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SA-1 Setup

Suppose that (y;,z;, w}), 1 <i <n, is a random sample where y; € Y is a scalar response variable,
x; € X is a scalar covariate, and w; € W is a vector of additional control variables of dimension d.

For a general loss function p(+;-) and a strictly monotonic transformation function 7(-), define

(1o(+);v0) = #Ziii’?éiéd E[ﬂ(m; n(p(z:) + Wh))] ; (SA-1.1)

where M is a space of functions satisfying certain smoothness conditions to be specified later.

This setup is general. For example, consider 9 = 0. If p(-;-) is a squared loss and 7(-) is the
identity function, po(z) is the conditional expectation of y; given x; = x. Let 1(-) denote the
indicator function. If p(y;n) = (¢ — L(y < n))(y —n) for some 0 < ¢ < 1 and n(-) is an identity
function, then pp(x) is the gth conditional quantile of y; given x; = x. Introducing a transformation
function 7(-) is useful. For instance, it may accommodate logistic regression for binary responses.
When gy # 0, the parametric and the nonparametric components are additively separable, and
thus (SA-1.1) becomes a generalized partially linear model.

Binscatter estimators are typically constructed based on a possibly random partition. Specifically,
the relevant support of x; is partitioned into J disjoint intervals, leading to the partitioning scheme

3 = {B\l,gg, ce ,EJ}, where

B\]: [5—\]—17?7) 1f]:177<]_]-7

One popular choice in binscatter applications is the quantile-based partition: 7; = F I 1(( i—1/J)
with Fx(u) = n™! ity I(z; < u) the empirical cumulative distribution function and ﬁil its
generalized inverse. Our theory is general enough to cover other partitioning schemes satisfying
certain regularity conditions specified below. An innovation herein is accounting for the additional
randomness from the partition A. The number of bins J plays the role of tuning parameter for
the binscatter method, and is assumed to diverge: J — oo as n — oo throughout the supplement,

unless explicitly stated otherwise.



The piecewise polynomial basis of degree p, for some choice of p =0,1,2,..., is defined as

where 14(z) = 1(z € A) and ® is the Kronecker product operator. For convenience of later

analysis, we use Ep(a:) to denote a standardized rotated basis, the jth element of which is given by

T =T \i-l=G-DH)
\/jX]lB‘E(I)X<A7]) y ]:17’(p+1)‘]7

~

where j = [j/(p+1)], [-] is the ceiling operator, and iL; = 7; — 7;_1. Thus, each local polynomial
is centered at the start of each bin and scaled by the length of the bin. v/J is an additional scaling
factor which helps simplify some expressions of our results. The standardized rotated basis Bp(x)
is equivalent to the original piecewise polynomial basis in the sense that they represent the same
(linear) function space.

To impose the restriction that the estimated function is (s — 1)-times continuously differentiable

for 1 < s < p, we introduce a new basis

o~ ~

~ / ~ o~
Bs(®) = (B (@) By (@) = Tbyle), Ko = 0+ 1)J = 5(] — 1),

where T := T,(A) is a K, s x (p+ 1)J matrix depending on A, which transforms a piecewise
polynomial basis to a smoothed binscatter basis. When s = 0, we let ’i‘o = I(p41)s, the identity
matrix of dimension (p + 1)J. Thus Bpp(x) = Bp(:u), the discontinuous basis without any con-
straints. When s = p, Bp,s(az) is the well-known B-spline basis of order p + 1 with simple knots,
which is (p — 1)-times continuously differentiable. When 0 < s < p, they can be defined similarly
as B-splines with knots of certain multiplicities. See Definition 4.1 in Section 4 of Schumaker
(2007) for more details about spline functions and Lemma SA-4.3 in Section SA-4 for properties
of the transformation matrix ’fs. We require s < p, since if s = p+1, Bxpﬁs(x) reduces to a global

polynomial basis of degree p.



Given a choice of basis, we consider the following generalized binscatter estimator:

2 @)

} ~arganin3 (s 1(By() B+ i), (5A-1.2)
Yoi=1

A% (z) = B () B, [

where B};’Q (x) = d‘fv Bp,s (x) for some v € Z4 such that v < p. This estimator can be written as:

n
~

A () =Bl@)B. Bi=BA) = argmin Y p(ys n(bys(x)B+wi3)). (SA-1.3)
BERTP> =1

The representation (SA-1.3) allows us to be more general and agnostic about the estimation of
~o0, and also simplifies some of the proofs. More specifically, our theory requires only a sufficiently
fast convergence rate of 4 (see Assumption SA-GL(iv) below), which in general nonlinear/non-
differentiable cases can be justified in different ways, e.g., joint estimation, backfitting, profiling,
split-sampling, etc.

In this supplement, we focus on estimation and inference of the following three parameters:

(i) the nonparametric component ,u(()v) (x) for any v > 0,

(ii) the level function ¥o(x, w) = n(po(z) + w'vp), and
(iii) the marginal effect (o(z, w) = 5%17(#0(1‘) +w'v),

where w is a user-chosen evaluation point of the control variables. Nevertheless, all our results
are readily applied to other linear or nonlinear transformations of (), such as the higher-order
derivatives %n(uo(a:) + w'5p). Given the binscatter estimates fi(z) and 4 in (SA-1.2), the esti-

mators of the three parameters defined above are given by

~

A (@), O, W) =n(i) +%'7) and (2, W) =0 () + W70 ()

respectively, for some consistent estimate w (non-random or generated based on {w;}" ;) of the

evaluation point w. As a reminder, we need to require p > v to get i(¥)(z), p > 0 to get 1/9\(33,\7?/‘),

~

and p > 1 to get ((z,W).



SA-1.1 Assumptions

We first assume the following basic conditions on the data generating process.
Assumption SA-DGP (Data Generating Process).

(1) {(yi,zi,w}) : 1 <i<n}isiid satisfying (SA-1.1), and z; has a distribution function Fx (-)
with a Lipschitz continuous (Lebesgue) density fx(-) bounded away from zero on a compact

interval X.
(i1) po(-) is s,-times continuously differentiable for some ¢, > p+ 1.

(i4i) The conditional density of y; given z; and wy, denoted by fy|xw(y|z,w), satisfies that
SUD e wew SUPyey,,, fy|xw (Y], W) S 1 where Vow is the support of the conditional density
of yi given x; = x and w; = w; The support W of w; is bounded; sup ¢y wew I (uo(z) +

W) S 1.

Next, we impose the following technical conditions related to the general loss function and nec-

essary preliminary estimators.
Assumption SA-GL (General Loss).

(i) p(y;m) is absolutely continuous with respect to n € R, which admits a piecewise Lipschitz
derivative ¥ (y;n) = ¥ (y —n) that has at most m discontinuity points for some finite m € Z4;
n(-) is strictly monotonic and three-times continuously differentiable; p(y;n(0)) is convex with

respect to 0.

(i1) E[(e;)|xi, wi] = 0, 0?(x, w) := E[t(&)?|x; = z, w; = W] is bounded away from zero uniformly
over x € X and w € W, E[(nD (uo(z:) + W) 20 (s, wi)|z; = x] is Lipschiz continuous on

X, and sup,cy wew El|V(6)] |7 = z,w; = w] <1 for some v > 2.

(iit) V(z,w;n) = E(yi;n)|z; = x,w; = w| is twice continuously differentiable with respect
to n; infyex wew #(x,w) > C for some constant C > 0 and E[s(x;, w;)|x; = x| is Lip-
schiz continuous on X where x(x,w) = U1 (z,w;n(po(x) + w'v0)) (0™ (1o (x) + w'y0))? and

‘1’1(177“’;77) = %\I/(J?,W, )



(iv) The preliminary estimator 4 satisfies that |¥ — Yol| Sp vy for vy = o(/J/n+ JP7Y), and

W —w| = op(1).

(v) For some estimator Ui of Uy, ||En[Bp75(a:i)gp,s(xi)’(?t(xi,Wi) — sz, W) Sp P+

Jlogn 1/2 (. N T . (T - iy O (73( s I5Y)2
where %(xzywz) = ‘I’l(l‘uwz,n(ﬂ(%) + Wz7))(77 (M(:E’L) + W27)) .

2
n'=v

Note that part (v) is a high-level condition that ensures we have a valid feasible estimator of
the Gram matrix Q (or Qo) defined below. The rate of convergence of 7" (fi(z;) + w!7) can be
deduced from Corollary SA-2.1 below. Thus, part (v) can be largely viewed as a requirement on
\/1\11 only. Note that @1 does not have to be consistent for ¥; in a pointwise or uniform sense. It
suffices that the estimator E,, [an(.%i)gp’ s(zi)' 7(x;, w;)] based on \/131 as a whole is consistent. See
Section SA-3 for several examples of the estimator \T/l.

Finally, we need some regularity conditions on the partitioning scheme, which can be verified
in a case-by-case basis. We first define a family of “quasi-uniform” partitions for some absolute

constant C' > 0:
maxi<j<J h;j(A)

o = {A : < c}, (SA-1.4)

ming <j<s hj(A)
where hj(A) denotes the length of the jth bin in the partition A. Roughly speaking, (SA-1.4)
says that the bins in any A € Il do not differ too much in length. Also, let X = [z1,...,2,),

W = [Wh"' ,Wn], and Y = [ylj... 7yn]/-
Assumption SA-RP (Random Partition).
(i) A LLY|(X, W) and A € Il w.p.a. 1 for some absolute constant C' > 0.

(i1) There exists a non-random partition Ao = {Bi,--- , By} with Bj = [1j_1,75) for j < J —1

WSS < equ for some absolute constant cqy > 0, and

and BJ = [TJ—laTJ} such that minj<j<yh; —

maxi<;j<j VAIJ — hj‘ S]p JfltRp fO?“ Trp = 0(1).

Part (i) is the key condition for our main results and will be imposed throughout. First, it
requires that the possibly random partition A be independent of the outcome Y given the covariates
(X, W). This conditional independence assumption is trivially satisfied if A is deterministic (e.g.,
equally-spaced partition) or depends on X and W only (e.g., quantile-spaced partition based on

X). It also holds if a sample splitting scheme is used: a subsample (including the information



about the outcome) is used for constructing the partition, and the other is employed to construct
the binscatter estimator (so that A is independent of the data (X, W,Y)). Second, A is required
to be “quasi-uniform” with large probability. It is trivially true for equally-spaced partitions and
can be verified for quantile-spaced partitions under the mild conditions on the covariates density
imposed before (see Lemma SA-4.2). However, this condition may be too restrictive for other
modern machine-learning-based partitioning methods, in which case some additional regularization
may be necessary to recover the quasi-uniformity property.

Part (ii) requires that the random partition A finally “stabilize” to a fixed one. This is true if the
partition is non-deterministic or generated by sample quantiles (since sample quantiles converge to
population quantiles), but more generally, it is not always possible. Fortunately, this “convergence”
requirement is not necessary for most of our main results (except Theorem SA-2.4 and Theorem
SA-2.7). So in the following we will always make it very clear if part (ii) of Assumption SA-RP is

imposed.

SA-1.2 Notation

For background definitions, see van der Vaart and Wellner (1996), Bhatia (2013), Giné and Nickl
(2016), and references therein.

Matrices and Norms. For (column) vectors, || - || denotes the Euclidean norm, || - ||; denotes
the L1 norm, |- || denotes the sup-norm, and || - [|o denotes the number of nonzeros. For matrices,
|| - || is the operator matrix norm induced by the Lo norm, and || - ||o is the matrix norm induced
by the supremum norm, i.e., the maximum absolute row sum of a matrix. For a square matrix
A, Anax(A) and Amin(A) are the maximum and minimum eigenvalues of A, respectively. [A];;
denotes the (i,j)th entry of a generic matrix A. We will use S* to denote the unit circle in
RE e, |Jal] = 1 for any a € SE. For a real-valued function g(-) defined on a measure space
Z, let ||gllg2 == ([ |9/?dQ)'/? be its Lo-norm with respect to the measure Q. In addition, let
lgllc = sup,ez |g(2)| be Loo-norm of g(-), and g™ (z) = d’g(z)/dz" be the vth derivative for
v > 0.

Asymptotics. For sequences of numbers or random variables, we use l,, < m,, to denote that
lim sup,, |I,,/my| is finite, I, <p my, or I, = Op(m,,) to denote lim sup,_, . limsup,, P[|l,,/my| > €] =

0, l, = o(my,) implies I, /m, — 0, and l,, = op(m,,) implies that [,,/m, —p 0, where —p denotes



convergence in probability. [, < m,, implies that [,, < m,, and m,, < l,.

Empirical Process. We employ standard empirical process notation: E,[g(v;)] = % Yo g(vi),
and Gy [g(v;)] = ﬁ Yo, (g(vi) —E[g(v;)]) for a sequence of random variables {v;}?_ ;. In addition,
we employ the notion of covering number extensively in the proofs. Specifically, given a measurable
space (A, A) and a suitably measurable class of functions G mapping A to R equipped with a
measurable envelop function G(z) > supgeg [9(2)|, the covering number of N(G,L2(Q),¢) is the
minimal number of Ly(Q)-balls of radius € needed to cover G for a measure Q. The covering number
of G relative to the envelope is denoted as N (G, L2(Q), £||G|lg.2)-

Partitions. Given the random partition A, we use the notation Ex[-] to denote the expectation
operator with the partition A viewed as fixed. To further simplify notation, let fzj =17j — Tj—1 be
the width of the jth bin f;’\j, and when the “limiting” partition Ag = {By,---,B;} is defined (As-
sumption SA-RP(ii) holds), let h; be the width of B;. Analogously to Bpjs(a:), b, s(z) denotes the
binscatter basis of degree p that is (s —1)-times continuously differentiable and is constructed based
on the nonrandom partition Ag. We sometimes write by, s(x; A) = (bps1(2; A), ..., bps K, (23 A))
to emphasize a binscatter basis is constructed based on a particular partition A. Therefore,
prs(az) = bp,s(x;ﬁ) and by s(z) = by s(z;Ag). Accordingly, we use Ty to denote the transfor-
mation matrix based on the non-random partition A (which transforms b, o(z) to by s(z)).

Other. Let D = [(y;, z;,w})’ : i = 1,2,...,n]. [z] outputs the smallest integer no less than z

and a A b = min{a,b}. “w.p.a. 1”7 means “with probability approaching one”.

