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Comment
Donglin ZENG

Cattaneo, Grump, and Jansson (2013) present an interesting
estimator, namely the generalized jackknife estimator, for esti-
mating weighted average derivatives. Starting with a high-order
(in this case, second-order) linearization of the estimating equa-
tion, they obtain the asymptotic approximation under a weak
bandwidth selection which does not require the standard con-
vergence rate of the nonparametric estimator faster than n1/4.
Specifically, an asymptotic approximation of θ̂n(Hn) is given
when n|Hn|3/2λmin(Hn)/ log(n)3/2 → ∞. The polynomial ex-
pression of the asymptotic bias in θ̂n(Hn) in terms of Hn further
motivates the construction of the generalized jackknife estimator
θ̃n(Hn, c), which eliminates the asymptotic bias. They present
a number of simulation studies demonstrating that θ̃n(Hn, c)
leads to noticeable bias reduction with small bandwidths. An-
other contribution includes a proof of the uniform convergence
of the kernel estimators.

1. ASYMPTOTIC BIAS REDUCTION

Under a weak assumption on the bandwidth, this work han-
dles bias reduction via a second-order linearization of θ̂n(Hn)
in terms of the plug-in kernel estimator for f (x). A similar
technique was used by Robins et al. (2008) who addressed the
convergence rate with high-dimensional covariates. As pointed
out by Robins et al. (2008), the same technique can be carried out
for a cubic or even higher-order linearization if the estimating
function is sufficiently smooth in f (x). Then, an even weaker
bandwidth assumption is needed when a generalized jackknife
estimator is constructed, although the simulation evidence sug-
gests that the current second-order linearization is sufficient to
render a negligible bias relative to its standard deviation for the
sample sizes used.

In nonparametric or semiparametric literature, an alternative
approach to perform bias reduction is to use a high-order ker-
nel which has high-order zero moments. Consider the one-
dimensional case. A high-order kernel function K(x) satis-
fies

∫
xlK(x)dx = 0 for |l| ≤ P . Then the asymptotic bias in

θ̂n(Hn) will be in the form of
∫

�(x + Hn)K(x)dx so, by the
Taylor expansion and assuming �(x) is sufficiently smooth, this
bias is asymptotically equivalent to O(HP+1

n ). Therefore, a weak
assumption on Hn is required to eliminate this bias.

The comparison between these two approaches can be sum-
marized in the following way. The first approach, which is im-
plemented in the current article, is to directly study the influ-
ence of the bandwidth Hn on the estimating function, which in
turn relies on the smoothness of the estimating function as a
functional of f (x). In contrast, the second approach uses the
high-order kernel function to examine the influence of Hn on
the plug-in estimator f̂ (x) so mostly relies on the smoothness
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of f (x). From this point of view, it is evident that the former
is useful in semiparametric estimation when some functional of
f (x) instead of f (x) itself is of interest. However, when a class
of functionals of f (x), for example, θ = E[w(x)∇g(x)] when
w(x) belongs to a class of weights, it may be difficult for the
first method to identify a uniform Hn to eliminate all the bias
in estimating the whole class of functionals; instead, the second
method has its advantage as it only relies on the smoothness of
f (x) regardless of the number of w(x)’s in consideration.

2. DATA-ADAPTIVE JACKKNIFE ESTIMATOR

In the construction of the generalized jackknife estimator
θ̃n(Hn, c), one has to determine the order J (satisfying J <

1 + d/2 and J ≥ (d − 2)/8) so that

J∑
j=0

wj (cj )E[̂θ
∗∗
n (cj Hn)] − θ = o(n−1/2),

where wj (c) is given in Section 3.2 of the article. The sim-
ulations use J = 2. A more data-adaptive construction of the
jackknife estimator can be performed as follows. We again use
the fact that the asymptotic bias is in a polynomial order of
bandwidth. Thus, for c chosen from a reasonable range, con-
sider fitting the following regression model:

θ̂ (cHn) = θ + c−d (b0 + b1c
2 + · · · + bJ c2J ) + ε,

where ε is a stochastic term with mean zero and variance of
order n−1/2 and J < 1 + d/2. However, since θ̂ (cHn) is from
the same data, this regression is no longer stochastic.

To this end, divide the whole data into N independent data
of equal sizes and choose c1, . . . , cN . For each ck , we calculate
θ̂ (ckHn) using the kth data and denote it by θ̂ k . Then, the above
regression model implies

θ̂ k = θ + c−d
k

(
b0 + b1c

2
k + · · · + bJ c2J

k

)+ εk,

where εk, k = 1, . . . , N are iid and asymptotically follow the
normal distribution with mean zero and covariance �/(n/N ).
Therefore, we can regress {̂θ k} on (1, c−d

k , . . . , c−d+2J
k ) to

1. first, we implement the AIC or BIC to choose J;
2. we estimate θ after J is chosen;
3. we estimate � using the residual variance–variance ma-

trix.

3. VARIANCE ESTIMATION

Unfortunately, the variance estimates reported in the simu-
lations perform rather poorly. My experience is that one may
need larger bandwidths than the ones used in point estimation to
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estimate the nonparametric quantity in the variance estimation.
Alternatively, the bootstrap approach may be worth pursuing,
especially smoothed bootstrapping, where bootstrap samples
are simulated from a kernel density estimator of (Y,X). The
asymptotic properties of the bootstrap estimator can be estab-
lished along the same lines as in the current article.

4. USE OF EMPIRICAL PROCESS THEORY

Empirical process theory has been a powerful tool to es-
tablish the uniform convergence of many estimators. In this
case, it can be used to derive a similar result (but with stronger
bandwidth condition) to Lemma B-1 regarding the kernel es-
timator. For example, consider d = 1. First, ψ̂n(x) − ψn(x) =
n−1/2Gn[kHn

(x − X)Y ], where Gn denotes the empirical pro-
cess. Consider the class of functions F = {kHn

(x − X)Y : x ∈
χn}. From Assumption B2, we note∣∣kHn

(x − X)Y − kHn
(x∗ − X)Y

∣∣
≤ ‖x − x∗‖|Y | sup

x

k∗(H−1
n x

)|Hn|−2.

Therefore, this class function has an envelop function given by
F = H−1

n |Y | and has a finite bracket entropy integral, that is,∫ 1

0

√
1 + log N[](ε‖F‖,F , ‖ · ‖L2(P ))dε < ∞.

Following Theorem 2.14.2 in van der Vaart and Wellner (1996),
it yields

‖ sup
F

|Gn|‖ = Op

(‖F‖L2(P )
) = Op

(
H−1

n

)
.

This gives

sup
x∈χn

|ψ̂n(x) − ψn(x)| = Op

(
1√
nH2

n

)
.

5. EXTENSION TO MORE GENERAL
SEMIPARAMETRIC ESTIMATION

The same technique can be applied to a more general semi-
parametric estimation where the parameter of interest, θ , implic-
itly solves an estimating function E[g(θ, f, f ′, f,′′ . . .)] = 0,
where f (x) is the density function of f and f ′ is its first deriva-
tive and so on . These kinds of estimating equations often arise
from modeling certain stochastic dynamic systems, for instance,
HIV dynamics. It will be interesting to see how the method can
be carried out in this general context.
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Comment
Holger DETTE

The article of Cattaneo, Crump, and Jansson (2013) makes
three important contributions to weighted average derivative es-
timation. It provides a new first-order asymptotic approximation
based on a quadratic expansion of the estimating equation. With
this approach nonparametric estimators with a slower rate of
convergence can be used for weighted derivative estimation.
Moreover, from a technical point of view, an asymptotic analy-
sis under substantially weaker conditions on the moments of the
dependent variable and on the bandwidths is possible. Addition-
ally, an interesting method for the elimination of an asymptotic
bias is proposed which is based on jackknife methodology.

For the sake of brevity, the focus of this discussion is on the
jackknife methodology. A careful investigation of this approach
in the case of weighted average derivative estimation would be
too technical and beyond the scope of a discussion. Therefore,
we will raise some general questions regarding the elimination
of the bias by jackknife methodology in the context of “classi-
cal” density estimation. All observations carry obviously over

Holger Dette is Professor, Fakultät für Mathematik, Ruhr-Universität
Bochum, 44780 Bochum, Germany (E-mail: holger.dette@rub.de).

to the more complicated case of weighted derivative estima-
tion. In particular, I will comment on the choice of ci for two
reasons:

1. I do not think that there exists an optimal choice of the
weights ci in the jackknife approach, at least if one applies
the “usual” mathematical machinery.

