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a b s t r a c t

This paper is concerned with inference on the coefficient on the endogenous regressor in a linear
instrumental variables model with a single endogenous regressor, nonrandom exogenous regressors and
instruments, and i.i.d. errors whose distribution is unknown. It is shown that under mild smoothness
conditions on the error distribution it is possible to develop tests which are ‘‘nearly’’ efficient in the sense
of Andrews et al. (2006) when identification is weak and consistent and asymptotically optimal when
identification is strong. In addition, an estimator is presented which can be used in the usual way to
construct valid (indeed, optimal) confidence intervals when identification is strong. The estimator is of
the two stage least squares variety and is asymptotically efficient under strong identification whether or
not the errors are normal.
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1. Introduction

This paper is concerned with inference on the coefficient
on the endogenous regressor in a linear instrumental variables
(IVs) model with a single endogenous regressor, nonrandom
exogenous regressors and IVs, and i.i.d. errors. Models of this
type have been studied intensively in recent years, with particular
attention being devoted to the case where the IVs are weak (in
the terminology of Staiger and Stock (1997)).1 Analyzing such a
model in which the i.i.d. errors are furthermore assumed to be
Gaussian, Andrews et al. (2006, henceforth AMS) find that the
conditional likelihood ratio test proposed by Moreira (2003) is
‘‘nearly’’ efficient when identification is weak and asymptotically
efficient when identification is strong.
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The purpose of the present paper is to explore the consequences
of relaxing the assumption of normality on the part of the i.i.d.
errors in a model which is otherwise identical to the model
studied byAMS (and others). Recentwork byAndrews andMarmer
(2007) and Andrews and Soares (2007) shows that departures
from normality can be exploited for power purposes when the
errors satisfy a certain symmetry condition. Although these papers
do not establish optimality results on the part of the rank-based
testing procedures proposed therein, the findings of the papers
imply in particular that for certain classes of error distributions the
conditional likelihood test ceases to be (nearly) optimal once the
assumption of normality is relaxed. This paper addresses the issue
of optimality and shows that under mild smoothness conditions
on the (otherwise unknown) error distribution it is possible to
develop tests which are (nearly) optimal whether or not the errors
are Gaussian.

The asymptotic optimality theory developed herein treats the
distribution of the i.i.d. errors as an unknown nuisance pa-
rameter and is therefore of the semiparametric variety. In fact,
under the assumption that the model contains an intercept (an
assumption which we maintain throughout), we establish adapta-
tion results, namely that one can construct procedures which per-
form asymptotically as well as procedures which optimally utilize
knowledge of the error distribution. This adaptation result bears
more than a superficial resemblance to Bickel’s (1982) celebrated
result on adaptive estimation of the slope coefficients in a regres-
sionmodel. Specifically, it turns out that the problemof conducting
inference in an IV model with an unknown error distribution can
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be decomposed into two separate problems, each of which is well
understood, in isolation, from the works of Bickel (1982) and AMS,
respectively. The first of these problems concerns efficient estima-
tion of the slope coefficients in the reduced form of the IV model.
That problem is a bivariate version of the problem addressed by
Bickel (1982) and can be solved in essentially the same way. Be-
cause efficient estimators of the slope coefficients turn out to be
asymptotically sufficient statistics for the relevant parameters of
the IV model, the problem of conducting optimal inference can be
reduced to the problem of optimally extracting information from
the efficient estimators of the reduced form regression coefficients.
The mathematical structure of that problem turns out to be the
samewhether or not the errors are Gaussian, implying that we can
utilize the results of AMS to construct test statisticswhich combine
the efficient estimators of the reduced form regression coefficients
in an optimal way.

Our construction of feasible inference procedures proceeds in
several steps, culminating with a procedure which is nearly effi-
cient when identification is weak and consistent and asymptoti-
cally optimalwhen identification is strong. The resulting procedure
is of the conditional likelihood ratio variety, but being optimal (or
nearly so, depending on the strength of identification) it is of ne-
cessity different from Moreira’s (2003) procedure. Analogously to
Moreira’s (2003) procedure, a potential drawback of our procedure
is that although it enjoys optimality propertieswhen identification
is strong, it is somewhat tedious to invert it in order to obtain con-
fidence intervals in strongly identified models. To address this is-
sue, we present an estimator and an accompanying standard error
formula which can be used in the usual way to construct valid (in-
deed, optimal) confidence intervals when identification is strong.
The estimator, which would appear to be new, is of the two stage
least squares (2SLS) variety and is asymptotically efficient under
strong identification whether or not the errors are normal.

The paper proceeds as follows. Section 2 presents themodel and
the assumptions underwhich the asymptotic analysiswill proceed.
Section 3 is concerned with asymptotic inference under the
assumptions that the error distribution is known and identification
is weak. The counterfactual assumption that the error distribution
is known is dispensedwith in Section 4,where it is also shownhow
strong identification can be accommodated. Section 5 presents
some simulation results, while mathematical derivations have
been relegated to an Appendix.

2. The model

We consider a model given by

y1i = Γ ′

1xi + βy2i + ui,

y2i = γ ′

2xi + π ′zi + v2i (i = 1, . . . , n) , (1)

where y1i, y2i ∈ R, xi ∈ Rp, and zi ∈ Rq are observed variables;
ui, v2i ∈ R are unobserved errors; and β ∈ R, π ∈ Rq, and Γ1,
γ2 ∈ Rp are parameters. The exogenous variables xi and zi are
nonrandom and the first element of xi is assumed to be equal to
unity. The errors (ui, v2i) are i.i.d. from a continuous distribution
with zero mean and finite variance.

It turns out to be convenient to work with the reduced form of
the model. The reduced form is given by the pair of equations

y1i = γ ′

1xi + βπ ′zi + v1i,

y2i = γ ′

2xi + π ′zi + v2i (i = 1, . . . , n) , (2)

where γ1 = Γ1 + γ2β and v1i = v2iβ + ui. The parameters of the
reduced form are β , π , γ =


γ ′

1, γ
′

2

′, and f , the Lebesgue density
of vi = (v1i, v2i)

′. The analysis of the reduced form is facilitated by
the fact that it can be embedded in the model

y1i = γ ′

1xi + δ′

1zi + v1i,

y2i = γ ′

2xi + δ′

2zi + v2i (i = 1, . . . , n) , (3)
where δ1, δ2 ∈ Rq and the other parameters are as in (2).2 Indeed,
the main results of this paper can and will be derived as relatively
simple consequences of results concerning the bivariate regression
model (3), which itself can be analyzed bymeans of fairly standard
tools.

Our goal is to develop powerful tests of

H0:β = β0 vs. H1:β ≠ β0,

treating π , γ , and f as unknown nuisance parameters.3 Replacing
y1i by y1i −β0y2i if necessary, we assumewithout loss of generality
that β0 = 0.

The analysis proceeds under the following assumptions.4

Assumption 1. (a) Qzz,n = n−1n
i=1 ziz

′

i → Qzz > 0 and
max1≤i≤n ∥zi∥ /

√
n → 0. (b) Qxx,n = n−1n

i=1 xix
′

i → Qxx > 0
and max1≤i≤n ∥xi∥ /

√
n → 0.

Assumption 2. The density f admits a function ḟ such that

(a) for almost every v ∈ R2, f is differentiable at v, with total
derivative ḟ ;

(b) for every v, θ ∈ R2, f (v + θ) − f (v) = θ ′
 1
0 ḟ (v + θ t) dt;

(c)


R2 ∥ℓ (v)∥2 f (v) dv < ∞, where ℓ (v) = −1 [f (v) > 0]
ḟ (v)/f (v).

Assumption 3. Qzx,n = n−1n
i=1 zix

′

i → 0.

Remarks. (i) Assumption 1 is a fairly standard assumption
concerning the exogenous variables. As in Bickel (1982), the
assumption that the exogenous variables


x′

i, z
′

i

′ are nonrandom
can be relaxed, and the main results of this paper will remain
valid, provided the errors {vi} are assumed to be independent of

x′

i, z
′

i

′.
(ii) The assumption that second moments of the errors exist

serves three purposes. First, it implies that the Fisher information
matrix I defined in (4) is nonsingular. Second, it implies that the√
n-consistency requirements of Assumptions 6–8 are met by OLS

estimators. Finally, it is required for the validity of the statements
concerning procedures based on the Gaussian (quasi-)likelihood
that are made throughout the paper. As in Bickel (1982), the main
results of this paper are valid even without moment assumptions
provided it is assumed that I > 0.

(iii) Assumption 2 is a relatively mild smoothness condition
on the error density. Parts (a) and (b) of Assumption 2 hold
if, but do not require that, f is continuously differentiable. In
particular, Assumption 2 accommodates mild departures from
continuous differentiability, such as that which occurs when the
elements of vi, or some rotation thereof, are independent and
double exponentially distributed.

(iv) If Assumption 1 holds and Qzx = limn→∞ n−1n
i=1 zix

′

i
exists, Assumption 3 is a normalization in the sense that it entails
no loss of generality. Specifically, replacing zi by z∗

i = zi−QzxQ−1
xx xi

has no effect on the value of (β, π) and guarantees validity of
Assumption 3. Ourmain results depend on


x′

i, z
′

i

′ only through
z∗

i


, so Assumption 3 is convenient insofar as it enables us to

simplify the notation by eliminating the distinction between {zi}
and


z∗

i


.

2 The model (3) reduces to (2) when δ = (δ1, δ2)
′
=

βπ ′, π ′

′ .
3 Testing problems of this type are of interest partly because the duality between

hypothesis testing and interval estimation implies that confidence intervals for β

can be obtained by test inversion.
4 In Assumption 1 and elsewhere in the paper, ∥·∥ is the Euclidean norm and

limits are taken as n → ∞, except where otherwise noted.
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(v) Throughout this paper, the endogenous regressor y2i is
assumed to be scalar. Most of our distributional results should
generalize straightforwardly to models with multiple endogenous
regressors, as should the optimality results reported in Section 4.4.
On the other hand, analogues of the near optimality results
(established by AMS for Moreira (2003)-type inference procedures
in models with weak instruments and a scalar endogenous
regressor) that underlie someof the efficiency claimsmade in other
sections of the paper do not seem to be available for models with
multiple endogenous regressors.

An immediate implication of Assumption 1(a) and 2 is that

1
√
n

n
i=1

ℓ (vi) ⊗ zi →d N (0, I ⊗ Qzz) ,

where

I =


R2

ℓ (v) ℓ (v)′ f (v) dv (4)

is the Fisher information for the location family generated by f .
As shown in the Appendix, Assumption 2 furthermore enables
nonparametric estimation of ℓ and implies that the model (3) is
differentiable in quadratic mean at any (γ , δ). In other words, the
roles played by parts (a) and (b) of Assumption 2 are analogous to
those played by the assumption of absolute continuity routinely
invoked in regression models with scalar errors. In fact, the
natural scalar counterpart of Assumption 2(b) is the assumption
of absolute continuity.