SA-2 Main Results

To simplify notation, we introduce the following quantities that will be extensively used throughout

the supplement:

ni = n(po(a:) + wWivo), ni = n(p(e;) + wiv),
nia =1 (uo(a:) + wivo), fia =0 (flx;) + wiA),

o1 (z, w) =W (uo(z) + w'v0),  foala, W) =W (@(z) + w'F),
i(z) =byo(x)B, & =vyi—ni, € =yi—T

~ ~

Q = Q(A) = Ey[by s (w:) by, () W1 (7, i ;)72 ],



~

Q == Q(A) := En[by s (2:)bp,s (1) W1 (i, Wi )7,
Qo := Q(A0) := E[by (i) byps(2:) Wi (2, wi; 0:)11],
n[Bps () By () (€)1,

S i= () 1= En B [Bp,s (0:)bpes (@) ¥(1) 0},

S0 = B(A0) i= E by, (wi)by,s (i) (i)

M)

I
M)
E>

|
=

xw]).

Qo) = Qo (23 8) == [V (po(2) + W'70)] by s(2) Q' EQ by (2),
Qy(x) = Qy (25 A) = [V (u(x) + W'0)]*bp.(2) Qg ' B0 Qg by s (@),

Qc(x) = Qs A) = [ (lz) + W'3)*b{L(2) Q' SQ b (x),

Qc() == Q23 8) == [ (po(w) + Ww'y0)’b{(z) Q' EQ b (x), and

Q () == Qc(w; ) == [0 (no(x) + W'30)]* bl () Qy ' B0 Qg by (@).

In addition, given the family Il of the quasi-uniform partitions defined in (SA-1.4), for any

A €11, we let Bp(A) € RErs be any vector such that for every v < p,

sup 8 (x) — bl (23 AY By(A)| S TP
e

Let ro,(x; A) = ,u,év) () — bgjs) (x; A) Bo(A) denote the corresponding approximation error. Accord-
ingly, given the random partition A, we let 3 := Bo(A), and Tow(z) = ,uév)( ) — bg,) (x) By denote
the corresponding approximation error. The existence of such vectors is guaranteed by Assumption

SA-DGP and is verified in Lemma SA-4.5 in Section SA-4.



SA-2.1 Preliminary Lemmas
Lemma SA-2.1 (Gram). Suppose that Assumptions SA-DGP, SA-GL hold and SA-RP(i) hold.
If % =o0(1), then

1 5 Amin(Q) < )\max(Q) 5 1a [Q_l]ij 5 Q'i_j‘ w.p.a. 1a and ||Q_1||oo ,SIP‘ 1a

where p € (0,1) is some absolute constant.

If, in addition, Assumption SA-RP(ii) holds. Then,

1 S )\min(QO) S )\maX(QO) S, 17
/2

_ 1/2 _ B 1
1Q — Qoll <p (7‘“?5‘7) +up, and Q71— Qpltlleo Sp (Jh;gJ) + .
The next lemma shows that the limiting variance is bounded from above and below.
Lemma SA-2.2 (Asymptotic Variance). Suppose that Assumptions SA-DGP, SA-GL and SA-

RP(i) hold. If% =o(1), then w.p.a. 1,

JIH2 Sinfrex Q0 (2) < supgey Q0 (2) S I
J S infrex Qo(x) < supgex Q(z) < 7,

J3 Sinfpex Qe (x) < supyer Qc(z) S J3.
If, in addition, Assumption SA-RP(ii) holds, then w.p.a. 1,

U2 Sinfrex Q0 (2) < supgey Q0 (2) S I,
J < infaex Qy(2) < supyex Qo(z) S J,

J? <infuex Qe(x) <sup,exy Q) S J3.

The next lemma gives a bound on the variance component of the nonlinear binscatter estimator.

Lemma SA-2.3 (Uniform Convergence: Variance). Suppose that Assumptions SA-DGP, SA-GL



and SA-RP(i) hold. If 71087 — o(1), then

~ - R Jlog J\1/2
sup bgig ()'Q lEn[bp,s(xi)mvlw(Ei)]‘ S® Jv(ig) .
reX '

Lemma SA-2.4 (Projection of Approximation Error). Under Assumptions SA-DGP, SA-GL and

SA-RP(i), if % =o(1), then

sup [B:)(r)/ QB [y 1) (mav(e0) = 1 () Bo -+ Wi} (i (B (2) Bo + wio)) ) |

<p JPlte g g (Jlog J)l/2 N Jitv log J.

n n

Lemma SA-2.5 (Uniform Consistency). Under Assumptions SA-DGP, SA-GL and SA-RP(i), if
TP (log /) 7T = o(1), then

n

18 = Bolleo = 0p(J /%) and sup () = po(z)| = op(1).

2v_ _v_
Remark SA-2.1. When v — oo, the rate restriction % = o(1) tends to be % =

o(1). We conjecture this rate restriction is stronger than needed. In fact, for piecewise polynomials

= o(1) suffices to establish the uniform consistency of

(i.e., s = 0), we can show that w

v v
2y . C . . . . . . o v—2(] v—2
3, and this restriction is redundant in our main theorems in view of the condition % =
2v v
Jo—T (log J)7—T
(log J) =o(1)

o(1) imposed below. In other words, in this special case (s = 0), the condition -

in all theorems below can be dropped.

Our result holds without imposing any smoothness restrictions on the estimation space. Specif-
ically, the estimation procedure (SA-1.3) searches for solutions in R¥#s, leading to an estimation
space {prs(m)’ B : B € RErs}. In contrast, many studies of series (or sieve) methods restrict the
functions in the estimation space to satisfy certain smoothness conditions, e.g., Lipschitz continuity,

to derive the uniform consistency. See, for example, Chernozhukov, Imbens and Newey (2007). _I

Remark SA-2.2 (Improvements over literature). Most of the results in this subsection are new
to the literature, even in the case of non-random partitioning and without covariate-adjustments,
because they take advantage of the specific binscatter structure (i.e., locally bounded series basis).

The closest antecedent in the literature is Belloni, Chernozhukov, Chetverikov and Fernandez-Val

10



(2019). Furthermore, relative to prior work, our results formally take into account the randomness
of the partition formed by empirical quantiles, and account for the semi-linear regression estimation

structure. |

SA-2.2 Bahadur Representation

Theorem SA-2.1 (Bahadur Representation). Suppose that Assumptions SA-DGP, SA-GL and
2v

SA-RP(i) hold and 222 loan | JUogm)P | J7 T(ogm)7 L _ 1y Thep,

n n

(i) ) (z) satisfies that

sup [3(z) — 1y () + B2 Q7 Enlby ()i ()]

S 1 (L) Mg gt (L) e

~

(ii) O(x, W) satisfies that

sup O, ) — oz, w) + 7V (1o() + W'y0)by,s (2) Q  En by s (1)1 (€7)]
TE

< (

1 3/4 » log?
J ogn) logn+J_%l<J og“n

1/2 L N
) + P et W= w

~

(11i) ((x, W) satisfies that

sup [, ) = Gol, w) 0 o) + w30)b{ () QB by i) )]

Se <J1:Lgn)l/2 + J{(legn>3/4logn+ T (Jlof%)m +I

+ % - w1 +J(J12g”)1/2).

The following corollary is an immediate result of Lemma SA-2.3 and Theorem SA-2.1. The proof

is omitted.

Corollary SA-2.1 (Uniform Convergence). Suppose that the conditions of Theorem SA-2.1 hold

11



and 20en)’ | 10%" < 1. Then

n

(v v o (Jlogn\1/2 e
sup [71) (@) — " (@)] Sp 7 (22 ) g,
TEX n

. . ~ Jlogn 1/2 —p—1
If, in addition, |w —w| <p (Tg> + J P, then

~ 1 1/2
sup [3(2) ~ ()] e (T2B) 4 st an
rxeX n

sup [C(x) — Gole)| e I((FEmY ).

The next theorem shows that the proposed variance estimator is consistent.

Theorem SA-2.2 (Variance Estimate). Suppose that Assumptions SA-DGP, SA-GL and SA-

pt 2 72 (logm)? ogn _ e\ 1/2
RP(i) hold. If Z7=0oem”™2 | J7 T(logm) "L | Jlogn)® | logn — (1) gpd | % —wl| p (Jng) +

n n n
J7P7L then
~ Jlogn\1/2
HE—EH <p JP1 +( > ) :
n v

~ _ o Jlogny1/2
. < 14+2v p—1

sup Q,w (2) Qmu)(w)‘ SeJ <J + ( 1z ) )>
~ _ J1 1/2

sup |Qy(x) — Qﬂ(as)‘ <p J(prfl + ( 10g2n> ), and

TEX nov
~ _ o Jlogny1/2

sup [0c(2) — ()| <o 1 (77771 (EE) ).

zeX n v

If, in addition, Assumption SA-RP(ii) holds, then

- 1 1/2
HE—EOH Sp pr—1+<=] ogn) + Ttrp,

nl_%

N L Jlogny1/2
sup |2, (z) — 2, (w)‘ Sp JIT (J poly ( gz ) +t‘np),
zeX nl_u

~ J1 1/2
Sup Qy(z) — Qg(x)’ =p J(J_p_1 + ( ;):ggn) + tRP)a and
e n v

~ J1 1/2
sgg Qe(z) — Qg(aj)‘ <p J? (prfl + <%) + tRp).
x n v

Remark SA-2.3 (Improvements over literature). Theorem SA-2.1 and Corollary SA-2.1 construct

the Bahadur representation and uniform convergence of general binscatter-based M-estimators
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under mild rate restrictions. Specifically, we require J %/n = o(1) up to logn terms when v > 4.
In fact, for piecewise polynomials (s = 0), we can show that the Bahadur representation still
holds under J/n = o(1) up to logn terms when a subexponential moment restriction holds for
the (transformed) error (e;), which is analogous to the result for kernel-based estimators in the
literature (see, e.g., Kong et al., 2010). For series estimators, similar results were established for
particular choices of loss functions under more stringent conditions in the literature. For example,
Belloni et al. (2019) considers series-based quantile regression, and Theorem 2 and Corollary 2
therein can be used to establish a Bahadur representation and uniform convergence of the resulting
estimators under J*/n'=¢ = o(1) for some ¢ > 0.

The results in Belloni et al. (2019) are slightly stronger than that in our Theorem SA-2.1 in the
sense that the expansion holds uniformly over both the evaluation point z € X and the desired
quantiles u € U for a compact set of quantile indices & C (0,1). Our results regarding Bahadur
representation can be extended to achieve the same level of uniformity. In general, the parameter
of interest (SA-1.1) and the estimator (SA-1.2) are defined for each particular choice of the loss
function within a function class F. For the class of check functions used in quantile regression or
other function classes with low complexity, it can be shown that the Bahadur representation still
holds uniformly over the evaluation point z € X and the loss function p € F under rate restrictions

similar to those in Theorem SA-2.1, thereby providing an improvement over the literature. _

SA-2.3 Pointwise Inference

Starting from this section, we consider statistical inference on ,uév) (), 9o(xz,w) and (p(z, w) based

on the following Studentized t-statistics:

A0 () — ui” (z)

T, (z) = — ,
o \/ Q0 (2)/n
)~

Typ(x) = ¥(a, % o(z, w) and
’ Qy(2)/n

1) = )~ Gl w),
| () /n

The next theorem shows the pointwise asymptotic normality of the binscatter estimators.

13



Theorem SA-2.3 (Pointwise Asymptotic Distribution). Suppose that Assumptions SA-DGP, SA-

GL and SA-RP(i) hold, sup,cx El[(e)||x; = x] < 1 for some v > 3, and Z"0BM"2

2v v
Jv—1 (log n) v—1
n

+

+nJ2P=3 = o(1). Then the following conclusions hold:

(i) For it (x),

sup |P(T,) (7)) < u) — @(u)‘ =o(1), foreachz e X.
u€R ’

(ii) For 5(:6,@), if, in addition, |w — w| = op(\/J/n), then

sup |P(Ty p(z) < u) — @(u)’ =o(1) for eachz € X.
u€R

(iii) For ((x, W), if, in addition, |[w — wl| = op(+/J3/n + (logn)~1/?), then

sup |P(T¢ p(x) < u) — @(u)‘ =o(1) foreachz € X.
u€eR

Remark SA-2.4 (Improvements over literature). The result in this subsection is new to the
literature, even in the case of non-random partitioning and without covariate adjustments, because
it takes advantage of the specific binscatter structure (i.e., locally bounded series basis). The closest
antecedent in the literature is Belloni et al. (2019). Furthermore, relative to prior work, our results
formally take into account the randomness of the partition formed by empirical quantiles, and

account for the semi-linear regression estimation structure. _

SA-2.4 Integrated Mean Squared Error

In this section we give a Nagar-type approximate IMSE expansion for each of the three estimators

i) (z), 9(z, W) and ((z, W), with explicit characterization of the leading constants. Define

J—p—l-i-vu(P‘H) (33) T — 7L
* _ 0 T
o0 () = (p+1—v)lfx(z)pti-v Epti—v (7% )

where &,(+) is the mth Bernoulli polynomial for each m € Z, 7% is the start of the interval in the

non-random partition Ag containing x and h, denotes its length.

14



Theorem SA-2.4 (IMSE). Suppose that Assumptions SA-DGP, SA-GL and SA-RP (including

SA-RP(ii)) hold. Let w(x) be a continuous weighting function over X bounded away from zero.

v 2v v
v— v— v— 7
t J inog" + J (lf;g”) + J(losn) + (logjn)2 _ 0<1).

Also, assume tha

(i) For it (x),

14+2v

2
/ (ﬁ(v) (z) — M(()U) (x)> w(z)dz = AISE, () + O]P’( + J—Q(p+1—v))
X

where

J1+2v J1+2v

E[ATSE, ) [X, W, A] = ¥, (p, 5,0) + J 2003, (p,5,0) + 0p (“—— + 720170,
Y(p, s,v) = J~ 12 trace (QalﬁoQal /X bgfs) (x)bp?s) (m)'w(m)c&) =1,

(r5.0(2) — D)) Qg Elby o (i) se(as, w0 i) < 1.

