990) with the union bound. Recall that we define a,7 = max;(\/drlog Jicp,¢/\/Mt)V
Viog(T Vv J,)ym: . O
C.4 Proof of Lemma B.9

Proof. Step 1 We define that U(,-Cjt),t is between U(y,,),+ and U, _,,).+, and we have for the last line 1/J; —
2/(Je(ne+1)) < (kje—kj—1¢)/(ne+1) < 1/J+2/(Ji(ne+1)). Since Uy, e —Ur,_,,), follow beta distribution
with parameter (kj; —kj—1z,n¢ +1— (kjr —kj—1¢)), therefore E[(U,,),0) = (Uk,_ ) ,0)] = (kje —kj—1¢)/(ne +1).
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Following B.10, in Bobkov, Gentil, and Ledoux (2001),

P(mtin Injln ‘ﬁ(kjt)ﬂf - B(kj—u),tl > zcg,hlinl/‘]t)

< P(mtax mjax 1Btk o)t = Blky_10).t] > 2cginin1/Jt)
< ZZP“FE;(U(%OJ) ﬁ t (U(k] 1t) | 2 2CB mml/Jt)

<D P (F (Ui Uik .6) = Uty 00,0)] = 265 051/ )

t j=1
Jt
<Y N Pl Uiynt) = Uy 1o) = Bk 0.0) = Uty _)))

t =1
> 26511/& - C[;,ininE((U(kjt)yt) - (U(kj—lt)7t)))

<Y N Pl Uiynt) = Uy —10.) = Bk 0.0) = Uty 1)))

t j=1
> 2e511/ 0y = ¢ (ke — kjo10) /(ne + 1))
< 27, maxexp(—C'(ng + 1)(c5 i (1= (e +1)71))%),

\/log T J .
\/ngﬁ , which

the above term is tending to 0 provided the fact that by Assumption 23, we have J~! >

implies that J, '(1 — (n; +1)71) > \;?jf

Conditioning on the event {max; max; |Bx,,),t — B, ,,.0)] < 1/J}, which we can prove that the proba-

bility is tending to 1, we have the following inequality,

max|z (Bir € P Pit) = 1(Bir € Ppr))|

< max \/TTtIGn,B,t( Biky0).t) = Gt By )| + v/ max |G 5.0 Biiy 100.) = Gt By 1),0)]
Z (Bit € Pyje) — P(Bit € Ppr)),
< max 2\/7 sup |Gnpt(x 4 u) — Gppi(z)]

|u|<anr+oT,0€N,

+Z th € Pjt P(Bit € Pj1)),
Sp m?X \/TTt\/ anT + 6Tcnut + nt(anT + ST)/Jt = ln,Ta

where the inequality is based on the rate of max;, \B(kﬁ),t = Bikjo),tl Sp ant, and max; ¢ |Bit — Bit| Sp 61 So

according to the modulus of continuity by Lemma 2.3 as in Stute (1982).
Step 2 Recall that our population target is defined as,

a; = [E(®;@; T |Ge—1)] [E(®; pe(B.e) TIGi-1))-
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Define o(3.1)) as the sigma field of [5;];. Also we define an intermediate version of the estimator as,
a; = [®; 07 T|[E(P; R} |Ge—1,0(5.4))].
Let u1¢(B.¢+) be 1 x ny vector of [11¢(Bit)]; . Moreover, we see the conditional version equals to,
E(®;R}(Gi-1,0(B.)) = E(2R}(Gi—1,0(B.)) = P pe(Ba) -
Thus we have the intermediate estimator defined as,
a; = [D70; 7] [@F pe(B.0)]-
The bias term is thus expressed as,
b:(8) = 1e(B) = De(B) " af = pe(B) — po(B) "y + pe(B) " a7 — pe(B) a7,

since
lne(B) — pe(B) T | < max 1t (Baes ),) — By 10,0

sup o (9)] < w1 (B 1.0) = (B, .0.)| + 1o =

<p 1/J:.

a; = ifloc = [[E(2F @7 T Ge—1)] M E(RF e (B.e) TIGe-1)] — (@7 @ T THE(®; R Ge—1,0(Bur))] o
= |[E(@; ;T Ge—1)] (@7 ;" — E(®; ;" (Ge—1))[@ ;'] E(RF R [Gi—1,0(B.0))]+
(@727 " [Ge1)] [~ D7 pe(Be) + E(Rf e (B) T |Ge-1)]loo

—1
SP Jt ’
where the above inequality is due to Bernstein inequalities. Moreover, we have,

max 1t (B o),t) — 1t (Biy 10,015
Sp 1/,

< ng}x Ca,minW(kjt),t - /B(kj,u),t

where the last inequality follows from Assumption 23. And the last claim follows from the above derivation.

Thus the statement is proved.

Step 3 Analyzing Y7 (P(3;: € Pj;) — P(Bir € Pjt)).
We shall let

Bit — 51‘15 = —6;(T_1E(A))_1\/ h/TZ’lU(t/,t)git/Xt/ + Op(TATh) + €;—b;(t/T)E(XtXtT)h = VU + Wit,
t/

where the first term corresponds to the variance and the second term corresponds to the bias term. wv;;
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is of order v/ Thiland wy is of order h.

Tt

Z(P(Bit € pjt) —P(Bi € Pjt))

i=1

Z (Bie < F 4 (3/00) + (Bie = Bie)) = B(Bu < F,, 5,5/ 70))
- Z (Bie < F 4 (G =1)/J0) + (B = Bie)) = B(Bie < F5 (G = 1)/ 1))

Since,

D [P(Bu < .5 (3/0) + (Bie = Bie) = P(Bie < Fy, 5, (/)]

i

= [P < Fz, (/) + 5.0/ = Fg i (/) + (Bie — Bit)) = P(Ba < Fiy (3/T0))-

We let
F t(]/Jt) Fi (G ) + (Bit — Bit) = cnjit + vit + wi.

Cn e =1y ! Z (Bit < B3l (/1) — P(Bir < Fyt(3/ ) + op(v/r ).

Thus let é, ;, be a middle point between Fn_; L3/e) + (B — Bit) and Fy (j/Jt)

12 (Bie < F - 1 L3/ 7) + + (Bit — Bir)) — P(Bir

< F G/I0)) =m0 S (F5 @) Cnga + vie +wie)) + 0p(h+ VT + /™),

%

=0 Y (Foa@ig)(engn) + 100D (Fo.6(E g, )vie)

i 7

+’I’L;1 Z(fﬁi(éi,jt)wit) + Op(h + \/m71 -+ \/nitil)_

i

So we have,
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n

Z(P(Bit € Pj;) —P(Bi € Pyy))

=2 (PP < F, L (/) + (Bie = i) = P(Bie < Fy 3, (5/ )
=Y BB < F 3 (G =1/ + (Bie = Bin) + P(Bie < Fy 1 (( — 1))

=1

=ni [ fhaleg ) (E g G/T) = F 4 (G = 1)/ D) (i + wan)]

vop(h) s+ mTh )+ )0,
= nt_l[z fhu(ig)(Fai (/) = Fayp (G = 1)/J) = Cnjit + Cnj—1.4)(vit + wir)]

vop(h) s+ mTh )+ ) 0L).

Let j /J: be some value between (j — 1)/J and j/J. The leading term corresponding to the bias of order h
is as follows

L, o0 15 30 f54(Cigit) (Fg (3/7) = Fgp (G = 1)/J))wie
=iy, ooy 35 fh o (cigi) (faa (g (5/J0))wie [ Je = Op(h/ Jo).

C.5 Proof of Lemma B.10

Proof. We will need inequalities to bound the objects Hy, Ho, H3. We will adopt uniform concentration

inequalities as the following steps.

Gl: = {f5<ul,x):1(1-_U1S/BSCL‘+U1)/B’|U1|SanT'i_éTaxeNJt})
Go: = {fo(w): (B+w)® =% |u| < or},
Gz: = {fse(ur,2): 1B <z +u)e—1(B < z)e, lur| < anr + 7,2 € Ny, }.

Those are functional classes that are changing with respect to n:, T, and G1,G3,Gs are all bounded
functional class, and can be written trivially by the sum or product of two VC- classes, and therefore
of polynomial discrimination. Thus we let Fy (), Fa(B8), F53(58,¢) are envelope of the functional class Gy,
Gs and Gs. |f,glh = E|f —gl, |f,9lin = Enlf —¢| . Therefore exist a constant V' such that. Let
Fy = E|F1(8)], F» = E|F2(8)|, and F5 = E|F3(8,¢)|. Moreover, let 1, = |F1(8)1.n, Fon = |F2(8)]1.n,
and Fs,, = |F53(8,¢)|l1n. N(eF1,G1,|.11), N(eF2,Ga,|.|1) and N (eF3,G3,|.l1.n) < (1/€)V, and similarly
N(eF1 n, Ga, |.l1.0), N(eF2n, G, |.1.n) and N (eF5., Gs, |.]1.n) Sp Je(1/€)V.
We use the inequality as in Lemma 3.2 in van de Geer (2000).