2. Some care is necessary in the application of the jackknifing
methodology, because in finite samples one pays a serious
price for the bias reduction in terms of variance.

Notation. We consider the classical setup of one-dimensional
density estimation, where X1, . . . , Xn are independent identi-
cally distributed random variables with density f . The classical
density estimate is defined by

f̂h(x) = 1

nh

n∑
i=1

K

(
Xi − x

h

)
. (1)
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estimate the nonparametric quantity in the variance estimation.
Alternatively, the bootstrap approach may be worth pursuing,
especially smoothed bootstrapping, where bootstrap samples
are simulated from a kernel density estimator of (Y,X). The
asymptotic properties of the bootstrap estimator can be estab-
lished along the same lines as in the current article.

4. USE OF EMPIRICAL PROCESS THEORY

Empirical process theory has been a powerful tool to es-
tablish the uniform convergence of many estimators. In this
case, it can be used to derive a similar result (but with stronger
bandwidth condition) to Lemma B-1 regarding the kernel es-
timator. For example, consider d = 1. First, ψ̂n(x) − ψn(x) =
n−1/2Gn[kHn

(x − X)Y ], where Gn denotes the empirical pro-
cess. Consider the class of functions F = {kHn

(x − X)Y : x ∈
χn}. From Assumption B2, we note∣∣kHn

(x − X)Y − kHn
(x∗ − X)Y

∣∣
≤ ‖x − x∗‖|Y | sup

x

k∗(H−1
n x

)|Hn|−2.

Therefore, this class function has an envelop function given by
F = H−1

n |Y | and has a finite bracket entropy integral, that is,∫ 1

0

√
1 + log N[](ε‖F‖,F , ‖ · ‖L2(P ))dε < ∞.

Following Theorem 2.14.2 in van der Vaart and Wellner (1996),
it yields

‖ sup
F

|Gn|‖ = Op

(‖F‖L2(P )
) = Op

(
H−1

n

)
.

This gives

sup
x∈χn

|ψ̂n(x) − ψn(x)| = Op

(
1√
nH2

n

)
.

5. EXTENSION TO MORE GENERAL
SEMIPARAMETRIC ESTIMATION

The same technique can be applied to a more general semi-
parametric estimation where the parameter of interest, θ , implic-
itly solves an estimating function E[g(θ, f, f ′, f,′′ . . .)] = 0,
where f (x) is the density function of f and f ′ is its first deriva-
tive and so on . These kinds of estimating equations often arise
from modeling certain stochastic dynamic systems, for instance,
HIV dynamics. It will be interesting to see how the method can
be carried out in this general context.
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The article of Cattaneo, Crump, and Jansson (2013) makes
three important contributions to weighted average derivative es-
timation. It provides a new first-order asymptotic approximation
based on a quadratic expansion of the estimating equation. With
this approach nonparametric estimators with a slower rate of
convergence can be used for weighted derivative estimation.
Moreover, from a technical point of view, an asymptotic analy-
sis under substantially weaker conditions on the moments of the
dependent variable and on the bandwidths is possible. Addition-
ally, an interesting method for the elimination of an asymptotic
bias is proposed which is based on jackknife methodology.

For the sake of brevity, the focus of this discussion is on the
jackknife methodology. A careful investigation of this approach
in the case of weighted average derivative estimation would be
too technical and beyond the scope of a discussion. Therefore,
we will raise some general questions regarding the elimination
of the bias by jackknife methodology in the context of “classi-
cal” density estimation. All observations carry obviously over
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to the more complicated case of weighted derivative estima-
tion. In particular, I will comment on the choice of ci for two
reasons:

1. I do not think that there exists an optimal choice of the
weights ci in the jackknife approach, at least if one applies
the “usual” mathematical machinery.

2. Some care is necessary in the application of the jackknifing
methodology, because in finite samples one pays a serious
price for the bias reduction in terms of variance.

Notation. We consider the classical setup of one-dimensional
density estimation, where X1, . . . , Xn are independent identi-
cally distributed random variables with density f . The classical
density estimate is defined by

f̂h(x) = 1

nh

n∑
i=1

K

(
Xi − x

h

)
. (1)
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If f is twice differentiable and the kernel K is symmetric, then
the bias of this estimate is given by

E[f̂h(x)] = h2f ′′(x)

2
+ o(h2). (2)

Similarly, the variance is obtained as

var(f̂h(x)) = f (x)

nh

∫
K2(u)du · (1 + o(1)). (3)

The impact of bias correction on the variance. The jackknife
approach (see, e.g., Schucany and Sommers 1977) is based on
formula (2) and considers (in the simplest case) an estimator of
the form

ĝc1,c2 (x) = w1f̂c1h(x) + w2f̂c2h(x),

where the weights w1, w2 are determined such that w1 + w2 = 1
and the dominating term in

E[ĝc1,c2 (x)] = (
w1c

2
1 + w2c

2
2

)h2f ′′(x)

2
+ o(h2)

vanishes, that is,

w1 = c2
2

c2
2 − c1

2
; w2 = −c2

1

c2
2 − c2

1

(note that we basically construct a Lagrange interpolation func-
tion w1 + w2x

2 with values 1 and 0 at the points 1 and
c2/c1). For this choice, we obtain a density estimate with bias
E[ĝc1,c2 (x)] = o(h2). Now we investigate the variance of the
estimator ĝc1,c2 (x), that is,

var(ĝc1,c2 (x)) = w2
1var(f̂c1h(x)) + w2

2var(f̂c2h(x))

+ 2w1w2cov(f̂c1h(x), f̂c2h(x)).

A standard calculation yields

cov(f̂c1h(x), f̂c2h(x)) = f (x)

nhc2

∫
K(u)K

(
c1

c2
u

)
du(1 + o(1)),

and we obtain

var(ĝc1,c2 (x))

≥
{(

w2
1

c1
+ w2

2

c2

)
f (x)

nh

∫
K2(x)du

+ 2w1w2
f (x)

nhc2

(∫
K2(u)du

∫
K2

(
c1

c2
u

)
du

)1/2
}

× (1 + o(1)),

where we used the Cauchy Schwarz inequality and the fact that
w1w2 ≤ 0. Finally, a substitution in the integral

∫
K2( c1

c2
u)du

and a simple calculation gives

var(ĝc1,c2 (x)) ≥ α2(c1, c2)
f (x)

nh

∫
K2(u)du(1 + o(1))

= α2(c1, c2)var(f̂h(x))(1 + o(1)) (4)

as a lower bound for the variance of the jackknife estimate,
where the factor α2 = α2(c1, c2) is defined by

α2(c1, c2) :=
(

w1√
c1

+ w2√
c2

)2

. (5)

In the following, we will argue that for reasonable choices of
the parameters c1 and c2 we have α2(c1, c2) ≥ 1, which implies

Table 1. The value α2 in (5) for various choices of c1 and c2

c1 c2 α2 c1 c2 α2

0.5 1 2.41 0.5 0.7 2.71
0.7 1 1.91 0.3 0.6 4.23
0.9 1 1.65 0.2 0.6 5.54
0.8 1.2 1.64 1.2 1.6 1.14
0.8 1.4 1.56 1.2 1.8 1.10
0.8 1.6 1.51 1.4 1.8 0.99

that the reduction of the bias comes usually with an increase
in variance. For this purpose, we display in Table 1 the value
of α2 for various choices of c1 and c2 and make the following
observations:

1. For reasonable choices of c1 and c2, the factor α2 is always
larger than 1. This means the bias reduction is obtained at
a cost of a larger variance (note that the right-hand side of
Equation (4) provides a lower bound for the variance of
ĝc1,c2 (x)).

2. For increasing values of c1, c2 → ∞, the first-order ap-
proximation for the variance of ĝc1,c2 becomes arbitrarily
small. Thus, in principle there does not exist any optimal
choice of the constants c1 and c2. Moreover, this reduction
is obtained by an increase of the bias in the terms of order
h3, h4, etc. Thus, these first-order considerations might be
misleading.