As mentioned in remark (iv), Assumption 3 is a normalization
which greatly simplifies the derivation and statements of asymp-
totic results. Specifically, because the limit of Qzx,n is a zero matrix
under Assumption 3, the parameters (β, π) and γ are orthogonal
(in the sense of Cox and Reid (1987)). This fact, which is an immedi-
ate consequence of the fact that δ = (δ1, δ2)

′ and γ are orthogonal
in (3), implies that the analysis can proceed under the ‘‘as if’’ as-
sumption that γ is known. Similarly, the fact that n−1n

i=1 zi → 0
under Assumption 3 (because the first element of xi equals unity)
implies that the analysis can proceed under the ‘‘as if’’ assump-
tion that f is known. This is so because δ in (3) can be estimated
adaptively, the latter fact essentially following fromBickel’s (1982)
result on adaptive estimation of slope coefficients in a regression
model.

In other words, Assumption 3 implies that π is the only
nuisance parameter which matters asymptotically. Concerning π ,
particular attention will be devoted to the weakly identified case
whereπ is ‘‘close’’ to zero in the sense of the following assumption.

Assumption 4W. π = c/
√
n for some constant c ∈ Rq and β is a

constant.

Under the local-to-zero parameterization of π specified by
Assumption 4W, contiguous alternatives to H0 are of the form
β = β0 + O (1). Accordingly, β is modeled as a constant in
the weakly identified case. Although our main emphasis is on the
weakly identified case, we shall on occasion employ one of the
following (strong identification) assumptions.

Assumption 4SC. π is a nonzero constant andβ = b/
√
n for some

constant b ∈ R.

Assumption 4SF. π is a nonzero constant and β is a constant.

When π is a nonzero constant, identification is strong and con-
tiguous alternatives to H0 are of the form β = β0 + O


1/

√
n

.

Assumption 4SC covers that case and is appropriate when study-
ing local asymptotic power properties under strong identification.
In contrast, Assumption 4SF assumes strong identification and fur-
thermore holds β fixed. This combination of strong identification
and fixed alternatives is appropriate when studying the consis-
tency properties of various tests. Moreover, Assumption 4SF is use-
ful when studying the properties of point estimators of β under
strong identification.

Assumptions 4SC, 4SF and 4W are nonnested, but it seems nat-
ural to study them in the order indicated above. This is so be-
cause the assumptions impose decreasingly strong upper bounds
on the magnitude of the parameters δ1 and δ2 of (3). Specifi-
cally, Assumption 4W implies that δ1 = O


1/

√
n

and δ2 =

O

1/

√
n

. Relative to Assumptions 4SC and 4W removes the

requirement δ2 = O

1/

√
n

and Assumption 4SF furthermore re-

laxes the requirement δ1 = O

1/

√
n

. In this paper, these dif-

ferences are important because the feasible inference procedures
constructed in Section 4 employ one-step estimators of δ. As usual,
one-step estimators utilize initial estimators that are required to be√
n-consistent. Under Assumption 4W, this requirement is met by

the zero vector, while Assumptions 4SC and 4SF imply that non-
degenerate initial estimators of δ2 and (δ1, δ2), respectively, are
required in order to guarantee that one-step estimators of δ are
well behaved. Accordingly, the three constructions presented in
Section 4 differ in terms of (and only in terms of) the nature of the
initial estimators of δ being employed.

3. The limiting experiment when identification is weak

This section is concerned with asymptotic inference under
the assumptions that (i) the nuisance parameters γ and f are
known and (ii) identification isweak. Asmentioned in the previous
section, Assumption 3 ensures that (i) can be dispensed with.
Precise statements to that effect will be provided in the next
section, where it is also shown how departures from (ii) can be
accommodated.

When f is Gaussian and the reduced form variance Ω =
R2 vv′f (v) dv is known, the problem of testing β = β0vs. β ≠ β0

is nonstandard, but amenable to finite sample analysis using the
theory of curved exponential families (e.g., Moreira (2003) and
AMS). This feature is lost, in general, when f is not Gaussian. On the
other hand, the testing problem remains amenable to asymptotic
analysis using the limits of experiments approach even when f
is non-Gaussian.5 In fact, it turns out that the family of limiting
experiments associated with non-Gaussian error distributions
coincides with the family of limiting experiments for the Gaussian
case.

In the Gaussian case, the limiting experiment is that of a single
observation from the N


µ (β, c) , Ω ⊗ Q−1

zz


distribution, where

µ (β, c) = (β, 1)′ ⊗ c.

Equivalently, because Ω = I−1 when f is Gaussian, the limiting
experiment in the Gaussian case is that of a single observation
from theN


µ (β, c) , I−1

⊗ Q−1
zz


distribution. As it turns out, the

latter characterization generalizes readily to non-Gaussian error
distributions.

To give a precise statement, we proceed in the spirit of van der
Vaart (1998, Section 7.6). Define the log likelihood ratio function

Ln (β, c) =

n
i=1

log f

y1i − γ ′

1xi − βc ′zi/
√
n, y2i − γ ′

2xi

− c ′zi/
√
n

−

n
i=1

log f

y1i − γ ′

1xi, y2i − γ ′

2xi


5 For an exposition of the elements of the theory of limits of experiments
employed in this paper, see e.g. van der Vaart (1998).
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and let ‘‘op0 (1)’’ and ‘‘→d0 ’’ be shorthand for ‘‘op (1) under the
distributions associated with (β, π) = (0, 0)’’ and ‘‘→d under the
distributions associated with (β, π) = (0, 0)’’, respectively.

Theorem 1. If Assumption 1 (a) and 2 hold, then

Ln (β, c) = µ (β, c)′ (I ⊗ Qzz) ∆n

−
1
2
µ (β, c)′ (I ⊗ Qzz) µ (β, c) + op0 (1)

for every (β, c), where

∆n =

I−1

⊗ Q−1
zz

 1
√
n

n
i=1

ℓ

y1i − γ ′

1xi, y2i − γ ′

2xi


⊗ zi →d0 N

0, I−1

⊗ Q−1
zz


.

Theorem 1 is a special case of a local asymptotic normality (LAN)
result for the model (3). The general LAN result is given in
Theorem A.1 in the Appendix.

As in van der Vaart (1998, Section 9.3), Theorem 1 and Le
Cam’s third lemma can be used to show that if Assumption 1(a),
2, and 4W hold, then the asymptotically sufficient statistic ∆n
satisfies ∆n →d N


µ (β, c) , I−1

⊗ Q−1
zz


, implying in particular

that the limiting experiment is that of a single observation from the
N

µ (β, c) , I−1

⊗ Q−1
zz


distribution whether or not the errors

are Gaussian.
Under the same assumptions, the quasi-sufficient (i.e., suffi-

cient when the errors are Gaussian) statistic

∆̄n =

Ω ⊗ Q−1

zz,n

 1
√
n

n
i=1

ℓ̄

y1i − γ ′

1xi, y2i − γ ′

2xi

⊗ zi,

ℓ̄ (v) = Ω−1v,

obtained from the Gaussian quasi-likelihood satisfies ∆̄n →d
N

µ (β, c) , Ω ⊗ Q−1

zz


. The Cauchy–Schwarz inequality can be

used to show that I−1
≤ Ω , with equality if and only if ℓ (v) is

linear in v on the support of f . By implication, procedures based
on the Gaussian quasi-likelihood are asymptotically inefficient
in general. More specifically, any test based on a ‘‘smooth’’
(e.g., almost everywhere continuous) function of ∆̄n, such as those
proposed by Anderson and Rubin (1949), Kleibergen (2002), and
Moreira (2003), will be dominated by a test which is efficient (or
nearly so) under the assumptions of Theorem 1.6

Nevertheless, the results obtained under the assumption of
Gaussian errors are of considerable relevance also in models with
non-Gaussian errors. This is so because the limiting experiments,
indexed by I−1

⊗ Q−1
zz , in the general case are isomorphic to

the limiting experiments, indexed by Ω ⊗ Q−1
zz , associated with

Gaussian errors, a very convenient result because it implies that
the insights concerning the relative merits of various testing
procedures obtained under the assumption of normality are
directly applicable in the general case.

To be specific, let Sn, Tn ∈ Rq be given by
S ′

n, T
′

n

′
=

I1/2′

⊗ Q 1/2′
zz


∆n,

where M1/2 denotes the upper triangular Cholesky factor of
a symmetric, positive semi-definite matrix M; that is, M =

M1/2M1/2′, where M1/2 is upper triangular.7 The pair (Sn, Tn) is a

6 Section 4 will exhibit tests which are nearly efficient under the assumptions of
Theorem 1.
7 In particular, letting Iij denote element (i, j) of I, we have:

I1/2
=

√
I11.2 I12/

√
I22

0
√

I22


, I11.2 = I11 − I2

12/I22.
non-Gaussian counterpart of

S̄ ′
n, T̄

′
n

′
=


Ω−1

1/2′
⊗ Q 1/2′

zz,n


∆̄n,

which features prominently in the work by Moreira (2003), AMS,
and others.

In terms of

S̄n, T̄n


, the (known Ω) Anderson–Rubin, Lagrange

multiplier, and likelihood ratio test statistics popularized by
Anderson and Rubin (1949), Kleibergen (2002), and Moreira
(2003), respectively, can be expressed as

ARn = AR

S̄n


= S̄ ′

nS̄n,

LMn = LM

S̄n, T̄n


=


S̄ ′
nT̄n
2

T̄ ′
nT̄n

,

LRn = LR

S̄n, T̄n


=

1
2


S̄ ′

nS̄n − T̄ ′

nT̄n

+


S̄ ′
nS̄n − T̄ ′

nT̄n
2

+ 4

S̄ ′
nT̄n
2

.

In perfect analogy with the Gaussian case, let ARn = AR (Sn),
LMn = LM (Sn, Tn), and LRn = LR (Sn, Tn). The tests which reject
H0 when ARn > χ2

α (q), LMn > χ2
α (1), and LRn > κα (Tn) have

asymptotic size α, where χ2
α (d) is the 1 − α quantile of the χ2

distribution with d degrees of freedom and κα (t) is the 1 − α
quantile of the distribution of LR (Z, t), where Z ∼ N


0, Iq


.8

Because of the isomorphism between the Gaussian case and the
general case, the relative merits of these testing procedures are
well understood from the numerical work of AMS. In particular, it
follows from AMS that the test which rejects when LRn > κα (Tn)
is nearly efficient in the sense that its power function is ‘‘close’’ to
the two-sided power envelope for invariant similar tests.