)

B (p, s,v) := J2p+22”/
X

(ii) For O(z, W), if |W — w| = op(r/T/n+ J 1), then
~ . 2 J
/ (ﬂ(m,w) — ﬂo(x,w)) w(r)dr = AISEy + 0[?(* + J72(p+1)>
X n

where

E[AISE (X, W.&] = 2, (p.) + J 2008, (p. ) + 0p (2 720,
n n
Yn(p, s) := J trace (Q[;lEOQO_l/ no,l(:c,W)wa(a;)bpﬁ(x)’w(:c)dm) =1,
X

PBn(p,s) = J2p+2/

i (10,12, w) (75 0(2) - bp,s(x)'QgIE[bp,s<xi)%(xi,wi)rg,o(xi)])}2w<x)dx <1

(iii) For Z(:z:,vAv), if | W —w| = op(\/J3/n+ J P+ (logn)~/?), then

Z(m,{i/) — Go(z, w) 2w(1:)dac = AISE; + op ‘L?) + g%
X n

15



where

~ J3 J3
E[ATSEC|X, W, A] = - 7,(p,s) + T 7 Bu(p,s) + 0 (— + ),

Y (p, s) := J 3 trace (QOIEOQOI/ n071(x,w)2b1()2 (;U)blglg(x)’w(a:)dw> =1,
X

Balps) = I [ (s, w) (754(2) = B2 (2) Q) Bl i, wiliso 0] | (o) S 1.

X

In general, %, (p,s,v) 2 1 (see Remark SA-3.7 in Cattaneo et al. (2023)), and thus the above

1
theorem implies that the (approximate) IMSE-optimal number of bins satisfies that Jymusg =< n2r+3.
Relying on the IMSE expansion in Theorem SA-2.4, one may design a data-driven procedure to

select the IMSE-optimal number of bins for general binscatter-based M-estimators.

Remark SA-2.5 (Improvements over literature). The results in this subsection are new to the
literature, even in the case of non-random partitioning and without covariate-adjustments, for both
general nonlinear series estimators and binscatter (piecewise polynomials and splines) nonlinear
series estimators in particular. Furthermore, our results formally take into account the randomness
of the partition formed by empirical quantiles, and account for the semi-linear regression estimation

structure. ]

SA-2.5 Uniform Inference

Recall that (an : n > 1) is a sequence of non-vanishing constants. We will first show that the
(feasible) Studentized t-statistic processes Tw) ,(*), Ty p(-) and T¢,(-) can be approximated by

Gaussian processes in a proper sense at certain rate.

Theorem SA-2.5 (Strong Approximation). Suppose that Assumptions SA-DGP, SA-GL and SA-

RP(i) hold,

J(logn)? ./ J(logn)7\1/2 logn)? J7 1 (log m) 7T
e () s 0P gy g P
n v

Then the following conclusions hold:

(1) On a properly enriched probability space, there exists some K s-dimensional standard normal

16



(i)

(iii)

random vector N, . such that for any § > 0,

- - NG (x)/r/flsQ—lil/Q
P( sup |T,w) (%) — Z,) ()| > 56%51) =0(1), Zyu (z) = 2 Nxk,.-
veX Q0 (z)

If Assumption SA-RP(ii) also holds with tgp = o(a;, ' (logn)~'/?), then

B(Ug(x)/T/ lez(l)/Q
IP’( sup |T,w) (%) — Z,0) ()| > §a;1> =o(1), Z,w )= P, ° Nk, .-
reX Q0 (2)

If |W — w| = op(a,'/J/n), then on a properly enriched probability space there exists some

K s-dimensional standard normal random vector N, , such that for any £ >0,

by, 0(x) o1 (2, w)Q
Qg ()

P ((sup [Ta,(0) — Zoyfa) > €01 ) = 0(0), Zoyla) = SNy,

reX

If Assumption SA-RP(ii) also holds with tgp = o(a;;*(logn)~1/2), then

B B 1 Q—l

]P’(sup Ty p(x) — Zy p(z)] > §an1) =o(l), Zyy(z)= po(@) Tatlo 1 (2, w)Qq Eé/QNKp’S.
zeX Qﬁ( )

If |W — w| = op(a;*(\/J3/n + (logn)~/2)), then on a properly enriched probability space

there exists some K s-dimensional standard normal random vector N, . such that for any

£>0,

bg)( )/T/n()l( w)Q 1
Q ()

$V2Ng, ..

P ((sup (Tepe) = Zealo)] > €71 ) =ol1), Zigl) =

reX

If Assumption SA-RP(ii) also holds with tgp = o(a;;*(logn)~1/2), then

b\ (2) Tha0.1 (2, w)Qy !
Qc(z)

IP’( sug |Te p(x) — Zep(x)] > §a;1> =o(l), Zcp(x)= 21/2NK
S

The approximating processes Z #(U),p(-), Zp9(-) and Z, ¢(-) are Gaussian processes conditional on

X by construction. In practice, one can replace all unknowns in Z,«) ,(-), Zup(-) and Z¢p(-) by

17



their sample analogues, and then construct the following feasible (conditional) Gaussian processes:

> BR@TQIE B Q s
Zyw pla) = — Kpe = - o
Q'U,(U) (1‘) Q,u,(”) (;L')
7 b "I Q !x1/2 b, ()7 O-151/2
Zyp(a) = ,0(2) sﬁi,l(:v)Q Ni = b, () noi(x)Q N
Qg(l‘) Qﬁ(.’L‘)
S BR@ T @QTE B @)Q S
ZC»p(‘T) - paN vas = —~ Kp,57
() ()

where Nj{p,s denotes a K, s-dimensional standard normal vector independent of the data D.

For ease of presentation, from now on we will always require a fast convergence rate of w:
|W — wl| = op(a;'y/J/n). Nevertheless, it should be clear that as shown in Theorem SA-2.5, such
a rate restriction on w can be different for inference of ¥g(x, w) and {y(z, w) and are unnecessary

for inference of u(()v) ().

Theorem SA-2.6 (Plug-in Approximation). Suppose that Assumptions SA-DGP, SA-GL and
SA-RP(i) hold,

J(log n)? + (J(logN)7>1/2 +nJ 23 4 (logn)? + nJ‘ltgf =o(a;?),

_2 +1 n
nl-% n Jp

2v_ _v_
LB — (1), and || — w| = op(ay /T /n).

Then on a properly enriched probability space, there exists a K, s-dimensional standard normal

random vector N;(p . independent of D such that for any & > 0,
(i) P(supxex 12,0 (@) = Zy ()] > ga,;l‘n) — op(1),

(i1) P(supsex | Zo,p(x) = Zop(@)] > oyt

D) — op(1),

(iii) B(supse | Zep(w) = Zep()] > €a;”

D) = op(1).
If Assumption SA-RP(ii) also holds with tgp = o(a;, *(logn)~1/?), then

(iv) P(supxex 12,0 (@) = Zy ()] > Eay?

D> — op(1),

(v) P(subser | Zo,p(x) = Zopl(@)| > ot

D) — op(1),
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(vi) P(supsex |Zcp(@) = Zepla)] > €a;1|D) = 0p(1).

Remark SA-2.6 (Improvements over literature). Theorems SA-2.5 and SA-2.6 provide empirical
researchers with powerful tools for uniform inference based on binscatter methods. Importantly, we
take into account the randomness of the empirical-quantile-based partition and construct a novel
strong approximation of general binscatter-based M-estimators under mild rate restrictions. For
an = v/logn and v > 4, we require Jg/n = o(1), up to logn terms. In the literature, similar
results were only available in some special cases under stringent rate restrictions. For instance,
Belloni et al. (2019) considers strong approximations of general series-based quantile regression
estimators. For the binscatter basis considered in this paper, their Theorem 11 can be applied to
construct strong approximation of the t-statistic process based on pivotal coupling that achieves
the approximation rate a, = n~¢ under J*/n!=¢ = o(1) for some constants ,&’ > 0, whereas their
Theorem 12 can be used to construct strong approximation based on Gaussian processes under
J?/n'=¢ = o(1). Tt should be noted that their notion of strong approximation is stronger than ours
in the sense that it holds uniformly over both the evaluation point x € X and the desired quantile
u € U for a compact set of quantile indices & C (0,1). On the other hand, our methods allow for
other loss functions (e.g., Huber regression) and for semi-linear covariate adjustment, leading to

new results that were previously unavailable in the literature. _

Theorems SA-2.5 and SA-2.6 offer a way to approximate the distribution of the whole t-statistic
process based on i(")(), 5(, W) or A(-, w). A direct application of these results is the distributional

approximations to the suprema of these t-statistic processes.

Theorem SA-2.7 (Supremum Approximation). Suppose that Assumptions SA-DGP, SA-GL and
SA-RP (including SA-RP(ii)) hold,

‘](1(1)7%)2 + nJ—2r—3 + nJ_lt?y = 0((10g J)_l)a

n v

2v v
Jo=1(1 =T .
—((:lg") =o(1), |w—w]| :0P<1/7nlggJ), and tgp :0(7\/10@1W>'

Then,

sup |P((sup [T, ,(2)] < u) = P((sup | Z,0 ()| < uD)| = op(1),
u€R TEX TEX
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sup IP’( sup [Ty p(z)| < u) - IP’( sup ]Zg\’p(xﬂ < u‘D)‘ =op(l), and
ueR TeX reX
sup IP’( sup [T p(x)] < u> - IP’(sup \Zc,p(aj)] < u‘D)’ = op(1).

u€eR rzeX reX

SA-2.6 Confidence Bands

Let

~

I, (@) = [A(U) ) % ¢\ Q0 (30)/”],
Lg,p<$ w) = [19 T, W) £ cm/Qﬂ(x)/n}
Ig,p(:c w) = { C(x,w icC\/QC /n}

(v)

be confidence bands for p ’(+), Jo(-, w) and (o(-, w) respectively, where ¢, ), ¢y and c¢ are cor-

responding critical values to be specified. Recall that w here is taken as a fixed evaluation point

for the control variables, and these bands are constructed based on a certain choice of J and the

pth-order binscatter basis. Using the previous results, we have the following theorem.

Theorem SA-2.8. Suppose that Assumptions SA-DGP, SA-GL and SA-RP(i) hold,

Joan)” | y=20-3 4 g2 = o (log J) V),

1,,

2v
Ju—l ] v—1 ~
% =o0(1), and ||w—w| :01p>( nlc{gJ>‘

(i) If ¢,) = inf {c € Ry : Plsup,cy |2M(v),p(33)| <c¢|D]>1- a}, then

B[ (@) € L (@), for all z € X| =1—a+o(1)

(i) If ¢y = inf {c € Ry : Plsup,cxy ]/Z\gvp(xﬂ <c¢D]>1- a}, then

]P’[ﬁo(;r,w) € f197p(.7},W), for all x € X} =1—a+o(l).
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i) If ¢ =inf < c € Ry : P[sup XZ )| <c|D|>1—ay, then

P[{o(az,w) € ]A'C’p(a;,w), for all x € X} =1—a+o(1).

Remark SA-2.7. The above results construct valid uniform confidence bands for general binscatter-
based M-estimators under mild rate restrictions. Specifically, when v > 4, we require J 3 /n=o(1),
up to logn terms. In contrast, Belloni et al. (2019) considers general series-based quantile regres-
sion estimators, and Theorem 15 therein can be used to construct confidence bands for binscatter

estimators via various resampling methods under J*/n!'~¢ = o(1) for some & > 0. _I

SA-2.7 Parametric Specification Tests

As another application, we can test parametric specifications of ,u(()v) (), Jo(z,w) and (o(z,w). We

introduce the following tests:

A5 s sup |l (@) — m)(@;0)] =0, for some 6, vs.
TeEX

AL sup g (@) = m®(:0)| > 0, for all 6.
BAS

where m(z;0) is some known function depending on some finite dimensional parameter €. This
testing problem can be viewed as a two-sided test where the equality between two functions holds
uniformly over x € X. In this case, we introduce 6 and ~ as consistent estimators of 8 and =g

V) . C .
under Hj’ . Then we rely on the following test statistic:

. A0(2) — m® (2
T (@) o= e 1 (2:0)
Q0 (z)/n

The null hypothesis is rejected if sup,¢ |Tu(v)’p(l‘)| > ¢, for some critical value ¢ ).

Similarly, to test the specification of J¢(x, w), we introduce

Hg . sup [Jo(z,w) — M (z, w; 0,’70)’ =0, for some 0, vSs.
TeEX

HY :  sup |Oo(x, w) — M(z, w; 0,’70)‘ >0, forall 6.
reX
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where M (z,w;0,v9) = n(m(z;0) + w'vp). We rely on the following test statistic:

)

(.%,V/‘\/') B M(l‘,\/I\V; 67’7)

Ty p(x) ==
! o)

The null hypothesis is rejected if sup, e [T ()| > ¢ for some critical value cy.

To test the specification of (y(x, w), we introduce

Hg : sup ‘C{)(Q?,W) — MY (z, w; 0,70)‘ =0, for some 0, vS.
zeX

Hi : sup ’Cg(:v,w) — M(l)(x,w; 0,70)‘ >0, forall 8.
reX

where MM (z, w;0,9) := ) (m(x;0) + w'~yo)mD (z;0). We rely on the following test statistic:

Ty p(a) = SO = MO @ %:6,5)
Q¢ (z)/n

The null hypothesis is rejected if sup, e [T¢ ()| > ¢ for some critical value c;.
Theorem SA-2.9 (Specification Tests). Suppose that the conditions in Theorem SA-2.8 hold.

(i) Let ¢,y = inf{c € Ry : Plsup,er |ZM<U>7p(x)| <¢ D] >1-a}.

Under Hg(v), if supger | (2) — m®) (2 )| = 01p<\ / %), then
lim ]P)[ilelg \Tu(v)m(x)\ > CM@)} = a.

n—oo

Under H’Ifl(v), if there exist some fired O such that sup,c |m) (z;0) — mW (2;0)| = op(1),
1/2
and J“(%) = o(1), then

n—oo

lim P| sup ’Tu(”),p(x)’ >, | =1
reX

(i1) Let ¢y = inf{c € Ry : P[sup,cx \Zg,p(m)] <¢D]>1-a}.
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Under HY, if sup,ey |90(z, w) — M (2, W; 6.9)| = o]p(\ / %), then

lim P| sup [Ty ,(z)] > c] =a.
zeX

n—oo

Under HY,, if there exist some fized 6 and 4 such that sup,cy | M(z, w; 0, ¥)—M(x,w;0,7)| =
Jlog g\ /2
op(1), and Jv (Tg) =o(1), then

lim P| sup [Ty ,(2)| > c} =1.
reX

n—oo

(iii) Let ¢ = inf{c € Ry : Plsupyecy |Zep(2)] < ¢|D] > 1 — a}.

