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Abstract

Binned scatter plots are a powerful statistical tool for empirical work in the so-
cial, behavioral, and biomedical sciences. Available methods rely on a quantile-based
partitioning estimator of the conditional mean regression function to primarily con-
struct flexible yet interpretable visualization methods, but they can also be used to
estimate treatment effects, assess uncertainty, and test substantive domain-specific hy-
potheses. This paper introduces novel binscatter methods based on nonlinear, possibly
nonsmooth M-estimation methods, covering generalized linear, robust, and quantile
regression models. We provide a host of theoretical results and practical tools for local
constant estimation along with piecewise polynomial and spline approximations, in-
cluding (i) optimal tuning parameter (number of bins) selection, (ii) confidence bands,
and (iii) formal statistical tests regarding functional form or shape restrictions. Our
main results rely on novel strong approximations for general partitioning-based esti-
mators covering random, data-driven partitions, which may be of independent interest.
We demonstrate our methods with an empirical application studying the relation be-
tween the percentage of individuals without health insurance and per capita income
at the zip-code level. We provide general-purpose software packages implementing our
methods in Python, R, and Stata.
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mation.
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1 Introduction

Data visualization is a crucial step in any statistical analysis. In the era of big data it

has become increasingly important to have simple yet informative visual tools to guide,

supplement, or in some cases even supplant, numerical statistical analyses. However, it is

important to maintain statistical formality and rigor to ensure the validity of any conclusions

based on the data. We seek to accomplish both of these goals—effective visualization couched

in a formal framework—with binned scatter plot methods.

Often known simply as a binscatter, the binned scatter plot has become a popular tool

for visualization in large data sets, particularly in the social and behavioral sciences. The

goal is to flexibly estimate, and visualize, features of the conditional distribution of a scalar

outcome yi, which may be discrete or continuous, given a covariate or treatment variable xi,

which is scalar and continuous, while possibly also controlling for a d-dimensional vector of

additional factors wi. For estimating the conditional mean, as in the traditional regression

analysis, binning has a long history: so familiar is this approach that over 60 years ago Tukey

(1961), calling it a regressogram, went so far as to claim that “[a]ll statisticians who handle

data know how to attack the simple case of this situation where y and x are both single real

numbers” (p. 682). Going on to describe the construction, Tukey writes: “[t]he x-axis is

to be divided into suitable intervals, the mean of all the y-values corresponding to x-values

falling in each given interval is to be found, the results are then to be plotted, either as

points, each located above the center of the corresponding x-interval, or better as horizontal

bars, each extending over the corresponding x-interval” (p. 682).

This simple construction (perhaps disappointingly often with plotted dots rather than

horizontal lines) has recently gained popularity in statistics, economics, and data science.

The prevalence of binscatter plots can be partly ascribed to its intuitive construction and

compelling visualization properties: given only data on xi and yi, the plot is a clean and

interpretable depiction of the conditional mean. Moreover, several limitations of the classical

scatter plot account for the rising use of binned scatter plots in modern analyses. First, in big
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data sets the classical scatter plot is too dense to be informative, particularly about general

“patterns” in the data which are to be modeled in subsequent analyses. Second, somewhat

conversely, in cases where privacy is a concern the scatter plot is not allowed, regardless of

its informational use as a visualization tool. Third, classical scatter plots do not provide a

well-defined way to control for other factors, a common goal in treatment effect estimation

and causal inference. Finally, particularly relevant to our setting, a scatter plot is not useful

when outcomes are discrete. In contrast, a binned scatter plot provides a simple, yet flexible

way of visualizing features of the conditional distribution of a (possibly discrete) outcome

variable given a continuous covariate (or treatment) of interest, while controlling for other

important factors.

Formally, a binscatter is grounded in the classical semilinear regression model. To date,

however, binscatters have been available only to visualize (and estimate) conditional mean

functions fitted using least squares. A common usage in this setting is comparing the non-

parametric estimate to a linear fit, as a precursor to linear regression analysis. See Starr

and Goldfarb (2020) for a practical review and background references. In the least squares

setting, a binscatter is formally an estimator of a semilinear model for the conditional mean,

nonparametric in the covariate of interest and linear in the controls, where the nonpara-

metric component is estimated by partitioned regression. Cattaneo et al. (2024b) used that

framework to derive formal statistical properties of canonical binscatter, including correct-

ing a common mistake in empirical practice when using controls, and provide asymptotically

valid confidence bands and optimal tuning parameter selection.

The restriction to least squares semilinear regression to estimate the conditional mean has

limited the applicability of binscatter methods. For one, important features of the data,

such as spread or variability, cannot be visualized. Further, existing methods (and theory)

can be misleading in settings where the outcome is discrete or in another way restricted. For

example, in the empirical illustration we use throughout, we study uninsuredness rates using

a fractional outcome model, most naturally fitted using quasi-likelihood methods based on
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the logistic link. Last but not least, binscatter methods for quantile regression analysis are

currently lacking in the literature, despite of their usefulness for empirical work.

This paper introduces and studies a broad class of binscatter M-estimation methods, in

models allowing for (i) a nonlinear and/or nonsmooth loss function and (ii) a nonlinear link

function. Our results provide for the use of binned scatter plots for various visualization

goals and different data types, particular leading cases being semiparametric conditional

quantile regression and generalized partially linear models. We make several methodological

and theoretical contributions: (i) we propose a feasible method for optimal tuning parameter

selection to choose the appropriate number of bins; (ii) we provide (pointwise and) uniform

inference to construct confidence bands and hypothesis tests for parametric specifications

and shape restrictions, and (iii) we develop group-wise comparisons for continuous treat-

ment effects or for treatment effect heterogeneity. Developing these methods relies on novel

technical work: allowing for a large class of binning methods, including random binning, we

prove new uniform (in x) Bahadur representations and strong approximations, and thus uni-

form distribution theory, for the broad class of nonlinear semiparametric models considered.

Obtaining these results for nonlinear, nonsmooth models, with data-dependent partitions

and additional covariates, represents the main technical contributions of our paper, some of

which may be of independent interest.

Our proposed nonlinear binscatter methods help restore, and in cases such as discrete out-

comes or additional controls, surpass, the utility of the conventional scatter plot. We offer

principled ways to visually assess patterns in the data, quantify uncertainty, and develop

hypothesis tests about the findings. Our results on quantile regression allow researchers to

assess the spread of the conditional distribution, detect outliers or influential observations

in the data, and study a larger class of treatment effects, formalizing and expanding com-

mon practices based on the classical scatter plot in small data sets, all while controlling

for additional important factors. Our confidence bands properly quantify and communicate

the uncertainty around the estimated function of interest, and can also be used to guide
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further analyses. We also develop formal uniform hypothesis testing procedures regarding

those functions, to assess shape constraints and parametric specifications. Causal inference

is an important application area of our uniform inference results: studying treatment effect

heterogeneity for binary treatments or the dose response function for a continuous treat-

ment without imposing a functional form (e.g., to evaluate important hypotheses such as

monotonicity in the dosage).

The paper proceeds as follows. We next discuss the connections between our work and

the existing literature. Section 2 introduces binned scatter plots, defines the statistical

model, and clarifies the parameters of interest. Section 3 gives details on our theoretical

contributions, which are then used in Sections 4 and 5 to deliver tuning parameter selection

and uniform inference. We illustrate our methods and results with a running empirical

application using zip code-level data from the American Community Survey (ACS). The

dependent variable, yi, is the percentage of individuals without health insurance, and the

independent variable of interest, xi, is per capita income. Section 6 concludes. The online

Supplemental Appendix (SA hereafter) contains additional technical and implementation

details, all mathematical proofs, and further discussion of how our technical contributions

improve on the related literature. General-purpose software in Python, R, and Stata, as

well as replication files, are available at https://nppackages.github.io/binsreg/. See

Cattaneo et al. (2024a) for an introduction.