4. Feasible inference procedures

The results of the previous sectionwere obtainedunder the tacit
assumption that γ and f are known. In addition, it was assumed
to be known that identification is weak. This section relaxes these
assumptions.

4.1. Inference without knowledge of γ and f

First, consider the problem of conducting inference under weak
identification without knowledge of the nuisance parameters γ

and f . Doing so is easy provided we can find a pair

∆̂n, În


which

is asymptotically equivalent to (∆n, I) under weak identification
and can be computed without knowledge of (γ , f ). To that end, let

∆̂n =

Î−1
n ⊗ Q−1

zz,n

 1
√
n

n
i=1

ℓ̂i,n ⊗ zi,

În =
1
n

n
i=1

ℓ̂i,nℓ̂
′

i,n,

where ℓ̂i,n is an estimator of ℓ

y1i − γ ′

1xi, y2i − γ ′

2xi

. In the spirit

of Schick (1987), we assume that ℓ̂i,n = ℓ̂n

v̂i

, where v̂i =

y1i − γ̂ ′

1nxi, y2i − γ̂ ′

2nxi
′ for some estimator γ̂n =


γ̂ ′

1n, γ̂
′

2n

′ of γ
and

ℓ̂n (v) = −
∂ f̂n (v) /∂v

f̂n (v) + an
, f̂n (v) =

1
nh2

n

n
i=1

K


v − v̂i

hn


,

8 As shown by Moreira (2003), κα (t) depends on t only through ∥t∥ , is
monotonically decreasing in ∥t∥ , and satisfies lim∥t∥→∞ κα (t) = χ2

α (1). The latter
result will be utilized when studying the behavior of the test based on LRn under
strong identification.
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whereK is a kernel and an andhn are positive sequences. Theorem2
shows that this construction, which does not involve sample
splitting, works when the following assumptions hold.

Assumption 5. (a) K (s1, s2) = k (s1) k (s2), where k is a bounded,
symmetric, continuously differentiable density with


R r2k

(r) dr + supr∈R

k′ (r)
 /k (r) < ∞.

(b) an → 0, hn → 0, and na2nh
4
n → ∞.

Assumption 6. γ̂n is discrete and
√
n

γ̂n − γ


= Op (1).

Remarks. (i) The nonparametric estimation method used here
involves two smoothing parameters, hn and an, ofwhich the former
is a bandwidth sequence whereas the latter enables us to avoid
trimming when handling the density estimator f̂n appearing in the
denominator of ℓ̂n.

(ii) If the variances of v1 and v2 are suspected to be of different
magnitude it may be desirable to let K be a product kernel of the
form K (s1, s2) = σ−1

1 σ−1
2 k (s1/σ1) k (s2/σ2) , where σ1 and σ2 are

positive constants and k is as in Assumption 5(a). All results, and
their proofs, remain valid if Assumption 5(a) is modified in this
way.

(iii) Assumption 5(a) holds if k is the logistic density, but not if k
is the standard normal density, the reason being that

k′ (r)
 /k (r)

is unbounded when k is the standard normal density. As explained
in remark (ii) following the proof of Theorem A.2 in the Appendix,
it is possible to accommodate the normal kernel provided the error
density f is such that ḟ is bounded.

(iv) In Assumption 6, the statement ‘‘γ̂n is discrete’’ is
shorthand for the assumption that γ̂n takes only values in the
grid


~Z/

√
n: Z ∈ Z2p


, where ~ is some constant 2p × 2p

matrix. Assuming discreteness on the part of an initial estimator is
technically convenient and it seems plausible that this assumption
can be dropped if additional smoothness is assumed on the part of
f . If γ̃n is a

√
n-consistent estimator of γ , then Assumption 6will be

satisfied by γ̂n =
√

nγ̃n


/
√
n, where ⌊·⌋ denotes the integer part

of the argument (defined element-by-element). A similar remark
applies to Assumptions 7 and 8.

(v) Assumption 6 is satisfied by a discretized version of γ̂ OLS
n =

γ̂ OLS′
1,n , γ̂ OLS′

2,n

′, where γ̂ OLS
j,n =

n
i=1 xix

′

i

−1 n
i=1 xiyji


is the OLS

estimator of γj (j = 1, 2).

Theorem 2. If Assumptions 1–3, 4W, 5 and 6 hold, then
∆̂n, În


= (∆n, I) + op (1) .

In the model (3), the statistic ∆̂n/
√
n can be interpreted as a

one-step estimator of δ which uses the zero vector as an initial
estimator. As a consequence, Theorem 2 can and will be derived
as a special case of a general adaptation result, Theorem A.2
in the Appendix, for one-step estimators of δ in the model (3).
Theorem A.2 assumes existence of a discrete

√
n-consistent initial

estimator of δ. This requirement is easily met, especially so
under weak identification because the zero vector can serve as a√
n-consistent estimator of δ in that case.9 Somewhat surprisingly,

perhaps, some aspects of conducting inference are therefore
simplified by the assumption of weak identification.

Theorem 2 and the continuous mapping theorem can be used
to show that if identification is weak, then the local asymptotic
power properties of the tests based on ARn, LMn, and LRn are

9 The full force of Theorem A.2 will be needed when Assumption 4W is replaced
by Assumption 4SC or 4SF.
matched by those of the tests based on ARn = AR

Ŝn

, LMn =

LM

Ŝn, T̂n


, and LRn = LR


Ŝn, T̂n


, respectively, where


Ŝ ′
n, T̂

′
n

′

=


Î
1/2′
n ⊗ Q 1/2′

zz,n


∆̂n. More specifically, we have the following

corollary, which implies in particular that the test which rejects
when LRn > κα


T̂n

is nearly efficientwhen identification isweak.

Corollary 3. If Assumptions 1–3, 4W, 5 and 6 hold, thenARn,LMn, LRn, κα


T̂n


= [ARn, LMn, LRn, κα (Tn)] + op (1) .

4.2. Inference when identification may be strong

Next, consider the consequences of relaxing the assumption
that identification is known to be weak. We are interested in
finding a pair of statistics, computable without knowledge of
(γ , f ) , which is asymptotically equivalent to (∆n, I) under weak
identification and is ‘‘well behaved’’ also when identification is
strong.

When Assumptions 1–3 and 4SC hold, the quasi-sufficient
statistic ∆̄n obtained from the Gaussian quasi-likelihood satisfies

∆̄n −
√
nµ (0, π) →d N


bπ ′, 0′

′
, Ω ⊗ Q−1

zz


.

It follows immediately from this result that if Assumptions 1–3 and
4SC holds, then

ARn →d χ2 q; b2π ′Qzzπ/ω11


and

LMn = LRn + op (1) =

S̄ ′

nQ
1/2′
zz π

2
/π ′Qzzπ

+ op (1) →d χ2 1; b2π ′Qzzπ/ω11

,

where ω11 is element (1, 1) of Ω and χ2 (d; λ) denotes the
noncentral χ2 distribution with d degrees of freedom and
noncentrality parameter λ.10 The convergence result for ∆̄n
derives in part from the linearity of ℓ̄ and an analogous result
will typically fail to hold for ∆n and/or ∆̂n. Indeed, at the
present level of generality very little can be said about the
asymptotic null properties of statistics such as LRn under strong
identification. This observation motivates the search for a statistic
which is asymptotically equivalent to∆n underweak identification
and exhibits behavior qualitatively similar to that of ∆̄n under
Assumption 4SC.

Theorem 4 gives conditions under which this property is
enjoyed by

∆̂∗

n =


0

√
nπ̂n


+

Î∗−1
n ⊗ Q−1

zz,n

 1
√
n

n
i=1

ℓ̂∗

i,n ⊗ zi,

Î∗

n =
1
n

n
i=1

ℓ̂∗

i,nℓ̂
∗′

i,n,

with ℓ̂∗

i,n = ℓ̂∗
n


v̂∗

i


, where v̂∗

i =

y1i − γ̂ ′

1nxi, y2i − γ̂ ′

2nxi − π̂ ′
nzi
′

for some estimators

γ̂n, π̂n


of (γ , π), and

ℓ̂∗

n (v) = −
∂ f̂ ∗

n (v) /∂v

f̂ ∗
n (v) + an

, f̂ ∗

n (v) =
1

nh2
n

n
i=1

K


v − v̂∗

i

hn


.

10 Moreover, the properties of κα mentioned in footnote 8 at the end of Section 3
can be used to show that κα


T̄n


= χ2
α (1) + op (1).
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As defined, ∆̂∗
n/

√
n is a one-step estimator of δ in (3) which

uses

0′, π̂ ′

n

′ as an initial estimator of δ. This initial estimator is
√
n-consistent under Assumption 4SC provided π̂n satisfies the

following condition, which holds if π̂n is a discretized version of
π̂OLS
n =

n
i=1 ziz

′

i

−1 n
i=1 ziy2i


.

Assumption 7. π̂n is discrete and
√
n

π̂n − π


= Op (1).

Theorem 4. (a) If Assumptions 1–3, 4W and 5–7 hold, then
∆̂∗

n, Î∗

n


= (∆n, I) + op (1) .

(b) If Assumptions 1–3, 4SC and 5–7 hold, then Î∗
n = I + op (1)

and

∆̂∗

n −
√
nµ (0, π) →d N


bπ ′, 0′

′
, I−1

⊗ Q−1
zz


.

As a consequence of Theorem 4, we have the following result
concerning the statistics AR∗

n = AR

Ŝ∗
n


, LM∗

n = LM

Ŝ∗
n , T̂

∗
n


, andLR∗

n = LR

Ŝ∗
n , T̂

∗
n


, where


Ŝ∗′
n , T̂ ∗′

n

′

=


Î

∗1/2′
n ⊗ Q 1/2′

zz,n


∆̂∗

n .

Corollary 5. (a) If Assumptions 1–3, 4W and 5–7 hold, thenAR∗

n,
LM∗

n,
LR∗

n, κα


T̂ ∗

n


= [ARn, LMn, LRn, κα (Tn)]

+ op (1) .

(b) If Assumptions 1–3, 4SC and 5–7 hold, then κα


T̂ ∗
n


=

χ2
α (1) + op (1) andAR∗

n = ARn + op (1) →d χ2 q; b2π ′Qzzπ/I−1
11.2


,LM∗

n = LR∗

n + op (1) =

S ′

nQ
1/2′
zz π

2
/π ′Qzzπ

+ op (1) →d χ2 1; b2π ′Qzzπ/I−1
11.2


.