We look at SUp,en;, ju;|<anr+or ny 'S0 1w < By < @+ u)e(or replace 5 with B;;) and
SUPg e, us | <ans+or n;t St {l(e < By <z +u)Bi —E(L(x < By < @+ u)Biy)}. Since by Markov plus
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Bernstein inequality,
P(n ' e > &) < Plmax |ei| > My) + PO eul(en < My) > &)

< D E(ER/M) + Crexp(—ni&n /(402 (t/T) + Myky)).-

Take &, = \/nj_lcnt, and M,, = /nic,,, with ¢,, and c,, are large enough constant.

We take the metric |f, glan = \/nt_l Yo (flxi) —g(x;))2. Welet G := {fu,»(B) : 1z < B <z +
u1), [u1] < apr + 01,2 € Ny, }.

Since SUp, oy, 1<y tanr M Sorty Wz —ur < By < x+ur) Sp (O +anr)V (ny (0 +anr) /2 VIog ne ).
Thus sup,cc, lgllna < (57 + anr)2 V (07 V(61 + anz) > Iogmd)? < (61 + anr)? = R.

Then use the inequality as in Lemma 3.2 in van de Geer (2000) with |.|1,, replaced by |.|2.,. Then the

rate follows by setting,

6 = Repics//ni, (C.12)
€ = Recpice/v/nt, (C.13)
K = M2 (C.14)

f517<4K> HY2(u, G4, |, 2)du < RHY?(¢/(4K), G, |.ln, 2) = R\/log(V(ant + 67) * 4% K/¢). To make
sure that \/ni(6 — €) > Roe+/V1og((anr + 1) * 4 % K/e), we should set c,¢ > v/Iogn,J,, with proper
choice of constant ¢5 — c.. We can achieve

sup nyt Z Lz < B <z +ur)ei Sp 0. (C.15)
:cGNJt,|u1|§anT+6T =1
Moreover, for the term sup,cig, 3,],jui|<ans+or ny 'Y {1(r < By <z +u)By —E(Q(x < By < o+
u)Bit)}, we can repeat the above steps by setting M = |8,| and thus \/n;(6—¢€) > R|Bu|\/V10g((ant + 1) * 4 % K/¢),
we should set ¢,; > /log(n;J;). The choice of ¢5 and ¢, shall be adapted. So we have

sup n; !t i{l(az <Bit <z +u)fy —E(L(z < By <z +u)bin)} Sp o (C.16)

z€Ny,,|u1|<anT+oT —1

Since Sup|y <o,z +opfo—y<iys 1 L 2 B{(L(z < Bir <@ +u) = Uy < Bi < y+u)Bi}| S (ant +67)/J,
the above derivation in equation (C.15) and (C.16), and the third statement in Lemma B.9 we can conclude
that,

Hy =0 ®i4(Bie — Bia) + 0y Y (Pi — ®F,) B,

<p 07 (1) IV Ly //n) + (8 + 07/ + anr/J) <8+ (07 + anr)/J = ha,
Hy <, 0r = hy,
H; < | S}lp Ing ! Z 1z < Bir < +u)Bul fr — E[fe| Fe-1]}|
u1|<or i
+ sup [ng 'Y 1w < B < @+ w)ey,
‘u1|§5T i=1

gp o+ (anT+ST)/J+ln7T/nt < 5+(ST+CL”T)/J: hi.
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C.6 Proof of Lemma B.11

Proof. We first order observations as ¢ = £(i,tg) = Z:‘;l ng+1i, 1 <1< n,1 <t<T. So that we
can order observation as the following ¢;; — &y. We now define the pooled filtration ff_l =0 :1l=
1,---,£—1). Recall the definition of the functional classes G1, G2, G3, which are all bounded. j; € 1,--- , J;
is denoted as a particular indice of a partition interval at time point t. We define the vector of indices as
J=1j1,J2,J3, - »jr], J € By and we assume that |By| < J,, where J, = O(J). It is clear that if the J; and
n; are the same for each time then we can have J, = J.

We brief ny as nyT =< ny,.

Define fr, (2) = T3, ny ' 2, pe(2) T [@4.405e —®7,Bit]. Denote a Bs as a set of points in [, B.], | Bs| =
Ja. We see that sup, fu, (2) = sup, | fn, (2) — fu, (7(2))| +sup.cp, | fr, (2)|, where 7(z) is the closest point of
zin Bs. Since sup, | fu, (2)—fu, (7(2))] < max;, ; T~ |n;* Ei[@i,jutﬁit_q);jhtﬁit] S sup,ep, | fa,(2)]. It suf-
fice to look at the rate of | Sup|y <, +s, MaX1eB; Dy ny {1 ;, (u)ee}| and | SUD|y|<ayp+or MAXIEB; Dy ny {1 j, (w)Be—
E(¢e,j, (u)Be) -

We will show as follows that
| SUD|y | <apt-6r MAXIEB; Dy ny (Ve g, (W) Be — E(be g, (w)Be))| Sp enr/10g(nudu)(anT + 01)/\/Ta. We define
that &(r,u) = (L(—u < Brj, < +u)Bej), then we have, 3,3 T In; (1(~u < Boj, < w)fe) =
Seng (). E(z,u) — ]E(Eg(x,u)|ff_1) form a martingale difference sequence with respect to the fil-

tration .7-"[671. The random object 1(—u < Bg,]’t < u)ey is itself a martingale difference, as E(E@,@(‘ffﬁl) =
E(ﬂgE(€4|Fg,1)|ff_l) = 0. We now show the rate,

—1

sup 1Y n, &z, u)l.
xe[ﬂlvﬁu]vlu‘ganT“l‘éT ; ¢

We denote n, = >, n;. Denote the functional class G, 1 = {f(.) : (B,8,u) = f(u) = (1(~u < 3 <

u)f),|ul < anr+67}. We denote the bracketing number NVjj(en, , Gn, 15 |-l1,n, ), Where |.|1 , is the empirical

norm with ny ' ", |fr — g -
We shall separate to the following steps,

Step 1 We show that P*(NVjj(en,  Gn, 1, |-1,n.) < Mn, (n,)/4), with M, (e, /4) being less (4(0r+ant)/en, )Y,

for a fixed constant V.

Step 2
sup |Zn;1§g(x,u)| <en+ sup |Zn[1§g(x,u)|,
0 14

z€[B1,Bul,|ul<anT+dT §e()EGn 1,ep

where Gy, 1,6, collects all the €, lower brackets.

Step 3 We do a decomposition following
Supéé(')ecna,Tl,an,a ZZ n;lfz(x, u)
= SUDg, ()EGy1.en, Dot gt (Eo(@,u)—Be1&(a, U))+SUPe, () Gy 1er, Dt ny By (§e(w, u)—E&e(z, u)).
The first term can be analyzed by Lemma B.2 and the second term can be analyzed by Lemma B.3.

We assume the dependence adjusted norm of || sup <4, ;465 §. (2, 0)) lg.0 S (anT + Sr)Y9. max J; < J,,
also for partitions with different grids for different time, the union combination of all values shall not be
exceeding J,. Namely the partition lead to
Ty oty 2 9,1 (2) (D j, 1 Bir — ®; ;. +Bit) taking on finite many values J, exhausting z € [, Bu].
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This is ensured by the partition to be not so different across time. Without loss of generality we shall prove
with J; =< J for all t.

Step 1

For Step 1, we have that Njj(en, /4, Gn, 1, E|.]) S (4001 + ant)/en,)" = M} (en,), for M), (e, ) number
of brackets [j’l(k)dﬁgk)]7 kel,---,M(e,), with bounded functions defined as b*) = F l(k), and
E[p)| < &,,/4. Denote bgi) as a function taking value at point i,t. We brief M/ (e,,) to M),. Since the
event imsup;cq,  mingep .. arp [f — £y . < e, implies that Ny(ena, Gty |-11,n,) < M), Therefore

E|f - W(fz(f))\ < é&n, /4, where W(fl(f)) is the adjacent upper bracket f.

P(M] (Enaa Gna,lv |'|1,na) S Myll)a

>P(lim sup  min_|f— )1, <en,),
fEG n, tE[L M ]

> ]P’(limf sup |f — W(fqgi)”l,na < én,)s

1,ng

> P(l1mi€1r’r.1ﬁx?<M/ 11 n, < €ng)

n

We shall then analyze the event max;e1,... ar |b(i)|1’na >ep,-

P( max [b?],. —EpD|+EDBD| >, ) (C.17)
i€l, , M/,
< (i) R > ‘ )
*P(ief?f‘?(m 16|10, — E[B] > 3en, /4) (C.18)

n

We let [p@]1,, 1 = >, Ezfl(bgi)). We then apply Lemma B.2 and Lemma B.3 again to the term
maxiei,.. M/ b(i)\lyna — |b(i)|1’na7__1 and maxiei .. ar |b(i)|1,na7,_1 — E|bgi)\.

Due the specific definition of G,,, 1, the brackets can be selected to ensure that E(E;_;[b)|?) < ¢, .
We obtain that max;e1,... 16O = 10D 10 21 S m\/m&m/\/@, where <, depend on f3,,,
provided that (n; !V nfg%f) < &p,. Also

el DD 1 = E‘béi)‘ Sp VEna VI0g(J M )en, [v/Na V cn, log[ My, J]'/?e}/ G, a1,
1el,---, 7/, a

since the above rate < 3¢,, /4. Therefore with sufficiently large ¢,,, we have

> B(_max O]y, —E{| > 32, /4) < oo
i€l M,

So by the Borel Cantelli Lemma, we can ensure that lim max;e; ..., M, |b(i)|17n < &,, happens almost surely.
Step 2 This easily follows by definition of bracketing number.