Under Hg, if sup,er |Co(z, w) — MO (2, W; 6,9)| = 01[»( Tﬁ;;}), then

lim P[sup T¢ p(2)] > c} = .
TeEX

n—0o0

Under Hi, if there exist some fized @ and 4 such that sup,cy MO (z,w; 5, N-MD (2, w:;0,7)| =
1/2
op(1), and JV (%) =o(1), then

lim P| sup |[T¢,(x)| > ¢| = 1.
zeX

n—oo

SA-2.8 Shape Restriction Tests

The third application of our results is to test certain shape restrictions on u(()v) (), 9o(x,w) and

Co(z, w). To be specific, consider the following problem:

|:|’0”<v> . sup (u)(z) — m™ (2 8)) < 0 for certain 6 and ¥ v.s.

TeEX
lei(v) : sup (N(U) (x) — m) (2;0)) > 0 for 8 and ~.
reX

This testing problem can be viewed as a one-sided test where the inequality holds uniformly over
. ) () - _
z € X. Importantly, it should be noted that under both Hfj = and Hy ', we fix 8 and 7 to be the

same values in the parameter space. In such a case, we introduce 8 and ~ as consistent estimators
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of @ and 4 under both Hg “ and l:l’[i@). Then we will rely on the following test statistic:

_A) - m®)(:6)

~

Q) (z)/n

Ty (@) :

The null hypothesis is rejected if sup,c T#(m’p(x) > ¢, for some critical value ¢ ).

Similarly, define the test for the shape of Jg(z, w):

HY : sup (o(z, w) — M(z,w;8,7)) < 0 for certain  and 7 v.s.
reX

HY : sup (Wo(z, w) — M(z,w;0,7)) > 0 for 8 and 7.

rzeX

We will rely on the following test statistic:

Tﬂ’p(I) =

Qﬁ(x)/n

The null hypothesis is rejected if sup,cy T@p(x) > ¢y for some critical value cy.

Also, define the test for the shape of (o(z, w):

Hg . sup (Co(z, w) — MW (2, w;8,%)) <0 for certain @ and 5 v.s.
rzeX
HS : sup (Co(x, w) — MW (2, w;0,7)) > 0 for 6 and 7.
reX

b=

We will rely on the following test statistic:

TCvp(:L‘) =

The null hypothesis is rejected if sup,c y Tcyp(a:) > ¢¢ for some critical value c¢.

The following theorem characterizes the size and power of such tests.

Theorem SA-2.10 (Shape Restriction Tests). Suppose that the conditions in Theorem SA-2.8
hold.

(i) Assumesup,cy |m(z;0)—m(z;0)| = 0@(1 / %) Let ¢, = inf{c € Ry : P[sup,cx ZL(U),p(x) <
¢D] >1-a}.
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- ()
Under Hy

1imIP’[su T ) . (x C.| < a.
Jim P sup T, 1p(@) > | <

s 1/2
Under W if J(%) — o(1),

(ii) Assume sup$€X|M(:J:,vAv;§,77) — M(z,w;0,7)| = o]p( JHQU). Let ¢y = inf{c € Ry :
Plsup,ex Zo,p(x) < /D] > 1 —a}.
Under Hg,

lim P| sup Ty ,(z) > cqg] <a.
n—00 reX

. 1/2
Under HY, if JV (%) =o0(1),

lim P| sup Ty ,(x) > C§:| =1

n—o0 reX

(111) Assume sup,cy \M(l)(x,vAv;é,ﬁ) — MV (z,w;0,7)| = 0]1»( ;{E;}) Let ¢ = inf{c € Ry :

Plsup,ex Zep(e) < ¢D] 21— a}.
Under |:|8,
lim P| sup T¢ (z) > CC} < a.

n—oo rEX

. 1/2
Under HCA, if JY (%) =o0(1),

nlgn;op[jlelg Tep(x) > c<] =1.
Remark SA-2.8 (Improvements over literature). The previous results in Sections SA-2.6-SA-2.8
are new to the literature, even in the case of non-random partitioning and without covariate-
adjustments, because they take advantage of the specific binscatter structure (i.e., locally bounded
series basis). Furthermore, relative to prior work, our results formally take into account the ran-

domness of the partition formed by empirical quantiles, account for the generalized semi-linear
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structure, and consider an array of possibly nonlinear estimation and inference problems. In par-
ticular, the approach taken in Theorems SA-2.5 and SA-2.7 to establish strong approximation
and related distributional approximations for nonlinear binscatter statistics may be of independent

interest. _

SA-3 Implementation Details

SA-3.1 Standard Error Computation

In Section SA-2, we have given the variance formulas (AZN@) (z), Qy(z) and Qg(m) that can be used to
obtain the standard errors of (") (x), 5(% w) and ¢ (z,w). Recall that the formula for the estimator
S of p is
S = B By (w0)By(w0) 0(@) D (i) + wiF)?|.

Note that it only relies on known or estimable quantities such as the derivative of the loss function
(+), the derivative of the inverse link function n(")(-), the residual € and the binscatter estimates
i(-) and 4. Thus, S and other types of heteroskedasticity-robust “meat” matrix estimators can
be easily constructed using the data. Then, it remains to obtain an estimator Q of Qq, which in
general relies on another estimator (I\ll() and can be constructed in a case-by-case basis. In the

following we discuss several examples.

Example 1 (Least Squares Regression). For least squares regression, the loss function p(y;n) =
2(y —n)? and the (inverse) link function 7(¢) = ¢. Therefore, 1(¢;) = —e; and 1,1 = 1. Thus, the
formula for Q given in Section SA-2 reduces to E,, [Bpjs(xi)gpys (x;)'], which is immediately feasible

in practice.

Example 2 (Logistic Regression). For logistic regression, the loss function is given by the

corresponding likelihood function, i.e., —p(y;n) = ylogn + (1 — y) log(1 — n), and the inverse link

of
1+4ef "

is given by the logistic function n(6) = Accordingly, an estimator of Qg is given by

~ o~

Q = By [bya(e0)bys () (1~ 2] 7 = nlAia) + wiA).
Example 3 (Quantile Regression). For quantile regression, p(y;n) = (¢ — 1(y < n))(y —n) for
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some ¢ € (0,1) and n(#) = 6. Accordingly, ¢(¢;) = 1(e; < 0) — ¢, and one needs to estimate

Qo = E |bp,s(2i)by,s(2i) fyrjxw (1o (w:) + wivo|zi, wi) |-

The key is to estimate the conditional density fy xw (-|x;, w;) evaluated at the conditional quantile
of interest (uo(z;) + W), whose reciprocal is termed “sparsity function” in the literature. Many
different methods have been proposed. For example, the sparsity function is simply the derivative of
the conditional quantile function with respect to the quantile, which can be estimated by using the
difference quotient of the estimated conditional quantile function. Alternatively, Qg can be viewed
as a matrix-weighted density function, and one can construct a corresponding estimator based on
kernel density estimation ideas. In addition, one can use bootstrapping methods to estimate the
variance, avoiding the technical difficulty of estimating the sparsity function. See Section 3.4 and

Section 3.9 of Koenker (2005) for more discussion of variance estimation for quantile regression.

SA-3.2 Number of Bins Selector

We discuss the implementation details for data-driven selection of the number of bins, based on
the approximate integrated mean squared error expansion in Theorem SA-2.4.
We offer two procedures for estimating the bias and variance constants, and once these estimates

(@n(p, s,v) and 77n(p, s,v)) are available, the estimated optimal J is

P _1
Jinse = [<2(p —vTt 1);@"(177 37”)) 2p+3n2p1+3-‘ .
(14 2v)Vn(p, s, v)

We always let w(x) = fx(z) as weighting function for concreteness.

SA-3.2.1 Rule-of-thumb Selector

A rule-of-thumb choice of J can be obtained based on Corollary SA-3.2 in Cattaneo et al. (2023),
which gives an explicit characterization of the variance and bias constants for least squares bin-

scatter using piecewise polynomials (s = 0).
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Specifically, the variance constant ¥ (p,0,v) is estimated by

¥ (p,0,v) = trace{(/o1 cp(z)cp(z)'dz>71 /01 0 (2)® dz} X — ZO’ zi,wi) fx ()%

where ¢(2) = (1,z2,...,2P), 5%(x;, w;) is some estimate of the conditional variance V[y;|z;, w;] and
Fx(x;) is some estimate of the density fx(z;). On the other hand, the bias constant Z(p,0,v) is

estimated by
(@D (z;)]2

2p+2 2w

> _ fol[%)pﬂ v 1<
’@(1%072})_ ((p+1—’l) g;

where %,(z) = (=1)P Y% _o (}) (pJ,gk) (—z)k/(zjf) for each p € Z, and a®*tY(z;) is some preliminary
estimate of u(p+1)(xi). The details about getting the estimates 52(zs, w;), fx(z;) and @) (z;)
can be found in Section SA-4.1 in Cattaneo et al. (2023).

Note that this procedure still yields a choice of J with the correct rate, though the constant

approximations are inconsistent for general loss.

SA-3.2.2 Direct-plug-in Selector

The direct-plug-in selector is implemented based on nonlinear binscatter estimators, which applies
to any user-specified p, s and v. It requires a preliminary choice of J, for which the rule-of-thumb
selector previously described can be used.

More generally, suppose that a preliminary choice Jpre is given, and then a binscatter basis
prs(:c) (of order p) can be constructed immediately on the preliminary partition. Implementing
a nonlinear binscatter estimation using this basis and partitioning, we can obtain the variance
constant estimate using the variance matrix estimators discussed in Section SA-3.1.

Regarding the bias constant, the key unknown in the expression of the leading approximation
error 7 ,,(z) in Theorem SA-2.4 is uép H)(a:), which can be estimated by implementing a nonlinear
binscatter estimation of order p+ 1 (with the preliminary partition unchanged). Also note that an
estimate of fx(z;)~! in 5.0 () is J h., where h,, denotes the length of the interval in A containing
x;. All other quantities in the expression of %(p, s,v) can be replaced by their sample analogues.
Then, a bias constant estimate is available.

By this construction, the direct-plug-in selector employs the correct rate and consistent constant
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approximations for any nonlinear binscatter with any choice of p, s and v.
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SA-4 Proof

SA-4.1 Technical Lemmas

In this section we collect some technical lemmas used in the proof of our main results.
We first give several simple facts about A in the following lemma, which are immediate from

Assumption SA-RP(ii).

Lemma SA-4.1 (Quasi-Uniformity). Suppose that Assumption SA-RP (i) holds. Then, (i) J~' <

minlgjgj hj § maxlgjgj hj S Jﬁl, (ii) maxlgjgj |7A'j — Tj| S]p Trp, and (ZZZ) A S H2CQU+1 w.p.a. 1.

Proof. By Assumption SA-RP(ii), len(X) = Z}]:1 hj > Jmini<j<jh; > caulJmaxlgng hj where

len(X’) denotes the length of X' (which is a fixed number). On the other hand, len(X) < Jmaxi<j<jh;

< cqud maxi<j<jhj. Therefore, cEUQJ_llen(X) <minj<j<yhj <maxi<j<yhj < cqud “tlen(X).
Next, by Assumption SA-RP(ii), maxi<;<y |7j—7;| = maxi<j<| Z{Zl (hy—hy)| < Jmaxi<i<g |hy—

| < trp- In addition, maxi<j<y |h; — hj| < %CEUQJfllen(X) w.p.a. 1, and thus

maxigjcr by _ maxigicr by +maxigeglhy —hsl o
. s T . = = QU .
minicj<y by minigicy hy — maxicj<r (b — hyl

Then, the proof is complete. O

The next lemma then verifies Assumption SA-RP(ii) for the special case of quantile-spaced
partitions. The proof is available in the supplemental appendix of Cattaneo et al. (2023) (see

Section SA-3.1 therein) and thus omitted here.

Lemma SA-4.2 (Quasi-Uniformity of Quantile-Spaced Partitions). Suppose that Assumption SA-

DGP(i) holds and A s generated by sample quantiles, i.e., 7j = F)zl(j/J). If ‘”‘T)ng = o(1) and
1/2

10% = 0(1), then Assumption SA-RP(ii) holds with T; = F'(j/J) and tgp = <%>

The next three lemmas SA-4.3-SA-4.5 concern the properties of binscatter basis functions. Their
proofs are the same as those for quantile-based partitions that are available in the supplemental
appendix of Cattaneo et al. (2023) (see Section SA-3.1 therein) and are omitted here to conserve

space.
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Lemma SA-4.3 (Transformation Matrix). Suppose that Assumption SA-RP(i) holds. Then Bp78(az) =
’T‘SBP,O(:U) with | Tsllee <p 1 and ||Ts| <p 1. If, in addition, Assumption SA-RP(ii) holds, then

Hr/fs — Tylloo Sp tre and HfI\‘s — Ts|| Sp tae-

Lemma SA-4.4 (Local Basis). Suppose that Assumption SA-RP(i) holds. Then sup,cy Hg}(,vs) (@)|lo <

(v 1.y
(p+1)2 and sup,cy |[bya(z)|| Sp J2H0.

The following lemma provides a particular way to define By(A) and Eo so that the required

approximation rate is achieved. We define

(A) := argmin E[(uo(z:) — bys(zi; AYB)Y,  BE = BE(A).
BeRKD,s

Lemma SA-4.5 (Approximation Error). Suppose that Assumption SA-RP(i) holds. Then

sup sup [b{") (z; A)YBES(A) — ) (2)| £ J P and  sup [b{)(x) B — pl!(@)| Sp SV
A€ll zeX rEX

Next, the following maximal inequality is useful in our analysis. Its proof is available in Cattaneo

et al. (2022) and thus omitted here.