It follows from Corollary 5(a) that the test which rejects
when LR∗

n > κα


T̂ ∗
n


is nearly efficient when identification is

weak. Moreover, Theorem A.1 in the Appendix and Choi et al.
(1996, Theorem 2) can be used to show that the test which

rejects for large values of

S ′
nQ

1/2′
zz π

2
/

π ′Qzzπ


is asymptotically

uniformly most powerful unbiased (in the terminology of Choi
et al. (1996, Section 4)) under the assumptions of Corollary 5(b). As
a consequence, Corollary 5 (b) implies that the test which rejects
when LR∗

n > κα


T̂ ∗
n


enjoys demonstrable optimality properties

under strong identification, as does the test which rejects whenLM∗

n > χ2
α (1). In particular, under strong identification these

(asymptotically equivalent) tests are superior to the tests based on
the statistics ARn, LMn, LRn and Andrews and Soares (2007) rank-
based analogues thereof.

4.3. Consistency

Finally, we address the issue of test consistency under strong
identification. The tests based on ARn, LMn, and LRn are all
consistent because κα (·) is bounded and because

n−1ARn = n−1LMn + op (1) = n−1LRn + op (1)

= β2π ′Qzzπ/ω11 + op (1)

under Assumptions 1–3 and 4SF, the displayed results following
almost immediately from the fact that if Assumptions 1–3 and 4SF
hold, then

∆̄n −
√
nµ (β, π) →d N


0, Ω ⊗ Q−1

zz


.

Once again, this convergence result for ∆̄n derives in part from
the linearity of ℓ̄ and an analogous result will typically fail to hold
for ∆n, ∆̂n and/or ∆̂∗

n . In fact, at the present level of generality
there is no guarantee that the tests based on AR∗

n , LM∗

n , and LR∗

n are
consistent under strong identification.

Fortunately this potential problem is easily avoided. Indeed, let

∆̂∗∗

n =

√
nΠ̂n√
nπ̂n


+

Î∗∗−1
n ⊗ Q−1

zz,n

 1
√
n

n
i=1

ℓ̂∗∗

i,n ⊗ zi,

Î∗∗

n =
1
n

n
i=1

ℓ̂∗∗

i,nℓ̂
∗∗′

i,n ,

with ℓ̂∗∗

i,n = ℓ̂∗∗
n (v̂∗∗

i ), where v̂∗∗

i = (y1i − γ̂ ′

1nxi − Π̂ ′
nzi, y2i − γ̂ ′

2nxi −
π̂ ′
nzi)

′ for some estimators (γ̂n, π̂n, Π̂n) of (γ , π, βπ) ,

ℓ̂∗∗

n (v) = −
∂ f̂ ∗∗

n (v) /∂v

f̂ ∗∗
n (v) + an

, f̂ ∗∗

n (v) =
1

nh2
n

n
i=1

K


v − v̂∗∗

i

hn


,

and Π̂n is assumed to satisfy the following condition, which holds
if Π̂n is a discretized version of Π̂OLS

n =
n

i=1 ziz
′

i

−1 n
i=1 ziy1i


.

Assumption 8. Π̂n is discrete and
√
n

Π̂n − βπ


= Op (1).

Once again, ∆̂∗∗
n /

√
n can be interpreted as a one-step estimator

of δ in (3). Unlike ∆̂n/
√
n and ∆̂∗

n/
√
n, ∆̂∗∗

n /
√
n employs an initial

estimator of δ with global
√
n-consistency properties. This feature

is utilized in the proof of part (c) of the following result, which in
turn can be used to establish consistency of tests based on ∆̂∗∗

n .

Theorem 6. (a) If Assumptions 1–3, 4W and 5–8 hold, then
∆̂∗∗

n , Î∗∗

n


= (∆n, I) + op (1) .

(b) If Assumptions 1–3, 4SC and 5–8 hold, then Î∗∗
n = I + op (1)

and

∆̂∗∗

n −
√
nµ (0, π) →d N


bπ ′, 0′

′
, I−1

⊗ Q−1
zz


.

(c) If Assumptions 1–3, 4SF and 5–8 hold, then Î∗∗
n = I + op (1)

and

∆̂∗∗

n −
√
nµ (β, π) →d N


0, I−1

⊗ Q−1
zz


.

Let

Ŝ∗∗′
n , T̂ ∗∗′

n

′

=


Î

∗∗1/2′
n ⊗ Q 1/2′

zz,n


∆̂∗∗

n and define AR∗∗

n =

AR

Ŝ∗∗
n


, LM∗∗

n = LM

Ŝ∗∗
n , T̂ ∗∗

n


, and LR∗∗

n = LR

Ŝ∗∗
n , T̂ ∗∗

n


.

The salient properties of these statistics are characterized in the
following corollary to Theorem 6.

Corollary 7. (a) If Assumptions 1–3, 4W and 5–8 hold, thenAR∗∗

n ,LM∗∗

n , LR∗∗

n , κα


T̂ ∗∗

n


= [ARn, LMn, LRn, κα (Tn)] + op (1) .

(b) If Assumptions 1–3, 4SC and 5–8 hold, then κα


T̂ ∗∗
n


=

χ2
α (1) + op (1) andAR∗∗

n = ARn + op (1) →d χ2 q; b2π ′Qzzπ/I−1
11.2


,LM∗∗

n = LR∗∗

n + op (1) =

S ′

nQ
1/2′
zz π

2
/π ′Qzzπ

+ op (1) →d χ2 1; b2π ′Qzzπ/I−1
11.2


.
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(c) If Assumptions 1–3, 4SF and 5–8 hold, then

n−1AR∗∗

n = n−1LM∗∗

n + op (1) = n−1LR∗∗

n + op (1)

= β2π ′Qzzπ/I−1
11.2 + op (1) .

In perfect analogy with Corollary 5, parts (a) and (b) of
Corollary 7 imply that the testwhich rejectswhen LR∗∗

n > κα


T̂ ∗∗
n


is nearly optimal when identification is weak and demonstrably
optimal when identification is strong. Relative to Corollary 5,
which establishes analogous results for the testwhich rejectswhenLR∗

n > κα


T̂ ∗
n


, the additional property that can be claimed on the

part of the test based on LR∗∗

n is that of consistency under strong
identification. This, and the analogous consistency results about
the tests based on AR∗∗

n and LM∗∗

n , is the content of Corollary 7(c).

4.4. Inference when identification is strong

If identification is strong, then the usual duality between
estimation and testing holds, implying in particular that the
asymptotic optimality properties of the tests based on LR∗∗

n andLM∗∗

n are shared by aWald test based on an asymptotically efficient
estimator of β .

Let

β̂∗∗

n = ∆̂∗∗′

1,nQzz,n∆̂
∗∗

2,n/∆̂
∗∗′

2,nQzz,n∆̂
∗∗

2,n,

where ∆̂∗∗
n =


∆̂∗∗′

1,n, ∆̂∗∗′

2,n

′

and partitioning is after the qth

row. The estimator β̂∗∗
n can be interpreted as a non-Gaussian

counterpart of the 2SLS estimator of β , the latter being given by
β̄n = ∆̄′

1,nQzz,n∆̄2,n/∆̄
′

2,nQzz,n∆̄2,n, where ∆̄n =

∆̄′

1,n, ∆̄′

2,n

′.
The estimators β̂∗∗

n and β̄n are both obtained by means of a
generalized least squares (GLS) regression of an estimator of δ1
onto an estimator of δ2 in (3). The GLS regressions utilize identical
weighting matrices, but differ in terms of the estimators of δ being
employed, with β̂∗∗

n being based on an asymptotically efficient
estimator, ∆̂∗∗

n /
√
n, and β̄n being based on the OLS estimator

∆̄n/
√
n.

If Assumptions 1–3 and 4SF hold, then
√
n

β̄n − β


→d

N

0, Σ̄β


, where Σ̄β =


(1, −β) Ω (1, −β)′


/π ′Qzzπ . The next

result, which follows from Theorem 6(c) and the delta method,
gives the corresponding result for β̂∗∗

n .

Corollary 8. If Assumptions 1–3, 4SF and 5–8 hold, then
√
n

β̂∗∗

n − β


→d N

0, Σβ


,

Σβ =

(1, −β) I−1 (1, −β)′


/π ′Qzzπ.

Under normality the convergence result in Corollary 8 agrees
with that for the 2SLS estimator of β and its asymptotic equiva-
lents, such as the limited information maximum likelihood (LIML)
estimator and Fuller’s (1977) modification thereof. With non-
Gaussian errors, on the other hand, the estimator β̂∗∗

n compares
favorably with β̄n whenever the inequality I−1

≤ Ω is strict.
The existence of estimators which outperform 2SLS for certain

non-Gaussian error distributions has been known at least since
Amemiya (1982) and Powell (1983). For the purposes of relating
β̂∗∗
n to the two-stage least absolute deviations (2SLAD) and double

2SLAD (D2SLAD) estimators studied in those papers, define

β̃n (λ1, λ2) = Π̂n (λ1)
′ Qzz,nπ̂n (λ2) /π̂n (λ2)

′

×Qzz,nπ̂n (λ2) , (λ1, λ2)
′
∈ R2,
where Π̂n (λ1) = λ1Π̂
LAD
n + (1 − λ1) Π̂OLS

n , π̂n (λ2) = λ2π̂
LAD
n +

(1 − λ2) π̂OLS
n , and

Π̂ LAD
n , π̂ LAD

n


= arg min

(Π,π)
min

(γ1,γ2)

n
i=1

y1i − γ ′

1xi − Π ′zi


+
y2i − γ ′

2xi − π ′zi
 .

In this notation β̃n (0, 0) is the 2SLS estimator, while nonzero pairs
(λ1, λ2) give rise to estimators that are asymptotically distinct
from the 2SLS estimator. The Bahadur representation of any
β̃n (λ1, λ2) is readily obtained from the Bahadur representations of
Π̂ LAD

n , Π̂OLS
n , π̂ LAD

n , and π̂OLS
n . Utilizing these Bahadur representations

it can be shown that β̃n (λ1, 0) is asymptotically equivalent to
the 2SLAD(λ1) estimator and that β̃n (1, 1) is asymptotically
equivalent to the D2SLAD estimator(s).

Because

∆̂∗∗

1,n, ∆̂∗∗

2,n


/
√
n is an asymptotically efficient estima-

tor of (δ1, δ2) in (3), it compares favorablywith

Π̂n (λ1) , π̂n (λ2)


for any value of (λ1, λ2). This superiority is inherited by β̂∗∗

n , which
compares favorablywith all estimators of the form β̃n (λ1, λ2) (and
their asymptotic equivalents, such as the 2SLAD and D2SLAD esti-
mators). In fact, Theorems A.1 and A.2 can be used to show that
β̂∗∗
n is an asymptotically efficient (i.e., best regular) estimator of β

under strong identification.
As a consequence, one would expect the strong identification

local asymptotic power properties of the tests based on LR∗∗

n andLM∗∗

n to bematched by those of the test which rejects when W ∗∗
n >

χ2
α (1), where

W ∗∗

n = n

β̂∗∗

n

2
/Σ̂∗∗

β ,

Σ̂∗∗

β =


1, −β̂∗∗

n


Î∗∗−1
n


1, −β̂∗∗

n

′


/π̂ ′

nQzz,nπ̂n.