Step 3 We show that

sup | ng (e, u) = sup | ng H{é(w,u) — Ba&e(x,u)}
14

gleGn,l,sn glecn,l,sn ¢

+ sup |Zn[1Eg,1§g($,u)}—Eég(x,u)}\.

g({EGn,l,zn V4
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maX;e1,... M/, |b(i)|1,na — \b(i)|17na,,,1 Sp Vanr + 5T\/10g(JaM{1)cna/1/na, where <, depend on . Also

1 —EBD] <, Vanr + 07\ 10g(Jo M )en, //Tta V n, 10g[ML, Jo)Y? (anr + 67)/ @Dnl/a=1,

max [b'*
, S

We shall pick that n,! < e,, < Vanr + 07 \/log(JaM,’L)cna/,/na7 so that log(J,M},) < 2logn,. We assume
that

Vanr + 07 Viog(JuM!)en, /\/Tia > Cn, log[M! J1M?(app + 67)"/ @pl/a=1,

which can be implied by
(anT +67) > 1t

According to remark A.6, this condition is implied by v/IogT/v/n V bV \/log(n,T)/vVTh > n;*
Then we have that

sup |Z§gxu| \/anT+6T\/log (na)en, /v/Ma =

z€[B1,Bul,|ulLanT+dT

According to remark A.6, &' = (v/IogT/\/nV hV \/log(n,T)/vTh 1/2\/1ogna0na/«/na
Recall that J = [j1, jo, Js, - , 41|, J € By and |By| < J,. Denote d; it @S d, 4., and similar for ®; ;, ;

and @7 .

SUPT ! Znt De(2) ((i)tBt — i B)
= SUPT ! Z gt Z ijﬁ '7jf,-,tﬂit — @7, 1Pit)
i
max 7! Znt_l Z D, j, 1B — 7, Bit)
t i

JeBjy

IN

IN

| osup omaxd ng(Sejul)l +2) sup maXZnZl{Wit(W)ﬁz—E(W,jt(ue)ﬁém

ug|<an+57 JEBI wg|<anr+8r JEBI
£

T
7! ZE{Bitl(F;},t(mH) < B < F, 5 (k0)))

~E{Bi1(Fg; (Kji-1) < Bir < Fy; (kje)}|

<, Cna \/log(Ja)(anT +Ja o7 + cna)\/log(naJa)(anT +67)/\/Na
+J, O + ant /VT)

< 8+ I 0r + anr/VT)

where the last line of the rate is derived as above, and it follows similarly from step 3 Lemma B.8.
Next we analyze the rate of 7713, ny ' 3 ( 32— B2),

! Znt_l Z( Azzt
t i
< 7! Z ng ! Z[Uz‘t + wit) 285 + vir + wit]
t i

<, (VaTh ' +h),
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where the last time follows from Lemma B.2 and B.3.

supT ™! E n; ! E E Diet(2)(®i g, ai — OF 5 Eat)
z
t

i g
< JllléaBﬁ Tt ; ngt ;(&)i,jt,t@t — &7, Eit)
< 2523335 \ ;nzl{(ée,ﬁ — @7 j,)éc}]
+1max VA Zt:(ft —E(filFeor))ni ! Z(‘i’i,jt,t — 7 j,.0) il
Sp naV108(na) (@t + 07)/v/Ma + (VT) " ha,
< enaV108(na)(anr +67)/ Vg + (81 + anr)"*V/10g 4u/ VT + (01 + aur /VT)/J
< 9,

where the last line of the rate will be derived as the above and partly follows from B.2, and h; is derived in
Lemma B.10.

O
C.7 Proof of Theorem B.12
Proof. We see that
[nt_lq):ét]j = nt_l Z (D;'k,j,téit
i=1
ne n
= 0, 'Y @7 Bl fe — E(fil Feon) + 0t Y P e
i=1 i=1
= Op(l/Jt)+ Op(l/\/ TLtJt).
Recall the definition C,,, = ®,®; and D,,, = &;&,. C,,, = ®;®; T and D,,, = ®:¢,.
dt — af = C;tl [‘itq);j — C’nt]af + C,;tleg + C,;tl [i)tbt] (019)

By equation (C.19), we have that

jar — af — diag(qse) ™' @}t max
= {&d 1 g} — (B7 ;1) 07 E |max
+[(n, 107y )T — diag (@) ng @78 max
H{ P10} Db Himax + [Cr [219] — Crtl ] [max-

Step 1 We show the rate of [{&, &} {$,5,} — (D; D7) BF&;|max = 0p(1).

We define E[®; . 8it|Gi—1] = f;;_ﬁ_‘f(:ji) BdFs () = Eg ji(u). Due to the boundedness of the density

function, we have Ep ;+(u) <p J; b Bul.
We first check the closeness of the first component which is denoted C, 'D,, — CN’,jtl D, = —C,HCn, —

Crn,)Ci Dy, + CY(Dy, — Dy,,). Since the matrices (Cy,, Cy,) involved are diagonal, |Cy, |max agrees with
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|Ch, oo and |Ch, |1

So we prove that |C;; 1Dy, —Crt Dy, max < |C Himax| (Cry —Cin, ) lmax| Crn Himax| Drg lmax +1Cr max| (Dr
Dp,)|max < 1. Recall the definition of hi,hy in Lemma B.10. Define hy = 1/J2 V cnt/(JtM)
(cn, /N1 T7)?, by = (€, 108 1/ v/ned;) V J7 L. Tt is not hard to see that hy < J72 and hy < J7'. First we

have from Lemma B.10, we have

‘ ne n,|max§max|z 5zt€P]t 71(/87tEP_]f))|

Recall that I, 7 = /n¢vVanr + 07Cpi + (ant + 07)n¢/J;. Moreover, from Lemma B.10,

- D < |&.E — d*F
n >
|D + Dnt‘max |(I)t5t (btgt‘maxy

$p hane < J; g

From the rate in the Remark A.6 and Assumption 23 the above two conditions are ensured. By Bernstein
inequality, we have max; |[n; ' ®;3;]; — Gt Sp cn, V108 Ji/v/1i J;, where ¢, is a positive constant.
Step 2 Recall that we denote §;; = f ﬂf((:J) fa+dB Sp Jt_l. We have by Bernstein inequality,

max; [n; ' Y2, 1(Bi € Pit) — G| Sp cnu /108 Ji/(V/niJ;). Therefore we have by assumption 23,

[(n; ' @r@; )~ — diag(qse) 'Iny '@ Etlmax Sp Cne (V10g Je//nde) (JE) IV / Jilog Ji/v/nedy) < 1.

We then show that the bias term {®,®] }~1{®;b,} is very close to the term {n; @ ®: T}~ (n;  ®rb,).
Also by the property of the partition estimator |b¢|oc Sp 1/J¢(c.f. Lemma B.9. ). Thus by similar steps from
the previous derivation we have that [{®:® } = {® b }|max <p 1/ -

|C [®:®F — Crilal|max <<p 1 by the assumption 24.

Thus the conclusion holds.

C.8 Proof of Theorem B.14

Proof. We first analyze the leading term. We let e} = (Bi(f: — E(f;|F))):; and recall that e, = [g;];- Then

we have,

T

VIS u(8) [ding(d0) " tng 971

o+

T

= VTS pu(B) [ding(d) " ny t0fe

t

T
VTS o) [diag(@0) " ny 97 )ed
t
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by the assumption that G;; =<, J[l, and the fact that {(I)thi:‘g} is a martingale difference sequence with
respect to .7-"571. Apply Lemma B.2 and by Assumption 23,

< 1/VT, (C.20)

1
71! dla n; <I> Et|max S log(ngJ <
| Zpt g(@e) " 'n; ' Bje] pf J(\/log(naJ)/(VnJ T

and by Bernstein inequality and the assumption that E(8;®},) =<, J !,
|7~ Zpt dlag ‘IJt) lnt |max |7~ ! Z fr — E(fe| Fiz1) [”t_l Zdiag(djt)ilﬂitq)?t]jdmax

<p JVT (1) + iog(nuda) Vnd) < VT ' +VTJ ' < VT

Therefore by Assumption 23, the above object has rate \/T_1 then

J\F J724/log(nyJo) /(IVnd)+(y/log(n,J.) /vVnJ)?) < f The leading term 77 3, (fi—Efe| Fr—1)n;

VT

First of all, we have that,
a(B) —a(B) = T {pe(B) ar —pe(B) a7},
t
T pu(B) " (4 — ay).
t

Recall that J = [j1, j2, 43, - ,j7), J € By and |By| < J.

We denote a},(a;¢) as the j; component of aj (G¢).

We will evaluate [maxyep, T~ Y, {a;; — a},}] in the upcoming derivation. By Assumption 25, we have

Vant /NT + 57/log(nd)/ /s < J L.