Lemma SA-4.6 (Maximal Inequality). Let Zi,--- ,Z, be independent but not necessarily iden-
tically distributed random variables taking values in a measurable space (S;.7). Denote the joint
distribution of Z1,--- ,Zn by P and the marginal distribution of Z; by P;, and let P = %Z;’;l P;.
Let F be a class of Borel measurable functions from S to R which is pointwise measurable. Let
F be a measurable envelope function for F. Suppose that ”FHLQ(P) < oco. Let d > 0 satisfy

suprer | fll, @) <0 < ||F'HL2(@) and define F = maxi<;<n, F'(Z;). Then, with § = 6/HFHL2(@),

||f’||L2(P)J(57]:7 F)?
52 Jn !

| - g (#(20) — ELZ0)[] 5 17 70,7 F) +

fer

where

)
J(57]:7 F) :/ \/1 +S%plogN(‘F7L2(Q)75||F‘|L2(Q))d8
0
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SA-4.2 Proof for Section SA-2
SA-4.2.1 Proof of Lemma SA-2.1

Proof. We write W; 1 := Wy (5, Wi n;).

(i) We first prove a convergence result of Q. In view of Lemma SA-4.3, it suffices to show the
convergence for s = 0. Let A, denote the event on which A eIl By Assumption SA-RP(i),
P(AS) = o(1). On A,

< sup [En[bp,o(zi; A)byo(2i; A)' Vi 107] — Elbyo(wi; A)bpo(is A) ¥ 107 |l so-
S

~

En[by.0(2:)bp0 (i) Wiy] = Ex [bo(wi)bpole:) Wity

Let ag; be a generic (k,l)th entry of the matrix inside the norm, i.e.,
|art] = |En[bp,o,e(2i; A)bpog(2i; A) W 107 1] — Elbo g (wis A)bog (i A) Uy 1m7 ]|

Clearly, if b, 0 x(-; A) and b, 0,(-; A) are basis functions with different supports, ax; is zero. Now

define the following function class
g = {(961,W1) = bpok(1; A)bpo(z; A)Win? 1< k1< J(p+1),A € H}~

We have supyeg |9loe < J and sup,cg Vig] < sup,egElg?] < J, by Assumption SA-GL. Also, by

Proposition 3.6.12 of Giné and Nickl (2016), the collection G is of VC type with a bounded index.

Then, by Lemma SA-4.6,

<p v/ JlogJ/n,

sup |~ 3" () — Elg(x)]
1

n
geg i

~ ~ ~ ~

which implies [|[Ey[bpyo(x:)bpo(x:) ¥i1n71] — Ex[bpo(zi)bpo(z:) Wiint ]l Se V/Jlog J/n.

Then, the lower bound on the minimum eigenvalue of Q follows by Theorem 4.42 of Schumaker
(2007) and Assumption SA-RP(i). The upper bound immediately follows by Assumption SA-RP(i)
and Lemmas SA-4.3 and SA-4.4.

Given the above fact, it follows that ||[Q~!|| <p 1. Notice that Q is a banded matrix with a
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finite band width. Then, the bounds on the elements of Q! and ||Q~!||o hold by Theorem 2.2 of
Demko (1977).

(ii) By Assumption SA-DGP(iii) and SA-GL(iii), ‘I/i,177¢2,1 is bounded and bounded away from
zero uniformly over 1 <i < n. Then, E[b, s(zi)bp s(2;)] S Qo S E[by s(zi)bps(z)']. The desired
bounds on the minimum and maximum eigenvalues of Qg follow from Lemma SA-3.5 of Cattaneco
et al. (2023).

Next, we show the convergence of Q to Q. Let az; be a generic (k,l)th entry of

~

Ex [bp,o(2i)bpo(2:) Wi 1m7 1]/ — E[byo(wi)bpo(xi) W11/ J.

By definition, it is either equal to zero or

PN PN
o = [ (5572 etwarxye — [ (52 plwfx )i
i j i
1 1
:ﬁj/o Lo(zhy + 75) fx (zhy + 7j)dz — hj /0 2o(zhy + 75) fx (zhj + 75)dz

1
=(h; — hj)/o Zo(zh; + 75) fx (zh; + 75)dz
1
+ hj/o 7t (90(2% + 7)) fx (zhy + 7)) — @(zh; + 75) fx (zh; + Tj)>d2

for some 1 < j < Jand 0 < /¢ < 2p and p(z;) = E[s(x;, w;)|z;]. By Assumptions SA-DGP and

SA-GL and the argument in the proof of Lemma SA-3.5 of Cattaneo et al. (2023),
IE[bpo(i)bpo (i) Wirniy] = Qoll <o vae.

Since Q and Qg are banded matrices with finite band widths. Then, the bound ||Q™! — Qg Yo
hold by Theorem 2.2 of Demko (1977). This completes the proof. O
SA-4.2.2 Proof of Lemma SA-2.2

Proof. Since E[Yp(¢;)?|z; = z,w; = w] and (V) (uo(x) + w'y0))? is bounded and bounded away
from zero uniformly over x € X and w € W, En[gp,s(xi)gm(:vi)’} <x< En[gp,s(xi)gm(:pi)’]. By

the same argument in the proof of Lemma SA-2.1 (we can simply drop the additional term \111-71772-27 1
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in Q), the eigenvalues of E,, [Bp7 s (xi)gn s(2;)"] and thus X are bounded and bounded away from zero.
Then, the desired results follow from Lemma SA-2.1 and the fact that inf,cx ||lA)I(,U2 (z)|| = JV/*tv

w.p.a. 1 (it was shown in the proof of Lemma SA-3.6 of Cattaneo et al. (2023)). O

SA-4.2.3 Proof of Lemma SA-2.3

Proof. By Lemmas SA-4.3, SA-4.4 and SA-2.1, sup,cy ||B§,Ug(x)||1 <p JY2 Q7 oo <p 1 and

| Ts|loe <p 1. Define the following function class
g = {($1,W1,€1) = by (21; A (o (1) + wivo)(er) : 1< T < J(p+1),A € H}-

Then, supyeg 9] S V' J[¢(e1)], and hence take an envelop G = C'v/J|1(e;)| for some C large enough.

Moreover, sup,eg V[g] < 1 and G is of VC type with a bounded index. By Proposition 6.1 of Belloni

< /logJ+J2<Vl:2)logJ§ 10gJ7
n n n

and the desired result follows. O

et al. (2015),

sup 729 xwfz

geg

SA-4.2.4 Proof of Lemma SA-2.4

Proof. Let € = y; — W(Bp,s(xi),go + wivo). We write t(x;, w;, y;) 1= v(zi, Wi,y A) = nia(€;) —
N by, (2:)'Bo + Wiyo) (&) = Ax(wi, wi, yi) + Az(xi, Wi, i) where

Ay (i, Wi, i) o= Ar(i, Wi, yi; A) == (i1 — 1D (b s(2:) Bo + Wio))1(e;) and

Ao (s, Wiy yi) == As(wi, wi,yis A) i= W (bys(2:) Bo + wimo) (W(e:) — (&)

~

First, by Assumption SA-GL and Lemma SA-4.5, sup,c v wew 10 (po(z)+w'~9)—nM) (Bp,s (x) Bo+

w'y0)| < J P71 Also, for every 1 <1< K, s and A €11,

bpsi (w5 ) (77(“0(95) +w'y0) — n(bps(x;A) Bo(A) + Wl’)’o))
k,+p
= bp,s,1(x; A)n(po(z) +W'y0) — by, (s A) <Z bp,s k(2 A) Bo k(A )+w”m>

k=k;

for some integer k; € [1, K, 5] where f (A) denotes the kth element in By(A). Then, the function
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class G = {(z,w,y) = bpsi(x;A)A1(z,w,y;A) : 1 <1 < Ky, A € II} is of VC type with a

bounded index. By the same argument given in the proof of Lemma SA-2.3,

~ __1(log J\1/2
B0 By A (i, Wi, ) oo S T 777 (225)

Next, let Zxwa be the o-field generated by {(x;, w;)}!; and A. Note that

~

En[gp,s(xi)A2($z‘>Wz‘,yz’)] = E,[E[bps(x:)A2(zi, Wi, yi)|-F xwal ]+

E, [Bp,s(%')fh(%', Wi, yi) - E[Bp,s(iﬂi)AQ(%, Wi, yi)|ﬁXWA]} .

By Assumption SA-GL(ii) and (iii) and Lemma SA-4.5,

T it ™ (by,(2:)' Bo + Wino) (i, wis by, (1) Bo + Wiry))| Sp J 7+

Then, HEn[E[Bp7S(1:i)A2(xi, Wi, Yi) | Fxwalllleo <p JP~171/2 by the same argument in the proof of
Lemma SA-2.1. On the other hand, define the following function class

G = {(a:,w,y) > by (23 A) Ag(, W,y A) 11 < 1< Kp gy A € H}.

By Assumption SA-GL, sup,cg [|9lloo S JY2 and sup,eg Vig(zi, Wi, yi)] S J7P~1. By a similar
argument given before, this function class is of VC type with a bounded index. Then, as in the

proof of Lemma SA-2.3, by Proposition 6.1 of Belloni et al. (2019),

n

Ly _pt1 [logJ  JY%logJ
sup | — Z(g(whwﬂyl) - E[g(xzaWzyyZ)]>’ ,S]P’ J P2 \/?_f_ g )
i=1

-~ _ - vep=1 /J 1 12 gt
b0 Q BBy e, wi, )] S o7 g P (L) LR
The proof is complete. O

35



SA-4.2.5 Proof of Lemma SA-2.5

Proof. By convexity of p(y;n(-)), we only need to consider 8 = ,@0 + ea/+/J for any sufficiently
small fixed ¢ > 0 and o € R¥rs such that ||| = 1. For notational simplicity, let b; = Epjs(xi).
For this choice of 8 and v € R%,

0i(8,7) = p(yi;n(0i;B + wiy)) — p(ys; n(;Bo + Wiy))

ebia/VT PN PN
= [ (s nBiBo + iy + ) a0V (BB + iy + )
0

Let Zxwa be the o-field generated by {(z;, w;)}!, and A. We have

Bulf(8.9)] = Z=G,l6(B.9)] + B, [EI5(8.9)| Fxwal.

where G, [-] denotes \/n(E,[-| —E[-|Zxwa]) and E[§;(8,7)|Fxwa] := E[6:(8,7)|-Zxwal|y=, that

is, the conditional expectation with 4 viewed as fixed. By Assumption SA-GL,
agga/\/j A A

E[6:(8, %) Fxwal = / W(% wi;n(biBo + Wiy + t))ﬁ(l)(béﬁo + Wiy +t)dt
0
agga/\/j R R
= / Wi (a5, wis &) (1(DiB0 + wiy + 1) — mi)n'™D (bBo + wiy + t)dt,
0
where &; ; is between n(ggﬁo—l—wﬁ—i—t) and 1(po(x;)+wivo) and we use the fact that ¥ (z, w;;n;) = 0.

By Lemma SA-4.5, the fact that 7(-) is strictly monotonic and 4 — 49 = op(1/J/n + JP~1) and

>p 52a’En[B¢B;]a/J >p J 12

the rate condition imposed, we have E,[E[d;(8,7)|Fxwal]

On the other hand, let H := {~ : ||y — ]| < Cry} and define the following function class
G = { (i, wi,yi) = 6:(B,7) - a € SWoe y .
Note that

aB;a/\/j A N
5 (8,7) 2/0 (w@i; n(bjBo + wiy + 1)) — (yi; m))n(”(béﬁo + wiy +t)dt +

sg’la/\/j R
/ D(yis i)™ (b Bo + Wiy + t)dt.
0
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By Assumption SA-GL, we have sup,cglg| S (1 + [¥(&)]), | maxi<i<n [¥(€)|llo@) S n/v,

~

SUp,eg E.[E[¢?|Zxwal] <p J 'e?, and the VC-index of G is bounded by CK, s for an absolute

constant C' > 0. Therefore, by Lemma SA-4.6 and the rate restriction,

J%log J\1/2 J%log J
i) e+J7t logl e=o(e/J).

1
—=Gu[0:(8,7)]| Sp I
Eleng)\/ﬁ [(ﬁv)]\ p (

n n-"v

Thus, for any fixed (sufficiently small) ¢ > 0, E,[6;(8,7)] > 0 when n is sufficiently large. Thus,

I8 = Boll = op(J~1/2), implying ||B — Bollee = op(J~1/2) immediately. O

SA-4.2.6 Proof of Theorem SA-2.1

Proof. The proof is long. We divide it into several steps.
Step 0: We first prepare some notation and useful facts. To simplify the presentation, in this

proof we drop the scaling factor v/J in the basis by defining

9

by := by ()/VT = Bpsa(21), -+ bpsic, (@) /VT and  Bo = Vo

Throughout the proof, C, ¢, Cy,c1,Ca, o, - - denote (strictly positive) absolute constants, % xwa
denotes the o-field generated by {(z;, w;)}" ; and 3, and supp(g(+)) denotes the support of a

generic function g(-). Moreover, define

V={(v1, - ,vK,,) : Ik e{l, - Ky} v < ol*He, for | — k| < M,, and vy = 0 otherwise},

Hy={v eREPs 1 |v]joo <7ip} forl=1,2, and Hz={veR:|v| <r3.},

where ¢ € (0,1) is the constant given in Lemma SA-2.1, 71, = Cy[(Jlogn/n)Y/? + J P71 ry,, =
3ton for3 >0, e, =3'va, for 3’ >0, v, = [(%)3/4 logn%—g]_%1 \/%logn—i— J2P 2], ra =
Ct,, and M,, = c1logn. In the last step of the proof, we will consider 3 = 20 ¢=L L+1,---,L
where L is the smallest number such that 2Er2n > ¢ for some sufficiently small constant ¢ > 0,
and &, is a quantity that we can choose. Note that by Assumption SA-GL, ¥ — 9 € H3 with
probability approaching one for C large enough, and by Lemma SA-2.5, \/j,@ — ,éo < ¢ with

probability approaching one.
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For any 31 € H1,82 € Ho, v € V and ~ := v + 1 with v € Hs, define

6i(B1, B2,v,7) = p(yi; n(b}(Bo + B1 + B2) + Wh)) - P(%Q n(bi(Bo + B1 + B2 — v) + Wh))
— [(Bi(Bo + B+ B2) + wi) — n(bi(Bo + B + B2 — v) + wi)]
x 1(ys; n(biBo + wivo))

- /_Of,'u [?/) (yi; n(bL(Bo + B + B2) + Wiy + t)) - q/)(yi; n(b}By + Wg’)’o))}

7

x 1) (BQ(BO + B+ Bo) + Wiy + t) dt.