The next result, which follows from Theorem 6 (b) and the delta
method, verifies that conjecture.

Corollary 9. If Assumptions 1–3, 4SC and 5–8 hold, thenW ∗∗

n =

S ′

nQ
1/2′
zz π

2
/π ′Qzzπ + op (1)

→d χ 2 1; b2π ′Qzzπ/I−1
11.2


.

An attractive feature of W ∗∗
n is that its ingredients, β̂∗∗

n and
Σ̂∗∗

β , can be combined in the usual way to form a Wald test of
any null hypothesis regarding β , not just the null hypothesis that
β = 0. This feature is particularly convenient when hypothesis
tests are used to construct confidence intervals by inversion, as
it implies that valid (indeed, optimal) confidence intervals are
trivial to construct. Indeed, a confidence interval with asymptotic
coverage probability 1 − α is given by

β̂∗∗

n −


χ2

α (1) Σ̂∗∗

β /n, β̂∗∗

n +


χ2

α (1) Σ̂∗∗

β /n


.

It should be emphasized, however, that the displayed confidence
interval does not have asymptotic coverage probability 1−α under
weak identification. As a consequence, while the computational
simplicity of W ∗∗

n makes it an attractive competitor to LM∗∗

n andLR∗∗

n under strong identification, the Wald statistic does not enjoy
the robustness (and, in the case of LR∗∗

n , near optimality) properties
under weak identification that Corollary 7 (a) establishes on the
part of LM∗∗

n and LR∗∗

n .
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Remark. The LIMLK (i.e., LIML with known Ω) estimator of β is
given by

argmin
β

(1, −β)

∆̄1,n, ∆̄2,n

′ Qzz,n

∆̄1,n, ∆̄2,n


(1, −β)′

(1, −β) Ω (1, −β)′
.

This estimator is asymptotically equivalent to the 2SLS estimator
β̄n when identification is strong, but enjoys certain advantages
over β̄n when identification isweak (e.g., Staiger and Stock (1997)).
Analogously, the following non-Gaussian counterpart of the LIMLK
estimator of β is asymptotically equivalent (superior) to β̂∗∗

n under
strong (weak) identification:

argmin
β

(1, −β)

∆̂∗∗

1,n, ∆̂∗∗

2,n

′

Qzz,n


∆̂∗∗

1,n, ∆̂∗∗

2,n


(1, −β)′

(1, −β) Î∗∗−1
n (1, −β)′

.

5. Simulations

This section presents the results of a simulation study
investigating the finite-sample performance of the procedure
considered in this paper. Although we primarily focus on power
properties of the tests based on AR∗∗

n ,LM∗∗

n , and LR∗∗

n , we also
discuss the properties of the point estimator β̂∗∗

n under strong
identification.

5.1. Model setup

The data are generated by the model (2). Specifically, we set
xi = 1 and set q, the dimension of the instrumental variable, equal
to 4. The instruments are randomly generated from a standard
Gaussian distribution, demeaned, and then kept fixed throughout
the experiment. For the errors we consider two different specifica-
tions, based on (i) the standard normal distribution and (ii) the t(3)
distribution, respectively. (The Fisher information for the location
model generated by the t(3) distribution is 2/3, twice the inverse
of the variance of the t(3) distribution.) The probability densities
associated with the distributions are depicted in Fig. 1.

We generate 2n independent (studentized) errors ṽi =

(ṽ1i, ṽ2i)
′ from each distribution and define (v1i, v2i)

′
= (ṽ1i,

1 − ρ2ṽ2i + ρṽ1i)
′, hereby inducing a correlation of ρ between

the errors v1i and v2i. Consistent with the previous discussion, we
take β0 = 0. The 4× 1 vector π is given by ι ·

√
ζq/

√
ι′Z ′Zι, where

ι is a 4× 1 vector of ones, Z is the n× 4 matrix of instruments, and
ζ is the concentration parameter π ′Z ′Zπ/q, which determines the
‘‘strength’’ of the instruments. For the simulations, we chose n =

1000 as the sample size, S = 5000 as the number of simulations,
ρ = 0.5, and ζ taking on the values 1 and 10. In addition we
chose α = 0.05 for the size of our tests. (We obtained qualitatively
similar results for other choices of n, S, ρ, and ζ , but omit these to
conserve space.)

5.2. Implementation

The new procedures are compared to three benchmark pro-
cedures. The first of these is the Gaussian procedure constructed
using a feasible version of the quasi-sufficient statistics


S̄n, T̄n


employing the OLS estimator Ω̂OLS

n = (n − 5)−1n
i=1 v̂OLS

i v̂OLS′
i of

Ω,where v̂OLS
i are the OLS residuals.Wewill refer to this technique

as ‘‘OLS’’ for simplicity.
As a second benchmark procedure we compute the Normal

Scores Rank Tests introduced by Andrews and Soares (2007). We
refer to this procedure as ‘‘RNK’’ for brevity. These tests are seen to
have superior power properties to those denoted OLS herein and
are recommended by the authors based on both asymptotic and
finite-sample results. However, based on our asymptotic results,
Fig. 1. Probability densities.

our procedures are expected to have superior power properties
over the corresponding RNK tests.

Finally, the third benchmark procedure utilizes an ‘‘oracle’’
version of ∆̂∗∗

n . Specifically, using the true ℓ instead of its estimate,
we obtain

∆̂MLE
n =

√
nΠ̂OLS

n√
nπ̂OLS

n


+

Î−1

ℓ ⊗ Q−1
zz,n


×

1
√
n

n
i=1

ℓ

v̂OLS
i


⊗ zi,

where Îℓ = n−1n
i=1 ℓ


v̂OLS
i


ℓ

v̂OLS
i

′. It should be noted that
this is not a true ‘‘oracle’’ procedure in the sense that it uses
the estimated error terms rather than their true values and also
relies on an estimate of the information matrix. We include
this additional benchmark in an effort to identify the effects
on performance of using nonparametric estimates of the score
function. Although a slight abuse of notation, we will refer to this
technique as ‘‘MLE’’ for simplicity.

The (feasible) adaptive procedure based on ∆̂∗∗
n is referred to

as ‘‘ADP’’ for notational simplicity. This procedure is fully data-
driven, but requires the additional choice of three parameters: the
kernel k, the trimming parameter a, and the smoothing parameter
h. For specificity we set k equal to a standard Gaussian kernel
and set a = 0. The choice a = 0 violates Assumption 5(b), but
was made for simplicity and concreteness because the qualitative
results seemed to be more sensitive to the choice of h than to
the choice of a. Regarding the choice of h, we experimented
with a variety of procedures and specifications. In terms of
procedures we considered both first-generation and second-
generation bandwidth selection procedures for both univariate
density and derivative estimation and bivariate density and
derivative estimation (e.g., Ichimura and Todd (2007)). In terms
of specifications, we considered a common bandwidth as well
as different combinations of alternative bandwidths for densities
and partial derivatives. Unfortunately, but unsurprisingly in light
of previous Monte Carlo results on adaptive estimation in the
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Table 1
Empirical size-n = 500.

Bandwidth vi ∼ N (0, 1) − ζ = 1 vi ∼ N (0, 1) − ζ = 10 vi ∼ t(3) − ζ = 1 vi ∼ t(3) − ζ = 10
Scale (c) AR LM LR AR LM LR AR LM LR AR LM LR

0.45 0.187 0.132 0.173 0.182 0.117 0.133 0.078 0.072 0.080 0.080 0.071 0.077
0.46 0.172 0.126 0.164 0.170 0.111 0.128 0.073 0.068 0.075 0.073 0.067 0.074
0.47 0.159 0.119 0.156 0.161 0.105 0.120 0.067 0.064 0.069 0.068 0.063 0.069
0.48 0.150 0.114 0.147 0.149 0.100 0.115 0.061 0.061 0.066 0.062 0.060 0.066
0.49 0.141 0.109 0.136 0.138 0.095 0.110 0.057 0.059 0.063 0.058 0.057 0.062
0.50 0.132 0.105 0.128 0.131 0.091 0.103 0.053 0.056 0.059 0.055 0.055 0.061
0.51 0.124 0.100 0.120 0.121 0.088 0.099 0.049 0.054 0.056 0.051 0.053 0.058
0.52 0.113 0.094 0.114 0.112 0.084 0.095 0.047 0.051 0.053 0.047 0.050 0.056
0.53 0.106 0.090 0.107 0.107 0.080 0.091 0.044 0.049 0.050 0.045 0.048 0.053
0.54 0.099 0.087 0.099 0.100 0.075 0.088 0.041 0.047 0.048 0.042 0.047 0.051
0.55 0.092 0.083 0.094 0.095 0.072 0.085 0.039 0.044 0.045 0.040 0.045 0.050
0.56 0.084 0.079 0.089 0.086 0.069 0.082 0.038 0.043 0.042 0.038 0.043 0.049
0.57 0.080 0.076 0.084 0.079 0.066 0.078 0.036 0.042 0.040 0.035 0.041 0.046
0.58 0.076 0.071 0.078 0.072 0.064 0.075 0.034 0.040 0.038 0.033 0.039 0.045
0.59 0.071 0.067 0.073 0.069 0.061 0.072 0.032 0.038 0.037 0.031 0.038 0.044
0.60 0.067 0.064 0.069 0.063 0.059 0.068 0.029 0.037 0.034 0.029 0.037 0.042
0.61 0.063 0.062 0.065 0.059 0.056 0.065 0.028 0.036 0.033 0.027 0.036 0.041
0.62 0.059 0.060 0.060 0.055 0.053 0.062 0.027 0.034 0.031 0.025 0.035 0.039
0.63 0.055 0.057 0.057 0.052 0.051 0.059 0.025 0.033 0.029 0.024 0.032 0.038
0.64 0.053 0.056 0.054 0.047 0.049 0.057 0.024 0.032 0.028 0.023 0.030 0.036
0.65 0.049 0.054 0.052 0.045 0.047 0.055 0.021 0.031 0.028 0.021 0.029 0.035
0.66 0.045 0.053 0.050 0.044 0.046 0.053 0.020 0.030 0.027 0.020 0.028 0.033
0.67 0.042 0.051 0.048 0.041 0.045 0.050 0.019 0.028 0.025 0.019 0.028 0.032
0.68 0.039 0.050 0.045 0.039 0.043 0.048 0.018 0.027 0.024 0.018 0.027 0.032
0.69 0.036 0.048 0.043 0.037 0.041 0.046 0.017 0.026 0.024 0.018 0.026 0.030
0.70 0.034 0.045 0.041 0.034 0.039 0.045 0.016 0.026 0.022 0.017 0.025 0.030
0.71 0.033 0.044 0.038 0.030 0.038 0.043 0.016 0.024 0.020 0.017 0.024 0.030
0.72 0.031 0.043 0.037 0.028 0.038 0.043 0.015 0.024 0.020 0.016 0.024 0.029
0.73 0.028 0.041 0.035 0.028 0.037 0.041 0.014 0.024 0.019 0.015 0.023 0.028
0.74 0.027 0.040 0.033 0.025 0.036 0.040 0.014 0.023 0.018 0.014 0.023 0.027
0.75 0.025 0.039 0.031 0.024 0.035 0.039 0.014 0.021 0.017 0.013 0.021 0.026
0.76 0.024 0.037 0.030 0.022 0.034 0.038 0.014 0.021 0.017 0.012 0.020 0.024
0.77 0.023 0.037 0.028 0.021 0.033 0.037 0.013 0.020 0.015 0.012 0.020 0.023
0.78 0.022 0.035 0.026 0.020 0.031 0.035 0.012 0.020 0.015 0.012 0.019 0.022
0.79 0.020 0.034 0.025 0.019 0.030 0.034 0.012 0.019 0.015 0.011 0.019 0.021
0.80 0.019 0.034 0.023 0.018 0.030 0.034 0.011 0.018 0.014 0.011 0.019 0.021
univariate case (e.g., Steigerwald (1992)), our preliminary findings
showed that these procedures have disappointing size properties
for modest sample sizes. In the end we therefore opted for a
simple re-scaling of a rule of thumb choice for bivariate density
estimation. Specifically, we set hj = c


