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SA-1 Setup

Suppose that (yi, xi,w
′
i), 1 ≤ i ≤ n, is a random sample where yi ∈ Y is a scalar response variable,

xi ∈ X is a scalar covariate, and wi ∈ W is a vector of additional control variables of dimension d.

For a general loss function ρ(·; ·) and a strictly monotonic transformation function η(·), define

(µ0(·),γ0) = argmin
µ∈M,γ∈Rd

E
[
ρ
(
yi; η(µ(xi) +w′

iγ)
)]
, (SA-1.1)

where M is a space of functions satisfying certain smoothness conditions to be specified later.

This setup is general. For example, consider γ0 = 0. If ρ(·; ·) is a squared loss and η(·) is the

identity function, µ0(x) is the conditional expectation of yi given xi = x. Let 1(·) denote the

indicator function. If ρ(y; η) = (q − 1(y < η))(y − η) for some 0 < q < 1 and η(·) is an identity

function, then µ0(x) is the qth conditional quantile of yi given xi = x. Introducing a transformation

function η(·) is useful. For instance, it may accommodate logistic regression for binary responses.

When γ0 ̸= 0, the parametric and the nonparametric components are additively separable, and

thus (SA-1.1) becomes a generalized partially linear model.

Binscatter estimators are typically constructed based on a possibly random partition. Specifically,

the relevant support of xi is partitioned into J disjoint intervals, leading to the partitioning scheme

∆̂ = {B̂1, B̂2, . . . , B̂J}, where

B̂j =


[τ̂j−1, τ̂j) if j = 1, · · · , J − 1

[τ̂J−1, τ̂J ] if j = J

,

One popular choice in binscatter applications is the quantile-based partition: τ̂j = F̂−1
X ((j − 1)/J)

with F̂X(u) = n−1
∑n

i=1 1(xi ≤ u) the empirical cumulative distribution function and F̂−1
X its

generalized inverse. Our theory is general enough to cover other partitioning schemes satisfying

certain regularity conditions specified below. An innovation herein is accounting for the additional

randomness from the partition ∆̂. The number of bins J plays the role of tuning parameter for

the binscatter method, and is assumed to diverge: J → ∞ as n→ ∞ throughout the supplement,

unless explicitly stated otherwise.
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The piecewise polynomial basis of degree p, for some choice of p = 0, 1, 2, . . . , is defined as

[
1B̂1

(x) 1B̂2
(x) · · · 1B̂J

(x)
]′
⊗
[
1 x · · · xp

]′
,

where 1A(x) = 1(x ∈ A) and ⊗ is the Kronecker product operator. For convenience of later

analysis, we use b̂p(x) to denote a standardized rotated basis, the jth element of which is given by

√
J × 1B̂j̄

(x)×
(x− τ̂j̄−1

ĥj̄

)j−1−(j̄−1)(p+1)
, j = 1, · · · , (p+ 1)J,

where j̄ = ⌈j/(p+ 1)⌉, ⌈·⌉ is the ceiling operator, and ĥj̄ = τ̂j̄ − τ̂j̄−1. Thus, each local polynomial

is centered at the start of each bin and scaled by the length of the bin.
√
J is an additional scaling

factor which helps simplify some expressions of our results. The standardized rotated basis b̂p(x)

is equivalent to the original piecewise polynomial basis in the sense that they represent the same

(linear) function space.

To impose the restriction that the estimated function is (s− 1)-times continuously differentiable

for 1 ≤ s ≤ p, we introduce a new basis

b̂p,s(x) =
(
b̂p,s,1(x), . . . , b̂p,s,Kp,s(x)

)′
= T̂sb̂p(x), Kp,s = (p+ 1)J − s(J − 1),

where T̂s := T̂s(∆̂) is a Kp,s × (p + 1)J matrix depending on ∆̂, which transforms a piecewise

polynomial basis to a smoothed binscatter basis. When s = 0, we let T̂0 = I(p+1)J , the identity

matrix of dimension (p + 1)J . Thus b̂p,0(x) = b̂p(x), the discontinuous basis without any con-

straints. When s = p, b̂p,s(x) is the well-known B-spline basis of order p + 1 with simple knots,

which is (p − 1)-times continuously differentiable. When 0 < s < p, they can be defined similarly

as B-splines with knots of certain multiplicities. See Definition 4.1 in Section 4 of Schumaker

(2007) for more details about spline functions and Lemma SA-4.3 in Section SA-4 for properties

of the transformation matrix T̂s. We require s ≤ p, since if s = p + 1, b̂p,s(x) reduces to a global

polynomial basis of degree p.
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Given a choice of basis, we consider the following generalized binscatter estimator:

