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Rejoinder
Matias D. CATTANEO, Richard K. CRUMP, and Michael JANSSON

We wish to thank our discussants Xiaohong Chen, Holger
Dette, Enno Mammen, and Donglin Zeng for a very stimulating
discussion of our article (Cattaneo, Crump, and Jansson, 2013a;
CCJ, hereafter). We also acknowledge the fantastic work of
Jun Liu, Xuming He, and Jin Sun in shaping this intellectual
exchange. Participants at the 2013 JSM Meeting (JASA invited
session) also provided useful comments.

Our discussants offered an array of insightful comments rang-
ing from implementation issues to theoretical considerations.
Our rejoinder is organized by topic to clarify the importance,
overlap, and implications for present and future research of these
comments.

1. BIAS REDUCTION AND VARIANCE INFLATION

The comments by Dette and Zeng both touch upon the rela-
tionship between generalized jackknifing and the use of higher-
order kernels for the purpose of reducing bias. This is an im-
portant issue because, in conventional nonparametric problems,
it is well known not only that higher-order kernels can reduce
smoothing bias (provided enough smoothness of the underlying
nonparametric function), but also that the method of generalized
jackknifing generates a class of higher-order kernels. See, for
example, Härdle (1989). An important finding in CCJ, however,
is that the “equivalence” between higher-order kernels and gen-
eralized jackknifing breaks down when the nonlinearity bias, as
opposed to the smoothing bias, of a semiparametric procedure
is considered. Nonlinearity biases are potentially first-order bi-
ases arising in some semiparametric problems under “severe”
undersmoothing (e.g., hn → 0 faster than usual), a situation
where smoothing bias is less of a concern. (The smoothing bias
is large when the bandwidth is “large”.) Nevertheless, connec-
tions between higher-order kernels and generalized jackknif-
ing could still be useful to better understand the features of a
bias-corrected semiparametric estimator constructed using the
generalized jackknifing.

To be more specific, and following Dette, suppose X1, . . . , Xn

is a random sample from a univariate continuous distribu-
tion with density f (·) and consider the problem of estimat-
ing the value of f at some point x. The classical density
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estimate is

f̂h(x) = 1

n

n∑
i=1

Kh(Xi − x), Kh(u) = 1

h
K
(u

h

)
,

where K is a symmetric density and h is a bandwidth.
Dette compared this estimator with the (generalized) jackknife
estimator

f̃c,h(x) = c2
2

c2
2 − c2

1

f̂c1h(x) − c2
1

c2
2 − c2

1

f̂c2h(x),

where c = (c1, c2)′ ∈ R2
++ is a vector of distinct positive con-

stants, in an attempt to gain further intuition on the properties
of θ̂n(Hn) and θ̃n(Hn, c). It is argued that, although f̃c,h(x) has
(smoothing) bias of smaller order than f̂h(x), this reduction in
bias typically comes at the expense of an increase in variance.
In addition, the problem of choosing an “optimal” value of c
is complicated by the fact that the (approximate) variance of
f̃c,h(x) can be made arbitrarily small by increasing c. For fur-
ther discussion on these and related points see, for example,
Jones and Foster (1993).

Indeed, defining h̃ = c1h and c̃ = c2/c1, the estimator f̃c,h(x)
can be written as

f̃c,h(x) = 1

n

n∑
i=1

K̃c̃,h̃(Xi − x),

K̃c̃,h̃(u) = Kh̃(u) + 1

c̃2 − 1
[Kh̃(u) − Kc̃h̃(u)].

Thus, f̃c,h(x) can itself be interpreted as a kernel density esti-
mator based on the kernel K̃c̃,h̃, which in turn can be thought
of as a higher-order kernel obtained by means of a modification
(indexed by c̃) of Kh̃(·). Because the modified kernel K̃c̃,h̃(·) is
a higher-order kernel, estimators based upon it will “usually”
have larger variance than estimators based on Kh̃(·). Interpret-
ing f̃c,h(x) as a kernel estimator based on a higher-order kernel
therefore provides an alternative explanation for Dette’s obser-
vation that “usually” the variance of f̃c,h(x) exceeds that of
f̂h (x).