ω̂OLS

jj n−λ (j = 1, 2), where
h1 and h2 are the bandwidth choice for the first and second
dimension of the nonparametric score estimator, respectively, and
c and λ are constants to be chosen. Regarding λ, the goal was
to achieve size distortions that exhibit minimal sensitivity with
respect to sample size. The choice λ = 1/9 was found to be
satisfactory and was employed when constructing Tables 1–3,
which report size as a function of c for each of the four designs
considered and for samples of size n = 500 (Table 1), n = 1000
(Table 2), and n = 5000 (Table 3), respectively. In all cases, size
is a decreasing function of c . The size properties are somewhat
sensitive to the true distribution of the error terms. Although there
does not seem to be any choice of c for which size distortions are
close to zero across all designs, the choices c = 0.65 and c = 0.50
seem to work well for the Gaussian and t (3) model, respectively.

5.3. Results

Our explicit goal is to explore the extent to which the
asymptotic optimality properties of adaptive procedures are
inherited at least partially in finite samples, we report power
graphs based on choices of h that deliver tests with actual size
close to nominal size in our simulations. (Power curves are easier
to interpret and compare when competing tests have common
size.) Accordingly, based on the findings reported in Tables 1–3
we set c = 0.65 and c = 0.50 for the Gaussian and t (3) model,
respectively. Fig. 2 presents the power graphs for the AR, LM, and
CLR tests for the case where the reduced form errors are generated
from a Gaussian distribution.

The strength of the instruments is equal to 1 and 10 in the first
and second rows of graphs, respectively. In this particular case, the
OLS and MLE estimators of the linear coefficients coincide, while
the second-moment matrices are equal up to a constant multiple
which converges to 1 with the sample size. As a consequence,
the power curves of the tests based on these two procedures are
virtually equivalent. The RNK tests also appear to reach the power
curve generated by OLS andMLE. Because the adaptive procedures
employ a nonparametric estimator of ℓ, we would expect them
to have reduced finite sample power relative to the ‘‘oracle’’
procedures and this does indeed seem to be the case. Nevertheless,
the power loss is encouragingly small and the findings suggest that
the ADP procedures can dominate the OLS and RNK procedures
when the errors are non-Gaussian.

Fig. 3 presents the results for the case when the errors are
generated from a non-Gaussian distribution, a t(3) distribution
in this case. Again, the first and second rows differ by the choice
of the strength of the instruments. The results in this case are
consistent with the theoretical predictions. The tests based on the
MLE estimator have superior power relative to the test statistics
based on the OLS estimator, while the test statistics based on the
RNKprocedure andADP estimator have power curveswhich reside
in between the other two. Moreover, tests based on ADP appear to
(non-strictly) dominate the corresponding RNK tests. As expected,
theMLE estimator delivers important power gainswhen compared
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Fig. 2. Power curves, Gaussian errors.
to the RNK procedure. Presumably the difference between the
MLE and ADP power curves can be attributed to the fact that ADP
employs a nonparametric estimator of the nuisance parameter
ℓ. In other words, the asymptotic theory probably overstates the
extent to which departures from Gaussianity can be exploited in
finite samples. On the other hand, the qualitative predictions of the
asymptotic theory are borne out in the simulations insofar as Fig. 3
clearly suggests that even in finite samples the ADP procedures can
enjoy power advantages over the OLS procedures when the errors
are non-Gaussian.

Finally, in Fig. 4 we present (kernel density estimators of) the
sampling distributions of the estimators of β using each procedure
when instruments are ‘‘strong’’. The sampling distribution of the
ADP estimator β̂∗∗

n is more concentrated than that of the ‘‘OLS’’
estimator β̄n and less concentrated than that of the ‘‘oracle’’
estimator. This is also consistent with the theoretical predictions.
(Similar results were obtained for the ADP estimator of the
reduced-form coefficients. We omit the results to conserve space.)

In our view, the Monte Carlo results provide evidence in favor
of the procedure(s) developed in this paper. The key potential
drawback of the new procedure(s), which is common to all
nonparametric procedures, is the fact that no firm guidance on
the choice of the smoothing parameter is available. Although
it is beyond the scope of this paper to develop a theory-based
bandwidth selection rule with uniformly good size (and power)
properties, our results leadus to recommend theuse of bandwidths
of the form hj = 0.65


ω̂OLS

jj n−1/9, as this choice yields good
results when the errors are Gaussian and seems to be conservative
otherwise.

Appendix. Proofs

The main results of the paper will follow from two facts,
Theorems A.1 and A.2, about the model (3). Neither result is
particularly surprising, butwe have been unable to find statements
of these results in the literature.

Theorem A.1 is an LAN result. To state it, let

Ln (d, g) =

n
i=1

log f

y1i − γ1n (g1)′ xi

− δ1n (d1)′ zi, y2i − γ2n (g2)′ xi − δ2n (d2)′ zi


−

n
i=1

log f

y1i − γ ′

1xi − δ′

1zi, y2i − γ ′

2xi − δ′

2zi


denote the log likelihood ratio function associated with the local
reparameterization

γ =


γ1n (g1)
γ2n (g2)


=


γ1 + g1/

√
n

γ2 + g2/
√
n


,

δ =


δ1n (d1)
δ2n (d2)


=


δ1 + d1/

√
n

δ2 + d2/
√
n


,

let ‘‘opδ,γ
(1)’’ and ‘‘→dδ,γ

’’ be shorthand for ‘‘op (1) under the
distributions associated with (d, g) = (0, 0)’’ and ‘‘→d under the
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Fig. 3. Power curves, non-Gaussian errors.
distributions associated with (d, g) = (0, 0)’’, respectively, and let
ℓi = ℓ


y1i − γ ′

1xi − δ′

1zi, y2i − γ ′

2xi − δ′

2zi

.

Theorem A.1. Suppose (y1i, y2i) is generated by (3).
(a) If Assumption 1 (a) and 2 hold and dn is a bounded sequence,

then

Ln (dn, 0) = Lδ
n (dn) + opδ,γ

(1) ,

where Lδ
n (dn) = d′

n (I ⊗ Qzz) ∆δ
n − d′

n (I ⊗ Qzz) dn/2 and

∆δ
n =


I−1

⊗ Q−1
zz

 1
√
n

n
i=1

ℓi ⊗ zi →dδ,γ
N

0, I−1

⊗ Q−1
zz


.

(b) If, moreover, Assumption 1 (b) and 3 hold and gn is a bounded
sequence, then

Ln (dn, gn) = Lδ
n (dn) + Lγ

n (gn) + opδ,γ
(1) ,

where L
γ
n (gn) = g ′

n (I ⊗ Qxx) ∆
γ
n − g ′

n (I ⊗ Qxx) gn/2 and
∆δ

n
∆γ

n


→dδ,γ

N


0, I−1

⊗


Q−1
zz 0
0 Q−1

xx


,

∆γ
n =


I−1

⊗ Q−1
xx

 1
√
n

n
i=1

ℓi ⊗ xi.

Theorem A.2 is an adaptation result for one-step estimators of δ.

Given initial estimators δ̂n =


δ̂′

1n, δ̂
′

2n

′

and γ̂n =

γ̂ ′

1n, γ̂
′

2n

′ of δ
and γ , let

δ̃n


δ̂n, γ̂n


= δ̂n +


Ĩn


δ̂n, γ̂n

−1
⊗ Q−1

zz,n


1
n

n
i=1

ℓ̂n

v̂i

⊗ zi,

where

Ĩn


δ̂n, γ̂n


=

1
n

n
i=1

ℓ̂n

v̂i

ℓ̂n

v̂i
′

,

v̂i =


y1i − γ̂ ′

1nxi − δ̂′

1nzi
y2i − γ̂ ′

2nxi − δ̂′

2nzi


,

ℓ̂n (v) = −
∂ f̂n (v) /∂v

f̂n (v) + an
, f̂n (v) =

1
nh2

n

n
i=1

K


v − v̂i

hn


.

Theorem A.2. Suppose (y1i, y2i) is generated by (3). If Assump-
tions1–3 and5hold,


δ̂n, γ̂n


is discrete, and

√
n

δ̂n − δ, γ̂n − γ


=

Op (1), then

Ĩn


δ̂n, γ̂n


= I + opδ,γ

(1) ,

√
n

δ̃n


δ̂n, γ̂n


− δ


= ∆δ

n + opδ,γ
(1) .

Proof of Theorem 1. Apply Theorem A.1(a) with δ = 0 and dn =

µ (β, c). �
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Table 2
Empirical size-n = 1000.