A similar problem occurs in the application of higher-order
kernels. Consider, for example, the Epanechnikov kernel

K1(x) = 3

4
(1 − x2)I[−1,1](x),

which is of order 2 (see Gasser, Müller, and Mammitzsch 1985
for a precise definition) and yields a bias of order O(h2). Now
the kernel

K2(x) = 15

32
(1 − x2)(3 − 7x2)I[−1,1](x)

is of order 4 and yields a bias of order O(h4). However, we
obtain for the corresponding terms in the variance∫

K2
1 (x)dx = 3

5
,

∫
K2

2 (x)dx = 5

4
,

which means that the kernel density estimate (1) based on the
kernel K2 has a 108% larger variance than the corresponding
estimate based on the kernel K1. Similarly, if the kernel of
order 6

K3(x) = 15

256
(1 − x2)(35 − 250x2 − 231x4 + 231x6)

is used, the asymptotic variance increases by a factor 3.15.
Gasser, Müller, and Mammitzsch (1985) realized these prob-
lems and proposed to choose the kernel K, such that it mini-
mizes the first-order approximation of the mean squared error
if an asymptotic optimal bandwidth has been used. While this
method yields an improvement in kernel density and regression
estimation, it seems to be difficult to develop an analog concept
for the jackknife methodology.
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Comment: Dimension Asymptotics and
Semiparametrics

Enno MAMMEN

Professors M. D. Cattaneo, R. K. Crump, and M. Jansson are
to be congratulated for an interesting article with a new point
of view on semiparametrics. Their nonstandard way to look at
semiparametric estimation problems is very innovative and it is
motivating for further research.

The article studies what happens if one goes beyond the bor-
der of standard asymptotics. For a specific example, the article
discusses a semiparametric estimation problem, where the non-
parametric estimator has a poorer asymptotic performance than
required from classical semiparametric theory. This is an im-
portant problem, in the concrete setting of the article and also
in general theory. Often, in semiparametrics, assumptions are
made on the nonparametric estimator that are not realistic. An
example would be higher dimensional nonparametric regression
functions where higher order smoothness assumptions are made
that allow oP (n−1/4) convergence of the nonparametric estima-
tor. There are some concerns in nonparametrics about the sense
of such higher order smoothness conditions for moderate sample
sizes, see, for example, Marron and Wand (1992). It is natural
to argue that also in semiparametric contexts it is questionable
if these higher order assumptions make sense. This motivates an
asymptotic framework in semiparametrics, where such assump-
tions are avoided and where this problem is not neglected in the
asymptotic limit. That is exactly what the authors of this article
have done. I think that the article addresses a central question
of mathematical statistics.

As mentioned in the article, the discussions of the article are
related to recent work of L. Li, J. Robins, E. Tchetgen, and A.
van der Vaart, but a different point of view is taken here. It is
assumed that the bias of the nonparametric estimator is negli-
gible and does not influence the first-order asymptotics of the
parametric estimator. Then the asymptotics of the parametric
part is only affected by the stochastic part of the nonparametric
estimator. As was shortly mentioned in the article, this relates
the article to discussions on high-dimensional parametric mod-
els. Nonparametric regression can be interpreted as parametrics
with increasing dimension. Then the nuisance nonparametric
component is related to a nuisance parameter with increasing
dimension in a purely parametric model. In the following I will

Enno Mammen is Professor in Statistics, Department of Economics,
University of Mannheim, L7, 3-5, 68131 Mannheim, Germany (E-mail:
emammen@rumms.uni-mannheim.de). The author acknowledges support by the
DFG project FOR916.

give a more detailed discussion of this relation in the context of
this article.

1. DIMENSION ASYMPTOTICS

High-dimensional models are a central example where
asymptotic frameworks are used that do not neglect an im-
portant finite-sample feature in the asymptotic limit. Here, the
important feature is the high dimensionality of the model. For
high-dimensional models, this can be easily done by letting
the dimension of the model grow with increasing sample size.
Recently, there has been a huge amount of research on high-
dimensional models under sparsity constraints. This has also
motivated investigators to revisit older strands of research and
to study high-dimensional models without sparsity, see, for ex-
ample, Belloni, Chernozhukov, and Fernandez-Val (2011) who
considered high-dimensional linear quantile regression. Early
papers on dimension asymptotics in linear models were Huber
(1973) and Portnoy (1984, 1985, 1986). High-dimensional log-
linear models were considered in Haberman (1977a,b) and Ehm
(1991). The latter papers discuss applications to large contin-
gency tables where the minimal cell expectations do not con-
verge to infinity. Exponential families with increasing dimension
were studied in Portnoy (1988) and Belloni and Chernozhukov
(2012). For linear and log–linear models, Mammen (1989) and
Sauermann (1989) showed consistency of bootstrap for linear
contrasts under conditions where the normal approximation fails
because of bias effects. These two papers are closely related
in spirit to the findings in the article of M. D. Cattaneo, R. K.
Crump, and M. Jansson. I will outline this below for robust linear
regression. I would like to mention other papers, where dimen-
sion asymptotics lead to insights that were hidden by asymp-
totics with fixed dimension. Bickel and Freedman (1983) proved
consistency of bootstrap for least-squares estimation in high-
dimensional linear models that includes cases where the asymp-
totic distribution is nonnormal. This was the first article where
it was shown that bootstrap works in a setting where classi-
cal approaches fail. Bootstrap and Wild Bootstrap were com-
pared in Mammen (1993), again including settings where the
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Comment
Enno MAMMEN

Professors M. D. Cattaneo, R. K. Crump, and M. Jansson are
to be congratulated for an interesting article with a new point
of view on semiparametrics. Their nonstandard way to look at
semiparametric estimation problems is very innovative and it is
motivating for further research.

The article studies what happens if one goes beyond the bor-
der of standard asymptotics. For a specific example, the article
discusses a semiparametric estimation problem, where the non-
parametric estimator has a poorer asymptotic performance than
required from classical semiparametric theory. This is an im-
portant problem, in the concrete setting of the article and also
in general theory. Often, in semiparametrics, assumptions are
made on the nonparametric estimator that are not realistic. An
example would be higher dimensional nonparametric regression
functions where higher order smoothness assumptions are made
that allow oP (n−1/4) convergence of the nonparametric estima-
tor. There are some concerns in nonparametrics about the sense
of such higher order smoothness conditions for moderate sample
sizes, see, for example, Marron and Wand (1992). It is natural
to argue that also in semiparametric contexts it is questionable
if these higher order assumptions make sense. This motivates an
asymptotic framework in semiparametrics, where such assump-
tions are avoided and where this problem is not neglected in the
asymptotic limit. That is exactly what the authors of this article
have done. I think that the article addresses a central question
of mathematical statistics.

As mentioned in the article, the discussions of the article are
related to recent work of L. Li, J. Robins, E. Tchetgen, and A.
van der Vaart, but a different point of view is taken here. It is
assumed that the bias of the nonparametric estimator is negli-
gible and does not influence the first-order asymptotics of the
parametric estimator. Then the asymptotics of the parametric
part is only affected by the stochastic part of the nonparametric
estimator. As was shortly mentioned in the article, this relates
the article to discussions on high-dimensional parametric mod-
els. Nonparametric regression can be interpreted as parametrics
with increasing dimension. Then the nuisance nonparametric
component is related to a nuisance parameter with increasing
dimension in a purely parametric model. In the following I will

Enno Mammen is Professor in Statistics, Department of Economics,
University of Mannheim, L7, 3-5, 68131 Mannheim, Germany (E-mail:
emammen@rumms.uni-mannheim.de). The author acknowledges support by the
DFG project FOR916.

give a more detailed discussion of this relation in the context of
this article.