Furthermore, the reparameterization (c′, h) → (c̃, h̃) =
(c1/c2, c1h) employed above also sheds light on Dette’s obser-
vation about the difficulty of characterizing an “optimal” value
of c. In particular, the fact that h̃ = c1h can be thought of as
the “effective” bandwidth of the kernel estimator based on K̃c̃,h̃

explains why an increase in c gives you “something for nothing”
in the sense that it decreases the (approximate) variance of the
generalized bandwidth estimator without affecting the order of
magnitude of its bias.
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In addition to providing an alternative explanation for the
findings of Dette, recognizing generalized jackknifing as a spe-
cial case of employing a higher-order kernel when estimating
the value of a density at a point is useful for the purpose of
comparing that problem with the one addressed in our article.
Zeng also offered some insightful comments about asymptotic
(smoothing) bias reduction in general and about the relationship
between generalized jackknifing and the use of higher-order ker-
nels in particular.

All in all, three main points are highlighted in the discus-
sions: (1) because generalized jackknifing is just like using a
higher-order kernel one could think of using higher-order ker-
nels more generically, (2) implementing generalized jackknife
estimators requires choosing particular constants (e.g., c) which
is challenging in practice, and (3) generalized jackknifing will
typically increase (higher-order) variance.

The main points above employ ideas from the nonparamet-
ric literature, and naturally apply to many problems where the
concern is about smoothing bias (e.g., “large” bandwidths) as
opposed to the nonlinearity bias (e.g., “small” bandwidths). In
fact, many (but not all) linear functionals of a kernel estima-
tor will not even have a nonlinearity bias (e.g., estimation of a
density or regression function at a point). However, as shown
in CCJ, not all of those ideas automatically apply when the ob-
ject of interest is the nonlinearity bias, which naturally arises in
the context of many nonlinear functionals of a kernel estimator.
The weighted average derivative estimator studied in CCJ is
just one example of a nonlinear functional of its nonparametric
(kernel-based) ingredient. This distinction has two main impli-
cations. First, it implies that our generalized jackknife estimator
cannot be interpreted as one based on a single higher-order
kernel-based estimator. If anything, generalize jackknifing is
altering the shape of the estimating equation and not of the
kernel employed in the nonparametric estimator. Second, and
perhaps more importantly, it implies that the bias problem ad-
dressed in the article cannot be solved simply by increasing the
order of the kernel. Thus, point (1) above does not extend to the
semiparametric problems considered in our article. On the other
hand, points (2) and (3) above continue to be true insofar, first,
it seems hard to propose a general selection rule for the con-
stant c (see the discussion of Zeng for one such proposal) and,
second, our generalized jackknife estimator is likely to have a
larger finite-sample variance (our simulations provide support-
ing numerical evidence), although this variance inflation disap-
pears asymptotically. The latter point implies that second-order
efficiency considerations may be important, as mentioned by
Dette.

2. THE ROLE OF NONLINEARITIES AND THE
METHOD OF SIEVES

The main goal of our article was to highlight, in the con-
text of semiparametrics, the presence of a potentially first-order
bias arising from severe undersmoothing (i.e., for “small” band-
widths, hn → 0 faster than usual). Although the results in CCJ
are obtained for a particular functional of a particular type of
nonparametric estimator (namely, a kernel estimator), the conse-
quences of nonlinearities in the estimating equation emphasized
in our article will be shared also by other, but not all, semipara-

metric estimators based on the method of sieves. The comments
of Chen and Mammen are both related to this point. As we fur-
ther discuss in this section, we highlight that the presence and
implications of the nonlinearity bias are crucially related to both
the form of the estimating equation and the choice of nonpara-
metric estimator (kernel-based, series-based, etc.). Furthermore,
it appears difficult to separate the role of each of these two fea-
tures of the semiparametric estimator. In other words, we can
find “linear” and “nonlinear” population estimating equations
that, when employed to construct semiparametric estimators us-
ing either kernels or sieves, will lead to estimators that may or
may not exhibit a nonlinearity bias.