Now we have
T! Zﬁt(ﬂ)T(dt —ay)

=T lzpt ntant *érttlbnf)
-7 1Zpt T[(diag(gje) ™t — (g '@y @y ") ng @y E]

+T1 Zpt T [diag(@;e) " 'n, Dy

= 11+I2+13-

We now prove that |11 + I2|max = op(l/f) and |I3|max = Op(l/\/T) )

We first check the rate of I; which is denoted T 3", py(8) " (Cy. Dy, —C’;tant) =-T7'3,5(B)"Cy,
Cn )Cnlem +7T7 > De(B )T O ( - Dnt)

So [T~ ! tht( ) (C’I’Ltant - Cntant)|max < maxt{|crzl|ma)c‘ér;1|maX|Dm‘max}|T_1 Ztﬁt(ﬂ)T(Cnt -
Ch)lmax + maxe{|Co max HT 7L S, 5e(8) T (D, — Di, ) |max- Recall that n, = max; n¢, n, < n,7T.
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Thus by Lemma B.11, we have

| max T~ 12 ne = CnJyel < |max T 12;2 (Bit € Pju) — 1(Bu € Py))|
<p Mine < (T M),
Similarly by Lemma B.11, we have

|§]Iéag§T ! Z ne nt Jt| < |maXT Z (btgt (I):ét]gt|
-1
Sp (B + By by + ha) + VT b+ ha/VT ), < J-NT .
Therefore
L] = [=T7)  puB)TCH(Cr, = Co)C D, | + 177> pi(B) T Crt (D, — D)
t t

Sp 72 max 0 (Co, = Gl max T ;nt—l[Dm]jtl

1.
< VT hy
VT
For the second term, we have
T
| = max|(diag(q;e) " — (nfl@?@Z‘T)’l)lggaB};IT’lZt:[n{lfl’i‘étbt\
1~
< J2(V10gqn/VnI)WT " hy
< VT
So we have |I1], |I>] <, VT

Moreover, by equation (C.20), |I3]| = Op(\/Til).
Now we look at Iy. We denote E,; = n; '®!b,, and E,,; = n;lfth(I - PB,t>bt

|14]

IN

— PN —LgagxTy L/ —13% — ~ N I
s =T ! Zpt(ﬂ)T(”t 1(1)1‘, ‘I)tT) (ng 1(I)t be)| + |T ' Zpt(ﬁ)TDntEnt|
t t

IN

|7F1 Zﬁt(ﬂ)TCJtl(Cﬂt - Onf,)é;,,lEnJ + |7171 Zﬁt(ﬂ)TO;tl (Enf, - Enf)‘
t t

+ |T712ﬁt(ﬁ)TDntEnt|-
t

We know from Lemma B.9 that max; |b¢|max Sp 1/J. We have that |T=1S", p(8) T CrnH(Cr, —Ci, ) O B, <y
J2(J\/T)_1(J_1 v Viogqn/n)1/J 5 J_l\/T_l- Also [T~ Ztﬁt(ﬂ)—ré;tl( ne = En)| S Sp J(6"V (anT +
or)/I)(1)J) < JIAVT . Let 1,,, be an;x1 vector of ones. For the term T~ Y, p:(8) " (n; 1<I>I<D;‘T)71(n;1<13fbt),
we have [maxgep, T~ 3, [((ny @7 ®; 7)™ (ny ' 07 10, )]je| <

Thus we have T*lztﬁt(ﬂ)T(n;%;@;T)’l( Lo, < J L Tt follows that || <p J~L.
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C.9 Proof of Theorem B.15

Proof. Recall the definition that 62 = n,/J,(3; ®i,.06%)(X; ©ij,e) >
We see that 0% = 1/J,(E;— 1(<I>*Jt tht))(Et 1(®5 5, 1)) 2. Recall that B, (®], ;) = Gje-
Recall that 0,(8) = ¥, . (8)02 and 64(8) = S, 5, ()62 02(8) = T~ 5 Jeo(5).
We have proved that the leading term [{n; ' ®;®; T}~ (n; ' ®}&,)]; is close to [cjj_tlnt_l DI IR
Define for each ¢, the bin covering 0 as By g. So there exists a point ;o € Bt o, F/;tl(th’o/ntJ) <0 and
Fi{([(Geo +1)/ne]) 2 0. We let e}, = Bis(fi — E(ft|Fi-1)). First we prove the normality for 1(8 & U, B.0).
Recall that we define E,, ;, = (jﬁlE(CI);j,tﬁit\gt,l). Then we have

VT >t 0iE

= [ﬁ‘lzq;; lz@mmf Zq;; 12%

= WT th E(fi|Fi1))d ny Z@W t@wf Zd{tl lzé;f,jht%]

— VT th E(fiFoe1))d;, nHZ LiuaBit = Eng ) +VT za;nfz%at
+VT Z fo = E(fel Fee1)) En, 5,

= 0,(JV10gqn/Vnd) + O,(VT//R) + VT th E(fi|Fi-1))En,.j.

= VT Z fe = B(fel Fie1)) En, j, + 0p(1)-

By the Assumption 17 we have E(e;|F;—1) = 0 and since we have E(f;|F;—1) = 0. Then
E(nt,n, (B)[Ft-1) =0

E([7tn. (B)]) < o0.

Therefore by assumption 22, n; ., (5) are MDS with respect to Fi_.
Now we shall verify the following, according to Corollary 3.1 in Hall and Heyde (2014),

EWTZE (Mesne (B)?|Fe1) — 1] = 0, (C.21)

and for e > 0

VT Y B, (8)* 10, (8)/VT > )| Fi1) = 0. (C.22)
t
Since the two terms T, 1(8) and T), 2(8) are uncorrelated, due to assumption 22,
E(en, (B)*1Fom1) = EE@(8) ™ D05, e (B) P ER, 5| Fims)

+EE0(B) Y 0 (B)a5 ni 2D 5, enlFica),
Jt 7

73



and
)~ Zﬁjut( qjt Ny . Z‘b*,gt EulFio1) ijt’ q]t Ty . Z(I) ije (e Fi)-
Jt

We can proceed with the following steps. Thus the equation (C.21) holds by the definition of ¢(8), assump-
tion 22 and the following steps. Let z¢,, = E(nt.n,(8)?|Fi—1) — 1. We shall operate an MDS decompoisi-
ton with respect to G;—1. Thus we have E|1/T >, E(n; n, (8)%Fi-1) — 1| < [E[1/T >, E(nen, (B)?| Fiz1) —
1|+ 49 < /T(max;, ||pj,..(8)f En,.jullg.e Vimax j, |97, i llq.e)T~" — 0, by Buckerholder inequality.
Now we verify equation in (C.22).

We first show that,

E(en, (B)*1*) < ¢ )7 Zﬁﬁ, (B)(feBn, )2+
+cE[E —1/2 th ‘ qj1t ng ~1 Z 7, iEit] 2+25 (Buckerholder)

<C+Tl (2+26)( (ﬂ)+nt7176)71(\/77t)2+267

where the last line is due to Lemma B.1 and assumption 22. Then the central limit theorem follows.
Then it holds that for all e >0, > ,E [(nt,m (B)/VT)?I (Wt,nt (B)/VT > 6)} — 0, this hold obviously

due to E [(mmt (B)/VT)?I (Wt,nt (B)/VT > 5)] < T YK (|0, (B)|?12° /e2°) due to Markov inequalities.
Then we have 1/T Y, E(n¢n, (8)?1(ne,n, (B) > Te)|Fi—1) —p 0 due to

1/T 3 AE(e,n, (B)21(Nt,n, (B) > Te)|Fi=1) — Een, (B)?1 (e, (B) > Te))} —p 0). The central limit theo-
rem then holds.

]
C.10 Proof of Lemma B.16
Proof. We shall define ﬂf(,@) = p(B) Ta;. We define e;(8) = ﬁf(ﬁ)Tdiag(qﬁ)*l JlorE,.
Let g:(8) = fit(B) -1 Yo (B), he(B) = e (B) + ee(B) — -1 > (e (B) + €e4(B)). First we show that

s%pT*th[m(ﬁ) -7 g{ﬂtw)}}? -7 th[m( +ei(B 12 i (B) + e(B)))?
= sup T Zt:[gt(ﬁ) — ha(B)][9:(B) + he(B)]
< supmax g.(8) + b (B)I(T Z 19:(8) = he(B)]])
< supmax|gi(9) + hu(5 1Z|Mt B8) —e(B)))-
Thus under the conditions of Theorem B.12 and B.14, we have the rate

supg max|ge (8) + he(B)2IT Y 12e(8) — e (B) — ex(B)]] <<, 1.
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Then we study the following,
IX}H +e(B T*X}W@+me%
12 Z 27! Z e(B) =T (e(B)]?
+or! Et:{et Et: BYHi(B) =T~ fu(B)}]-
_ zviéjmxm §jg o supT- E:Q 1§:e 2 4 o1

Since supy T71 37 [er(B) = T 32, en(B)]* = supy T71 32 e (B) — (T4 1, en(B))*

Similar to the Lemma B.3 under the ¢gth moment conditions of f; — E(f¢|F¢—1), we have

Sup -1 Zet -1 Z er(B)? — a(B) <p T™H(JIY 9 + (Tlog J,)Y?) — 0. (C.23)

Similarly we have T3 [fi:(8) — T Y, (e (B))]? — o, (B) <p 1.
Thus the desire results follows.