1.1 Related Literature

This paper contributes to several strands of the literature. First, from a practical point

of view, our work builds upon and extends existing binned scatter plot methods available

for applied research. See Starr and Goldfarb (2020) for a review of that literature and

Cattaneo et al. (2024b) for formal results concerning least squares semilinear binscatter. Our

main methodological contribution is to introduce nonlinear binscatter methods, constructed

using a general, possibly nonsmooth semilinear M-estimation approach. As a result, we
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propose a broad array of new binscatter methods for generalized linear models (e.g., Logit

or Probit), robust semiparametric regression (e.g., Huber or trimmed least squares), and

quantile regression.

Second, our theoretical results contribute to the literature on series/sieve estimation in

general, and partitioning-based methods in particular (i.e., piecewise polynomials and splines

approximations). See Györfi et al. (2002) for a textbook introduction, and Shen et al. (1998),

Huang (2003), Belloni et al. (2015), Cattaneo and Farrell (2013), Cattaneo et al. (2020), as

well as references therein, for prior convergence rates and distribution theory. These prior

works studied uniform estimation and inference for linear piecewise polynomials and spline

series regression without data-driven partitioning and without additional covariates, often

imposing strong regularity conditions. Our primary technical contributions as compared

to the recent literature are (i) allowing for general, possibly nonlinear and nonsmooth M-

estimation, (ii) allowing for random partitions and hence random basis functions in the series

estimator, (iii) controlling for other factors in a semilinear model, and (iv) obtaining novel

strong approximations and uniform inference under weaker conditions than those previously

available. A substrand of the series estimation literature studies quantile regression, the clos-

est antecedent to our work being Belloni et al. (2019). Unlike that prior work, we consider

general nonlinear, possibly nonsmooth, M-estimation problems and allow for random parti-

tions and additional controls, and our technical results are obtained under weaker regularity

conditions, which in particular permit the use of piecewise constant fitting necessary for a

binned scatter plot. Finally, none of the results in Cattaneo et al. (2024b) are applicable

to the large class of nonlinear binscatter estimators considered in this paper, because they

only consider least squares semilinear binscatter models. Further details of how each of our

individual theoretical results improves on the extant literature is given throughout the SA.

Finally, our paper also contributes to the literature on data visualization, which has become

an increasingly active field of study in recent years due to the rise of big data and machine

learning methods. Our results speak directly to this literature, and in particular to the need
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for clear and explicit depictions of uncertainty, both in terms of variance and estimation

error (Healy, 2018). These are crucial in data visualization in science and research contexts

as this “builds trust and credibility” (Schwabish, 2021, p.189).

2 Setup

A binned scatter plot is designed to provide a flexible, nonparametric estimate of a regression

function. The construction and interpretation of a binned scatter plot is simple and intuitive,

which drives their appeal for applied work. But as we will see, there are some subtleties when

binned scatter plots are applied to nonlinear, nonsmooth models—especially when controlling

for additional covariates.

To describe the construction, it is helpful to first make precise the model and objects of

interest. Our goal is to learn a regression function (which need not be the conditional mean)

that features in the conditional distribution of a scalar outcome yi, which may be discrete or

continuous, given a covariate or treatment variable xi, which is scalar and continuous, while

possibly also controlling for a d-dimensional vector of additional factors wi. In applications,

the goal is to flexibly study the relationship of yi to xi, but not necessarily to discover (or

allow for) heterogeneity or nonlinearity in wi. Further, wi is often a large-dimensional set

of controls, such as fixed effects or factor variables. Consequently, we assume the regression

function depends on the scalar index θ0(xi,wi) := µ0(xi) + w′
iγ0, for an unknown func-

tion µ0 and vector γ0, and is thus partially linear in nature. This specification is directly

interpretable, and in cases where d is moderate or large, empirically convenient.

The model is defined by the following structure, which determines how the scalar index

θ0(xi,wi) relates to the outcome yi. Let θ be a generic value of the index. For a loss function

ρ(y; η(θ)) and inverse link function η(θ), let

(µ0(·),γ0) = argmin
µ∈M,γ∈Rd

E
[
ρ(yi; η(µ(xi) +w′

iγ))
]
, (2.1)
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where we assume the solution is unique, and ρ(y; η(θ)), η(θ), and the function class M obey

typical boundedness and smoothness restrictions discussed in Section 3. For different choices

of ρ(·) and η(·) this formulation covers a large class of problems including generalized linear

models, robust regression, quantile regression, and nonlinear least squares. We illustrate

with some leading specific examples.

Example 1 (Least Squares Regression). Setting η(θ) = θ and ρ(y; η) = (y − η)2 recovers

semiparametric least squares regression for partially linear models. ⌟

Example 2 (Logistic Regression). Assume that the binary outcome yi, conditional on xi and

wi, is distributed Bernoulli with probability η(µ(xi) +w′
iγ), where η(θ) = (1 + exp(−θ))−1,

then ρ(y; η) = −y log(η)− (1− y) log(1− η). ⌟

Example 3 (Huber Regression). Semiparametric robust partially linear regression sets

η(θ) = θ and ρ(y; η) = (y − η)21(|y − η| ≤ τ) + τ(2|y − η| − τ)1(|y − η| > τ) for a

user-specified τ > 0. ⌟

Example 4 (Quantile Regression). Set ρ(y; η) = [τ − 1(y < η)](y − η) with η(θ) = θ for a

user-specified quantile τ ∈ (0, 1). ⌟

The key statistical challenge is (uniform in x) recovery of the function µ0(x) for estimation

and inference. Once accomplished, we can cover a wide variety of objects derived from (2.1).

For concreteness we will focus on the following three objects, as they are of primary practical

importance:

(i) the level of the regression function, ϑ0(x,w) = η(µ0(x) + w′γ0) = η(θ0(x,w)),

(ii) the nonparametric component itself (or its derivative), µ
(v)
0 (x) = dv

dxvµ0(x), v ≥ 0, and

(iii) the marginal effect ζ0(x,w) =
∂
∂x
η(µ0(x) + w′γ0) = η(1)(θ0(x,w))µ

(1)
0 (x),

where h(1)(u) = d
du
h(u) denotes the derivative of a function with respect to its scalar ar-

gument and w is a user-chosen evaluation point for the additional controls. Typically, w
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is chosen as the mean or median, or for discrete variables or fixed effects, set to a baseline

category. The role of w in both plotting and inference introduces some important nuances

that are discussed below.

Each of these parameters corresponds to different empirical questions. The level, ϑ0(x,w),

is directly useful for visualization of the relationship of yi to xi and is commonly used in causal

inference. If the variable xi is a continuous treatment, our results yield a nonparametric

estimate of the dose response function, while controlling for relevant factors wi. A plot

of ϑ0(x,w) shows this function for the subgroup defined by wi = w. We can also obtain

separate dose response functions for different subgroups of the data to be used in multi-

sample comparisons. On the other hand, if xi is a pre-treatment variable, the same multi-

sample results provide an analysis of treatment effect heterogeneity for discrete (often binary)

treatments, and our uniform inference allows for discovery of treatment effect heterogeneity.

Finally, for visualization, obtaining ϑ0(x,w) in the quantile regression case can be used to

assess the spread of the conditional distribution (especially for quantiles close to zero and

one) or robust measures of central tendancy, as would be done with a classical scatter plot.

The nonparametric component, µ0(x), is most often studied to assess its functional form,

generally against a parsimonious parametric specification to be considered for later analyses

or for a shape restriction that is of substantive interest, such as monotonicity or convexity.

Historically, a common use of binscatter was to visually (and informally) assess if µ0(x) is

well-approximated by a linear model, and if so, proceeding under that specification for the

empirical results. Our results provide rigor to such practice, and expand the idea to a much

richer class of models and hypotheses.