1. DIMENSION ASYMPTOTICS

High-dimensional models are a central example where
asymptotic frameworks are used that do not neglect an im-
portant finite-sample feature in the asymptotic limit. Here, the
important feature is the high dimensionality of the model. For
high-dimensional models, this can be easily done by letting
the dimension of the model grow with increasing sample size.
Recently, there has been a huge amount of research on high-
dimensional models under sparsity constraints. This has also
motivated investigators to revisit older strands of research and
to study high-dimensional models without sparsity, see, for ex-
ample, Belloni, Chernozhukov, and Fernandez-Val (2011) who
considered high-dimensional linear quantile regression. Early
papers on dimension asymptotics in linear models were Huber
(1973) and Portnoy (1984, 1985, 1986). High-dimensional log-
linear models were considered in Haberman (1977a,b) and Ehm
(1991). The latter papers discuss applications to large contin-
gency tables where the minimal cell expectations do not con-
verge to infinity. Exponential families with increasing dimension
were studied in Portnoy (1988) and Belloni and Chernozhukov
(2012). For linear and log–linear models, Mammen (1989) and
Sauermann (1989) showed consistency of bootstrap for linear
contrasts under conditions where the normal approximation fails
because of bias effects. These two papers are closely related
in spirit to the findings in the article of M. D. Cattaneo, R. K.
Crump, and M. Jansson. I will outline this below for robust linear
regression. I would like to mention other papers, where dimen-
sion asymptotics lead to insights that were hidden by asymp-
totics with fixed dimension. Bickel and Freedman (1983) proved
consistency of bootstrap for least-squares estimation in high-
dimensional linear models that includes cases where the asymp-
totic distribution is nonnormal. This was the first article where
it was shown that bootstrap works in a setting where classi-
cal approaches fail. Bootstrap and Wild Bootstrap were com-
pared in Mammen (1993), again including settings where the
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normal approximation fails. Mammen (1996) showed that for
ML estimation in high-dimensional linear models the empiri-
cal distribution of residuals is biased toward the assumed error
distribution.

2. NUISANCE PARAMETERS WITH INCREASING
DIMENSION

I now outline the relation between a parametric model with
a high-dimensional nuisance parameter and the semiparamet-
ric estimation problem of the article by M. D. Cattaneo, R. K.
Crump, and M. Jansson. I will do this by using the example
of robust regression in a high-dimensional linear model. Sup-
pose one observes Yi = X�

i β + εi with deterministic covari-
ables Xi ∈ Rp and iid errors with E[ψ(εi)] = 0 for a function
ψ : R → R. Consider an M-estimator β̂n with M-function ψ :

n∑
i=1

Xiψ
(
Yi − X�

i β̂n

) = 0. (1)

W.l.o.g. we assume that
∑n

i=1 XiX
�
i = Ip, where Ip is the

p × p identity matrix. Then p = trace [
∑n

i=1 XiX
�
i ] = trace

[
∑n

i=1 X�
i Xi] = ∑n

i=1 ‖Xi‖2. For simplicity, we make the as-
sumption that the design vectors are of the same order of size,
in the sense that max1≤i≤n ‖Xi‖2 = O(p/n). For dimension p
fixed one has under regularity assumptions that β̂n − β con-
verges in distribution to N (0, ρ0ρ

−2
1 Ip), where ρ0 = E[ψ2(εi)]

and ρ1 = E[ψ ′(εi)]. In particular, for cn ∈ Rp with norm
‖cn‖ = 1 one gets that the linear contrast c�

n (β̂n − β) has a
normal limit N (0, ρ0ρ

−2
1 ).

We now start a heuristic discussion for the case that p → ∞.
By Taylor expansion of the left-hand side of Equation (1)
one gets that 0 ≈ ∑n

i=1 Xiψ(εi) −∑n
i=1 XiX

�
i ψ ′(εi)(β̂n −

β) + (1/2)
∑n

i=1 Xi[X�
i (β̂n − β)]2ψ ′′(εi). This gives with ρ2 =

E[ψ ′′(εi)], ρ3 = E[ψ(εi)[ψ ′(εi) − ρ1]] and ψ1(x) = ψ ′(x) −
ρ1

β̂n−β ≈ ρ−1
1

n∑
i=1

Xiψ(εi) − ρ−2
1

n∑
i,j=1

Xiψ1(εi)
(
X�

i Xj

)
ψ(εj )

+ 1

2
ρ−3

1

n∑
i,j,k=1

Xiψ
′′(εi)

(
X�

i Xj

)
ψ(εj )(X�

i Xk)ψ(εk)

≈ ρ−1
1

n∑
i=1

Xiψ(εi) − ρ−2
1 ρ3

n∑
i

Xi(X
�
i Xi)

+ 1

2
ρ−3

1 ρ2ρ0

n∑
i,j=1

Xi

(
X�

i Xj

)2

= ρ−1
1

n∑
i=1

Xiψ(εi) + ρ−3
1

(
1

2
ρ2ρ0 − ρ1ρ3

)

×
n∑
i

Xi‖Xi‖2. (2)

Under appropriate conditions, this expansion is valid with rest
terms of order p3/2 log(n)3/2/n. This can be shown with the
methods developed in Mammen (1989). For a linear contrast
c�
n (β̂n − β) with ‖cn‖ = 1 one gets that c�

n (β̂n − β) − c�
n bn

has a normal limit N (0, ρ0ρ
−2
1 ) where bn = ρ−3

1 ( 1
2ρ2ρ0 −

ρ1ρ3)
∑n

i Xi‖Xi‖2. The bias term is of order O(pn−1/2). This

follows from ‖bn‖ = O(pn−1/2). Note that for a vector e with
‖e‖ = 1 it holds that

|e�bn| ≤ Cn1/2

[
n∑

i=1

(e�Xi‖Xi‖2)2

]1/2

≤ n1/2 max
1≤i≤n

‖Xi‖2

[
n∑

i=1

(e�Xi)
2

]1/2

= O(pn−1/2)

because of
∑n

i=1 XiX
�
i = Ip and max1≤i≤n ‖Xi‖2 = O(pn−1).

One can write X�
i β = Xi,1β1 + X�

i,−1β−1, where β1 is the
first element of β and where β−1 contains the remaining ele-
ments of β. If X�

i,−1β−1 is a series expansion of a nonparametric
function and if β1 is the parameter of interest and β−1 a nui-
sance parameter we are in a semiparametric model as is the
case in the article by Cattaneo, Crump, and Jansson. Note also
that in their article bias terms of the nonparametric estimators
are neglected in the chosen asymptotic setting. With the choice
cn = (1, 0, . . . , 0)�, we get from the above discussion the fol-
lowing conclusions. As long as p3/2 log(n)3/2/n → 0, it holds

(1) that β̂n,1 − β1 has an asymptotic bias bn,1 which is of
order O(pn−1/2),

(2) and that for β̂n,1 − β1 − bn,1 the same stochastic expan-
sion ρ−1

1

∑n
i=1 Xi,1ψ(εi) holds as for β̂n,1 − β1 if p is

fixed.

Analogous statements hold for the estimator θ̂n(Hn) of the ar-
ticle. This follows from their Theorem 2. Note that one has to
compare β̂n,1 − β1 with

√
n(θ̂n(Hn) − θ ). The dimension p of

the linear model corresponds to (h1 · . . . · hd )−1 = |Hn|−1. With
this relation, we get from part (a) of Theorem 2 that the bias
terms of β̂n,1 and of θ̂n(Hn) are of the same order. The validity
(2) of the linear stochastic expansion is stated in part (b) of The-
orem 2. Even the rest terms in the asymptotic expansions are
comparable, at least for d large. This all suggests that the dis-
cussion of Cattaneo, Crump, and Jansson apply to a much larger
class of models than considered in their article. These are not
only further semiparametric models but also high-dimensional
models where the dimension of a nuisance parameter converges
to infinity.

The above asymptotic expansions also give some insights for
higher dimensional models where p3/2/n does not converge to
0. For the case that p3/2/n → ∞ one has to apply Taylor expan-
sions around β − bn instead of expansions around β. The first
term in the stochastic expansion (2) of β̂n − β now becomes
[
∑n

i=1 XiX
�
i E[ψ ′(εi − X�

i bn)]−1∑n
i=1 Xiψ(εi − X�

i bn). Be-
cause now in general X�

i bn does not converge to zero this term
has another variance as the first term in Equation (2). Also the
second term in Equation (2) becomes nonrandom, in general.