We now show that the covariance estimator is consistent,

ﬁsug Tt Z 9t(B1)9:(B2) — he(B1)he(B2)]

< sup (- Zlgf B1) = he(BII VT 1ge(B2) = h(Ba)||] max{|g:(51) V hs(B2)[}-

Moreover, due to E(u:(52)e:(51)) = 0, for any ¢ and 81 and fSs, we have

sup T~ th B1)he(B2)

B1,B2
T T
= Bsu}; T Zet B)er(B2) = (T " ex(BNT ™D erla))
T

+ @SHgT Zm& fir(B2) — (T
1,02

T
2
T
+ BSUET Zutﬂl et(B2) — (T~ Z
1,02 t

T

+ ﬁSUé)leﬂtBQQﬂl) (T~ Z
:

>

= buPleet51€t52) (T~

B1,82 t t
T T

+;gTiywwma< PST a(B))T S fin(B2) + 0p(1).
1,02 t t

Suppose that J; and Jo corresponds to different bin indices according to 51 and [y at time t. And similar
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to the argument above,

T T T
T3 eB)eBa) = (T7 " e(B))T Y eul(Ba) = Cuy gy Sp T7HIZ T+ (Tlog J2)2) — 0.
t t t

T
sup T Zut (B1)fie(B2) — 12% BT fia(B2)) = (B, B2)
1 2 t

<, T (Jg/q + (T'log J2)'/?) + 1/J — 0.

C.11 Proof of Lemma B.17 and B.18

Proof. We shall prove that the residual é;;, is close to €;;, in a uniform manner over ¢y.

w(t, )Xo X, 7Y w(t, to)XeRie — bi(—1y)),

-
-

N
Il
—

max(éito — 5it0) = max[l, fto]T([
to tO

i=1

w(t, to)XtXtT]_l w(t, to)XtXtT(bit — bi(fto))

-
-

Il
_

= max[L, i,]T

3 =1

T T
+max1 ftol Zwtto )X X Z’tho ) Xieit),
i=1 i=1

< 5T lglai(T |ft0‘007

where recall that iV r¢ V \/log(gn)/vVTh = 67, and 4 = (Th)~ (T4 4 (Thlog T)'/?).

R 1
I%ax(eito — Eity) Sp 07T /4,
0

Proof to Lemma B.18.

Proof. To prove the consistency of 2 , we have,
Jt

Iréax(&?t - sz-t ),
t

= (mjzjx 552',, - nt/Jt(Z (I);:k,jt,tgzzt)(z (D;k,jt,t)72)
‘*‘(mj?x nt/Jt(Z (I)z,jt,tfgt)(z ‘I’f,jt,t)_Q - Ui)-
1
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The second term follows from Bernstein inequality. For the first term, we have,
max 57 =i/ (> ‘I’f,jt,ﬁ?t)(z ;077
= max e/ J(Y - ®igeiéi) O i) =) (D @i, 1) O 5 )7
+ max nt/Jt(Z @i7jt7tézzt)(z @?,jt,t)” - ”t/Jt(Z ‘I’;,jt,tf??t)(z (I’;F,jht)dv

%

=I+411I.

Among I and II, we derive the bound for the terms respectively,

I =

max 1/Ji(n;t Z D, 5, 22 ) (nt Z ®; 50" H(n ! Z B 51)?
_ n;1 Z@;jt’t ny ! Z‘I’ig‘: - i
=1/Ji(n Z@mtsn Z‘I’zm “2{(n 1Z@Htt
- Z‘I)*,gt JH g Z‘b 1,5t 5t t_l Z‘I’z’,j,,,t ”t_l Z(I)f,jt,t)dv
Op(1/ Je(ln/ne + T ) T2 (b /1) Iy T7) = Op(Vawr + 6101/ v/1id + ant + 01) = Op(B1),

which is due to the derivations in Lemma B.9, B.10 and B.17.

11
= max ne/Ji( Z 075, )7 Dl — B ER),
i
=n/Jy( Z D7) 2{Z(é)i,jt,t - cb;,'k,jt,t)gzzt + Z CDth,t(ézzt -},
=g/ Ji( Z o7 ity ¢) 2{2 iget ,]t,t)gzzt + Z (I)Zj,,,t(éit —eit) (Gt + i)}
=1/Ji(n ot Z‘I)*,]t, 2{”:& ! Z i,5e.t ,]t,tE’Lt)
+maX (|n;t Z 7 5, 1 Gie + i) (Eito — i)}
<1/Ji(ng Z N e Z(‘i)z‘,jt,t -7, e+ max n; ! Z @7 5 1 (Cit — €it) (Eity + €ity) },
Sp 1/ % Jt (Jt_ (61 + ant) + \/ETI/(ZQ)nt_lmjt_l/z)a

= Op(67 + anr + \/ETl/(Qq)nt—lﬂjtl/Q)’
= Op(62)7

which is due to the derivations in Lemma B.9, B.10 and B.17.
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Thus we have the uniform rate for the variance estimator as follows,

max(33, — o7,

= I+I1+ Hbax ne/J(> @;yjt,tgft)(z N

_ —1 * -1 * _
= maxJ; Z@mts,t Eio(® ,Jtts” Z@dt’

Jt
—1 * — —1 * ~ — ~ ~ \— *
+ max Jt Z Qi *(ny Z Q7+ — @) (ng Z Q7+ +45.)(45,) QEt—l((I)i,jt,tE?t)
i i

<p cn,\IlogJ; /ntJtJt Y2+ gt gke,, \log Jy ng Jy J N TR I

Cn,V Jilog Ji/ny.

A

Since we have the following, then the above bounds can be applied to prove the uniform rate of o4(3) —

5:(B).
supor(8) - x(B) = > 5 (B) (02 —52)
Jt
= max |cr - &2
Jt

Jt

Thus the results follows.

C.12 Proof of Theorem B.19

Recall that 62 =n,/J.(>, @ ,]t,t57t)(z iy iyt
We see that 0 o l/Jt(Et 1(@*,]t,t61t))(Et 1((1)*’%“ )) 2 Recall that Et 1((1)1 st ) = th.
Recall that ot( ) =325, b5.(B)o3,, and 64(8) = 32, D5, (8)53,

For the test statistics /n;/v/ T {L:(8) — Li(8)}/5:(8)"/?.

1 We show that the leading term Z,,, (8) = /nz/V/Je{(L+(8) — Lt(B))}/6+(8)"/?
is th D5, (B) 1/(ntJt)(jjjl > @j,jhteit/at(,é’)l/? Namely, we have

sup e/ V(E(8) = Lu(8)) 0091 = sup i /T (8) dinglanlon ()%} (i @i}
+ 0, (Vi / (VT N th TV 1N,

2 We need to assume that ¢;; are conditional iid on F;_1. We show a coupling step for the leading term

in the previous step by conditioning on F;_;. Namely

>, i (B) 1/(ntJt)(jj:1 > ®r, (e — Utnit)/atl/z(ﬂ) = op(nfl/zﬂ/(zw\/jt) is of small order by ap-
plying a Komlés-Major-Tusnddy (KMT) strong approximation argument. We let 0?7 | = E(¢2,|F;_1),

and 7);; is iid standard random variable conditional on F;_1. We can see that £;; =4 o47;+ conditional

on F;_1.

3 We shall prove that >, pj, (5) 1/(ntJt)cjj_tl > @;‘}jt’tatmt/atlp(ﬂ) which is conditional Gaussian dis-

tributed and is close enough to a Gaussian random variable Z;(3). We define Z;(8) = >_; p;,(8)Zj,,

where Z;,s are standard Gaussian random variable. The argument is due to Gaussian maximal in-

equalities.
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Step 1 Recall that 61 = Vanr + d7Ji/\/Me + anr + 61, 62 = d7 + anr + \/5TT1/(2Q)n;1/2Jt1/2. We first
show that the standardization with estimated variance is negligible.

sgp\/ni/@{ﬁm Lo(B)}/67%(8) — i/ I {L4(B) — Lu(8)} /o (8)
S supe(dy + 02) [/ /I Le(B) — Li(B)} o (8) 2.

By the Bernstein inequality.

Let X1,...,X, be independent zero-mean random variables. Suppose that | X;| < M (M is a positive
constant) almost surely, for alli. Then, for all positive t.
n th
P X, >t| <exp (— ~ 2 ) (C.25)
2 S B L

If we assume that the g—th moment of €2, is finite, then we shall study the inequalities on the event
A= {max;e2,®}. , < M}. P(A°) <ny/(M9J;), by Assumption 17.

7 j, t
Let M = cp,n; q/Jl/q we have P(A°) <1/(cf,). Now apply Bernstein inequality, conditional on F;_1,

we have

maxnt ~1 Z et —Gj,) Sp en, N 10g Iy /ngJy.
fon;l Z I Etfl(q)i,jt,tgzzt)) <p e, (Vlog Ty fndy +ny 0T 9 0g 1),
i

It is not hard to see that for ¢ > 4, if J;(log J;)?/n; < 1, by assumption 23, then we have c,,, (v/log J; /s Ji+

n;lﬂ/th Yaog Ji) < ep,\/1og Ji/niJy.