The marginal (or partial) effect ζ0(x,w) is a standard object in economic analysis in

nonlinear models. In binary choice models it is common to study how the probability of

y = 1 changes as a function of x. The marginal effect at the average, obtained by setting w

to the sample mean, is a standard way to summarize nonlinear models by giving the effect for

the “average” individual. For example, we show that the marginal effect of income changes
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sign in our application, indicating a changing response in the uninsuredness rate as a result

of Medicaid. Comparing marginal effects across groups for heterogeneity analysis, in causal

or noncausal settings, is a common goal in social science applications with nonlinear models.

2.1 Estimation

Given an i.i.d. sample (yi, xi,w
′
i)
′, i = 1, . . . , n, the binscatter estimator is constructed

by solving the empirical analogue of (2.1) using a partitioning-based approximation to the

unknown function µ0(x). This nonparametric approximation requires two choices: the par-

titioning of the support of xi and the estimation within each bin.

To fix ideas, it is useful to begin with the simplest case where local constant fitting is used

and wi is absent. First, the support of xi is divided into J < n disjoint bins. J is the main

tuning parameter for this nonparametric estimation problem, and its choice is crucial both

visually and statistically. To describe the estimator, we will take J < n as given at present,

and return to its choice in Section 4 below.

Coupled with a choice of J is a method to divide the support. A major theoretical

innovation of our work is that the bin breakpoints themselves can be data-dependent, distinct

from a data-driven choice of J . The partition is denoted by ∆̂ = {B̂1, B̂2, . . . , B̂J}, with the

bins and breakpoints denoted by

B̂j =


[
τ̂j−1, τ̂j

)
if j = 1, 2, . . . , J − 1,[

τ̂J−1, τ̂J
]

if j = J.

The breakpoints {τ̂j}Jj=1 result from a user-chosen, possibly data-driven, partitioning method.

Our theoretical results cover any random partition that is independent of the outcomes

yi’s (given xi’s and wi’s), and “quasi-uniform”, which intuitively requires the bins to be

sufficiently similar. The formal condition is stated in the next section. The simplest ap-

proach is evenly-spaced breakpoint locations (τ̂j = xmin + j(xmax − xmin)/J). The most
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popular choice, however, is to use the empirical quantiles of xi, setting τ̂j = F̂−1(j/J)

with F̂ (u) = 1
n

∑n
i=1 1(xi ≤ u) the standard empirical cumulative distribution function,

and F̂−1 its generalized inverse. In the SA we show that both of these satisfy our generic

assumptions. Other possible methods include certain adaptive regression trees and related

partitioning methods, such as those with the so-called “X-property” or via sample splitting;

see Devroye et al. (2013), Zhang and Singer (2010), and references therein. For concreteness,

we will use quantile spacing for empirical analysis throughout the paper.

Given a partition ∆̂, the binscatter estimate is formed by fitting the sample analogue of

(2.1) within each bin, using only an intercept. In the simple case of least squares regression,

this is identical to computing the sample average of yi for observations in each bin, exactly

as Tukey (1961) described, yielding a piecewise constant approximation to the unknown

conditional expectation. The same method is followed for all other models. For example,

in the case of binary data or fractional outcomes, a logistic regression of yi on a constant is

fit for each bin. For the median, or any other quantile, one simply computes the empirical

quantile of yi using observations only within the bin.

Formally, we define the basis functions b̂0(x) = [1B̂1
(x),1B̂2

(x), · · · ,1B̂J
(x)]′, consisting of

indicators for each bin. We then obtain

µ̂(x) = b̂0(x)
′β̂, β̂ = argmin

β∈RJ

n∑
i=1

ρ
(
yi; η

(
b̂0(xi)

′β
))
. (2.2)

A graphical illustration of this procedure is shown in Figure 1. The data are obtained from

the ACS using the 5-year survey estimates beginning in 2013 and ending in 2017 (available

from the Census Bureau website). All analyses are performed at the zip code tabulation

area level for the United States (excluding Puerto Rico). The dependent variable, yi, is

the percentage of individuals without health insurance, and the independent variable of

interest, xi, is per capita income. The fractional nature of the outcome motivates the use

of logistic quasi-maximum likelihood for estimation and inference (Papke and Wooldridge,
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1996). Figure 1(a) shows the classical scatter plot of the raw data. This data set has about

32,000 observations, far from the millions commonly encountered, and already this plot

fails to be useful for assessing the functional form: the visualization is dominated by a dense

cloud of data with a few outlying observations. Figure 1(b) shows a binned scatter plot being

constructed, with the raw data in the background. The dots are the fitted values of applying

(2.2) following Example 2, i.e., we show ϑ̂(x) = η(µ̂(x)). Figure 1(c) isolates the binscatter

and overlays a linear fit (i.e., a global logistic quasi-likelihood with µ0(x) assumed linear

in x). The linear approximation to µ0(x) appears satisfactory at first, but this is because

the nonparametric estimate is undersmoothed. Figure 1(d) presents the estimate using the

optimal number of bins (Section 4), and shows that the informal analysis, relying on an ad

hoc choice of J , would miss an important feature of the data: the presence of the Medicaid

program which provides subsidized health insurance for limited-income individuals. As a

preview, Table 1 below shows that formal tests reject polynomial parametric specifications

and reject the hypothesis that the uninsurance rate is monotonically decreasing with per

capita income.

Graphs like Figures 1(c) and (d) have a long tradition in statistics and data science, and

have recently become ubiquitous in applied microeconomics. Visually assessing functional

forms is the typical use. Importantly, in this case the visualization shows an estimate of

ϑ0(x,w), not µ0(x) directly. Further, although the binned scatter plot invites the viewer

to “connect the dots” smoothly, the actual estimator is piecewise constant, which generally

gives a less appealing visualization but underpins any formal analysis.

We expand on (2.2) in two ways: adding the covariateswi and enriching the set of allowable

basis functions. The covariates can be directly incorporated into the loss, exactly as they

are in (2.1). Moreover, the additively separable and linear nature of the controls makes this

generalization straightforward empirically. Importantly, the presence of controls invalidates

bin-by-bin estimation, as the coefficients γ0 are global parameters. The SA discusses different

approaches to estimating µ0 and γ0.
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Figure 1: Illustration of Nonlinear Binned Scatter Plots. This figure illustrates the con-
struction of a nonlinear binned scatter plot using the ACS data. All analyses are performed at
the zip code tabulation area level for the United States (excluding Puerto Rico). The dependent
variable is the percentage of individuals without health insurance and the independent variable of
interest is per capita income.

(a) Raw Scatter Plot (b) Bin Cutoffs and Binscatter

(c) Ad Hoc Binscatter Plot (d) IMSE-Optimal Binscatter

Next, we replace the piecewise constant approximation based on b̂0(x) with an order-p

polynomial approximation in each bin that is (s−1)-times continuously differentiable at the

breakpoints of the bins, with the convention that s = 0 corresponds to discontinuous fits and
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s = 1 is continuous but nondifferentiable. This change to the basis gives additional flexibility

that is crucial for bias reduction and derivative estimation, the latter being instrumental for

studying shape restrictions and specification testing. By construction, p ≥ s ≥ 0, and

derivative estimation requires that the derivative of interest, v ≥ 0, is no larger than p.

The general basis is defined as b̂p,s(x) := T̂s[b̂0(x)
′ ⊗ (1, x, . . . , xp)′], where ⊗ denotes the

Kronecker product and T̂s is a [(p+1)J−(J−1)s]×(p+1)J transformation matrix ensuring

that the (s−1)-th derivative of the estimate is continuous. The exact form of T̂s is available in

Section SA-5.2 of Cattaneo et al. (2024b), and we note that T̂s also depends on the random

partitions. When s = 0, T̂s is the identity matrix, and the fit is a piecewise polynomial

of degree p. The piecewise constant fit (as bars or as dots) corresponds to s = p = 0.