[Received April 2013. Revised July 2013.]
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Comment
Xiaohong CHEN

1. INTRODUCTION

There is a great deal of literature on semiparametric two-
step estimation of Euclidean parameters of interest in statistics
and econometrics. Most of the existing results are about root-n
asymptotically normal and efficient estimation of the Euclidean
parameter in the second step when unknown nuisance functions
are estimated in the first step. Surprisingly enough, there is little
research on the finite sample behavior of the first-order asymp-
totically normal approximation when the Euclidean parameter
is a nonlinear functional of the unknown nuisance functions.
Cattaneo, Crump, and Jansson (CCJ) are to be congratulated
for this excellent article addressing the important issue of non-
linearity bias within the class of root-n asymptotically normal
(or regular and asymptotically linear) estimators. In the con-
text of kernel plug-in estimation of a weighted average deriva-
tive (WAD) parameter, they (i) characterize the nonlinearity
bias by a stochastic quadratic expansion; (ii) highlight that the
nonlinearity bias is due to a large variance of nonparametric
first-step kernel estimation, and hence could not be reduced
by conventional nonparametric bias reduction methods such as
increasing the order of the kernel; (iii) propose a clever general-
ized jackknife procedure to correct the nonlinearity bias; and
(iv) establish the root-n asymptotic normality of the bias-
corrected WAD estimator θ̃ and the consistency of their kernel
estimator of the asymptotic variance of θ̃ under very weak band-
width conditions. As a side but very useful technical result, they
establish a new uniform convergence rate for kernel estimators.

In the following I make two general comments. First, in some
applications, although the Euclidean parameter is nonlinear in
one nuisance function, it can be also rewritten as a linear func-
tional of another nuisance function that can be consistently es-
timated via the sieve method. This alternative way to eliminate

Xiaohong Chen, Department of Economics, Yale University, 30 Hillhouse,
Box 208281, New Haven, CT 06520 (E-mail: xiaohong.chen@yale.edu). The
authors thank Matias Cattaneo and Jeffery Racine for very useful discussions.

nonlinearity bias might perform better in finite samples since it
is based on estimation of a linear functional. Second, in other
applications, there is no simple reparameterization that could
convert a nonlinear functional of a nuisance function into a lin-
ear functional of another nuisance function. The insight of a
stochastic quadratic expansion to characterize the nonlinearity
bias suggested in this article should be widely applicable to other
semiparametric estimators of nonlinear smooth functionals. The
results of this article also call for additional research on how to
provide easy-to-compute nonlinearity bias correction and more
accurate variance estimation of bias-corrected semiparametric
estimators.

2. SIEVE WEIGHTED AVERAGE DERIVATIVE
ESTIMATORS

In many applications, although the Euclidean parameter of
interest, θ , is a nonlinear functional of one nuisance function f ,
it could be expressed as a linear functional of another nuisance
function g that could be estimated via the sieve method. For
these applications, we suspect that a semiparametric two-step
estimator of θ based on a nonparametric sieve estimation of g
in the first step typically performs better in finite sample than
another estimator of θ based on a nonparametric estimation of
f in the first step. For example, consider the weighted average
derivative parameter θ :

θ = E

[
w(x)

∂

∂x
g0(x)

]
with g0(x) = E[y|X = x], (1)

= −E

[
y

(
∂

∂x
w(x) + w(x)

∂

∂x
log f (x)

)]
(2)

= −E

[
y

(
∂

∂x
w(x) + w(x)

∂f (x)

∂x
/f (x)

)]
, (3)
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Xiaohong CHEN

1. INTRODUCTION

There is a great deal of literature on semiparametric two-
step estimation of Euclidean parameters of interest in statistics
and econometrics. Most of the existing results are about root-n
asymptotically normal and efficient estimation of the Euclidean
parameter in the second step when unknown nuisance functions
are estimated in the first step. Surprisingly enough, there is little
research on the finite sample behavior of the first-order asymp-
totically normal approximation when the Euclidean parameter
is a nonlinear functional of the unknown nuisance functions.
Cattaneo, Crump, and Jansson (CCJ) are to be congratulated
for this excellent article addressing the important issue of non-
linearity bias within the class of root-n asymptotically normal
(or regular and asymptotically linear) estimators. In the con-
text of kernel plug-in estimation of a weighted average deriva-
tive (WAD) parameter, they (i) characterize the nonlinearity
bias by a stochastic quadratic expansion; (ii) highlight that the
nonlinearity bias is due to a large variance of nonparametric
first-step kernel estimation, and hence could not be reduced
by conventional nonparametric bias reduction methods such as
increasing the order of the kernel; (iii) propose a clever general-
ized jackknife procedure to correct the nonlinearity bias; and
(iv) establish the root-n asymptotic normality of the bias-
corrected WAD estimator θ̃ and the consistency of their kernel
estimator of the asymptotic variance of θ̃ under very weak band-
width conditions. As a side but very useful technical result, they
establish a new uniform convergence rate for kernel estimators.

In the following I make two general comments. First, in some
applications, although the Euclidean parameter is nonlinear in
one nuisance function, it can be also rewritten as a linear func-
tional of another nuisance function that can be consistently es-
timated via the sieve method. This alternative way to eliminate
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nonlinearity bias might perform better in finite samples since it
is based on estimation of a linear functional. Second, in other
applications, there is no simple reparameterization that could
convert a nonlinear functional of a nuisance function into a lin-
ear functional of another nuisance function. The insight of a
stochastic quadratic expansion to characterize the nonlinearity
bias suggested in this article should be widely applicable to other
semiparametric estimators of nonlinear smooth functionals. The
results of this article also call for additional research on how to
provide easy-to-compute nonlinearity bias correction and more
accurate variance estimation of bias-corrected semiparametric
estimators.

2. SIEVE WEIGHTED AVERAGE DERIVATIVE
ESTIMATORS

In many applications, although the Euclidean parameter of
interest, θ , is a nonlinear functional of one nuisance function f ,
it could be expressed as a linear functional of another nuisance
function g that could be estimated via the sieve method. For
these applications, we suspect that a semiparametric two-step
estimator of θ based on a nonparametric sieve estimation of g
in the first step typically performs better in finite sample than
another estimator of θ based on a nonparametric estimation of
f in the first step. For example, consider the weighted average
derivative parameter θ :

θ = E

[
w(x)

∂

∂x
g0(x)

]
with g0(x) = E[y|X = x], (1)

= −E

[
y

(
∂

∂x
w(x) + w(x)

∂

∂x
log f (x)

)]
(2)

= −E

[
y

(
∂

∂x
w(x) + w(x)

∂f (x)

∂x
/f (x)

)]
, (3)
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where f () is the density of the regressor x and g() is the con-
ditional mean function of y given x. It is clear that θ is linear
in nuisance function g0 (see Equation (1)) and also linear in
nuisance function log f (see Equation (2)), but is nonlinear in
nuisance function f (see Equation (3)). CCJ considers estimation
of θ based on Equation (3). Alternatively, one could estimate θ

based on either Equation (1) or Equation (2).

Sieve WAD estimation based on Equation (1). Let ĝ =
arg ming∈Hn

1
n

∑n
i=1[yi − g(xi)]2 be a sieve least squares (LS)

estimator of g0(·) = E[y|X = ·]. Then the WAD parameter θ

defined in Equation (1) can be estimated by the following sieve
WAD estimator:

θ̂1 = 1

n

n∑
i=1

w(xi)
∂

∂x
ĝ(xi). (4)

There is no universal “best” sieves Hn to use in terms of the
convergence rate in mean squared error metric, since the rate
depends on the function parameter spaceH to which g0 belongs.
For a typical function space such as a Sobolev space Wm

2 (X )
or a Holder space �m(X ), (X a subset in Rd ), we typically
obtain ‖ĝ − g0‖L2(X) = OP (n−m/(2m+d)) for tensor product lin-
ear sieves (or series), where the series LS estimator ĝ has a
closed-form expression:

ĝ(x) = pkn(x)′(P ′P )−
n∑

i=1

pkn(Xi)Yi, x ∈ X , (5)

where {pj (), j = 1, 2, . . .} denotes a sequence of known ba-
sis functions that can approximate any square integrable
functions of x well, pkn(X) = (p1(X), . . . , pkn

(X))′, P =
(pkn(X1), . . . , pkn (Xn))′ and (P ′P )− the Moore–Penrose gen-
eralized inverse. This includes as special cases of tensor prod-
uct polynomial splines, Fourier series, wavelets, Hermite poly-
nomials, etc. (see Newey 1997; Huang 1998; Chen 2007 and
the references therein). Therefore, linear sieves (or series)
could achieve a convergence rate of ‖ĝ − g0‖L2(X) = oP (n−1/4)
if and only if 2m > d. When 2m ≤ d it is better to either
use some dimension reduction modeling techniques (such as
additive models) or to use nonlinear sieves in purely non-
parametric estimation of g0 to achieve a convergence rate of
‖ĝ − g0‖L2(X) = oP (n−1/4). For instance, a nonlinear sigmoid
neural network sieve has a convergence rate of ‖ĝ − g0‖L2(X) =
Op([n/ log n]−(1+1/d)/[4(1+1/(2d))]) = oP (n−1/4) (see Chen and
Shen 1998, Proposition 1), which is faster than the best rate
achievable by any linear sieves whenever 2m ≤ d.