Note that §;(B31,32,v,7) # 0 only if B;v # 0. For each v € V, let J,, = {j : vj # 0}. By
construction, the cardinality of 7,, is bounded by 2M,, + 1. We have §;(31, 32,v,7) # 0 only if
lv)](xz) # 0 for some j € J,, which happens only when z; € supp(lv)j(-)) for some j € J,. Let
Ty = Ujeg, supp(gj(-)). Since the basis functions are locally supported, Z,, includes at most ca M,
(connected) intervals for all v € V. Moreover, at most csM,, basis functions in b(-) have supports
overlapping with Z,,. Denote the set of indices for such basis functions by J,,. Let Bvo’j, B1,; and

B2,; be the jth entries of Bo, B1, and B respectively, and v; be the jth entry of v. Based on the

above observations, we have 6;(81, B2, v,7) = 6i(By, 7,, B2, 7,, V,Y) Where

5By 70 Br g0 ) = | 0 o [P ( 3 B+ pra o)+ wiy 1))

bi,jvj

j€Jv lejv
—¢(ym7( > bisBos + Wb’o))} X 77(1)< > bia(Bou + B+ Bag) + Wiy + t) dtl; .,
1T 1eJw

1;» = 1(x; € Zy), and B4 7, and By 7, respectively denote the subvectors of 81 and B2 whose

indices belong to J,,. Accordingly, define the following function class

g= {(«Tz‘awiayi) = 6:(B1, B2, v,7) 1 v €V, By € REMr 3y € ReMn,

1B1lloe < 1, 182]lc0 < Tom, ¥ — 0 € Hs}-

Step 1: We bound sup,cg [Enlg(wi, Wi, 4i)] — E[g(zi, Wi, yi)| Fxwal| in this step. Let a;(t) :=
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U(Zlejv 52'71/5’0,1 + W}y +t). Define

a; = min {ai(U), ai( Z big(B1g + Bai) + W;'Yl) , ai( Z biy(Bry + Bay) + Wiy + Z Bi,jvj)} and

l€jv lEjU jej’v
a; = max {ai(0)7 ai( > bia(Bra+ Bog) + Wg’h) ; ai( > bia(Bra+ Bog) + Wi+ Y 7%,;'%’) }
1€Tw I€Tw JETw

Consider the following two cases.

First, suppose that (y; — a;, y; — a;) does not contain any discontinuity points. By Assumption

v

SA-GL, for all ¢ in the interval of integration [—3_.c 7 b;;v;,0] (or [0, — > c 7. bijvi]),

‘¢<Z/z‘; ai( > bia(Bra + Bag) + Wiy + t)) —Y(y:;0i(0))| S T10 +T2n + En + T3
N

Second, if (y; — @i, y; — ;) contains at least one discontinuity point, say j. For any ¢ in the interval

of integration, by Assumption SA-DGP,

‘1/’<yi§ ai( Z biy(Bry + Bay) + Wiy + t)) —(yi;04(0)| S 1473,

leJw

for any (x;, w;,y;), and in this case y; € (J + a;,7 + a@;). By Assumption SA-GL,

|CLZ' — CLi| S (Tl}n + T2.n + T3,n + 5n)(|77’i,1| + Tin + T2.n + T3n + 8n)-

Note that by construction, for each v € V, there exists some k,, such that |vy| < oltFkvle, for
|6 — ky| < M,. Therefore, we can further write 1;, = Zj:éch, 1;.,; where each 1;, ; is an
indicator of the subinterval involved in Z,,, and the above facts imply that for any z; € l§l for some

B, C T,
V[6;(B1, B2, v, )| Fxwal S P PsHVRI2 () g ey +730) (10i2] 4 Tim + Tom + En +T30)-

In addition, since 6;(81, B2, v,7) # 0 only if ; € Z,,, for all g € G (each corresponds to a particular
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En[Vig(zi, wi, i) |- Fxwal] S 5721(7"1,71 +Tron +en+ T3,n) Z En[]li,v,l]92|(p_s+1)l_kvl-
1:B,CT

Note that this inequality holds for any event in #xwa. Define an event A; on which sup, < i<J E,[1;;] <
CaJ~! for some large enough Cy > 0 where 1, ; = 1(x; € EJ) By the argument in Lemma SA-2.1,
P(A§) — 0. On Ay,

52 = sug E.[Vig(xi, wi, yi) [ Zxwal] < 5%J_1(?"1,n + 720 +En 4+ T30)-
ge

On the other hand,

é = Sng) \g(l% Wi, yz)‘ ,S 5n(1 + T3,n)(|772',1| + Tin + T2.n +en+ T37n)-
ge

Also, for any g,g € G, denote the corresponding parameters defining g and g by (81, B2, v,~) and

(,31,,52,13,’7). We have

9(wi, Wi, yi) — g(i, Wi, yi) :/0/11 {1/1(%; n(b}(Bo + B1 + B2) + Wiy +1))
— (yi; n(biBo + W%’Yo))] x (B} (B0 + Br + B2) + Wiy + t)dt
[ [ttt + 81+ 82— ) 4w )
— (g (B0 + Wé’)’o))} x W (B](Bo + B1 + B2 — v) + Wiy + t)dt
S+ AL+ A)(mia] +rim + 1o+ A1+ A+ 73,)

% (1081 = Bulloo + 1182 = B2) oo + 18 = vlloo + 15 =),

where A; = 52(31 +B2— 5 —B2)+wW,(y—=) and Ay = Ay —B;(f) —v). Based on these observations,

i T _ 1
”Gnm/mp,z \/1+suplogN(g,LQ(Q),tHGHQ,Q)dt < 5( log J + 1/log nlog g) < glogn,
0 Q

where the supremum is taken over all finite discrete probability measures Q. Then, by Lemma
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SA-4.6,

\/E[G?]log® n

\/ﬁ 9

E [sup Gnlg(xi, wi, yi)]

'fXWA] S ologn +
geg

where G = max)<j<, G(z;, wi, y;). Note that (E[G2])Y/2 < e,,.

Therefore, on A; (whose probability approaches one),

sup
B1EH1,B26H2,vEV y1E€HS

TN

E, [5@'(/31716271)7’}’)] - E, [E[éi(ﬁlyﬂ%va’)’ﬂngWA]”

for £, = Tin T 720 + 730+ En.
Step 2: For Q = E,[b;b/ W1 (x5, wi; n(biB + wivo)) (™ (biBo + wi0))?], by Assumption SA-
GL and the same argument in the proof of Lemma SA-2.1, |Q — Q|loe V |Q — Q| < JP~1J L.

Therefore,

sup W(Q — Q)(B1 + B2)] S T P 2en (110 + T20)-

B1EH1,B26H2,vEV
In addition, by Lemmas SA-2.3 and SA-2.4, ||B||oc < 71,, With probability approaching one for Cy

large enough, where
B:=-Q'E, [Bm(l)(ﬁgﬁo + W§’70)1/1(yz‘; n(b;B + W;'YO))] :
Step 3: By Taylor expansion, we have

En [E[éi(/@h/@% U77)|°9?XWA]1|

0
:En|:/ {‘P@’ivwz’;n(f);(éO‘i‘ﬁl + B2) + Wiy +1))
— W, wis n(biBo + Wg’)’o))} x 1t ( HBo + Br+ Bo) + Wiy + t>dt]

0
=E, [/ ) {‘I’l(fﬁz, wi; n(biBo + Wivo)) (n(l)(bﬁo + wivo) (bj(B1 + B2) + Wiy + 1)
—blv

—n? (gi,t)(f);(ﬁl + B2) + wim + t)2>
+ %‘PQ(% wi;Eit) (77(]32(30 + B1 + B2) + Wiy +t) — n(bliBy + Who))z}
X (77(1)(5250 +wivo) + 1P (&) (B](B1 + B2) + Wi + t))dt}
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~ " 1 —
V'Q(B1 + B2) + V'E,[biwily — §’UQU + 1+ 11+ 111,

where & ; and éi,t are between lv);,éo +wl and BQ(BO + 81+ B2) + Wiy +t, fi,t is between n(lv)é,éo +
wino) and n(b}(Bo + B1 + B2) + Wiy + 1), Ua(z, w;T) = %‘I’(%W; 7), 3% = (i, win(D)Bo +
who))(n(l)(‘tv)g,[;o + wg'yo))Q, V'Ey[bisgwiv S enrsn/d, —%UQU < €2/J, and L1, and III are

~

defined and bounded as follows:
0 ¥ v ¥ v
I=E, [/ Wy (25 n(B]B0 + wivo))n™ (biBo + Wio)
—bjv

X ?7(2) (ézt)(B;(/Bl + B2) + W;’h + t)th]li,v] S EnJ_l(Tl,n +ron +éen+ ?”3,n)2,

0
. 1 y
nI=E, [/ _ Wi(zin(b]Bo + wio)) X 577(2) (&) (D5(B1 + B2) + Wiy +1)?
—blv

i

x ) (B;(E’o + 81+ B2) + Wiy + t) dt]li,v:| Send M 4+ ron +en +r3n)?

0 1 - oL oo 2
oI =E, [/ . 5‘1’2(&,0 (ﬁ(bé(ﬂo + B1 + B2) + wiy +t) — n(biBo + W§’70)>

/
—bjv

x ) (B;(Bo + B1 4 Bo) + Wiy + t) dt]lw] Send Hrin 4 ron +en +1r30)?

These bounds hold uniformly for v € V, 81 € Hi, B2 € Ho and 1 € Hs (that is, uniformly over

the function class G), and on an event A; N Ay where As = {Anmax(Q) < csJ 1} for some large
enough ¢4 > 0. Note that P(A; N A2) — 1 by Lemma SA-2.1.

Step 4: By Assumption SA-GL and Taylor’s expansion,

IV =E, [(naa;(ﬂ”o + B1 + B2) + wiy) = n(b(Bo + B + B2 — ) + wiy) ) (s m(BiB0 + w;'yo»}
— B [0'Dit (s (b330 + wio) ) (B0 + wio)
= En[o/Ba (s, (B0 + wiryo)) (1 (€) (B8 + B2 — ) + wim) + 51 (' )]
<IN (T logn/n) 2 + TP (en 4 11 + T2 + Ta0)En,

where &; is between B;Bo+w§70 and B; (Bo+61 +B2—v)+w/y and &, is between 13; (Bo+B1 +082)+wiy
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and f); (Bo+ B+ B2 —v) + w,~. The last line holds on the event

Agz{sup < E,

‘En [Bﬂ/J(yz’;U(Bgﬂuo + Wé‘}’o))n@)(wi)wi] ‘OO> < J—1<(‘]10T:°Tn>1/2 + J—p—l) }’

where the supremum is taken over 81 € Hy,82 € Ho,v € V,v1 € Hs and w; within the range

[Bif);w(yi; n(b}B0 + wivo))n® Wﬂ H +

of & or §~1 Note that E[¢(yi,7i)|-Zxwa] = 0 and B;BO — po(w;) < J7P~L Then, we can use the
argument in the proof of Lemmas SA-2.3 and SA-2.4 to obtain P(A3) — 1 by choosing C3 > 0
sufficiently large.

Step 5: Let © = cze,,J 1 [Q 71y for some k such that |Bax| = [|B2]|c for some c5 > 0 where
[Q Yk denotes the kth row of Q1. Note that v'QB2 = B2x. Take v = (vy,- - , VK, ,) where
v; = v; for |j — k| < M, and zero otherwise. Clearly, v € V on an event Ay with P(A4) — 1. On
Ay N Ay,

(v —0)QBa| S end 1o n

for some large cg > 0 if we let ¢; be sufficiently large.
Step 6: Finally, partition the whole parameter space into shells: O = ngfoo(% where Oy =
{B € RE»s . 28*1t2,n < |B - BO — Bl < 2%2,”} for the smallest L such that 21:?”2,11 > ¢, and

QB = —E,[bin™ (b Bo+w!~0)¢ (yi; n(bBo+wW!v0))]. Define A = Mj_;A;j. Then, for some constant

L < L, we have by Lemma SA-2.5 and the results given in the previous steps,

P18 — Bo — Blleo > 25720 Fxwa)
B(
2(

Cw

IN

{ jnf sup Eu[o(yicn(6i8 + wi) — p(yis n(bi(8 — v) + wiA)] < 0} Fxwa ) + o ()
€0p vey

(=L

Cw

{ gt sup {E[o(yrsn(Bl + wiA)  plys n(b(8 — ) + wiA))

{=L

— [n(b18 + WiF) = 1(B{(8 — v) + W) (s (B + WiF))| Fxwa |+
En | (n(B{8 + WiF) = n(b(8 — v) + WiF))(yi: n(bifBo + wiF))| +
=G ol (BB + wi3) = ol n(B(8 — v) + wiF))-

[n(bi3 + wiF) = n(B{(8 — v) + W) (s n(bifo + wiA))| } < 0} Fxwa) + 0z (1)
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L

S]P’(U{ Ssup sup sup sup —— ‘ (A1) + 1(A9))G [i(ﬁlaﬁ%v,')’)]‘ >
B1EH1 Ba€Ho g v1EHS VEV \/>

C4J*12Zr27nan} N A’ﬂXWA) + op(1)

L
SZ(CGJAQKITQ,nEn)*l]l(Al)E{ sup sup sup sup —G,[d -(ﬁl,ﬁQ,U,»y)]‘f]XWA} + op(1),
=L B1E€H1 B2EH2 s V1 EHZ VEV \/>

where Gy,[-] is understood as v/n(E,[-] — E[-|Zxw]) in the above, we let &, = 2Ly, and 1(A;) is
an indicator of the event A;. Using the result in Step 1 and the rate condition, the first term in
the last line can be made arbitrarily small by choosing L large enough, when n is sufficiently large.
Then, the proof for part (i) is complete.