Another popular choice are cubic B-splines, obtained by setting s = p = 3. On account of

its popularity and to simplify notation, we will assume throughout the paper that s = p and

use the notation b̂p(x) := b̂p,p(x). The SA treats the general case of s ≤ p.

The generalized, covariate-adjusted binscatter can now be defined. We first solve

[
β̂
γ̂

]
= argmin

β,γ

n∑
i=1

ρ
(
yi; η

(
b̂p(xi)

′β +w′
iγ
))
. (2.3)

Using (2.3) the estimators of the three functions of interest are:

ϑ̂p(x, ŵ) = η(θ̂p(x, ŵ)), (2.4)

µ̂(v)
p (x) = b̂(v)

p (x)′β̂, (2.5)

ζ̂p(x, ŵ) = η(1)(θ̂p(x, ŵ))µ̂
(1)
p (x), (2.6)

respectively, where θ̂p(x, ŵ) = µ̂p(x)+ŵ′γ̂, is the plug-in estimator of the true index θ0(x,w),

and ŵ (non-random or generated based on {wi}ni=1) is a consistent estimator for the desired

evaluation point w. We will often make the polynomial order p explicit, as this is needed for

clarity when constructing confidence bands and hypothesis tests in Section 5; dependence
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on ∆̂ and choice of J is suppressed, but also important.

It is worth mentioning that nonlinear binscatter methods can be constructed for both

fixed J < ∞ and large J → ∞ as n → ∞, naturally leading to different interpretations.

The functions of interest defined at the beginning of this section cannot be recovered when

J is fixed, but coarsened versions thereof will be, and these objects can have an interesting

interpretation: if the parition “settles” as n → ∞ to some fixed ∆0 with associated fixed

basis bp(x) (see Assumption 4 below for a precise definition), then the probability limit of

the fixed-J binscatter is the solution to (2.1) where the function class M is restricted to

be M = {µ(x) = bp(x)
′β : β ∈ RK , K = dim(bp(x))}. This is most natural with p = 0

and quantile-spacing, because the binscatter shows average outcomes across quantiles of a

continuous covariate. For p = 0 and J = 100, for example, the results allow for comparison

of yi across percentiles of xi (possibly controlling for wi), which is standard for xi variables

such as test scores or measures of wealth. All our estimation and inference results remain

valid when J is fixed, provided the target parameter is adjusted accordingly; see Cattaneo

et al. (2024a,b) for further discussion of fixed-J binscatter methods. For the remainder of

the paper, we will consider only the case J → ∞ as n→ ∞ to streamline the presentation.

3 Theory

This section presents two main novel technical results: a uniform Bahadur representation

and a feasible strong approximation. The methodological results in subsequent sections—

tuning parameter selection, confidence bands, and hypothesis testing—are built from these

results. To conserve space and notation, in this section we only show the results for ϑ̂p(x, ŵ).

The analogous results for µ̂
(v)
p (x) and ζ̂p(x, ŵ) are deferred to the SA (specific references

below) and are conceptually similar. The SA also gives other important technical results

and additional discussion of how our theory improves on the existing literature.

First, we state the assumptions required. The class of data generating processes is re-
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stricted by the following.

Assumption 1 (Data Generating Process).

(i) {(yi, xi,w′
i) : 1 ≤ i ≤ n} are i.i.d. random vectors satisfying (2.1) and supported on

Y × X ×W, where X is a compact interval and W is a compact set.

(ii) The marginal distribution of xi has a Lipschitz continuous (Lebesgue) density bounded

away from zero on X .

(iii) The conditional distribution of yi given (xi,w
′
i) has a (conditional) density with respect

to some sigma-finite measure uniformly bounded over its support and X ×W.

This assumption is fairly standard. It restricts attention to cross-sectional data and

bounded covariates with minimal regularity imposed on the underlying joint distribution.

Requiring xi to be continuously distributed is natural given the visualization and estimation

goals, but our results can also be applied to discrete xi by taking each mass point as its own

bin to conduct simultaneous estimation and inference over those support points.

The following assumption restricts the class of statistical models.

Assumption 2 (Statistical Model).

(i) ρ(y; η) is absolutely continuous with respect to η ∈ R and admits a derivative ψ(y, η) :=

ψ†(y − η)ψ‡(η) almost everywhere. ψ‡(·) is continuously differentiable and strictly

positive or negative. If the conditional distribution of yi given (xi,w
′
i) does not have a

Lebesgue density, then ψ†(·) is Lipschitz continuous, otherwise it is piecewise Lipschitz

with finitely many discontinuity points.

(ii) ρ(y; η(θ)) is convex with respect to θ and η(·) is strictly monotonic and three-times

continuously differentiable.

(iii) E[ψ(yi, η(θ0(xi,wi)))|xi,wi] = 0. σ2(x,w) := E[ψ(yi, η(θ0(xi,wi)))
2|xi = x,wi = w] is

bounded away from zero uniformly over X ×W. E[η(1)(θ0(xi,wi)
2σ2(xi,wi)|xi = x] is
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Lipschitz continuous on X , and E[|ψ(yi, η(θ0(xi,wi)))|ν |xi = x,wi = w] is uniformly

bounded over X ×W for some ν > 2. E[ψ(yi, η)|xi = x,wi = w] is twice continuously

differentiable with respect to η.

(iv) For Υ(x,w) := ∂
∂η
E[ψ(yi, η)|xi=x,wi=w]|η=η(θ0(x,w)), Υ(x,w)η(1)(θ0(x,w))2 is bounded

away from zero uniformly over X ×W and E[Υ(xi,wi)η
(1)(θ0(xi,wi))

2|xi = x] is Lip-

schitz continuous on X .

(v) µ0(·) is ς-times continuously differentiable for some ς ≥ p+ 1.

This assumption imposes regularity conditions on the statistical model in (2.1), particu-

larly on the loss function and resulting parameters of interest. The complexity of part (i)

reflects the breadth of the class of models and parameters we cover. When yi is continuous

the loss function can have points of nondifferentiability, but for discrete outcomes the loss

must be smoother. To illustrate, consider first Example 4 in Section 2: the loss function

for quantile regression is continuous but not differentiable everywhere, which is covered by

our assumptions with ψ(y, η) = 1(y − η < 0) − τ , where ψ†(y − η) = 1(y − η < 0) − τ

exhibits a discontinuity point, and ψ‡(η) = 1 is smooth. Alternatively, for logistic regression

(Example 2) yi ∈ {0, 1} and we have ψ(y, η) = (y − η)[η(1 − η)]−1, which exactly matches

the required structure of ψ†(y − η)ψ‡(η). Both functions are clearly as smooth as required

and the definition of η(θ) ensures that ψ‡ > 0. The rest of the assumption gives standard

moment and boundedness conditions to ensure that the parameters and their estimators are

well-defined; those regularity conditions are also satisfied in all examples of interest. Finally,

the nonparametric object µ0(·) is assumed to be smooth, as is standard in the nonparametric

inference literature.

We next give several high-level conditions on the estimation procedure. These conditions

ensure that the partitioning scheme is sufficiently regular and that the evaluation point for

the control variables wi and the Gram matrix can be estimated sufficiently well.

Assumption 3 (High-Level Estimation Conditions).
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(i) The partition ∆̂ is independent of {yi}ni=1 given {xi,wi}ni=1 and, with probability ap-

proaching 1, max1≤j≤J |τ̂j − τ̂j−1| ≤ Cmin1≤j≤J |τ̂j − τ̂j−1|, for an absolute constant

C > 0.

(ii) ∥ŵ−w∥ = oP(1) and ∥γ̂−γ0∥ = oP(
√
J/n+J−p−1), where ∥ ·∥ is the Euclidean norm.