Sieve WAD estimation based on Equation (2). Let q0(x) ≡
log f (x) denote the log density of x. Then we could estimate
q0(x) via the sieve maximum likelihood:

q̂ = arg max
q∈Hn

1

n

n∑
i=1

[
q(xi) − log

∫
X

exp q(z)dz

]
.

Again, if q0(·) belongs to a Sobolev space Wm
2 (X ) or a

Holder space �m(X ), we could let Hn be a nonlinear sieve
such as the artificial neural networks when d ≥ 2m (see,
e.g., Chen and White 1999). When d < 2m we could let Hn

be a tensor product linear sieves, Hn = {q : X → R, q(x) =

�
kn

j=1ajpj (x) :
∫
X q(z)dz = 0, a1, . . . , akn

∈ R}, such as ten-
sor product polynomial splines (see, e.g, Stone 1990). Let
l̂og f (x) = q̂(x) − log

∫
X exp q̂(z)dz. Then the WAD parame-

ter θ defined in Equation (2) can be estimated by the following
sieve WAD estimator:

θ̂2 = −1

n

n∑
i=1

yi

(
∂

∂x
w(xi) + w(xi)

∂

∂x
q̂(xi)

)
. (6)

We note that these two alternative sieve WAD estimators are
linear in their respective nonparametric estimators of nuisance
functions, and hence there is no bias due to nonlinearity. More-
over, unlike the kernel WAD estimator considered by CCJ, there
is no trimming involved either so these sieve WAD estimators
allow for wider class of weight functions w() and the estimator
(4) is extremely easy to compute.

By applying Lemma 5.1 of Newey (1994a) or Theorem 4.1
of Chen (2007),1 the root-n asymptotic normality of these two
sieve WAD estimators can be easily established under weak reg-
ularity conditions. For instance, Ai and Chen (2007, Example
2.1 and sec. 4.1) considered the sieve WAD estimator (4) when
the conditional mean function g0(·) = E[y|X = ·] might be po-
tentially misspecified as a nonparametric additive form. Newey
(1994a, Example 3 and Theorem 7.2) considered a linear sieve
(series) estimation of average derivative parameter E

[
∂
∂x

g(x)
]
.

Moreover, Newey (1994a), Ai and Chen (2007), and others
have shown how to consistently estimate the variance of a sieve
semiparametric two-step estimator easily, while Newey (1994a)
and Ackerberg, Chen, and Hahn (2012) provided a numerically
equivalent way to compute standard errors of a large class of
semiparametric two-step estimator when the first step nuisance
functions are estimated via linear sieves. One additional benefit
of using sieve estimation in the first step is that a cross-validated
choice of sieve number of terms to get optimal mean squared
error rate in the first step would typically lead to root-n asymp-
totic normality of the second step plug-in estimate of θ . See, for
example, Newey (1994a) and Chen (2007).

The idea of removing nonlinearity bias completely by reex-
pressing the Euclidean parameter of interest as a linear func-
tional of some nuisance functions is more broadly applicable.
See, for example, Chen, Hong, and Tamer (2005), Chen, Hong,
and Tarozzi (2008a,b), and Imbens and Wooldridge (2009) for
the Euclidean parameters that could be expressed as either a
nonlinear functional similar to Equation (3) or a linear func-
tional similar to Equation (1) in nonclassical measurement error,
missing data, program evaluation, and other settings.

3. ROOT-N ESTIMATION OF GENERAL NONLINEAR
FUNCTIONALS

In some applications, there is no simple reparameterization
that could convert a nonlinear functional of a nuisance func-
tion into a linear functional of another nuisance function. The
insight of a stochastic quadratic expansion to characterize the
nonlinearity bias suggested in this article should be widely ap-
plicable to other semiparametric estimators of nonlinear smooth
functionals.

1Theorem 4.1 in Chen (2007) is a slight improvement of Theorem 2 in Chen,
Linton, and Keilgom (2003).
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This article proposes generalized jackknife to reduce non-
linearity bias, which, based on the Monte Carlo results, works
quite well for kernel estimation of WAD. In principle, their
jackknife bias correction idea is directly applicable to all other
semiparametric nonlinear smooth functionals estimated via the
kernel method in the first step. However, the generalized jack-
knife bias reduction needs additional choice of parameters (the
vector valued c in this article).

This article proposes to compute the standard error of the
bias-corrected kernel WAD estimator based on the asymptotic
variance expression (Equation (12) in the article), which, based
on the Monte Carlo results in the online appendix, seems have
room for improvement. There are alternative consistent variance
estimators that might have better finite sample performance:
(a) a jackknife variance estimator (e.g., Shao and Wu (1989)
and the references therein); (b) instead of computing a standard
error based on the asymptotic variance expression, one could
use a finite sample (or “fixing smoothing parameter”) version
such as in Newey (1994a,b), Ai and Chen (2007), Ackerberg,
Chen, and Hahn (2012).

Instead of jackknife, bootstrap is another popular method
to provide better finite sample approximation to estimators
of smooth functionals in terms of both reducing bias and
more accurate confidence sets. See, for example, Efron (1979),
Mammen (1990), Horowitz (2003) and the references therein.

There is also a tradeoff between how smooth the functional
is with respect to the nuisance function f ∈ F and how com-
plex the function parameter space F is. See, for example, Shen
(1997). If the functional is highly nonlinear but not very smooth
or if the space F is too large (in terms of covering numbers,
say), then at some point we would no longer be able to estimate
the Euclidean parameter functional θ at a root-n rate. In the case
of kernel WAD estimation, the nonlinear functional is smooth
and this article presents clean necessary conditions on kernel
bandwidth choice to ensure a root-n rate. Recently Li et al.
(2011) considered quadratic expansion of a particular nonlin-
ear functional allowing for slower than root-n case. I think the
theoretical results developed in this article could be extended
further to allow for slower than root-n estimated nonlinear
functionals.

In summary, this article highlights the difficult issue of non-
linearity bias in semiparametric estimation of nonlinear func-
tionals of nuisance functions estimated nonparametrically in
the first step. The article makes significant progress in provid-
ing clever solutions to the nonlinearity bias issue in a class of
widely used kernel WAD estimators. The Monte Carlo results

of the article also call for additional research on exploring other
solutions.

[Received April 2013. Revised July 2013.]
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Rejoinder
Matias D. CATTANEO, Richard K. CRUMP, and Michael JANSSON

We wish to thank our discussants Xiaohong Chen, Holger
Dette, Enno Mammen, and Donglin Zeng for a very stimulating
discussion of our article (Cattaneo, Crump, and Jansson, 2013a;
CCJ, hereafter). We also acknowledge the fantastic work of
Jun Liu, Xuming He, and Jin Sun in shaping this intellectual
exchange. Participants at the 2013 JSM Meeting (JASA invited
session) also provided useful comments.

Our discussants offered an array of insightful comments rang-
ing from implementation issues to theoretical considerations.
Our rejoinder is organized by topic to clarify the importance,
overlap, and implications for present and future research of these
comments.