By Lemma B.18, we have 67 — 07 <, \/J; log Ji/n
(1/60(8)'2 = 1/0u(8)'/2) = ((00(B)'/? = 6:(8)/) /3:(8) 2o (8)/%).
We take the following steps,

VeV ILL(B) — Le(8)}/6:(8)"? — e/ /I Le(B) — Le(B)}/oe(B8)1/2,
Ve /N IAL(B) — Le(B)}oe(B)(0:(B)? /60(8) Y2 - 1),
VeV ILL(B) = Le(B)} oe(8)2||(0:(B) 2 /612 (8) — 1)).

IN

Thus
s%pm/ﬁt{w)—Ltw)}/at(ﬂ)l/?—m/ﬁt{itw) Li(B)} /0, (B)
<sup i/ VIAL(B) — Le(8)} o (B)] sup (o:%(8) /8,2 (8) - 1)].
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By assumption 28, we have,

P(sup (0e(8)2/6,%(8) — 1)| > ),
:P(max ‘(th/a-jt - 1)' > Z‘),
<P(max (0}, /6;, — 1)(05,/6;, + 1)| > x),
Jt

<P(max|(03 /53, ~ 1) > @)
Since by Lemma B.18

max |6]2t - szt| = Op((61 + 02)).
Jt

The event for the positive constant ¢ > 0 (defined in Assumption 28) happens with probability approach-
ing 1,

) 2
max 65, — 05,1 < c/2.
We have, by Assumption 28, with probability approaching 1, V j;, we have, exist a positive constant c,

67 >0 —c/2>c¢/2

So we have,
P(max |(0J2-t/6]2-t —-1)| > x),
Jt

<P(max |(UJ2-t - &?—t)| > xc/2).
Jt

Thus we have

sup (04(8)/31(8) = )| Sy el + 32).

It is not hard to derive that under the conditions of Theorem B.12. Similar to the derivation,

A

(Le(B) = Le(B)) = By (B){diaglgse]} " {n; ' ®jec} + Op(1/Je V h). (C.26)

Then

sup e/ V(E(8) = Lu(8) () = sup v/ b (8){dalalo(8)'/2) ™ i 07)
+0p (/2] (VT TV TV 1 T).

So the first step is proved.

Step 2 We now show the steps of strong approximation. We couple the sequence

32, D B ne ] Ty, 30, @1, it /oe(B)2 by 325, Dy (B)/ e/ Tt 30, ®F, o(04min) [04(B)1/?, where e =4
o;n;+ conditional on F;_.
Now we cite a KMT type theorem to show that such a coupling exists.

Theorem C.1. (Theorem 2.1, Berkes, Liu, and Wu (2014)) Assume that X; € LP (p is an integer.) with
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mean 0,p > 2, and there exists o > p such that

Z |]|1/2 1/04510/04

jffoo

(6;p is 0;,(X;)). Further assume that there exists a positive integer sequence (my)pe, such that

o0
_ 2-1
My p = 23’“ k”‘/pmg/ < 00,
k=1
kp/2
gvren,,
3k ’

k=1

and

. ) 34(1/p-1/2)
O p + min <®l,p + 13k/P 1)) =0 ( >

(log k)12
Then there exists a probability space (Qe, Ac, P.) on which we can define random variables X with the partial

2 (X);eq and (2.7),

sum process S¢ =Y i X¢, and a standard Brownian motion B.(-), such that (Xic)z‘ez =

S¢ — oBo(n) = 0q.. (nl/p) in (Qe, A, Po).

We can see that for iid data the dependence assumption naturally satisfies by assuming that ;; has finite

qth moment, with ¢ >4, and by Assumption 17, we have, conditional on F;_1,

l
max | (eir — o) = Op(ny/ @)

1<i<n,—1
1

We define

K(B, Bit) Zpg, )\/WQ;lq)r,jt,t/gt(ﬂ)l/z'

Then conditional on F;_1,by summation by part,

sgp | Z K (B, Bit) (it — oiznit)|

nyg—1

l nt
< Sup| Z (B, Biye) — K(B, Bri—1ye)]| _max \Z&'t = ounit| + K(B, Bnyye)l Z&'t — ot

1<i<ni—1

e[S -l
N N

Step 3,

We now show that the conditional normal process >, K (3, Bit)(0enit) =a /2_; K (B, Bit)?*Z = Zyn, (Z
is a standard normal variable) is close enough to the Gaussian variable Z;(/3), which we show by Gaussian
maximal inequalities. Recall that we define Zy(8) = >, 9;,(8)Z;, (Z;,s are iid standard normal random

variable) as a conditional Gaussian process, conditional on Qt,l, Zy(B) is conditional Gaussian process.
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Recall 07, = (jjjlaf/Jt, and o4(B)'/? = >, bj.(B)oj,. Bj, lies in the interior point of Pj,. Recall that 3;, are
some interior point for each partition j;. Since we know that by Gaussian Maximal inequality, conditional
on Fi_q,

P(s%p | Z{K(& Bi)omin} — Ze(B)| = x| Fiov),

< lothmjax|at ZK(Bjﬁﬁit)z—lL

<vlogJy HE&HZ K(Bj,, Bir)*07 — 11,
<+/log J; nbax(nt)_1| Z(qj‘:lq};jt,t -1,
t .
,Sp\/lothv Jt\/IOth/\/TTt.

Step 4, We shall look at

sup P(sup Z,, () < x) — P(sup Z:(5) < z). (C.27)
T B B
Define a positive constant £ > 0.
sup IIF’(Stép Zn,(B) < x) = IED(s%p Zy(B) < )|
< IP(Slép 12, (B) = Z:(B)| = )| + [sup P(z < Sup Zy(B) <z + |-

Due to the anticoncentration property of Z () conditional on F;_; as in Lemma C.2, and the dominant
convergence theorem, we have, for £ < \/Jt_l

|supP(z < stép Zy(B) <z +8)|,
|E(supP(z < s%p Zi(B) <z +&|Fi1))l,

|sup EP(z < Stngt(ﬂ) <@+ ¢ Fi-1)l,
SP \% IOg Jt/\/jta

Notice that supg Z;(8) = maxj, Z;,. The above statement is derived based on Lemma C.2. In particular, we
have X; = Zj,, 0; = 0;,. From Assumption 28, we have min;, 0;, > 0. Also e = £ > 0 as the correspondence
the Lemma. E[max;, Z;,/0;,] < v/logJ; by Gaussian maximal inequality.

Define £ (maxi<j<p X;,€) = sup, P(|max; X; —t| <e).

Theorem C.2. (Anti-concentration: Chernozhukov, Chetverikov, Kato, et al. (2013)). Let (X1, ... 7Xp)T
be a centered Gaussian random wvector in RP with O'JQ- = E [Xﬂ > 0 for all 1 < 57 < p. Moreover, let
0 = mini<;<p 0,0 = MaxXi<j<p0j, and a, = Emaxi<;j<p (X;/0;)] (i) If the variances are all equal,

namely o = o = o, then for every ¢ > 0

L (max Xj,e) <4e(ap+1)/o

1<j<p
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(ii) If the variances are not equal, namely o < &, then for every e > 0,

L (max Xj,e> < Ce{ap—i— 1\/log(g/e)}

1<5<p
where C' > 0 depends only on g and &.
Since supg |P(supg | Zn, (8) — Z¢(B)| = §) —P(supg | Z,, (B) — Zi(B)| = €| Fi—1)| = 0, which follows similar

arguments as in the proof of Theorem SA-4.1, Cattaneo, Crump, Farrell, and Feng (2022).

C.13 Proof of Corollary B.19.1 and B.19.2

The proof is similar to the previous paper and therefore omitted.

C.14 Proof of Lemma B.20

Proof. Since by Theorem B.14, we have

T2y (u(B) = () = T2 30> b5 a(B)(fe = Bl Fem1) B e + 0p(1). - (C.28)

Now we can use Theorem C.3 to conduct our uniform inference for beta sorting estimators. The strong
approximation results can be applied on the term 7-1/23", 225 Dint(B)(fe — E(ft| Fi=1))En, j,. From any
Ji,J2 € By.

Assume that Z; ; follows a normal distribution with N(0,diag(¥)~"/?2diag(X)~12), ¢ < Amin(X) <
Amax (%) < C,

max [T~/ Z Cy 32 (fe = B(fil Fio1)) Bn, 5, — Zo] = Op(T~%), (C.29)
where ¢ is a constant between 1/6 to 0. ¥ = diag(X)~!/?Xdiag(X) /2.
O
C.15 Proof of Corollary B.21
Proof. For a constant § > 0 (defined within the proof only).
Let Ur(8) =T~/ 32, 6(8)"12(u(8) — iu(8)).
Denote
Ur(8) =T~ ru(B.8)"1*(2e(8) — p(B)). (C.30)
t

‘We shall derive

P(Stgp Ur() > @) - IP’(Stgp Gr(B) > x)

< P(sup [Ur(8) — Gr(B)| = 8) +supP(z < sup Gr(f) <« +6).
B z B

Define U3 (8) = T=Y23, o(8)~'/2(e(B) — pe(B)). Next we shall study supg Ur(B) with the replaced
true o(f). Since P(supg [Ur(8) —Gr(8)| = §) < P(supg [Ur(8) = U5(8)] = §/2) +P(supg Uz (8) — Gr(B)| =
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§/2). From Assumption 29, we have that supg |Uz(8) —Us(B)| < (a(B)~Y2 —6(B)~ V2N (T2 3, (n(B) —
1(8))) S Oplre) supy [UR(B)] S rT—1/241/20 120 S 7=,

For the term P(supg |Ur(B8) — Gr(B)| > 6) we analyze via a linearization following Theorem B.14 and
strong approximation to the leading term. For the term sup, P(z < supy Gr(f) < = + J) we study via
anticoncentration inequalities for Gaussian processes (c.f. Lemma C.2.) Because of Assumption 29 and
there are at most J, jumps in the limiting process (recall J, is the number combined intervals over time),
we have for § < \/jil, sup, P(z < supg Gr(8) < 2 +6) < Viog Jo/VJ.