(iii) For the infeasible Gram matrix Q̄p := n−1
∑n

i=1 b̂p(xi)b̂p(xi)
′Υ(xi,wi)η

(1)(θ0(xi,wi))
2,

there is an estimator Υ̂(xi,wi) such that ∥Q̄p − Q̂p∥ = OP
(
J−p−1 +

(
J logn
n1−2/ν

)1/2)
, where

Q̂p := n−1
∑n

i=1 b̂p(xi)b̂p(xi)
′Υ̂(xi,wi)η

(1)(θ̂p(xi,wi))
2, and ∥ · ∥ is the operator norm.

The requirement that the partition intervals are not too dissimilar in length is satisfied

for evenly spaced partitioning, trivially, and is shown to hold for quantile spacing in the

SA (Lemma SA-5.2). For other data-driven methods this condition must be checked. This

assumed property of the random bining structure is often called quasi-uniformity (Cattaneo

et al., 2020; Huang, 2003), and is important for controlling the approximation bias and, when

combined with the assumptions on the density of xi, for ensuring that each bin contains

sufficient data to control the variance. Part (ii) requires that the desired evaluation point of

wi (such as the mean) can be estimated consistently and that the coefficient vector γ0 can

be estimated sufficiently accurately. Generally neither is restrictive, as the nonparametric

estimation of µ0(x) is the most statistically difficult estimation in this setting. Finally, part

(iii) ensures that we have a feasible estimator of the Gram matrix that converges rapidly

enough. The infeasible Gram matrix Q̄p defined above is not a population object, but rather

retains the randomness of the estimated basis. This will be key in our results and is discussed

following Theorem 1. See Section SA-4.1 for examples of Υ̂(xi,wi) for different models.

Our first theoretical result is a uniform (in x) Bahadur representation for ϑ̂p(x, ŵ) as

defined in (2.4).

Theorem 1 (Bahadur Representation). Suppose that Assumptions 1, 2, and 3 hold, and
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that J
ν

ν−2 log n+ J(log n)7/3 + (J2(log n))
ν

ν−1 = o(n) and log n = o(J). Then,

sup
x∈X

∣∣ϑ̂p(x, ŵ)− ϑ0(x,w)− L̂p(x,w)
∣∣ = OP(rn),

where

L̂p(x,w) := η(1)(θ0(x,w))b̂p(x)
′Q̄−1

p

1

n

n∑
i=1

b̂p(xi)η
(1)(θ0(xi,wi))ψ(yi, η(θ0(xi,wi))),

and rn :=
(
J logn

n

)3/4
log n+ J− p

2

(
log2 n

n

)1/2
+ J−p−1 + ∥γ̂ − γ0∥+ ∥ŵ − w∥.

This result is essentially a stochastic linearization of the estimator, and yields important

consequences including the mean squared error expansion used to choose J and the asymp-

totic variance formula for inference. The form of the variance is reminiscent of its parametric

counterpart (e.g., for generalized linear models), but estimation is more complicated. Herein

we maintain general high-level conditions justifying several alternatives commonly used in

practice. These are discussed in Section SA-4.1. The analogous Bahadur representations

for µ̂
(v)
p (x) and ζ̂p(x, ŵ), under the same assumptions, are given in Theorem SA-3.1. The

“linear” term is slightly different to account for the different structure of the three estimands

and the remainder rate for derivative estimation is slower.

With the Bahadur representation in place, we can develop tools for inference. Our main

result is a strong approximation for the (Studentized) t-statistic process for each of the three

estimators, allowing us to obtain a feasible asymptotic distributional approximation. Again

we give the details only for ϑ̂p(x, ŵ) and defer the others to the SA. The variance is an

immediate consequence of the expansion in Theorem 1, and is made feasible by replacing

unknown objects by their estimators. For a given p, define the statistic

Tϑ,p(x) =
ϑ̂p(x, ŵ)− ϑ0(x,w)√

Ω̂ϑ,p(x)/n
, Ω̂ϑ,p(x) := η(1)(θ̂p(x, ŵ))

2b̂p(x)
′Q̂−1

p Σ̂pQ̂
−1
p b̂p(x), (3.1)
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where Σ̂p := n−1
∑n

i=1 b̂p(xi)b̂p(xi)
′ψ(yi, η(θ̂p(xi,wi)))

2η(1)(θ̂p(xi,wi))
2 and Q̂p is defined in

Assumption 3. The t-statistics Tµ(v),p(x) and Tζ,p(x), for µ
(v)
0 (x) and ζ0(x,w) respectively,

are entirely analogous, and are defined in Section SA-3.3.

Our inference results will follow from the next key theorem.

Theorem 2 (Strong Approximation). Suppose that Assumptions 1, 2, and 3 hold, and let

(an : n ≥ 1) be a sequence of non-vanishing constants such that J and ŵ obey

J(log n)2

n1− 2
ν

+
(J(log n)7

n

)1/2

+ nJ−2p−3 +
(log n)2

Jp+1
+ nJ−1∥γ̂ − γ0∥2 = o(a−2

n ),

∥ŵ − w∥ = oP(a
−1
n

√
J/n), and (J2 log(n))ν/(ν−1) = o(n). Then, on a properly enriched

probability space, there exists a (J + p)-dimensional standard Normal random vector N such

that for any ξ > 0,

P
(
sup
x∈X

|Tϑ,p(x)− Z̄ϑ,p(x)| > ξa−1
n

)
= o(1), Z̄ϑ,p(x) =

b̂p(x)
′η(1)(θ0(x,w))Q̄

−1
p Σ̄

1/2
p√

Ω̄ϑ,p(x)
N,

where Σ̄p and Ω̄ϑ,p(x) are shown in Section SA-3. On a further enriched space, there exists

a conformable standard Normal vector N⋆, independent of {(yi, xi,w′
i)
′}ni=1 and ∆̂, such that

for any ξ > 0,

P
(
sup
x∈X

|Z̄ϑ,p(x)− Ẑϑ,p(x)| > ξa−1
n

∣∣∣{(yi, xi,w′
i)
′}ni=1, ∆̂

)
= oP(1),

Ẑϑ,p(x) =
b̂p(x)

′η(1)(θ̂p(x, ŵ))Q̂
−1
p Σ̂

1/2
p√

Ω̂ϑ,p(x)
N⋆.

The approximating process, Z̄ϑ,p(·), is a Gaussian process conditional on {xi,wi}ni=1 and

∆̂ by construction, and the elements of Σ̄p, Ω̄ϑ,p(x) and b̂p(x) reflect this conditioning. This

process is infeasible but the second result shows that all the unknown quantities in in Z̄ϑ,p(·)

can be replaced by their sample analogues to obtain a feasible approximation. Theorems

SA-3.5 and SA-3.6 give the corresponding results for Tµ(v),p(x) and Tζ,p(x), under the same
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assumptions. Pointwise inference results are also given in the SA for completeness.

Theorems 1 and 2 substantially generalize the least squares results in Cattaneo et al.

(2024b), under essentially the same rate restrictions, with an error of approximation that is

optimal up to log(n) terms. Our results are on par with, or improve upon, prior theory for

kernel estimators of nonlinear models (Kong et al., 2010) and series estimation for quantile

regression (Belloni et al., 2019). There are several key improvements. First, having sharp rate

conditions allows us to accommodate p = 0, which is generally excluded by the prior literature

but necessary for binned scatter plots. Note that these theorems give approximations for the

entire t-statistic process, and not just functionals thereof, under such weak conditions. Prior

work has obtained such sharp results only for the supremum of the process. Further, we

allow for random partitioning (i.e. series estimation with data-dependent basis functions),

which represents a major technical hurdle, and also allow for additional control variables.

In fact, beyond being ruled out by prior work, the randomness in the basis functions

requires a novel theoretical approach. The key motivation behind this approach is that the

basis functions b̂
(v)
p (x) do not converge uniformly to a nonrandom counterpart, due to the

sharp discontinuity of the (random) indicator functions. It is not possible to obtain the

uniform results of Theorem 1 (or the strong approximations below) by expanding around a

nonrandom limit. Thus b̂
(v)
p (x) is left as random in the Bahadur representation, including in

the matrices Q̄p and Σ̄p. This further separates our results from prior literature. The more

general theorems in the SA are followed by remarks detailing how our work improves on the

relevant literature in each case.