µ̂(v)(x) = b̂(v)
p,s(x)

′β̂,

[
β̂
γ̂

]
= argmin

β,γ

n∑
i=1

ρ
(
yi; η

(
b̂p,s(xi)

′β +w′
iγ
))
, (SA-1.2)

where b̂
(v)
p,s(x) =

dv

dxv b̂p,s(x) for some v ∈ Z+ such that v ≤ p. This estimator can be written as:

µ̂(v)(x) = b̂(v)
p,s(x)

′β̂, β̂ := β̂(γ̂) := argmin
β∈RKp,s

n∑
i=1

ρ
(
yi; η(b̂p,s(xi)

′β +w′
iγ̂)

)
. (SA-1.3)

The representation (SA-1.3) allows us to be more general and agnostic about the estimation of

γ0, and also simplifies some of the proofs. More specifically, our theory requires only a sufficiently

fast convergence rate of γ̂ (see Assumption SA-GL(iv) below), which in general nonlinear/non-

differentiable cases can be justified in different ways, e.g., joint estimation, backfitting, profiling,

split-sampling, etc.

In this supplement, we focus on estimation and inference of the following three parameters:

(i) the nonparametric component µ
(v)
0 (x) for any v ≥ 0,

(ii) the level function ϑ0(x,w) = η(µ0(x) +w′γ0), and

(iii) the marginal effect ζ0(x,w) = ∂
∂xη(µ0(x) +w′γ0),

where w is a user-chosen evaluation point of the control variables. Nevertheless, all our results

are readily applied to other linear or nonlinear transformations of µ0(x), such as the higher-order

derivatives ∂v

∂xv η(µ0(x) + w′γ0). Given the binscatter estimates µ̂(x) and γ̂ in (SA-1.2), the esti-

mators of the three parameters defined above are given by

µ̂(v)(x), ϑ̂(x, ŵ) = η(µ̂(x) + ŵ′γ̂) and ζ̂(x, ŵ) = η(1)(µ̂(x) + ŵ′γ̂)µ̂(1)(x)

respectively, for some consistent estimate ŵ (non-random or generated based on {wi}ni=1) of the

evaluation point w. As a reminder, we need to require p ≥ v to get µ̂(v)(x), p ≥ 0 to get ϑ̂(x, ŵ),

and p ≥ 1 to get ζ̂(x, ŵ).
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SA-1.1 Assumptions

We first assume the following basic conditions on the data generating process.

Assumption SA-DGP (Data Generating Process).

(i) {(yi, xi,w′
i) : 1 ≤ i ≤ n} is i.i.d. satisfying (SA-1.1), and xi has a distribution function FX(·)

with a Lipschitz continuous (Lebesgue) density fX(·) bounded away from zero on a compact

interval X .

(ii) µ0(·) is ςµ-times continuously differentiable for some ςµ ≥ p+ 1.

(iii) The conditional density of yi given xi and wi, denoted by fY |XW (y|x,w), satisfies that

supx∈X ,w∈W supy∈Yxw
fY |XW (y|x,w) ≲ 1 where Yxw is the support of the conditional density

of yi given xi = x and wi = w; The support W of wi is bounded; supx∈X ,w∈W |η(1)(µ0(x) +

w′γ0)| ≲ 1.

Next, we impose the following technical conditions related to the general loss function and nec-

essary preliminary estimators.

Assumption SA-GL (General Loss).

(i) ρ(y; η) is absolutely continuous with respect to η ∈ R, which admits a piecewise Lipschitz

derivative ψ(y; η) ≡ ψ(y−η) that has at most m discontinuity points for some finite m ∈ Z+;

η(·) is strictly monotonic and three-times continuously differentiable; ρ(y; η(θ)) is convex with

respect to θ.

(ii) E[ψ(ϵi)|xi,wi] = 0, σ2(x,w) := E[ψ(ϵi)2|xi = x,wi = w] is bounded away from zero uniformly

over x ∈ X and w ∈ W, E[(η(1)(µ0(xi) +w′
iγ0))

2σ2(xi,wi)|xi = x] is Lipschiz continuous on

X , and supx∈X ,w∈W E[|ψ(ϵi)|ν |xi = x,wi = w] ≲ 1 for some ν > 2.