Next we study, P(supg |Ur(8) — Gr(B)] > §). For a fine enough grid on the interval [8;, 3,]. For a small
positive constant &, we denote the grids as Bs = 81, B2, -+, 5, /g], and 7(83) denotes the closest point of
in terms of the absolute norm |.|. We select the partition such that Gr o 75(8) = Z;. Denote m3(5) as the
closest point of § in terms of metric |.| in Bs.

Recall that we let Uz (8) = VT{(B) T~ Y, 1(B)}/65'/2(B). We define o(8)~'/2Gr(5) as a Gaussian
process on a proper probability space with covariance o(31)~ 20 (81, B2)o(82) /2.

Define Uy o 75(3) as the process Uy evaluated at the grid points Bj.

The following relations will be proved below for some 1/6 > &’ > 0 and some J — oo :

 (Coupling with a Normal Vector)let the limit variance covariance matrix be X(85) = limr_, 0 (Cov(@To
m5(By), denote J as the number of elements within Bj, there exists Gp o ws(8y) ~ N (0, X(55)) such
that
ry = U7 o m5(81) = Zsloo = Op(T™ VVT(J V) = o (T7) ;

The follow steps proves the statement (1). Denote for a small enough positive constant €

Bu.e = F3 (/)
By =F5 G/ T) —e.

We denote Bj as the collection B(j),t for all j; and ¢. Thus we have,

sup VT Y {au(B)'? = u(8)}/6(8)"? = VT {fu((B)) — me(m(8))}/6(m(5)"?]

BE(B1,Bu]
< s VTS 3 85a(8) B /59 = By (70 B 0 (8 (o = (i)

+Op(T_1/2+1/2q).
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Moreover for the leading term we have,

ﬁ’lmax\i@ﬁjht(m Bl 00" = 30037 Buvtse=n 10087 ) e = BT}

BEBy

< _ gleaB)f‘Z ijt, ’ﬂt’jt/&ﬁ ijt, nt (Ge—1 /UJt 1){ft (ftlj:tfl)H
< \/f géaéj ‘ Z[(Z ﬁjt7t(ﬂ)Ent,jt/6—jt - Zﬁjt,t(ﬁ)Ent-jt/th - Zﬁjt,t(ﬁi)Ent,(jt—l)/&jt—l
t Jt Jt Jt

+ Y 55t (B)Eny -1y /05— fr — E(fo Fe1)}]
Jt

+ \/Til max‘Z[Zﬁjmt(ﬁ)Ent,jt/U]t Zp]u nt; (Je— 1)/Ujr—1]{ft (ft|ft—1)}|
t gt

BEB;

IN

1 N
VT max |(Bneje/Gj0 = En, o /o)t — E(fel Fi-1)}|
71 .
+VT max (B ji-1/04,-1 — En, j,—1/0j,~0){ fi—E(fe| Fe-1) }|
-1
+VT max ((Ens /050 = Bn, (o—1)/0j—1) Ui = E(fe| Fe-1) }

—1
Sp VT TSIV (81 + 69)) max | fi — E(fil o)l

Thus rm S, VT 'T1/2 maxy || ft —E(ft] Fi—1)]|24. The second last inequality is due the fact that B(jt)t are
not equal with probability one for different j; and ¢, and the jump points occurs B(j),t- The last inequality is
due to the boundedness of the 2¢th moment of f;—E(f:|F;_1), the moment of (E.,, j,/0j, — En, (j,—1)/0j,-1)
is order J; ! (c.f. Assumption 29), and max;, o;, — 65, = 0,(1).

The follow steps proves the statement (3). By the maximal inequality for Gaussian random variables, we

have

—1
T3 ,Sp IOg(Ja)\/j

The follow steps prove the statement (2) by verifying conditions of Theorem C.3(i)-iv)). We men-
tion the correspondence between subjects in the Theorem and our case. Recall that for the grid 8, =
[B1, B2, - ,ﬁc/g]. This corresponds to J, s distinct value of 3. From Assumption 29 for avoiding singular-
ity of the variance covariance matrix. We have o(8;,, 8;:) # o(B;,,8;,) or o(Bj;,B;). In the theorem
n="T X; = \/T‘lzle 32, g (Bu)En, [ fi — E(fil Feor)l/6(8)Y/2. Also p = J, 5. Thus the ¥, in
the theorem therein corresponds to [6(3;, 8i)/6/?6(B8;)'/?]; 7, which is a 5, , s, , dimension matrix. We
shall assume that ¢ < Amin(ZJ,.5) < Amax(ZJ,.5) < C’, with C’,¢ > 0. This proves iii). Moreover, to
prove ii), we shall assume that m = O(TY%), M = O(T'/3), J.s < exp(T¢), with ¢’ = 1/9. To derive
the strong approximation for supsep. T30, 37 pj, +(8)(fi — E(fi| Fi—1))En, j, uniformly over 5. We
note that it is equivalent to look at strong approximation for maxy 7=Y2 3", p;, +(B)(fi — E(fi|Fi=1))En, j,-
Djt(B)(ft — E(fe]lFi=1))En, j, is involved, and it is still martingale difference sequence with respect to
Fi—1, as Pj;, +(B) is measurable with respect to F;_;. It remains to check the dependence adjusted norm
for pj, +(B)(ft — E(fi|Fi=1))En, j,- We see that since pj;, ((8) is uniformly bounded by 1. For martingale
differences, let e;j, = (j,,+(8)(ft — E(fe|Fi=1))En, j,, and dgm(e. j, ;) = 0 for I > 0 (recall that e_j,; is
defined by e_;, replaced with an iid copy of the Ith lag.) Thus due to the property of martingale differences
the dependence adjusted norm is just the norm itself ©,,0 (e, j:) = ||Dj,.+(B)(ft — E(fe|Fe=1))En, j.llq <
I(fe — E(fe]l Fe=1))ll2¢l| Ens 5o ll2q- Then by Assumption 29, ii) is verified regarding the bounded dependence
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adjusted norm.

C.16 Proof of Theorem B.23

Proof. Define the standardized process as the following,

0T(ﬂ17ﬂ27ﬂ3) =
‘T71 Z V Tnt/Jt{ﬂt(ﬁl) + /:Lt(53) - 2ﬂt(52) - (Mt(ﬁl) + Nt(ﬂs) - Q,Ut(ﬁz))}/ﬁp(ﬂLg,g)l/?|.

Ur(B1, B2, B3) =
T T/ Tl (1) + fue(B3) — 2010(B2) = (e(B1) + pe(B3) = 2ue(B2))} /o p (Br,2.8)' .

Define the centered and standardized process as the leading term as follows,
Zp (B, B, Bs) = VTT ™D \/mef/Teng Y 0> (B, 4(B) + Bj, +(Bs) — 255, +(82))
t i e
gj:lq);jt,tgit/UD(51,2,3)1/2‘
We shall analyze the leading term of the above statistics object,

sup |Ur (B, Bz, B3)|

B1,B2,83
= sup |Ur(Bi,B2,B3)] + Op(r1,2,:3),
B1,B82,83
= ; S/IBIPB | Z7 (B, Bas B3)| + Op(r1,23V /Tny/J TV /Ty /Jh),
1,P2,P3

where the first equality is due to Assumption 27, and the second equality is due to Theorem B.14. We shall

then prove the following steps:

o (Coupling with a Normal Vector)let the limit variance covariance matrix be (8, , f1,, 87,) = limp_, o0 Cov(Uro
7581, Brs, By,), denote Ji,Jo,J3 as the number of elements within By, there exists G o w5(85) ~
N (07 E(ﬂjl,«b,nﬂs))} such that

b =07 0 5By, 5a5s) = Zingadsloo = Op(T~5 VYTV ) = o (nT) ™) 5

Let Z7(8) be a mean zero Gaussian process, with variance oq(3) = limp_T7'Y", O’E(jj_tlﬁjt’t(ﬁ).

Since we have
|H~JT © 71-5(6«]]17%733) - ZJ117J27J13|00

—-1/2 —1 « o . .
< Cswpgen, | D VT el 3000 s o(8) = Zr () max(02(9))/ min ol (Br.2.).
t Jt

Apply Theorem C.3 again, with n correspond to ), ny < n,T. X; corresponds to @j’jhteitﬁjht(ﬁv)qjt.
¥, corresponds to diag(oq(By)). Since by Assumption 27, maxgeg, 04(8) is bounded from the above
and mingeg, 0q(8) is bounded from the below. In addition, we have by Assumption 27, the gth
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moment of max;, ¢ Hézjhtqﬁlgit”q < J'=1/4, Thus we can prove that
—1/2 —1 % o N L
suppep | D VT ey Y @56 ey o (B) — Zr(B)] = Op((nuT) ™), (C.31)
t Jt

for a constant 0 < &’ < 1/6.