Step 7: To show part (ii) and part (iii), note that by Taylor expansion and the result in part

(i),

1) + W'7) = k0 (@) + w'0)
= 1D (po() + w'50) (B (2)'B — pro()

Jlogn
+ O (1% = wl + |15 = 7ol +

)
= - 77(1)(#0(37) + W/’YO)bp,S(w)/QilEn [bp,s (QTZ)Uzlw(ez)]

F0p(17 7 (legn)3/4lo nt g (Jl"f”)l/2 Foy W - w).

and

1 () + %A (@) =0 (o () + w'yo)ug (@)
= 1M a0 @) + w'0) (@) - (@)

N Op((ﬂ(;gn)lﬂ +J Py W - w t2,n>O]P<1 + J((Jl()gn>1/2 +J7P 4 t2,”>>

n

~

= — D (po(x) + w'0)bl) (2) Q En by, (51,19 ()] +

OHD((legn>l/2+J_p+J<Jlogn)3/4logn+J_i(JloT% n>1/2+<]t7

n

e w1+ (J fg”)l/z)).

Note that in the above derivation the probability bound holds uniformly over x € X as well. Then
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the proof is complete. O

SA-4.2.7 Proof of Theorem SA-2.2

Proof. Since € := €; +1; — 1; =: €; + u;, we can write

B [by,s (20)p,s (1) 7 19(&)°] = Elbps (20)bp.s (i) 17107 (s, wi)

= En B (@)D () 1 (06 + )2 = (e0)?) | + En [Bps (@) Do) (1 — 11 ) (e
o+ B[y, (2)by s (1) 01 (1) = 0* (i, wi)
+ (Balbps (00)Bp(ai) 107 (1, w1)| = Elbp,s ()b (1) 10 (21, i) )

=V +Vy+V3+4+Vy,

Now, we bound each term in the following. Note that the first part of the results only concerns

V1+ Vy+ V3, and the second part of the results needs a bound on V4 as well where the additional
Assumption SA-RP(ii) is used.
Step 1: For V1, we further write Vi = V11 + V12 where
Vll = En [Bp,s(xi)gp,s<$i)/77i2,l (w(ez + ui)2 - ¢(€z)2)] )
V12 = En [Bp,s(xi)gp,s(wi)/(ﬁl - 7712,1> (w(EZ + ui)2 - ¢(€z)2)] .

Let 71, = C1(Jlogn/n)/2 + JP=! for a constant C; > 0. By Assumption SA-GL and Corollary
SA-2.1, maxi<i<p |ui| < 71, with arbitrarily large probability for C; sufficiently large. For Vi,
let J be the set of all discontinuity points of 9(-). Define 1; p := 1(¢; € D) and 1; pe := (1 —1;p)

where D := {a: |a — j| < 1, for some 5 € J}. Define

Vi i=E, [Bp,s(xi)gp,s(ﬂfi)/7712,1 (¢(6i +u)? - ¢(6i)2)1¢,p]7

Vi =E, [Bp,s($i)5p,s(xi)/ni2,l (¢(€i +u)® — ¢(€i)2)]li,DC] :

By definition of D and Assumption SA-GL,
IVit1 ]| S 1B bps(@:)bps (2:) E[Lip| Zxwallll + | Enlbp,s (2:)by,s(2:) (Lip — E[Lip| Fxwal)]ll
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By Assumption SA-GL and Lemma SA-3.5 of Cattaneo et al. (2023), the first term on the right
hand side is Op(71,,). For the second term, conditional on .Zxwa, it is an independent sequence
with mean zero. Thus, we can apply the argument given in Step 3 below and conclude that the
second term is Op(\/71,,J log J/n+ Jlog J/n). Note that in this case, the indicator 1; p is trivially
bounded uniformly.

On the other hand, by Assumption SA-GL,

Vil S rinlEnlbps(2i)by (i) 071 |9 (e + us) + v(e)]]]-

Since |¢| < 1(1 + ¢?) for any scalar ¢, we have

En [Bp.s (0)Bp.s (20) nf1 (14 (e)%)| Se 1.

N |

En [Bp.s (2:)Bps (@) s [0()]| <

by Lemma SA-2.1 and the result in Step 3. In addition, we further write

En | by,s () by, (a3) 07 1|9 + Uz‘)\] =E, {bp,s(xi)bp,s(%‘)'n%W(Gz‘) + (Y(e +ui) — ()|
Repeat the previous argument to bound this term. We conclude that || Vi1]| Sp riy.
V1o can be treated using the previous argument combined with the argument given in Step 2
and the result in Step 3. It leads to || Via|| Sp 71,0
Step 2: For Vy, by Assumption SA-GL, Corollary SA-2.1 and the argument given later in Step

3, we have
IVall < max 22, = 01| [BalBy.s (v:)By.s (v:) ()| Se (Jlogn/n)'/2 477771,

Step 3: For V3, in view of Lemmas SA-4.2 and SA-4.3, it suffices to show that

sup b Ao A) s (66 — 02w <o (D25)

For notational simplicity, we write ; = ¥(e;)? — 02(z;, w;), p; = @il(Jpi] < M) — E[p;1(J¢i| <

M) |z, wil, of = @il (|@il > M) —E[p:1(|@i| > M)|z;, w;] for some M > 0 to be specified later.

)
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Since E[p; |z, w;] = 0, ¢; = ¢; + ¢;". Then, define a function class
g = {(asl,vv1,cp1) = bp0a (15 A)bpo(@; A)nf1p1 1 1 <1< J(p+1),1<k< J(p+1),A€ H}~

For g € G, Y1 g(@i, Wi, i) = Yoy (i, Wi, 0 ) + Doy g(wi, Wi, ;).

Now, for the truncated piece, we have sup g |9(wi, Wi, ;)| S JM, and

sup V[g(z1, wi,07)] S sup  E[(¢;)’|lws =, wi=w]sup  sup  E[b2 o (23 A2 o (s A)ni ]
geg zEX, WwEW A€l 1<1,k< I (p+1)

SJM  sup E[M!
TeX , WEW

mi:x} < JM.

The VC condition holds by the same argument given in the proof of Lemma SA-2.1. Then, by

En[g(%wi’%_)]u _ \/WJF JMIOS(JM).

Regarding the tail, we apply Theorem 2.14.1 of van der Vaart and Wellner (1996) and obtain

Lemma SA-4.6,

2

E [ sup
geg

1
E|sup |E,[g(z;, w;, j S —=JE|\/EL ¢ |2
[sup [Ealg(ai,wiso)| | $ 7=y Balle) )

1

< L +y1/2 +y1/2

1
<
~ i ME=2)/a

where the second line follows from Cauchy-Schwarz inequality and the third line uses the fact that

+H < 2] < 2/ M < +
E[gggl% I NE[lrgggw(ez) | <Sn and  E[E,[|¢;[] < E[lp1|T]]

Then the desired result follows simply by setting M = J = and the sparsity of the basis.
Step 4: For Vy, since by Assumption SA-GL, sup,c v wew E[t(€;)?|x; = 2] < 1. Then, by the

same argument given in the proof of Lemma SA-2.1,

1
sp | =Gy A)by (015 A) 0 aswo) | S5/ Tog T/ and

A€ll
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B4 [By.s (i) Bys (2i) 12 10(€0)?] = B [bys(@)bps(wi) n21(e)? | | Se v/TTog T/ + tre.

The proof for the first conclusion is complete.
Step 5: The results about ﬁu(’”) (x), SAM(:C) and ﬁc(x) follow by Assumption SA-GL, Lemmas
SA-4.4 and SA-2.1 and Corollary SA-2.1. The proof is complete.

SA-4.2.8 Proof of Theorem SA-2.3

Proof. We first show that for each fixed z € X,

Q0 ()b (@) Q7' Glbys(zi)mi 19 (€)] =: Gnlaitp(ei)]

is asymptotically normal. Conditional on .Zxwa, the o-field generated by {(x;, w;)}I~; and 3,
it is an independent mean-zero sequence over ¢ with variance equal to 1. Then by Berry-Esseen

inequality,

: >ima Ellai(e)]*| Fxwal
3161% P(Gplaip(e)] <wul) — @(u)‘ < min ( 1 et XWA >

By Lemmas SA-4.4, SA-2.1 and SA-2.2,

# iE[ai¢(€i)\3‘ﬁxwa]

S Qe 3/2 1 ZE[\b p,s (@)1, (€3) ‘yXWA}

2

n

1 ~

. 32 SUD e SUD.c i [Bpa (2) QD (2)] m ) v
Qu(v)(fﬁ) 3/2 eXx ex n?i)l’/Q P Z|b;(),3('r),Q lbp,s(xi)|2

N
2

IN

1 J1+v

14+2v
,SPW'\/E-J —0

since J/n = o(1). By Theorem SA-2.2, the above weak convergence still holds if Q. () is replaced
by QM“ (z). Then, the desired results follow by Theorem SA-2.1. O
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SA-4.2.9 Proof of Theorem SA-2.4

Proof. We let B\o and 7, be defined as in Lemma SA-4.5. By Lemmas SA-4.5 and SA-2.1, Theorem

SA-2.1 and the results given in the proof of Lemma SA-2.4, we have

i) (x) = p" (x) =byp(w:) (B — Bo) — Fo(x)
- Bz(v?g(x)/QalEn [Bp,s(xz‘)m,ll/}(ﬁi)] - Bz(ovs)(x)/QalEn[Bp,s(aii)??i,l‘lf(wz‘, Wi 7i)]

)

e 05 ({2 g 4 (1) )

where 7); = n(lgp,s (2:)'Bo +w!v0). Recall that the Op(-) in the last line holds uniformly over z € X,
and thus the integral of the squared remainder is op(J'+t2V/n 4 J~2(+1=v)) by the rate condition

imposed. Then,

1sg, = [ (Be) Qg B By (e)

~ ~ 2
+ B (@) QG BBy (i) (i, wis )] + Fo(2) ) w(z)da.

Next, taking conditional expectation given X, W and A and using the argument in the proof of
Lemma SA-2.1 again, we have

E[ATSE, ) |X, W, A] = %t (@' =0qg /X b2 ()b{!)(x) w(x)da ) + op(J2+ /n)

D,
+ [ (BB - 1 (@) wla)da
+/X (Bz(fs)(m)/QalEn[Bp,s(fi)ni,lg’(xiaW’i;ﬁi)])Qw(x)d:U

1 /X B (2) Qg BBy (22)17:0 ¥ (1, wis ) [P0 o ()0 () .

)

Note that by Assumption SA-GL, ¥ (x;, wi;7;) = —W1 (2, Wis0i0)1i170(7:) + Op(J~272) where
Op(-) holds uniformly over i. The terms in the last three lines correspond to the integrated squared
bias. Also, using the same argument in the proof of Lemma SA-2.1, E,[] in the last two lines can
be safely replaced by Ex[-], which only introduces some additional approximation error of order

OP(J72P*2+2U> .
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The proof of Theorem SA-3.4 in Cattaneo et al. (2023) shows that

Fo() = i () — B () Bo

_ I e ()
(p+ 1 —v)lfx(z)pti-vPHi=?

>
8

G AL
— J P 1b v)( ) QO lT E~ |:b (xl)( MO)!fX((x.‘;B)p+1éap+1 (ZEZHT%):| +0]P’(J_p_1+v),

T4

where 7% is the start of the (random) interval in A containing x and h, denotes its length. Then,
using the same argument as in the proof of Theorem SA-3.4 in Cattaneo et al. (2023), we can

approximate the integrated squared bias by the analogue based on the non-random partition Ay,

ie., fX(Tg’v(.CE) - bj(;fg (2)' Qg 'E[by,s () (i, wi)rgyo(xi)]yw(x)daj where

14w 1
J-p—1+ M(()p+ )(:r) L

T —T
TO,v(x) :(p +1— U)!fx($)p+1_v éaerl*v (T)

(p+1) (.. _ L
—Jr lb ( ) QO 1T E |:bp 0($Z) ( +Mf)'fX(zl))p+l (gaerl (‘TZ TIEZ >:| .

The expression of the bias term can be further simplified. Note that for both R,(z) = rg’v(:x)
and R,(x) = r§,(x), there exists some vector 3 such that sup,cy [po(z) — by s(2i)'B — Ry(x)| =
o(J7P~1*7) (see Lemma SA-4.5 and Lemma SA-6.1 of Cattaneo et al. (2020)). Define

(@) = 18 (x) — ) (@) Qg Elby, (1) (i, wi) o ().

)

Then, it follows that r( ,(z) = Ry(z) — b,.s(2)' Qg 'E[by, s () (i, wi) Ro ()] + o(JP~1+). Thus,

{18 o (@) = b (@) Qg Elbyp,s(w7) se(xs, wi)rd o (w:)]}

{0 ) = D) () Qg Elby o) s, widr o )]} = o(JP7H).

Therefore, the expression of %, (p, s,v) given in the theorem holds.
Finally, the desired results in part (ii) and part (iii) follow by Theorem SA-2.1, the rate condition

imposed and the same argument for part (i). O
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SA-4.2.10 Proof of Theorem SA-2.5

Proof. The proof is divided into several steps.

Step 1: Note that

sup
reX

~ —

‘ﬁ‘“) () =y @) _ V@) — ()
Q#(v)(:t)/n Q (v)( )/n

~(v) (v Q 1/2 _ 0 . 1/2
< sup ’M () = py (@) sup o (@ /)\ u (@)
zeX Qw(@)/n leex Qo (x)1/2

(Vg ) ()

where the last step uses Lemma SA-2.2 and Corollary SA-2.1. Then, in view of Lemmas SA-4.5,
SA-2.4, Theorems SA-2.1, SA-2.2 and the rate restriction given in the lemma, we have
A (@) — (@) | B Q!

+ B Gnlbp.s(a:)mi19(e;)]
W)( z)/n Q0 ()

sup = op(ay, ).

zeX

Step 2: Let us write (2, ;) = Qo) ()~ 1/2b(v (2)'Q~ 1bp, (2;) (the dependence of B;()Us) (z), Q
and Qu<”> (x) on X, W and A is omitted for simplicity). Now we rearrange {x;}!" ; as a sequence of
order statistics {z(;}iy, i-e., z(1) < -+ < (). Accordingly, {€;}i;, {w;}i_, and {02 (z;, wi)}7,
are ordered as concomitants {ef;}iy, {wp;)} and {0[21.]}?:1 where O'[Zi] = 0?(x(;), wp;)). Clearly, con-
ditional on .Zxwa (the o-field generated by {(z;, w;)} and A), {¥(ep)) }izy is still an independent
mean-zero sequence. Then by Assumptions SA-DGP, SA-GL and the result of Sakhanenko (1991),

there exists a sequence of i.i.d. standard normal random variables {C[i]}?zl such that

max |Sy| := max
1<t<n 1<t<n

Z n + w[1]70 Z 77(1 ,UO + W[,L]’)’O)O'[Z]CZ] NP nu .