1. BIAS REDUCTION AND VARIANCE INFLATION

The comments by Dette and Zeng both touch upon the rela-
tionship between generalized jackknifing and the use of higher-
order kernels for the purpose of reducing bias. This is an im-
portant issue because, in conventional nonparametric problems,
it is well known not only that higher-order kernels can reduce
smoothing bias (provided enough smoothness of the underlying
nonparametric function), but also that the method of generalized
jackknifing generates a class of higher-order kernels. See, for
example, Härdle (1989). An important finding in CCJ, however,
is that the “equivalence” between higher-order kernels and gen-
eralized jackknifing breaks down when the nonlinearity bias, as
opposed to the smoothing bias, of a semiparametric procedure
is considered. Nonlinearity biases are potentially first-order bi-
ases arising in some semiparametric problems under “severe”
undersmoothing (e.g., hn → 0 faster than usual), a situation
where smoothing bias is less of a concern. (The smoothing bias
is large when the bandwidth is “large”.) Nevertheless, connec-
tions between higher-order kernels and generalized jackknif-
ing could still be useful to better understand the features of a
bias-corrected semiparametric estimator constructed using the
generalized jackknifing.

To be more specific, and following Dette, suppose X1, . . . , Xn

is a random sample from a univariate continuous distribu-
tion with density f (·) and consider the problem of estimat-
ing the value of f at some point x. The classical density

Matias D. Cattaneo is Associate Professor of Economics, Department of
Economics, University of Michigan, Ann Arbor, MI 48109-1220 (E-mail:
cattaneo@umich.edu). Richard K. Crump is Senior Economist, Federal Re-
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richard.crump@ny.frb.org). Michael Jansson is Professor of Economics, De-
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#3880, Berkeley, CA 94720-3880 (E-mail: mjansson@econ.berkeley.edu) and
CREATES. The first author gratefully acknowledges financial support from the
National Science Foundation (SES 0921505 and SES 1122994). The third author
gratefully acknowledges financial support from the National Science Founda-
tion (SES 0920953 and SES 1124174) and the research support of CREATES
(funded by the Danish National Research Foundation).

estimate is

f̂h(x) = 1

n

n∑
i=1

Kh(Xi − x), Kh(u) = 1

h
K
(u

h

)
,

where K is a symmetric density and h is a bandwidth.
Dette compared this estimator with the (generalized) jackknife
estimator

f̃c,h(x) = c2
2

c2
2 − c2

1

f̂c1h(x) − c2
1

c2
2 − c2

1

f̂c2h(x),

where c = (c1, c2)′ ∈ R2
++ is a vector of distinct positive con-

stants, in an attempt to gain further intuition on the properties
of θ̂n(Hn) and θ̃n(Hn, c). It is argued that, although f̃c,h(x) has
(smoothing) bias of smaller order than f̂h(x), this reduction in
bias typically comes at the expense of an increase in variance.
In addition, the problem of choosing an “optimal” value of c
is complicated by the fact that the (approximate) variance of
f̃c,h(x) can be made arbitrarily small by increasing c. For fur-
ther discussion on these and related points see, for example,
Jones and Foster (1993).

Indeed, defining h̃ = c1h and c̃ = c2/c1, the estimator f̃c,h(x)
can be written as

f̃c,h(x) = 1

n

n∑
i=1

K̃c̃,h̃(Xi − x),

K̃c̃,h̃(u) = Kh̃(u) + 1

c̃2 − 1
[Kh̃(u) − Kc̃h̃(u)].

Thus, f̃c,h(x) can itself be interpreted as a kernel density esti-
mator based on the kernel K̃c̃,h̃, which in turn can be thought
of as a higher-order kernel obtained by means of a modification
(indexed by c̃) of Kh̃(·). Because the modified kernel K̃c̃,h̃(·) is
a higher-order kernel, estimators based upon it will “usually”
have larger variance than estimators based on Kh̃(·). Interpret-
ing f̃c,h(x) as a kernel estimator based on a higher-order kernel
therefore provides an alternative explanation for Dette’s obser-
vation that “usually” the variance of f̃c,h(x) exceeds that of
f̂h (x).

Furthermore, the reparameterization (c′, h) → (c̃, h̃) =
(c1/c2, c1h) employed above also sheds light on Dette’s obser-
vation about the difficulty of characterizing an “optimal” value
of c. In particular, the fact that h̃ = c1h can be thought of as
the “effective” bandwidth of the kernel estimator based on K̃c̃,h̃

explains why an increase in c gives you “something for nothing”
in the sense that it decreases the (approximate) variance of the
generalized bandwidth estimator without affecting the order of
magnitude of its bias.

© 2013 American Statistical Association
Journal of the American Statistical Association

December 2013, Vol. 108, No. 504, Theory and Methods
DOI: 10.1080/01621459.2013.856717
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In addition to providing an alternative explanation for the
findings of Dette, recognizing generalized jackknifing as a spe-
cial case of employing a higher-order kernel when estimating
the value of a density at a point is useful for the purpose of
comparing that problem with the one addressed in our article.
Zeng also offered some insightful comments about asymptotic
(smoothing) bias reduction in general and about the relationship
between generalized jackknifing and the use of higher-order ker-
nels in particular.

All in all, three main points are highlighted in the discus-
sions: (1) because generalized jackknifing is just like using a
higher-order kernel one could think of using higher-order ker-
nels more generically, (2) implementing generalized jackknife
estimators requires choosing particular constants (e.g., c) which
is challenging in practice, and (3) generalized jackknifing will
typically increase (higher-order) variance.

The main points above employ ideas from the nonparamet-
ric literature, and naturally apply to many problems where the
concern is about smoothing bias (e.g., “large” bandwidths) as
opposed to the nonlinearity bias (e.g., “small” bandwidths). In
fact, many (but not all) linear functionals of a kernel estima-
tor will not even have a nonlinearity bias (e.g., estimation of a
density or regression function at a point). However, as shown
in CCJ, not all of those ideas automatically apply when the ob-
ject of interest is the nonlinearity bias, which naturally arises in
the context of many nonlinear functionals of a kernel estimator.
The weighted average derivative estimator studied in CCJ is
just one example of a nonlinear functional of its nonparametric
(kernel-based) ingredient. This distinction has two main impli-
cations. First, it implies that our generalized jackknife estimator
cannot be interpreted as one based on a single higher-order
kernel-based estimator. If anything, generalize jackknifing is
altering the shape of the estimating equation and not of the
kernel employed in the nonparametric estimator. Second, and
perhaps more importantly, it implies that the bias problem ad-
dressed in the article cannot be solved simply by increasing the
order of the kernel. Thus, point (1) above does not extend to the
semiparametric problems considered in our article. On the other
hand, points (2) and (3) above continue to be true insofar, first,
it seems hard to propose a general selection rule for the con-
stant c (see the discussion of Zeng for one such proposal) and,
second, our generalized jackknife estimator is likely to have a
larger finite-sample variance (our simulations provide support-
ing numerical evidence), although this variance inflation disap-
pears asymptotically. The latter point implies that second-order
efficiency considerations may be important, as mentioned by
Dette.

2. THE ROLE OF NONLINEARITIES AND THE
METHOD OF SIEVES

The main goal of our article was to highlight, in the con-
text of semiparametrics, the presence of a potentially first-order
bias arising from severe undersmoothing (i.e., for “small” band-
widths, hn → 0 faster than usual). Although the results in CCJ
are obtained for a particular functional of a particular type of
nonparametric estimator (namely, a kernel estimator), the conse-
quences of nonlinearities in the estimating equation emphasized
in our article will be shared also by other, but not all, semipara-

metric estimators based on the method of sieves. The comments
of Chen and Mammen are both related to this point. As we fur-
ther discuss in this section, we highlight that the presence and
implications of the nonlinearity bias are crucially related to both
the form of the estimating equation and the choice of nonpara-
metric estimator (kernel-based, series-based, etc.). Furthermore,
it appears difficult to separate the role of each of these two fea-
tures of the semiparametric estimator. In other words, we can
find “linear” and “nonlinear” population estimating equations
that, when employed to construct semiparametric estimators us-
ing either kernels or sieves, will lead to estimators that may or
may not exhibit a nonlinearity bias.