4 Tuning Parameter Selection

We can use our theoretical results from the previous section to directly inform implementa-

tion in empirical applications. Our first task is selecting the number of bins. The choice of J

determines both the visual and statistical properties of the estimator. Consistent estimation
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and valid inference is possible for a range of diverging sequences of J , but this does not pro-

vide sufficiently precise guidance for implementation. Thus, our first methodological result

is a Nagar-type integrated mean squared error expansion that enables an optimal choice of

J in empirical applications.

To obtain the result, we need one further assumption to characterize the leading terms of

the expansion. Intuitively, we require that the random partition ∆̂ “converges” to a fixed

one which obeys the same restrictions as in Assumption 3. This assumption is not needed

for any other results.

Assumption 4. There exists a non-random partition ∆0 = {B1, · · · ,BJ} with Bj = [τj−1, τj)

for j ≤ J − 1 and BJ = [τJ−1, τJ ] such that max1≤j≤J |τj − τj−1| ≤ Cmin1≤j≤J |τj − τj−1|, for

an absolute constant C > 0 and max1≤j≤J |τ̂j − τj| = oP(J
−1).

This condition trivially holds for well-behaved nonrandom partitions, but also holds for

the leading case of quantile-spacing, since sample quantiles converge to their population

counterparts. In more general cases with data-driven partitions this condition could fail.

However, all our other results remain valid, and furthermore, even if this condition fails a

rule-of-thumb choice of J is available, which has the optimal rate but suboptimal constants.

See Section SA-4.2 for discussion.

Our IMSE result for ϑ̂p(x, ŵ) is given by the following. The corresponding results for

µ̂
(v)
p (x) and ζ̂p(x, ŵ) are stated in Theorem SA-3.4.

Theorem 3. Set ω(x) to be a continuous weighting function over X bounded away from zero.

Suppose that Assumptions 1, 2, 3, and 4 hold, and let J
ν

ν−2 log n+J
2ν
ν−1 (log n)

ν
ν−1+J(log n)7 =

o(n) and log n = o(
√
J), and ∥ŵ − w∥ = oP(

√
J/n+ J−p−1). Then,

∫
X

(
ϑ̂p(x, ŵ)− ϑ0(x,w)

)2

ω(x)dx = AISEϑ + oP

(J
n
+ J−2(p+1)

)
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where AISEϑ obeys

E[AISEϑ|{(xi,w′
i)
′}ni=1, ∆̂] =

J

n
Vn(p) + J−2(p+1)Bn(p) + oP

(J
n
+ J−2(p+1)

)
,

for nonrandom terms Vn(p) and Bn(p) shown in Theorem SA-3.4 that are bounded and

nonzero in general.

This result is stated in terms of J , as it is the tuning parameter, but the rates and

constants depend on the fixed polynomial order p (recall that we set p = s, see Section 2.1).

An L2 convergence rate immediately follows from this result. An L∞ convergence rate is

also available in the SA (Corollary SA-3.1). This theorem, and the L2 and L∞ rates, are

new to the literature, even in the case of non-random partitioning and without covariate

adjustment, for nonlinear series estimators and binscatter methods.

The practical consequence of Theorem 3 is that we can balance the (squared) bias and

variance to obtain an IMSE-optimal choice of J , which is given by

JIMSE(p) :=

(
2(p+ 1)Bn(p)

Vn(p)

) 1
2p+3

n
1

2p+3 . (4.1)

Implementing binscatter with this J is optimal in the sense of providing the IMSE-optimal

estimate of the unknown function ϑ0(·,w). In the next section we discuss the use of JIMSE(p)

for inference, where, as is typical, a bias correction must be applied. A feasible version of

JIMSE(p) is described in Section SA-4 and implemented in the binsreg package (Cattaneo

et al., 2024a). Section SA-4.3 discusses binned scatter plots with a fixed choice of J , which

can be visually appealing and interpretable in some applications.

Figure 2 demonstrates the use of the optimal J for quantile estimation (see Figure 1(d)

for the mean). Quantile regression can be used to visualize the spread of the conditional

distribution. Observe that Figure 2 restores the visualization of the variability in the data

that is present in Figure 1(a) but hidden by the averaging in Figure 1(c). Figure 2(a) shows

that there is much larger variance in the fraction insured in lower income areas, but Figure
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2(b) shows that this gap narrows when controlling for demographics (ŵ is set to the sample

mean). In this case we control for (i) percentage of residents with a high school degree, (ii)

percentage of residents with a bachelor’s degree, (iii) median age of residents, and (iv) the

local unemployment rate.

Figure 2: Conditional Quantiles. This figure illustrates the use of quantile regression to visualize
the spread in the ACS data (see Example 4). As the link function is the identity, panel (a) shows
estimates of ϑ0(x,w) for τ = 0.1, 0.5, 0.9, while panel (b) shows the same quantiles including
additional covariates controlling for demographics: (i) percentage of residents with a high school
degree, (ii) percentage of residents with a bachelor’s degree, (iii) median age of residents, and (iv)
the local unemployment rate.

(a) Quantile Regression w/o Controls (b) Quantile Regression w/ Controls

5 Uniform Inference

We now turn to uniform inference for the three functions defined in Section 2. Uniform

inference is required to make statistical statements about the functions ϑ0(x,w), µ
(v)
0 (x), and

ζ0(x,w), rather than about their values at a specific point x. Pointwise inference methods

(e.g. confidence intervals) will not suffice for our main applications of interest, including

treatment effect heterogeneity and continuous treatment effects, as well as shape restrictions

and functional forms. For completeness, pointwise inference results are given in the SA and
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implemented in the binsreg package, but omitted here to save space.

A key element of our uniform inference results—from a practical point of view—is the

pairing of a feasible tuning parameter choice with valid inference. To give the most accurate

estimate, and therefore also visualization, of ϑ0(x,w) we prefer to use JIMSE(p) of (4.1).

However, as is typical for nonparametric problems, the (I)MSE-optimal tuning parameter

choice delivers invalid inference, as it fails to eliminate a first-order bias. We therefore use

robust bias correction to ensure that JIMSE(p) remains a valid choice across all uses, delivering

optimal estimation and valid inference. With this eye toward practicality, we state all results

below specifying J = JIMSE(p), but the SA gives the more general results under mild rate

restrictions on J .

Bias correction involves estimating, and removing, the leading smoothing bias term, and

is made “robust” by correcting the standard errors to account for the additional sampling

variability that has been introduced. Robust bias correction has theoretically superior higher-

order inference properties (Calonico et al., 2018, 2022), performs well in simulations, and has

been empirically validated in specific contexts (Hyytinen et al., 2018). Robust bias correction

is operationalized in the present context by (i) selecting a degree p and creating a partition

∆̂ based on JIMSE(p) to form the optimal point estimate of ϑ̂p(x, ŵ) and then (ii) conducting

inference using Tϑ,p+1(x) (or its feasible analogue Ẑϑ,p+1(x)), i.e. the statistic formed using

a higher-degree polynomial but the partitioning scheme based on p in (i): ∆̂ = ∆̂(JIMSE(p)).

Any higher-degree polynomial may be used, but p+ 1 is simple and robust. Cattaneo et al.

(2020) give further discussion of robust bias correction in the context of partition regression,

including alternative strategies.