Bandwidth vi ∼ N (0, 1) − ζ = 1 vi ∼ N (0, 1) − ζ = 10 vi ∼ t(3) − ζ = 1 vi ∼ t(3) − ζ = 10
Scale (c) AR LM LR AR LM LR AR LM LR AR LM LR

0.45 0.161 0.122 0.153 0.153 0.097 0.113 0.078 0.060 0.071 0.075 0.063 0.070
0.46 0.150 0.115 0.144 0.139 0.091 0.106 0.072 0.056 0.066 0.068 0.059 0.066
0.47 0.137 0.109 0.136 0.129 0.087 0.101 0.066 0.054 0.062 0.063 0.056 0.063
0.48 0.130 0.105 0.129 0.119 0.084 0.096 0.062 0.051 0.058 0.060 0.054 0.059
0.49 0.122 0.099 0.121 0.109 0.079 0.092 0.058 0.049 0.056 0.057 0.051 0.058
0.50 0.115 0.094 0.115 0.104 0.074 0.088 0.055 0.048 0.053 0.052 0.049 0.056
0.51 0.106 0.090 0.106 0.098 0.072 0.083 0.052 0.046 0.050 0.050 0.048 0.053
0.52 0.098 0.085 0.101 0.092 0.069 0.080 0.048 0.044 0.046 0.048 0.046 0.052
0.53 0.092 0.081 0.093 0.085 0.065 0.078 0.044 0.043 0.044 0.045 0.045 0.049
0.54 0.087 0.078 0.090 0.079 0.062 0.073 0.042 0.041 0.042 0.043 0.043 0.048
0.55 0.081 0.074 0.085 0.073 0.060 0.069 0.040 0.039 0.040 0.040 0.040 0.045
0.56 0.077 0.072 0.078 0.068 0.057 0.066 0.037 0.039 0.038 0.038 0.039 0.043
0.57 0.072 0.068 0.076 0.064 0.054 0.063 0.034 0.038 0.037 0.036 0.037 0.042
0.58 0.068 0.065 0.072 0.060 0.051 0.061 0.032 0.036 0.035 0.034 0.036 0.039
0.59 0.065 0.064 0.071 0.056 0.050 0.058 0.030 0.035 0.034 0.033 0.035 0.038
0.60 0.060 0.062 0.067 0.053 0.049 0.057 0.028 0.034 0.032 0.031 0.035 0.037
0.61 0.058 0.059 0.063 0.050 0.046 0.055 0.026 0.033 0.030 0.028 0.034 0.037
0.62 0.054 0.057 0.060 0.047 0.044 0.053 0.024 0.031 0.029 0.027 0.033 0.035
0.63 0.051 0.055 0.057 0.044 0.043 0.052 0.022 0.031 0.027 0.026 0.032 0.035
0.64 0.047 0.053 0.054 0.042 0.042 0.050 0.021 0.030 0.027 0.024 0.031 0.034
0.65 0.044 0.051 0.051 0.041 0.041 0.048 0.020 0.029 0.025 0.023 0.030 0.033
0.66 0.042 0.050 0.049 0.038 0.039 0.046 0.019 0.028 0.023 0.022 0.029 0.032
0.67 0.040 0.047 0.047 0.037 0.036 0.044 0.018 0.027 0.022 0.021 0.029 0.030
0.68 0.038 0.046 0.045 0.035 0.035 0.043 0.016 0.025 0.021 0.021 0.029 0.030
0.69 0.037 0.045 0.042 0.034 0.035 0.041 0.015 0.024 0.020 0.020 0.029 0.030
0.70 0.035 0.044 0.040 0.031 0.033 0.039 0.014 0.024 0.019 0.018 0.028 0.029
0.71 0.033 0.043 0.038 0.029 0.032 0.037 0.013 0.023 0.018 0.017 0.028 0.029
0.72 0.032 0.042 0.035 0.029 0.031 0.036 0.013 0.023 0.017 0.016 0.027 0.029
0.73 0.029 0.040 0.033 0.028 0.031 0.035 0.012 0.023 0.016 0.016 0.026 0.028
0.74 0.028 0.039 0.031 0.027 0.030 0.034 0.011 0.022 0.015 0.015 0.025 0.028
0.75 0.028 0.037 0.030 0.025 0.029 0.033 0.011 0.022 0.014 0.015 0.024 0.027
0.76 0.027 0.036 0.030 0.024 0.029 0.033 0.011 0.021 0.013 0.015 0.024 0.026
0.77 0.025 0.035 0.029 0.022 0.028 0.032 0.010 0.021 0.013 0.014 0.024 0.026
0.78 0.024 0.035 0.027 0.021 0.027 0.031 0.010 0.021 0.012 0.012 0.024 0.026
0.79 0.023 0.034 0.026 0.019 0.026 0.030 0.010 0.021 0.012 0.012 0.023 0.025
0.80 0.022 0.034 0.025 0.018 0.026 0.030 0.009 0.021 0.011 0.012 0.022 0.024
Fig. 4. Estimators of β .
Proof of Theorems 2, 4, and 6. Theorems 2 and 4(a) are special
cases of Theorem 6(a) and 4(b) is a special case of Theorem 6(b), so
it suffices to prove Theorem 6. In turn, Theorem 6 can be derived
with the help of Theorem A.2 because ∆̂∗∗

n =
√
nδ̃n


δ̂n, γ̂n


and

Î∗∗
n = Ĩn


δ̂n, γ̂n


, where δ̂n =


Π̂ ′

n, π̂
′
n

′

and γ̂n is as in the main
text.

Proof of Theorems 6(a). If c = 0 in Assumption 4W, then the
result can be obtained by applying Theorem A.2 with δ =


0′, 0′

′.
The result for c ≠ 0 follows by the contiguity property implied by
Theorem A.1(a).

Proof of Theorems 6(b). If b = 0 in Assumption 4SC, then the
result can be obtained by applying Theorem A.2 with δ =


0′, π ′

′.
The result for b ≠ 0 follows by applying Theorem A.1(a) with
dn =


bπ ′, 0′

′ and using Le Cam’s third lemma.

Proof of Theorems 6(c). Apply Theorem A.2 with δ = (βπ ′,
π ′)′. �

Proof of Theorems A.1. For every θ ∈ R2, let R̄ (θ) = θ ′

Iθ/4 +


R2 R (v, θ) f (v) dv, where, for v ∈ R2, R (v, θ) =

2
√

f (v − θ) /f (v) − 1 −
1
2θ

′ℓ (v)

1 [f (v) > 0]. �

If Assumption 2 holds, then
f (v − θ) −


f (v) =

1
2
θ ′

 1

0
ℓ (v − θ t)


f (v − θ t)dt

∀v, θ ∈ R2,

and for almost every v ∈ R2,
√
f is differentiable at v, with

total derivative−
1
2ℓ

√
f . Using these facts and proceeding as in the
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Table 3
Empirical size-n = 5000.

Bandwidth vi ∼ N (0, 1) − ζ = 1 vi ∼ N (0, 1) − ζ = 10 vi ∼ t(3) − ζ = 1 vi ∼ t(3) − ζ = 10
Scale (c) AR LM LR AR LM LR AR LM LR AR LM LR

0.45 0.126 0.098 0.127 0.139 0.091 0.106 0.064 0.059 0.066 0.071 0.063 0.068
0.46 0.118 0.095 0.117 0.128 0.088 0.102 0.059 0.056 0.062 0.066 0.062 0.066
0.47 0.111 0.091 0.109 0.120 0.083 0.096 0.055 0.054 0.058 0.061 0.059 0.063
0.48 0.100 0.086 0.102 0.111 0.081 0.093 0.051 0.051 0.055 0.056 0.057 0.061
0.49 0.093 0.080 0.096 0.106 0.077 0.089 0.049 0.048 0.052 0.053 0.054 0.059
0.50 0.086 0.077 0.088 0.100 0.075 0.085 0.046 0.047 0.047 0.050 0.052 0.057
0.51 0.081 0.075 0.081 0.093 0.073 0.084 0.044 0.045 0.045 0.048 0.049 0.055
0.52 0.074 0.072 0.076 0.089 0.071 0.081 0.041 0.043 0.043 0.045 0.048 0.053
0.53 0.069 0.069 0.072 0.084 0.070 0.078 0.039 0.042 0.041 0.042 0.046 0.052
0.54 0.064 0.066 0.068 0.078 0.067 0.077 0.037 0.041 0.039 0.040 0.045 0.050
0.55 0.060 0.064 0.063 0.072 0.064 0.075 0.036 0.039 0.038 0.038 0.045 0.048
0.56 0.057 0.061 0.060 0.067 0.063 0.073 0.033 0.038 0.036 0.037 0.043 0.048
0.57 0.051 0.059 0.058 0.063 0.060 0.069 0.032 0.037 0.034 0.035 0.041 0.046
0.58 0.048 0.058 0.054 0.060 0.056 0.067 0.030 0.036 0.032 0.033 0.040 0.045
0.59 0.046 0.056 0.052 0.058 0.055 0.064 0.028 0.035 0.031 0.033 0.037 0.043
0.60 0.044 0.054 0.050 0.055 0.053 0.062 0.027 0.034 0.029 0.031 0.036 0.041
0.61 0.043 0.052 0.048 0.053 0.052 0.060 0.026 0.032 0.028 0.030 0.034 0.039
0.62 0.040 0.050 0.045 0.050 0.051 0.058 0.025 0.032 0.027 0.029 0.034 0.037
0.63 0.038 0.048 0.044 0.048 0.049 0.055 0.024 0.031 0.026 0.028 0.033 0.036
0.64 0.036 0.047 0.042 0.045 0.048 0.054 0.023 0.030 0.025 0.027 0.031 0.036
0.65 0.036 0.045 0.041 0.044 0.047 0.053 0.022 0.030 0.024 0.025 0.031 0.035
0.66 0.034 0.043 0.039 0.042 0.046 0.052 0.022 0.029 0.023 0.024 0.030 0.034
0.67 0.033 0.042 0.038 0.040 0.045 0.050 0.021 0.027 0.023 0.023 0.030 0.032
0.68 0.032 0.041 0.036 0.038 0.043 0.049 0.021 0.026 0.023 0.022 0.029 0.031
0.69 0.031 0.040 0.034 0.037 0.042 0.048 0.019 0.026 0.021 0.021 0.028 0.030
0.70 0.029 0.039 0.033 0.036 0.041 0.047 0.018 0.026 0.021 0.021 0.027 0.030
0.71 0.027 0.038 0.032 0.035 0.041 0.046 0.018 0.025 0.020 0.020 0.027 0.029
0.72 0.026 0.038 0.031 0.033 0.039 0.046 0.018 0.024 0.019 0.019 0.026 0.028
0.73 0.025 0.037 0.031 0.032 0.039 0.044 0.017 0.023 0.019 0.018 0.025 0.027
0.74 0.024 0.036 0.030 0.031 0.038 0.044 0.017 0.024 0.019 0.017 0.024 0.027
0.75 0.022 0.035 0.029 0.029 0.037 0.042 0.016 0.023 0.019 0.017 0.024 0.027
0.76 0.022 0.034 0.028 0.028 0.036 0.041 0.016 0.023 0.018 0.016 0.023 0.026
0.77 0.021 0.033 0.027 0.026 0.035 0.040 0.015 0.022 0.017 0.015 0.022 0.025
0.78 0.020 0.032 0.025 0.025 0.035 0.040 0.014 0.022 0.017 0.014 0.022 0.025
0.79 0.020 0.031 0.024 0.025 0.035 0.039 0.014 0.021 0.017 0.014 0.021 0.024
0.80 0.019 0.030 0.023 0.024 0.034 0.038 0.012 0.021 0.016 0.013 0.021 0.023
proof of van der Vaart (1998, Lemma 7.6), it can be shown that if
Assumption 2 holds, then

lim
η↓0

V (η) = 0,

V (η) = sup
∥θ∥≤η,θ≠0

∥θ∥
−2


R2
R (v, θ)2 f (v) dv. (5)