O
C.17 Strong approximation for weakly dependent processes
Let us first derive results for nonstationary high dimensional time series. We denote X; (t € 1,--- ,n) as a p—
dimension zero mean time series, we let Xy ; = Hy j(et,e4—1,---). Welet Xy ;j = Hy j(er,60-1, - s€_pr " )s
where €}, is an independent i.i.d. copy of e, . We can denote the dependence adjusted norm as
Sisea = 500 X2 — XE51. (©32)

We denote Lo = supzol™*(3;(XCys Gikg))V% And Og0 = [|IX.|xllgallogp)®’® ATag oo =

max; sup;>o L~ (24> 0jk.q)-

Theorem C.3. Suppose that X; is a p— dimensional mean zero nonstationary time series then on a rich
probability space, there exists a Gaussian random variable Z such that i)

Y, = lmy oo n™ Y, Y s E(Xi X, ), and Z ~ N(0,3,). Assume that X; has elementwise bounded qth
moment (q > 4). The element of Xy is Xy j. i) log(p)® < L and logp < (M/m)'/3. The dependence
adjusted norm for X, i.e. O44 and Yo, are bounded. We define the dependence adjusted norm for Z, as
By, o = max, ¢~ max; 0% 4 Let B=2/(1+2d'). Let o' =1, B =2/3. iii) We assume that for the long
run variance ., Amax(X:) < C and Apin(X,) > ¢ > 0, then we have,

P(lva Y X, - Z|w > 6(p, Lom,q,)) — 0. (C.33)
t

Note that we shall let the small blocks m < M and L = [n/(m+ M)]|. iv) §(p, L,m,q,a) — 0. We let n>>
mL(logp)?, and §(p, L, m, q,a) S L~1/%(log p)3/2vL=1/?t1/4(log )L~V apl/aym=>\/log pym!/2~1/a—apl/a=1/2 «
1 fora>1/2—1/q. And L='/?\/logp3log(pVL) < §(p, L,m,q,a)). (logp)Pm=*VvvmL(logp)'/? < \/n.
{(log p)"/Pm= v VmL(logp)"/*}/y/n < 6(p, L,m, q,a) < 1.

Remark C.4. (discussion of rates) We see that q,m, M, L,p interplays with each other. Compared to the iid
case, we have observation loss, with respect to blocks. The term L~/%(logp)3/2 v L=1/2+1/4(logp)t—1/apt/a
corresponds to the rate in the iid case with L replaced by n in Theorem 2.1 Chernozhukov, Chetverikov, and
Kato (2016). We show an example, when we set q to be large enough and p to be small enough such that
L=+ 4(log p)t =V apl/aymt/2=1/a—apl/a=1/2 gre of small order. We analyze L="/%(log p)/?>vm~=\/Togp.
For example let L = n?/3, then n'/®% <« m < M < n'/3. Then L™'/%(logp)3/? v m=*/logp <
n=1/9 (logp)g/z. It would also be noted that if the dependence is rather weak o can be very large and therefore
the rate of m can be small and the block size can diverge less slowly. Thus we can see that for q to be large
enough, the rate 0(p, L,m,q,a) can be of the following order Lil/z\/logﬁlog(p VL) < d(p,L,ym,q,a) <
L=1/5(log p)*/2 v (log p)¥/2\/m /M.
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Proof.

Step 2

Step 1 divide observations into block, approximate by m dependent blocks.
We denote Xy ,, = E(Xy|et—m, - -+ ,&). We shall divide the observations into big blocks of size M and
small blocks of size m.
=[b—-1)(M+m)+1,bM + (b — 1)m)] (C.34)
Sy =[bM + (b—1)m + 1,b(M + m)]. (C.35)

This in total leads to L = |T/(m + M)]. We then throw away the observations in small blocks to

construct approximation of the partial sums by partial sum independent blocks. Namely we denote

Yb,'m = Z Xt

teLy
Ly
=2 _ Yo
b=1
The m- dependent counterpart is denoted as

Y/b,m = Z Xt7m

teLy
Ly
= E Y;;,m'
b=1

According to similar steps as in Lemma 7.1 Zhang and Wu (2017), we have that if 6, , < co. We let
a>1/2—1/q. Then we have

Ly
t b=1
where f(y,m) is denoted as
y_qnmq/Q_l_o‘q@Z@ + pexp(—Cq,ay2m2a/n\IJ§7a). (C.37)

By choose sufficient large m we can arrange ), ?b,m to be sufficiently close to ), X;. If ©4, and
¥y are bounded, we need to assume nt/amt/2=1/a—ap=1/2 « 1 and n'2m—*logpn~ 1?2 < 1. y
shall be set n!/4m1/2=1Va—ap=1/2\y pl/2m=a logpn=/? < yn=1/? < 1.

Approximate independent blocks by Gaussian random variables.

As >, ?b,m are partial sum of independent blocks by construction, we shall apply Theorem 3.1 as in

Chernozhukov, Chetverikov, and Kato (2016). We denote Y}, ., ; as the jth element of Y3 ,,,. g(d) =

g;gj%{Ln + Mp1(0) + M 2(0)}. We denote Z;, as a p dimension mean zero Gaussian random variable

with variance covariance structure as E(Y,Y,"), then

1/2 1/2
max|Z\/> /me]|€A max|Z\/> /ij|eA5)

< g(9), (C.38)

88



where the term in g(d) involves L,, = max ;E(|Y} ;]3),

Mg, (8) =Lt ZE[mjaX |Yb,j\31{mfx |Ys;] > 6V'L/log p}],
b

and
Mp2(6) = L") Elmax|Z;*1{max|Z,;| > §V'L/logp}].
b J J

As the statement in (C.38) would imply

Plnax |VE 32 (Vi = Z4)] 2 8) < 900)
b

Now we can see that with properly chosen m, 4, y,

PVE 13 X0 = Zloe 2 6 +0) < fly.m) + 9(0). (C.39)
t b

we shall pick m M, ¢ such that 6/ M +m < 1 and g(d) — 0.

To analyze the rate of g(d) we make use of the following lemma,

Lemma C.5 (Burkholder (1988), Rio (2009)). Let ¢ > 1, ¢ = min(q,2). Let M, = >, &; where
& € LY (e, ||&]lq < 00) are martingale differences. Then

1M < KES (€l where Ky =max((g— 1)1, /g — 1).

=1
Denote 0o = sup;>o =% > 4> 0jk,q> Py Lemma C.5,

L, = max,;B(|Y;;[*) < M6, .
vrq = maxy(E(max; |Yp,;0))"1 < (M0, .0).

Mra(9) = (1)~ YD Emax | 5*1{max Yi ;| > 0v/L/ logp}
b

(logp)i—® (logp)a—?
S ovrstha S Guns M 205 1.0)P:

following the steps as the proof of Theorem 2.1 of Chernozhukov, Chetverikov, and Kato (2016),

however we have a better bound for the M, r2(d). For a Gaussian random variable we have, Ly
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Step 3

follows a N (0, Sy, j;), let € = maxi<;j<p | Zs,;1/5/ 7,
ElP1(€>1)

= P>+ 3/00 P(¢ > z)2dx

< p/(tV2r)exp(—t2/2) + 6p /too \/2173 exp(—s?/2)s%ds
< ptlexp(—t?/2) + (V2m) " t6p /too —dexp(—s?/2)

< tPexp(—t2/2)p/V2r + 6p exp(—t2/2)m_1,

by the inequality of a Gaussian distribution

P(|Z] > t) < exp(—t2/2). (C.40)

2
tv 2T
It thus follows that, if we assume that 0, ; o is bounded,

My 5(8) S M**{6VL/ (VM log p)}[exp(—{6VL/(VM2log p*/?)}?)]. (C.41)

Thus to ensure that g(6) — 0 if the involved dependence adjusted norm is bounded, we need to have
Tz = MY2L1/6(log p)2/3vp!/ @ M2(log p) /I """ and § < Tyna. L~1/2/log p>v/M log(pV
L)« d,and §/v/M +m — 0.

Approximate Gaussian partial sums

We define T)y,1 = nt/aml/2=1a—ap=1/2\y pl/2p o logpn_l/2 as obtained in Step 1. Let T),,1 — 0.
As both Z and )", Z, are Gaussian random variables, we can derive the rate following an concentration
inequality using a sub Gaussian norm. We define ®,, o = max, ¢~® max; 0%/ 4. - Let B =2/(1+2a/).
Let o/ =1, 5 =2/3.

We define Z, = n~1/23"" Z; such that E(Z;Z, ) = E(X,X,",). In the next step we bound

P((ViZa =3 Zo)loe 2 V) < /(4.0 (C.42)
b

where f/(y/,6) is taking form of pexp(~Ca(y'm® /(i) @y, a)) + pexp(~Ca(y /(VmTy, o))") by
Zhang and Wu (2017)(Lemma 7.1 (ii)). Therefore, we need to ensure (log p)*/#m=(y/n)vv/mL(logp)'/? <«
y' to make the right hand side function f’(y’,d) tends to zero. The rate is fine tuned by combining
the above three steps, y'//n < 1.

O
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