5.1 Confidence Bands

Our first uniform inference result delivers confidence bands for the functions ϑ0(x,w), µ
(v)
0 (x),

and ζ0(x,w). Confidence bands are similar in spirit as the more familiar concept of confi-

dence intervals, but instead cover the entire function (uniformly over x ∈ X ) with a prespec-
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ified probability. Confidence bands are the appropriate tool for visualizing the uncertainty

around the estimated function. The size of the band also changes to reflect the presence

of heteroskedasticity in the data. These bands can be used directly to identify interesting

or important features of the function, for example, regions where it is statistically indistin-

guishable from zero or from a constant function. Bands are also useful for assessing the

functional form or shape, such as regions of linearity or monotonicity, and therefore visually

complement the formal hypothesis tests we introduce below.

The confidence bands are built from Theorem 2, coupled with robust bias correction, as

discussed above. Confidence bands are defined as the area between an upper and lower

bounding function. Recall that we employ robust bias correction, so that ϑ̂p+1(x, ŵ) is the

bias-corrected version of ϑ̂p(x, ŵ), and is thus the “center” of the confidence band, and

using Ω̂ϑ,p+1(x) in the standard error accounts for the additional variability. The robust

bias-corrected confidence band for ϑ0(x,w) is given by

Îϑ,p+1(x) =
[
ϑ̂p+1(x, ŵ)± cϑ

√
Ω̂ϑ,p+1(x)/n

]
, (5.1)

where the critical value is determined by

cϑ = inf

{
c ∈ R+ : P

[
sup
x∈X

|Ẑϑ,p+1(x)| ≤ c

∣∣∣∣ {(yi, xi,w′
i)
′}ni=1, ∆̂

]
≥ 1− α

}
. (5.2)

The asymptotic validity of this confidence band follows from Theorem 2, which allows us to

approximate the distribution of the supremum of Tϑ,p+1(x) by applying the same functional

to Ẑϑ,p+1(x). This yields the following result. Here we assume directly that the optimal

J is used. Theorem SA-3.8 states a more general result, valid for a range of J , as well as

inference results for µ
(v)
0 (x) and ζ0(x,w).

Theorem 4. Set J = JIMSE(p). Suppose that Assumptions 1, 2, and 3 hold, with p + 1 in

place of p and ν > 3, and let ∥ŵ−w∥ = oP(
√
J/(n log J)) and ∥γ̂−γ0∥ = oP(

√
J/(n log J)).
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Then, for Îϑ,p+1(x) defined in (5.1),

P
[
ϑ0(x,w) ∈ Îϑ,p+1(x), for all x ∈ X

]
= 1− α + o(1).

This result establishes valid confidence bands for generalized, covariate-adjusted binscat-

ters. We can use this result to visually assess uncertainty about the form and shape of the

regression function. One can visually “test” hypotheses of interest, though formal testing

(Section 5.2) is recommended. Plotting both the estimate ϑ̂p(x, ŵ) and the band Îϑ,p+1(x) is

advisable in applications because doing so presents both the IMSE-optimal point estimate

and a valid measure of uncertainty (and one that uses the same bins).

In nonlinear models, particularly in social sciences, partial effects are often the preferred

way of summarizing the relationship (causal or not) of xi to yi, controlling for wi. In our

setting this corresponds to the estimate of ζ0(x,w) and its associated confidence band. When

xi is a treatment variable, ζ0(x,w) captures the effect of increasing the treatment dosage,

and the band can help identify regions of X with the largest effects, or any other noteworthy

shape.

Figure 3 shows examples of confidence bands using our running empirical application.

The confidence band in Figure 3(a) displays the uncertainty surrounding the estimate first

shown in Figure 1(d). The presence of the Medicaid program is clearly delineated by the

shape of the band at lower income levels. From the band we can immediately conclude that

the relationship is nonmonotonic. This is further emphasized in Figure 3(b), showing the

marginal effect. Using the bands, we can reject the null hypothesis of monotonicity as the

band lies completely on either side of zero at low and high income levels.

There are two features of our confidence bands that warrant mention. First, the user-

selected point of evaluation w can impact the shape, placement, and size, of the confidence

band. One might expect that since the additional controls are modeled as additively linear,

the evaluation point w (and the coefficient γ0) should not impact conclusions about the
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nonparametric relationship between y and x. But this intuition overlooks the fact that the

function µ0(x) is only defined relative to howwi is coded. For example, ifwi contains a binary

variable indicating groups of substantially different sizes, then the estimation uncertainty will

be different between the two groups. This can cause a level shift in µ̂
(v)
p (x) and alter the

uncertainty around the estimate. For ϑ0(x,w) and ζ0(x,w), the shape may also change.

This impacts all aspects of inference, both visual and the formal tests below. This is not

particular to our method; it is always present in analyses of models like (2.1).

Second, the bias correction may result in the point estimate lying outside the confidence

band. This occurs in regions of high bias. This is formally correct but can be visually

unappealing. Figure 3(b) shows an example of this phenomenon. This can arise in any

application of bias correction methods, and is not necessarily a failing: the point estimate

remains IMSE-optimal and inference remains valid.

Figure 3: Confidence Bands. This figure illustrates confidence bands in a nonlinear binned
scatter plot using the ACS data. Panel (a) shows the point estimate (dots) and robust bias corrected
confidence band (shaded region) for the conditional mean function with no controls, i.e., ϑ0(x) =
η(µ0(x)), while panel (b) shows the corresponding point estimate and confidence band for the
marginal effect, ζ0(x). Shaded regions denote 95% confidence bands and are based on 50,000
random draws.

(a) Conditional Mean (b) Marginal Effect
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5.2 Hypothesis Testing

We also provide formal hypothesis tests for substantive questions including functional form

or shape restrictions for ϑ0(x,w), µ0(x), and ζ0(x,w). Our discussion here is brief. Full

details are given in the SA.

A leading case is testing a parametric functional form for µ0(x). This is a two-sided testing

problem where under the null there exists some finite-dimensional parameter θ such that

µ0(x) = m(x;θ), uniformly in x ∈ X (we can also test any derivative of µ0(x)). The testing

problem is

Ḣµ
0 : sup

x∈X

∣∣∣µ0(x)−m(x;θ)
∣∣∣ = 0, for some θ, vs.

Ḣµ
A : sup

x∈X

∣∣∣µ0(x)−m(x;θ)
∣∣∣ > 0, for all θ.

This test formalizes the notion of visual inspection in plots like Figure 1(c) and (d), beyond

what is already done by adding a confidence band. We test this hypothesis using the statistic

Ṫµ,p+1(x) :=
µ̂p+1(x)−m(x; θ̃)√

Ω̂µ,p+1(x)/n
,

where θ̃ and γ̃ are estimators of θ and γ0 that are consistent under Ḣµ
0 where θ0(x,w) =

m(x;θ) +w′γ0. Theorem 2 again provides the tools to obtain the appropriate critical value.

Theorem SA-3.9 gives the formal result showing size control and consistency of the test, as

well as the corresponding tests for ϑ0(x,w) and ζ0(x,w). The tests can be performed using

any Lq norm for q ≥ 1, instead of L∞ as shown above. Last, we also provide for testing shape

restrictions, which are conceptually similar but are generally one-sided testing problems. A

leading example would be testing monotonicity of ϑ0(x,w) or ζ0(x,w).

Table 1 shows several testing examples using the L∞ norm. Consider first the left column

of results. We test against the linear specification model, formalizing the visual compari-

son in Figure 1(d). We also test against a cubic (in x) logistic quasi-likelihood model for
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added flexibility. Both parametric specifications are rejected, and moreover, also rejected

when including other controls. This highlights the need for nonparametric modeling in this

application. Finally we test the substantive null hypothesis that the uninsuredness rate is

monotonically decreasing with income. This null is also strongly rejected due to the existence

of Medicaid. This motivates the right column of results, where we repeat the analysis after

restricting the sample to zip codes with per capita income above 138% of the 2013–2017

average federal poverty line for a single-person household ($16,248). This is the cutoff for

expanded Medicaid eligibility based only on income. When we restrict to this sample, which

diminishes the influence of the Medicaid program, we fail to reject the null hypothesis of a

monotonic decline, but still reject the parametric specifications. This aligns with the need

for flexible estimation and matches the conclusions we draw from the shape of the confidence

bands shown in Figure 3.