It follows from this result and Lemma 1 of Pollard (1997) that

lim
η↓0

V̄ (η) = 0, V̄ (η) = sup
∥θ∥≤η,θ≠0

∥θ∥
−2 R̄ (θ) . (6)

The proofs of parts (a) and (b) are completely analogous, so to
conserve space we only establish part (a). The log likelihood ratio
Ln (dn, 0) admits the expansion

Ln (dn, 0) = d′

n (I ⊗ Qzz) ∆δ
n

+

n
i=1

Ri,n −
1
4

n
i=1


d′

n
ℓi ⊗ zi
√
n

+ Ri,n

2 
1 + ξi,n


,

where

Ri,n = R


y1i − γ ′

1xi − δ′

1zi
y2i − γ ′

2xi − δ′

2zi


,


d′

1nzi/
√
n

d′

2nzi/
√
n


,

ξi,n = ξ


d′

n
ℓi ⊗ zi
√
n

+ Ri,n


,

and the defining property of ξ (·) is log (1 + t) = t −
1
2

t2 [1 + ξ (2t)].
It suffices to show that the following conditions hold:

n
i=1

Ri,n = −
1
4
d′

n (I ⊗ Qzz) dn + opδ,γ
(1) , (7)

max
1≤i≤n

ξi,n = opδ,γ
(1) , (8)

n
i=1


d′

n
ℓi ⊗ zi
√
n

+ Ri,n

2
= d′

n (I ⊗ Qzz) dn + opδ,γ
(1) . (9)

To do so, suppose (d, g) = (0, 0).

Proof of (7). The random variables R1,n, . . . , Rn,n are independent
and satisfy

n
i=1

E

R2
i,n


≤

n
i=1

V

d′

1nzi/
√
n

d′

2nzi/
√
n

2
d′

1nzi/
√
n

d′

2nzi/
√
n

2
≤ max

1≤i≤n
V

d′

1nzi/
√
n

d′

2nzi/
√
n

2


1
n

n
i=1

d′

1nzi
d′

2nzi

2
= o (1)O (1) = o (1) ,

where the penultimate equality uses (5) and Assumption 1(a). As a
consequence,
n

i=1

Ri,n =

n
i=1

E

Ri,n

+ op (1) = −

1
4
d′

n


I ⊗ Qzz,n


dn

+

n
i=1

R̄


d′

1nzi/
√
n

d′

2nzi/
√
n


+ op (1) ,
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where d′
n


I ⊗ Qzz,n


dn = d′

n (I ⊗ Qzz) dn + o (1) by Assump-
tion 1(a) and n
i=1

R̄


d′

1nzi/
√
n

d′

1nzi/
√
n

 ≤

n
i=1

R̄ d′

1nzi/
√
n

d′

2nzi/
√
n


≤

n
i=1

V̄

d′

1nzi/
√
n

d′

2nzi/
√
n

2
d′

1nzi/
√
n

d′

2nzi/
√
n

2
≤ max

1≤i≤n
V̄

d′

1nzi/
√
n

d′

2nzi/
√
n

2


1
n

n
i=1

d′

1nzi
d′

2nzi

2
= o (1)O (1) = o (1) ,

where the penultimate equality uses (6) and Assumption 1(a).

Proof of (8). Because limt→0 ξ (t) = 0 (by Taylor’s Theorem),
the result follows from the fact that max1≤i≤n ∥ℓi ⊗ zi∥ /

√
n =

op (1) (by ℓi ∼ i.i.d. (0, I) and Assumption 1(a)) and max1≤i≤nRi,n
 ≤

n
i=1 R

2
i,n = op (1), where the latter uses the relation

E
n

i=1 R
2
i,n


= o (1) established in the proof of (7).

Proof of (9). Because
n

i=1 R
2
i,n = op (1) and

n
i=1


d′

n
ℓi ⊗ zi
√
n

2
= d′

n


1
n

n
i=1

ℓiℓ
′

i ⊗ ziz ′

i


dn,

it suffices to show that n−1n
i=1 ℓiℓ

′

i ⊗ ziz ′

i = I ⊗ Qzz + op (1).
The latter result can be established using ℓi ∼ i.i.d. (0, I) and
Assumption 1(a). �

Proof of Theorem A.2. The proof uses Schick’s (1987) approach.
First, it follows from Theorem A.1(b) and the properties of

δ̂n, γ̂n


thatwemay assume


δ̂n, γ̂n


= (δ, γ ). (This is so because

Theorem 6.2 of Bickel (1982) can be used to verify that Condition
A of Schick’s (1987) Method 3 holds). In other words, it suffices to
show that

∆̌δ
n =


Ǐ−1
n ⊗ Q−1

zz,n

 1
√
n

n
i=1

ℓ̌n (vi) ⊗ zi = ∆δ
n + op (1) (10)

and

Ǐn =
1
n

n
i=1

ℓ̌n (vi) ℓ̌n (vi)
′
= I + op (1) , (11)

where

ℓ̌n (v) = −
∂ f̌n (v) /∂v

f̌n (v) + an
, f̌n (v) =

1
nh2

n

n
i=1

K


v − vi

hn


.

To do so, let ℓ̌n,i (·) denote the leave-one-out version of ℓ̌n (·) given
by

ℓ̌n,i (v) = −
∂ f̌n,i (v) /∂v

f̌n,i (v) + an
,

f̌n,i (v) = f̌n (v) −
1

nh2
n


K


v − vi

hn


− K (0)


.

It follows from (the proof of) Lemma 3.1 and Remark 3.2 of
Schick (1987) that condition (10) is implied by condition (11),
Assumption 1(a) and 2, and the following conditions:

E


R2

ℓ̌n (v) − ℓ (v)

2 f (v) dv


= o (1) , (12)

max
1≤i≤n

E


R2

ℓ̌n (v) − ℓ̌n,i (v)

2 f (v) dv


= o

n−1 . (13)
Utilizing Assumptions 2 and 5 and proceeding as in Schick
(1987, p. 100), it can be shown that

R2
∥ℓn (v) − ℓ (v)∥2 f (v) dv = o (1) , (14)

where

ℓn (v) = −
∂ fn (v) /∂v

fn (v) + an
,

fn (v) =


R2

f (v − hnr) K (r) dr = E

f̌n (v)


.

It follows from this result that
R2

∥ℓn (v)∥2 f (v) dv = O (1) . (15)

Using Assumptions 2 and 5 we have, uniformly in v ∈

R2, E[∥f̌n (v) − fn (v) ∥
2
] = O


n−1h−2

n


and E[∥∂ f̌n (v) /∂v −

∂ fn (v) /∂v∥
2
] = O


n−1h−4

n


. Utilizing these facts, (15), and the

decomposition

ℓ̌n (v) − ℓn (v)

= −ℓn (v)
f̌n (v) − fn (v)

f̌n (v) + an
−

∂ f̌n (v) /∂v − ∂ fn (v) /∂v

f̌n (v) + an
,

it is easily shown that
R2

E
ℓ̌n (v) − ℓn (v)

2 f (v) dv

= O

n−1a−2

n h−4
n


= o (1) , (16)

a result which can be combined with (14) to yield (12).

It follows from (15) to (16) that


R2 E
ℓ̌n (v)

2 f (v) dv =

O (1). Utilizing this fact, Assumption 5, and the decomposition

ℓ̌n (v) − ℓ̌n,i (v)

= ℓ̌n (v)
f̌n (v) − f̌n,i (v)

f̌n,i (v) + an
+

∂ f̌n (v) /∂v − ∂ f̌n,i (v) /∂v

f̌n,i (v) + an
,

it is easily shown that (13) holds.
Finally, condition (11) holds because

Ǐn =
1
n

n
i=1

ℓ̌n,i (vi) ℓ̌n,i (vi)
′
=

1
n

n
i=1

ℓiℓ
′

i + op (1)

= I + op (1) ,

where the first equality uses the fact that ℓ̌n,i (vi) = ℓ̌n (vi) for each
i and the second equality uses (14) and (16). �

Remarks. (i) Conditions (11) and (13) are counterparts of Schick’s
(1987) conditions (3.2) and (3.6). No counterpart of Schick’s (1987)
condition (3.1) is needed because n−1n

i=1 zi → 0. Also, the
present definition of ℓ̌n,i ensures that ℓ̌n,i (vi) = ℓ̌n (vi) for every
i, implying in particular that the natural counterpart of Schick’s
(1987) condition (3.5) is satisfied.

(ii) With the possible exception of (14), all steps in the proof of
Theorem A.2 remain valid if the condition supr∈R

k′ (r)
 /k (r) <

∞ of Assumption 5(a) is replaced by the condition


R k′ (r)2 dr <

∞. The latter condition, which is implied by Assumption 5(a), is
satisfied by the normal kernel. Furthermore, if the error density f
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is such that supv∈R2
ḟ (v)

 < ∞, then (14) is satisfied (for any
kernel) provided limn→∞hn/an < ∞. This is so because

R2
∥ℓn (v) − ℓ (v)∥2 f (v) dv

≤ 2


Sf
∥ℓn (v)∥2


f (v) −


fn (v)

2
dv

+ 2


Sf

ℓn (v)

fn (v) − ℓ (v)


f (v)

2 dv
=


sup
v∈R2

ḟ (v)
2

o

h2
n/a

2
n


+ o (1) ,

where Sf =

v ∈ R2: f (v) > 0


and the last equality uses

Sf


f (v) −


fn (v)

2
dv = o


h2
n


, (17)

Sf

ℓn (v)

fn (v) − ℓ (v)


f (v)

2 dv = o (1) , (18)

and the bound supv∈R2 ∥ℓn (v)∥2
≤

supv∈R2

ḟ (v)
2 /a2n. The

result (17) can be shown by means of Proposition A.7 of Koul and
Schick (1996), while (18) can be established using Vitali’s theorem,
the L1-continuity theorem, and arguments analogous to those used
in the proof of Lemma 6.2 of Bickel (1982).
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