More specifically, Chen observed that while our chosen esti-
mator can be motivated by the representation

θ = −E

[
y

(
∂

∂x
w(x) + w(x)

∂f (x)

∂x
/f (x)

)]
, (C3)

sieve-based alternative estimators can be motivated by writing
θ as

θ = E

[
w(x)

∂

∂x
g(x)

]
, g(x) = E[y|x], (C2)

or

θ = −E

[
y

(
∂

∂x
w(x) + w(x)

∂

∂x
L(x)

)]
, L(x) = log f (x).

(C1)

As remarked by Chen, (1) the representations in (C1) and (C2)
are linear in the nuisance functions g(·) and L(·), respectively,
and (2) the nuisance functions g(·) and L(·) can be estimated
using the method of sieves.

For estimators based on kernels, the relevant issue (from the
perspective of our article) is not only whether the functional can
be represented as a linear functional of some nuisance function
that can be estimated using a kernel-based method. For instance,
if f̂ (·) is a kernel estimator of f (·), then L̂(·) = log f̂ (·) is a
kernel-based estimator of L(·) in (C2), but of course the estima-
tor based on evaluating the sample analog of (C2) at L(·) = L̂(·)
is equivalent to our estimator based on (C3). Thus, at least in
the case of kernels, the nuisance function has to be of the “right
form” for it to be valuable to express the estimand as a lin-
ear functional thereof. As another example of the same point,
consider the estimand θ = E[f (x)] = ∫

Rd f (x)2dx, and the as-
sociated plug-in kernel-based sample analogue estimators:

θ̂1 = 1

n

n∑
i=1

f̂ (xi) and θ̂2 =
∫

Rd

f̂ (x)2dx,

where f̂ (x) is a classical kernel-based density estimator. Both
of the estimators θ̂1 and θ̂2 will exhibit leave-in bias and, fur-
thermore, θ̂2 will also exhibit nonlinearity bias. Therefore, it
should be clear that studying the shape of the estimating equa-
tion alone is not enough to understand whether the semipara-
metric estimator will exhibit either leave-in-bias, nonlinearity
bias, or both, at least when kernel-based estimators are em-
ployed. Indeed, in the case of kernels the relevant issue seems
to be whether the estimand can be written as a linear functional
of a nuisance function expressible as a density-weighted condi-
tional expectation; that is, the nuisance function should be of the
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form γ (x) = E[w|x]f (x), where w is some (possibly constant)
observed variable.

We conjecture that similar remarks apply to estimators based
on the method of sieves; that is, we suspect that also estimators
based on the method of sieves can suffer from nonlinearity bi-
ases unless the estimand can be expressed as a linear functional
of a nuisance function of the “right type.” For sieve least-squares
estimators, such as the estimator of g(·) in (C1) mentioned by
Chen, it would appear that nuisance functions are of the “right
type” when they are expressible as mean square projections
(e.g., as a conditional expectation). Accordingly, we agree that
it seems plausible that nonlinearity biases of the form high-
lighted by the article can be avoided by using the (least-squares)
sieve-based estimator motivated by (C1). More generally, al-
though we feel that more work is needed to understand the
circumstances in which also nonlinear sieve estimators can be
plugged into linear functionals without generating biases, we
agree wholeheartedly with what we believe is the main message
of Chen’s comment: rather than basing the choice of nonpara-
metric estimation method mainly on the ease of implementation
one should pay careful attention to whether the nuisance func-
tion (estimator) can be chosen in such a way that the object of
interest is a linear functional thereof.

As discussed in the article, the estimator we consider suffers
from two distinct types of bias, namely nonlinearity bias and
leave-in bias. Both biases are (of the same order of magnitude
and) asymptotically nonnegligible only when the rate of con-
vergence of the nonparametric ingredient is slower than n1/4.
Therefore, it is necessary to relax (among other assumptions)
the assumption of n1/4-consistency on the part of the nonpara-
metric ingredient to uncover and characterize these biases. The
extent to which this feature is shared by estimators based on
the method of sieves would appear to be an open question.
For instance, although we agree with Chen that analyzing sieve
weighted average derivative estimators is easy once conven-
tional assumptions such as n1/4-consistency have been made,
existing results such as Theorem 4.1 of Chen (2007) are silent
about the consequences of employing severely undersmoothed
nonparametric estimators (e.g., sieve estimators implemented
using a larger-than-usual value of the tuning parameter kn) when
estimating finite-dimensional parameters. In particular, even if
nonlinearity biases can be avoided by relying on the method of
sieves, it would appear to be an open question whether any of
the estimators proposed by Chen suffers from an analog of the
leave-in bias discussed in the article.