Table 1: Specification and Shape Testing

Full Sample Above Income Cutoff

Test Stat. p-value ĴIMSE Test Stat. p-value ĴIMSE
Test of Linear Fit

No Covariates 3113.083 0.000 80 4315.983 0.000 40

Covariates, ŵ = w̄ 1979.468 0.000 22 2908.763 0.000 12

Test of Cubic Fit

No Covariates 2245.499 0.000 80 14814.862 0.000 40

Covariates, ŵ = w̄ 1981.105 0.000 22 3587.529 0.000 12

Test of Monotonic Decline

No Covariates 23.991 0.000 16 0.644 0.998 10

Covariates, ŵ = w̄ 6.997 0.000 13 -0.016 1.000 8

Notes. This table reports the test statistics and associated p-values along with the IMSE-optimal choice of J
from hypothesis tests of parametric specifications and shape restrictions using the ACS data. The first and
second panels report test results for the null hypotheses of linear and cubic (in x) logistic quasi-likelihood
models, respectively, while the third panel reports results for the null hypothesis of a monotonic decline
in the level (i.e., negative derivative). All tests are performed with and without control variables (control
variables are same as in Figure 2). The left panel (“Full Sample”) reports results for the full sample whereas
the right panel (“Above Income Cutoff”) restricts to the sample of zip codes with per capita income above
$16,248. All p-values are based on 50,000 random draws.
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5.3 Multi-Sample Comparisons

Our results extend to comparisons between different samples, or groups, within the data.

This is a common goal in program evaluation and causal inference settings. With discrete

(e.g., binary) treatments, the groups are defined by treatment arms and the differences

define heterogeneous (in xi) effects. In the continuous case, the grouping is the dimension

of heterogeneity and xi is the treatment. Our results extend naturally to this setting. For

a grouping indicator ti = 0, . . . , L, we replace the scalar index in the model (2.1) with

θ0(xi,wi, ti) :=
∑L

t=0 1{ti = t}θ0,t(xi,wi), where each θ0,t(xi,wi) = µ0,t(xi) + w′
iγ0,t. The

level and marginal effect can then be defined groupwise, as ϑ0,t(x,w) = η(θ0,t(x,w)) and

ζ0,t(x,w) = η(1)(θ0,t(x,w))µ
(1)
0,t (x) for some evaluation point w of control variables.

For example, in a randomized experiment ϑ0,1(x,w) − ϑ0,0(x,w) is the conditional av-

erage treatment effect (CATE) function, and the binscatter naturally captures treatment

effect heterogeneity along the xi dimension holding fixed wi = w. The rate of change in

this heterogeneity is ζ0,1(x,w) − ζ0,0(x,w). Our methods can be used to formally test the

null hypothesis that ϑ0,1(x,w) = ϑ0,0(x,w) for all x ∈ X , which captures the idea of no

(heterogeneous) treatment effect. As a second example, our theory can be used to quantify

uncertainty for the largest heterogeneous treatment effect:

x̂⋆ = arg sup
x∈X

∣∣ϑ̂0,1(x,w)− ϑ̂0,0(x,w)
∣∣.

These and many other problems of interest in applied microeconometrics concern the uniform

discrepancy of two or more binscatter function estimators, which can be analyzed using our

strong approximation and related theoretical results in the supplemental appendix. We

do not provide further details here to conserve space, but our software implements several

multi-sample estimation, uncertainty quantification, and hypothesis testing procedures.

Figure 4 shows an example of this type of analysis. We divide states into two groups

based on their population density, with low and high density states as those with population
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densities below or above 100 people per square mile, respectively. Density is defined as the

average population per square mile, and the data is available from the Census Bureau. Panel

(a) shows ϑ̂t(x) for each group, i.e. without controls, while panel (b) adds controls and shows

ϑ̂t(x, ŵ), with ŵ set to the sample mean. The point estimates show higher uninsured rates

in zip codes in low population density states as compared to high density states. Without

controls, there is generally overlap in the confidence bands except for very low incomes. In

contrast, when covariates are added, there is a much clearer delineation between the two

groups at all but the lowest of income levels. This is made clear in panels (c) and (d),

which plot the point estimate of the difference (the CATE) and the associated confidence

band. The null hypothesis that ϑ0,1(x,w) = ϑ0,0(x,w) for all x ∈ X is rejected in both cases,

with test statistics of 7.719 and 8.308, respectively, and negligible p-values. Multi-sample

comparisons share the same sensitivity to the chosen evaluation point as discussed above.

These issues are unavoidable; researchers must be mindful when implementing the tests and

interpreting the results.

6 Conclusion

With the rise of large data sets, new visualization tools, such as binned scatter plots, have

emerged and gained in popularity. This paper has thoroughly studied binned scatter plots

in nonlinear, nonsmooth regression models. Our main contributions are to propose novel

nonlinear binscatter methods, together with IMSE-optimal tuning parameter selection and

uniform inference methods, including valid confidence bands and functional testing. Our

companion binsreg software package makes these tools available for applications.

One avenue for future work would be to generalize the analysis beyond a scalar covariate

of interest. For example, in two dimensions such an approach would produce “heat maps”

which are the bivariate extension of binned scatter plots. Extending our results to that case

would be a valuable addition to the practitioner’s toolkit.
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Figure 4: Two Sample Comparison. This figure uses the same ACS data to compare areas in
low density states (blue) and high density states (orange). Low density states are defined as those
with average population per square mile below 100. Panels (a) and (b) show the point estimate
(squares or dots) and robust bias corrected confidence band (shaded region) for each group, first
without control variables and then with controls added (the same controls as in Figure 2). Panels
(c) and (d) show the estimated difference (evaluated using the binning of the low density states)
and the associated confidence bands. Shaded regions denote 95% confidence bands and are based
on 50,000 random draws.

(a) Conditional means w/o controls (b) Conditional means w/ controls

(c) Difference of means w/o controls (d) Difference of means w/ controls

32



References

Belloni, A., Chernozhukov, V., Chetverikov, D., and Fernandez-Val, I. (2019), “Conditional

Quantile Processes based on Series or Many Regressors,” Journal of Econometrics, 213,

4–29.

Belloni, A., Chernozhukov, V., Chetverikov, D., and Kato, K. (2015), “Some New Asymp-

totic Theory for Least Squares Series: Pointwise and Uniform Results,” Journal of Econo-

metrics, 186, 345–366.

Calonico, S., Cattaneo, M. D., and Farrell, M. H. (2018), “On the Effect of Bias Estimation

on Coverage Accuracy in Nonparametric Inference,” Journal of the American Statistical

Association, 113, 767–779.

(2022), “Coverage Error Optimal Confidence Intervals for Local Polynomial Regres-

sion,” Bernoulli, 28, 2998–3022.

Cattaneo, M. D., Crump, R. K., Farrell, M. H., and Feng, Y. (2024a), “Binscatter Regres-

sions,” Working paper.

Cattaneo, M. D., Crump, R. K., Farrell, M. H., and Feng, Y. (2024b), “On Binscatter,”

American Economic Review, 114, 1488–1514.

Cattaneo, M. D., and Farrell, M. H. (2013), “Optimal Convergence Rates, Bahadur Represen-

tation, and Asymptotic Normality of Partitioning Estimators,” Journal of Econometrics,

174, 127–143.

Cattaneo, M. D., Farrell, M. H., and Feng, Y. (2020), “Large Sample Properties of

Partitioning-Based Series Estimators,” Annals of Statistics, 48, 1718–1741.

Devroye, L., Györfi, L., and Lugosi, G. (2013), A Probabilistic Theory of Pattern Recognition,

Vol. 31, Springer Science & Business Media.

33
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