More specifically, Chen observed that while our chosen esti-
mator can be motivated by the representation

θ = −E

[
y

(
∂

∂x
w(x) + w(x)

∂f (x)

∂x
/f (x)

)]
, (C3)

sieve-based alternative estimators can be motivated by writing
θ as

θ = E

[
w(x)

∂

∂x
g(x)

]
, g(x) = E[y|x], (C2)

or

θ = −E

[
y

(
∂

∂x
w(x) + w(x)

∂

∂x
L(x)

)]
, L(x) = log f (x).

(C1)

As remarked by Chen, (1) the representations in (C1) and (C2)
are linear in the nuisance functions g(·) and L(·), respectively,
and (2) the nuisance functions g(·) and L(·) can be estimated
using the method of sieves.

For estimators based on kernels, the relevant issue (from the
perspective of our article) is not only whether the functional can
be represented as a linear functional of some nuisance function
that can be estimated using a kernel-based method. For instance,
if f̂ (·) is a kernel estimator of f (·), then L̂(·) = log f̂ (·) is a
kernel-based estimator of L(·) in (C2), but of course the estima-
tor based on evaluating the sample analog of (C2) at L(·) = L̂(·)
is equivalent to our estimator based on (C3). Thus, at least in
the case of kernels, the nuisance function has to be of the “right
form” for it to be valuable to express the estimand as a lin-
ear functional thereof. As another example of the same point,
consider the estimand θ = E[f (x)] = ∫

Rd f (x)2dx, and the as-
sociated plug-in kernel-based sample analogue estimators:

θ̂1 = 1

n

n∑
i=1

f̂ (xi) and θ̂2 =
∫

Rd

f̂ (x)2dx,

where f̂ (x) is a classical kernel-based density estimator. Both
of the estimators θ̂1 and θ̂2 will exhibit leave-in bias and, fur-
thermore, θ̂2 will also exhibit nonlinearity bias. Therefore, it
should be clear that studying the shape of the estimating equa-
tion alone is not enough to understand whether the semipara-
metric estimator will exhibit either leave-in-bias, nonlinearity
bias, or both, at least when kernel-based estimators are em-
ployed. Indeed, in the case of kernels the relevant issue seems
to be whether the estimand can be written as a linear functional
of a nuisance function expressible as a density-weighted condi-
tional expectation; that is, the nuisance function should be of the
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form γ (x) = E[w|x]f (x), where w is some (possibly constant)
observed variable.

We conjecture that similar remarks apply to estimators based
on the method of sieves; that is, we suspect that also estimators
based on the method of sieves can suffer from nonlinearity bi-
ases unless the estimand can be expressed as a linear functional
of a nuisance function of the “right type.” For sieve least-squares
estimators, such as the estimator of g(·) in (C1) mentioned by
Chen, it would appear that nuisance functions are of the “right
type” when they are expressible as mean square projections
(e.g., as a conditional expectation). Accordingly, we agree that
it seems plausible that nonlinearity biases of the form high-
lighted by the article can be avoided by using the (least-squares)
sieve-based estimator motivated by (C1). More generally, al-
though we feel that more work is needed to understand the
circumstances in which also nonlinear sieve estimators can be
plugged into linear functionals without generating biases, we
agree wholeheartedly with what we believe is the main message
of Chen’s comment: rather than basing the choice of nonpara-
metric estimation method mainly on the ease of implementation
one should pay careful attention to whether the nuisance func-
tion (estimator) can be chosen in such a way that the object of
interest is a linear functional thereof.

As discussed in the article, the estimator we consider suffers
from two distinct types of bias, namely nonlinearity bias and
leave-in bias. Both biases are (of the same order of magnitude
and) asymptotically nonnegligible only when the rate of con-
vergence of the nonparametric ingredient is slower than n1/4.
Therefore, it is necessary to relax (among other assumptions)
the assumption of n1/4-consistency on the part of the nonpara-
metric ingredient to uncover and characterize these biases. The
extent to which this feature is shared by estimators based on
the method of sieves would appear to be an open question.
For instance, although we agree with Chen that analyzing sieve
weighted average derivative estimators is easy once conven-
tional assumptions such as n1/4-consistency have been made,
existing results such as Theorem 4.1 of Chen (2007) are silent
about the consequences of employing severely undersmoothed
nonparametric estimators (e.g., sieve estimators implemented
using a larger-than-usual value of the tuning parameter kn) when
estimating finite-dimensional parameters. In particular, even if
nonlinearity biases can be avoided by relying on the method of
sieves, it would appear to be an open question whether any of
the estimators proposed by Chen suffers from an analog of the
leave-in bias discussed in the article.

Conversely to the discussion given so far, we also know of
the existence of “nonlinear” estimands that lead to series-based
estimators that do not exhibit either leave-in bias or nonlinearity
bias. Specifically, the estimand of the parametric part of the par-
tially linear model yi = x′

iβ + g(zi) + εi , with E[εi |zi , xi] = 0
and other assumptions imposed, is given by

β = (E[(xi − E[xi |zi])x′
i])

−1E [(xi − E[xi |zi])yi] ,

which could be regarded as a nonlinear estimating equation
(i.e., the nuisance function h(zi) = E[xi |zi] enters nonlinearly).
Nonetheless, Cattaneo, Jansson, and Newey (2012) showed that
when h(·) is estimated by the method of linear sieves the result-
ing semiparametric estimator β̂ does not exhibit leave-in or non-

linearity biases. Furthermore, to make things more interesting, if
undersmoothing is sufficiently severe (i.e., K/n → α ∈ (0, 1)),
the asymptotic distribution of β̂ exhibits a different, larger
asymptotic variance instead of a bias, very much in line with the
findings documented in Cattaneo, Crump, and Jansson (2010,
2013b) for a class of “linear” kernel-based semiparametric
estimators.

For these reasons, we are currently developing distributional
results for sieve-based semiparametric estimators under assump-
tions that permit (but do not necessarily require) the com-
plexity of the sieve space to grow relatively rapidly with the
sample size. Although doing so will require a possibly non-
trivial relaxation of the methods used when establishing re-
sults such as Theorem 4.1 of Chen (2007), the comments of
Mammen strongly suggest that, at least in some cases, signifi-
cant progress toward a better theory-based understanding of the
small-sample properties of sieve-based estimators is possible.
We are very grateful to Mammen for not only clarifying the
relationship between our work and his but, most importantly,
for helping to place the work in a broader context and for pro-
viding a template for analyzing sieve-based estimators under
weaker-than-usual assumptions about complexity of the sieve
space.

3. THE ROLE OF DIMENSIONALITY
AND BOOTSTRAPPING

The discussants raised a number of additional points. We
found little to disagree with and would like to take this oppor-
tunity to thank the discussants for the numerous constructive
suggestions. Among those, we would like to highlight two, one
mainly conceptual and the other both theoretical and imple-
mentational. First, as pointed out by Mammen, our nonstandard
asymptotics and the resulting biases in the distributional approx-
imation also highlight an interesting role of the dimensionality
of covariates, x ∈ Rd . In the context of kernel-based estimators,
our article suggests that the larger d, the more important the non-
linearity and leave-in bias will be. As pointed out by Mammen,
his work is closely related to this point insofar as nonlinear
least-squares models with large-/high-dimensional covariates
may also exhibit potentially first-order biases very similar in
spirit, but different in form, from those we found in our work.
It would certainly be of interest to deepen our understanding of
these seemingly unrelated findings.

Second, as suggested by Mammen’s comment, the idea of
studying the properties of the bootstrap under the types of as-
sumptions entertained in CCJ seems particularly interesting and
promising. Despite the fact that severe undersmoothing of cer-
tain “linear” semiparametric estimators leads to invalidity of
the bootstrap (Cattaneo, Crump, and Jansson 2014), in research
currently under way we have addressed that very question and
found that the bootstrap provides a method of (variance esti-
mation and) bias correction that is valid under the assumptions
made in CCJ. That is, we have shown that the bootstrap is in-
deed able to remove both nonlinearity and leave-in biases. Our
current research is also extending the scope of this finding to
a large class of possibly nonsmooth, nondifferentiable two-step
semiparametric models.
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