Conversely to the discussion given so far, we also know of
the existence of “nonlinear” estimands that lead to series-based
estimators that do not exhibit either leave-in bias or nonlinearity
bias. Specifically, the estimand of the parametric part of the par-
tially linear model yi = x′

iβ + g(zi) + εi , with E[εi |zi , xi] = 0
and other assumptions imposed, is given by

β = (E[(xi − E[xi |zi])x′
i])

−1E [(xi − E[xi |zi])yi] ,

which could be regarded as a nonlinear estimating equation
(i.e., the nuisance function h(zi) = E[xi |zi] enters nonlinearly).
Nonetheless, Cattaneo, Jansson, and Newey (2012) showed that
when h(·) is estimated by the method of linear sieves the result-
ing semiparametric estimator β̂ does not exhibit leave-in or non-

linearity biases. Furthermore, to make things more interesting, if
undersmoothing is sufficiently severe (i.e., K/n → α ∈ (0, 1)),
the asymptotic distribution of β̂ exhibits a different, larger
asymptotic variance instead of a bias, very much in line with the
findings documented in Cattaneo, Crump, and Jansson (2010,
2013b) for a class of “linear” kernel-based semiparametric
estimators.

For these reasons, we are currently developing distributional
results for sieve-based semiparametric estimators under assump-
tions that permit (but do not necessarily require) the com-
plexity of the sieve space to grow relatively rapidly with the
sample size. Although doing so will require a possibly non-
trivial relaxation of the methods used when establishing re-
sults such as Theorem 4.1 of Chen (2007), the comments of
Mammen strongly suggest that, at least in some cases, signifi-
cant progress toward a better theory-based understanding of the
small-sample properties of sieve-based estimators is possible.
We are very grateful to Mammen for not only clarifying the
relationship between our work and his but, most importantly,
for helping to place the work in a broader context and for pro-
viding a template for analyzing sieve-based estimators under
weaker-than-usual assumptions about complexity of the sieve
space.

3. THE ROLE OF DIMENSIONALITY
AND BOOTSTRAPPING

The discussants raised a number of additional points. We
found little to disagree with and would like to take this oppor-
tunity to thank the discussants for the numerous constructive
suggestions. Among those, we would like to highlight two, one
mainly conceptual and the other both theoretical and imple-
mentational. First, as pointed out by Mammen, our nonstandard
asymptotics and the resulting biases in the distributional approx-
imation also highlight an interesting role of the dimensionality
of covariates, x ∈ Rd . In the context of kernel-based estimators,
our article suggests that the larger d, the more important the non-
linearity and leave-in bias will be. As pointed out by Mammen,
his work is closely related to this point insofar as nonlinear
least-squares models with large-/high-dimensional covariates
may also exhibit potentially first-order biases very similar in
spirit, but different in form, from those we found in our work.
It would certainly be of interest to deepen our understanding of
these seemingly unrelated findings.

Second, as suggested by Mammen’s comment, the idea of
studying the properties of the bootstrap under the types of as-
sumptions entertained in CCJ seems particularly interesting and
promising. Despite the fact that severe undersmoothing of cer-
tain “linear” semiparametric estimators leads to invalidity of
the bootstrap (Cattaneo, Crump, and Jansson 2014), in research
currently under way we have addressed that very question and
found that the bootstrap provides a method of (variance esti-
mation and) bias correction that is valid under the assumptions
made in CCJ. That is, we have shown that the bootstrap is in-
deed able to remove both nonlinearity and leave-in biases. Our
current research is also extending the scope of this finding to
a large class of possibly nonsmooth, nondifferentiable two-step
semiparametric models.
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