Then, using summation by parts,

sup Z% (@, )™ (o () + Wiivo) ((e) — o¢a)
= sug (2, 7)) Sn — ZS (T, 2(3i41)) — %(x,x(i)))‘
fAS
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b(v ( )/Q 1 n—l R N
< sup max |# (z,2,)|Su| + sup 71”7 Y s (bp,s(x(m)) - bp,s(x(i))>
zex 1<isn TeX Q,w(x) i=1
I
< sup max |# (z,x;)||Sn| + sup lbp’ Y ( s(Xit1y) ~b s(x; ))
rex 1<i<n peX M(U (i+1) p,s\L(4) N

By Lemmas SA-4.4, SA-2.1 and SA-2.2, sup, ¢y Sup,,cx | (2, 2;)| Sp V/J, and

Qb (x)
Qy(v) (.%')

<p 1.

~

1

sup
TEX

Then, notice that

n—1
max E ( ~b (@ ) max g ’b 1( ~b (x max Sg’.
1<I< Kys . P7S7l z+1) DS, ( (z)) = 1<K, 4 DS, 2+1 DS, ( (z)) 1<ion
1= =1

By construction of the ordering, maxi<;<, Z?;ll ‘Z s (Tr1)) — bpsl( )‘ < /J. Under the

) — os(1),

N(Oﬂi) (:d‘gzxw de_

rate restriction in the theorem, this suffices to show that for any £ > 0,

> Ca,*t

( sup ’G (z, )0 (o (1) + Wivo) (¥ (ei) — 03]

TEX

where we recover the original ordering. Since Gy, [by, s(;)(ioin;i1] =d|Zxwa

notes “equal in distribution conditional on Zxwa”), the above steps construct the following ap-
proximating process:

~ B(vg )01
Z o pla) 1= e _( AL
Q0 (@)

$1/2
7 X!°Ng, .
Step 3: Now, suppose that Assumption SA-RP(ii) also holds. Note that

Sup |Z ) (%) = Z,,0) ()]

"
TEX
b(v 1(O-1 N b® () Q<! ,_
S sup l’) (Q QO )21/2N - + sup (I) QO (21/2 o Eé/Q)NKP’S +
TEX /Qu(”) TEX QM(”) (z)
b(v) z) 'i‘s
sup ) o(@)'( )Qo 21/2NKPS + sup ( ) v ’T Q- 121/2N
reX QM(U zeX A /Q ('u) A/ u(v)
=1+114+1I1+1V,
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where each term on the right-hand side is a mean-zero Gaussian process conditional on Zxwa. By
Theorem SA-2.2 (see Step 4 of its proof), sup,cy |Q“(u) () = Q0 (2)] Sp J2v(\/Jlogn/n + tep).

By a similar calculation given in Step 1 and the rate condition imposed, the last term is op(a;,!).

By Lemmas SA-4.3 and SA-2.1, |Q ' — Q;'| <p /JlogJ/n and ||Ts — T4|| <p \/JlogJ/n.
Also, using the argument in the proof of Lemma SA-4.4 and Theorem X.3.8 of Bhatia (2013),
|3Z1/2 — 2(1)/ 2H <p \/Jlog J/n. By Gaussian Maximal Inequality (van der Vaart and Wellner, 1996,
Corollary 2.2.8),

B[+ 1T+ 11| Fxws] e Vg T(IEY2 = 2% +1Q7" = Qg + 1T, = Toll) = oz(a; ")

where the last line follows from the imposed rate restriction. Then the proof for part (i) is complete.
The results in parts (ii) and (iii) immediately follow by Theorem SA-2.1 and the fact that the

leading variance term in the Bahadur representation for 5(55,\7\\/) or A(x,vAv) differs from that for

fi(x) or M (x) up to a sign only. O

SA-4.2.11 Proof of Theorem SA-2.6

Proof. This conclusion follows from Lemmas SA-4.4, SA-2.1, Theorem SA-2.2 and Gaussian Max-

imal Inequality as applied in Step 3 in the proof of Theorem SA-2.5. O

SA-4.2.12 Proof of Theorem SA-2.7

Proof. We first show that

sup IP’( sup |T,w) ,(7)] < u) - IE”( sup | Z,w) ()| < u)’ =o0(1).
u€R TEX TEX

By Theorem SA-2.5, there exists a sequence of constants &, such that &, = o(1) and

P

sup |1, ()] — sup ]ZM<U>7P(:1:)|’ > §n/an) = o(1).
reX rzeX

Then,

P(SHE T, p(@)] < u) < ]P’({ sug T, ) p(@)] < u} N {

S S

sup |T ) ()| —sup |Z ), (@ ‘gg a})+01
mexl 1 ()] mexl w0 (@) < &n/an (1)
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< ]P’( sup | Z,w) ,(z)| < u+ §n/an) +o(1)
TEX

sup |, ,(@)| = u| < €u/an
TEX

Sup | 2,0, ()] — u| < &u/an
reX

3)]

3)} +o(1).

< ]P’(sup 1 Z,w) p(@)] < u) + supE{IP’(
TEX ’ u€R

< ]P’( sup | Z,w) ()| < u) + E[sup]?(
TEX ’ ueR

Now, apply the Anti-Concentration Inequality conditional on A (see Chernozhukov et al., 2014) to

the second term:

sup IP’(
u€eR

sup | Z,w) ,(7)| — u‘ <& /an ﬁ) < 4§na;1E[sup \Zu(v)m(xﬂ’ﬁ} +0(1)
TEX TeX

<p Enagl logJ 4+ o(1) = 0

where the last step uses Gaussian Maximal Inequality (see van der Vaart and Wellner, 1996, Corol-

lary 2.2.8). By Dominated Convergence Theorem,

E [sup IF’(
u€eR

&)} — o(1).

Sup | Z,0,,(@)] — u| < &a/an
reX

The other side of the inequality follows similarly.

By similar argument, using Theorem SA-2.6, we have

sup |P SUpZ\v z Su‘D —P( sup |Z ) ,(x gulﬁ ’:0 1).
sup [B( sup |Z,10,(2)| < u[D) ~ B( sup | Z,00,(w)] < u[B)[ = 0p(1)

Then it remains to show that

sup IP’( sup |Z,w) ,(z)| < u) - IP’( sup | Z,w) ()| < u|£)‘ = op(1). (SA-4.1)
u€R TEX TEX
Now, note that we can write
b\ ()’ g

Zu(”),p(w) = NKPyo

VU (@) Vbl (@)

where Vo = T;Qo_lﬁoleTs and NKp,o = T’SQEIZé/QNKp’S is a K o-dimensional Gaussian

random vector. Importantly, by this construction, N K,o and Vg do not depend on A and xz, and
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they are only determined by the deterministic partition Ag.
Now, first consider v = 0. For any two partitions Ay, Ag € II, for any = € X, there exists & € X
such that

b\ (; A1) = b\ (& As),

and vice versa. Therefore, the following two events are equivalent: {w : sup,cx |Zp(z; A1) < u} =

w : sup Zy(x; Ag)| < u} for any u. Thus,
zeX |“p

E[P( sug 1Z,w) p(@)] < u‘ﬁ)] = P(sug 1Z ) p(@)] < u‘ﬁ) + op(1).
e e

Then for v = 0, the desired result follows.

(v)

00(T) = %vgpyo(x) for some transformation matrix T,. Clearly, T,

For v > 0, simply notice that b
takes a similar structure as Ty: each row and each column only have a finite number of nonzeros.
Each nonzero element is simply il]_v up to some constants. By Lemma SA-4.2, it can be shown that
||‘§v -5l < J”m where T, is the population analogue (ﬁ] replaced by hj). Repeating
the argument given in the proof of Theorems SA-2.5 and SA-2.6, we can replace %1, in Z#(U)p(w)
by %, without affecting the approximation rate. Then the desired result for Tu(”),p(x) follows by
repeating the argument given for v = 0 above.

Finally, the result for Ty ,(x) (T¢ ,(x)) follows by the fact that Zy ,(x) and Zg,p(:c) (Z¢ p(z) and

Egp(x)) differ from Z @) ,(z) and EM@),p(az) up to a sign only. O
SA-4.2.13 Proof of Theorem SA-2.8
Proof. We only consider T . p(2). The results in part (ii) and part (iii) follow similarly.

Let {1, = 0(1), &2, = 0(1) and &3, = o(1). Then,

P |sup [T, ,(2)] < ¢, | <P [sup|Z,0 ()] < ¢\, + fl,n/an] +o(1)
zeX LxeX

<P |sup |Z”(U)’p(a:)\ <A —a+8&p) + (En+ ) an| +o(1)

<P |sup|Z
lvex
where c?(1—a+&;,,) denotes the (1—a+&;,,)-quantile of sup,¢ y \Zu(v)@(a:)] conditional on Fxwa
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(the o-field generated by X, W and the partition 3), the first inequality holds by Theorem SA-2.5,
the second by Lemma A.1 of Belloni et al. (2015), and the third by Anti-Concentration Inequality

in Chernozhukov et al. (2014). The other side of the bound follows similarly. O

SA-4.2.14 Proof of Theorem SA-2.9

Proof. We only consider the proof for part (i). The results in part (i) and part (iii) follow similarly.
Throughout this proof, we let &1, = o(1), &2, = o(1) and &3, = o(1) be sequences of vanishing

constants. Moreover, let A, be a sequence of diverging constants such that v/log JA, < /57

Note that
. n (v) W N @)
sSup \Tum x)| < sup M 1 sup Ko (xi m (x,@)‘.
reX reX <U>( )/n rzeX Qu(”) (LU)/n

)
Therefore, under Hy

. [ —m® (g0
() = m\Y)(z;
P|sup [T, ,(2)| > cu(v)] <P|sup|T,w) ,(z)] > ¢, — sup ) ( )H
rzeX LzeX rzeX Q (u)(.%'
o
- (v) (V) 5
x) —m\Y)(z;
< Pl sup 1 Zy,(5)] > €y — Eunfan — sup | FOD =M )H To(1)
L zex zeX Q0 (@) /n
<P|sup|Z,e ()| > (1 —a—E&n) = (G0 + Eon)/an—
L xe
(v) N O YO
sup [ Ho 2L = (x’a)H+o(l)

< P[Sug ]ZH(ULP(J:H >A(1—a-— fg,n)] + o(1)
xe

=a+o(1)

where ¢?(1—a—&;,,) denotes the (1—a—&;,,)-quantile of sup, ¢y \ZM(U)vp(x)] conditional on Zxwa
(the o-field generated by X, W and 3) the second inequality holds by Theorem SA-2.5, the third by
(v) m(v) 0
Ho (2) (z:0)| _ 1
Lemma A.1 of Belloni et al. (2015), the fourth by the fact that sup,c» |W‘ = o]p(\/long)
and Anti-Concentration Inequality in Chernozhukov et al. (2014). The other side of the bound

follows similarly.
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On the other hand, under HX(U),

P-Sup T(v) z >C<u)}
s 00,000 > 6,

—mW(z;0) mW(x 0_) m® (z; )

=P| sup TM@),p(:C) + + ‘ > € 0) }
TreX VO (@ Q0 (2)/m

( ) m(”)(x 6) mW(z;0) —m (z; 5)’ e )]
}/[/ v

>P| sup [T}, ()| < sup
ex zeEX

_l’_

Vo ( Q0 () /1

> P sup|Z,0,(x)| < VI8 T An - al,n/an] —o(1)

txeX

>1—o(1).

where the fourth line holds by Lemma SA-2.2, Theorem SA-2.2, Theorem SA-2.5, the condition
that JVy/Jlog J/n = o(1) and the definition of A,, and the last by the Talagrand-Samorodnitsky

Concentration Inequality (van der Vaart and Wellner, 1996, Proposition A.2.7). O

SA-4.2.15 Proof of Theorem SA-2.10

Proof. We only consider the proof for part (i). The results in part (ii) and part (iii) follow similarly.
Throughout this proof, the definitions of A,, &1 ,,&2,, and &3, are the same as in the proof of

Theorem SA-2.9. Note that under I:Ig(v>,

m®) (z;0) — m)(z;0)]
o (@) /1

supT ) p(@) < sup Ty ,(w) + sup
zeX TEX zeX

)

Then,

.. : ) (238) — (20
m\) (x; m\ (x;

}P’[sup Ty p( (x) > O ] < PP| sup T//,(U)7p(x) > €, (v) — Sup | ( A) ( )’]
zeX L zeX zeX Q0 (2)/n

<P|sup Z,) () > ¢,0) — gl,n/an} +o(1)
~xeX

B sup Z,00,(r) > (1 = 0 =€) = (€1 + Ea)/an | +0(1)
-re

gIP)-supZ ) p(T) > Co(l—a—f&n)} +o(1)
txeX

=a+o(1)
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where (1 —a—&;,,) denotes the (1 —a — &3 ,,)-quantile of sup,¢ v Zu@)p(x) conditional on ZFxwa
(the o-field generated by X, W and 3), the second line holds by Theorem SA-2.5, the third by
Lemma A.1 of Belloni et al. (2015), the fourth by Anti-Concentration Inequality in Chernozhukov
et al. (2014).

On the other hand, under Hi(v),

P [ sug T#(U)J)(m) > cu(v)] =P [ sup (T#(U)J,(J:) +
Te

sup 0 — > CM(U) ]
veX Q0 (2)/n

. (v) — @ (20
z) — m\) (x;

> P| sup [T, ,(2)] < sup Ho_( 1 (z:6)
LzeX zeX Qo (2) /0

>P SHE‘TM(”)7P($)‘ < y/log JAn} —o(1)
-xTE

- C,m} —o(1)

>P sug \Zu(v)’p(mﬂ < y/log JA, — flyn/an} —o(1)
-re
>1-o(1)
where the third line holds by Lemma SA-2.2, Theorem SA-2.2, Lemma A.1 of Belloni et al. (2015),
the assumption that sup, y [m® (; 6) — m™ (z;0)| = op(1) and J¥+/JlogJ/n = o(1), the fourth

by definition of A,,, and the fifth by Theorem SA-2.5, and the last by Proposition A.2.7 in van der

Vaart and Wellner (1996).
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