(iii) Ψ(x,w; η) := E[ψ(yi; η)|xi = x,wi = w] is twice continuously differentiable with respect

to η; infx∈X ,w∈W κ(x,w) ≥ C for some constant C > 0 and E[κ(xi,wi)|xi = x] is Lip-

schiz continuous on X where κ(x,w) := Ψ1(x,w; η(µ0(x) +w′γ0))(η
(1)(µ0(x) +w′γ0))

2 and

Ψ1(x,w; η) := ∂
∂ηΨ(x,w; η).
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(iv) The preliminary estimator γ̂ satisfies that ∥γ̂ − γ0∥ ≲P rγ for rγ = o(
√
J/n + J−p−1), and

∥ŵ −w∥ = oP(1).

(v) For some estimator Ψ̂1 of Ψ1, ∥En[b̂p,s(xi)b̂p,s(xi)
′(κ̂(xi,wi) − κ(xi,wi))∥ ≲P J−p−1 +(

J logn

n1− 2
ν

)1/2
where κ̂(xi,wi) = Ψ̂1(xi,wi; η(µ̂(xi) +w′

iγ̂))(η
(1)(µ̂(xi) +w′

iγ̂))
2.

Note that part (v) is a high-level condition that ensures we have a valid feasible estimator of

the Gram matrix Q̄ (or Q0) defined below. The rate of convergence of η(1)(µ̂(xi) + w′
iγ̂) can be

deduced from Corollary SA-2.1 below. Thus, part (v) can be largely viewed as a requirement on

Ψ̂1 only. Note that Ψ̂1 does not have to be consistent for Ψ1 in a pointwise or uniform sense. It

suffices that the estimator En[b̂p,s(xi)b̂p,s(xi)
′κ̂(xi,wi)] based on Ψ̂1 as a whole is consistent. See

Section SA-3 for several examples of the estimator Ψ̂1.

Finally, we need some regularity conditions on the partitioning scheme, which can be verified

in a case-by-case basis. We first define a family of “quasi-uniform” partitions for some absolute

constant C > 0:

ΠC =
{
∆ :

max1≤j≤J hj(∆)

min1≤j≤J hj(∆)
≤ C

}
, (SA-1.4)

where hj(∆) denotes the length of the jth bin in the partition ∆. Roughly speaking, (SA-1.4)

says that the bins in any ∆ ∈ ΠC do not differ too much in length. Also, let X = [x1, . . . , xn]
′,

W = [w1, · · · ,wn]
′ and Y = [y1, · · · , yn]′.

Assumption SA-RP (Random Partition).

(i) ∆̂ ⊥⊥ Y|(X,W) and ∆̂ ∈ ΠC w.p.a. 1 for some absolute constant C > 0.

(ii) There exists a non-random partition ∆0 = {B1, · · · ,BJ} with Bj = [τj−1, τj) for j ≤ J − 1

and BJ = [τJ−1, τJ ] such that
max1≤j≤J hj

min1≤j≤J hj
≤ cQU for some absolute constant cQU > 0, and

max1≤j≤J |ĥj − hj | ≲P J
−1rRP for rRP = o(1).

Part (i) is the key condition for our main results and will be imposed throughout. First, it

requires that the possibly random partition ∆̂ be independent of the outcomeY given the covariates

(X,W). This conditional independence assumption is trivially satisfied if ∆̂ is deterministic (e.g.,

equally-spaced partition) or depends on X and W only (e.g., quantile-spaced partition based on

X). It also holds if a sample splitting scheme is used: a subsample (including the information
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about the outcome) is used for constructing the partition, and the other is employed to construct

the binscatter estimator (so that ∆̂ is independent of the data (X,W,Y)). Second, ∆̂ is required

to be “quasi-uniform” with large probability. It is trivially true for equally-spaced partitions and

can be verified for quantile-spaced partitions under the mild conditions on the covariates density

imposed before (see Lemma SA-4.2). However, this condition may be too restrictive for other

modern machine-learning-based partitioning methods, in which case some additional regularization

may be necessary to recover the quasi-uniformity property.

Part (ii) requires that the random partition ∆̂ finally “stabilize” to a fixed one. This is true if the

partition is non-deterministic or generated by sample quantiles (since sample quantiles converge to

population quantiles), but more generally, it is not always possible. Fortunately, this “convergence”

requirement is not necessary for most of our main results (except Theorem SA-2.4 and Theorem

SA-2.7). So in the following we will always make it very clear if part (ii) of Assumption SA-RP is

imposed.

SA-1.2 Notation

For background definitions, see van der Vaart and Wellner (1996), Bhatia (2013), Giné and Nickl

(2016), and references therein.

Matrices and Norms. For (column) vectors, ∥ · ∥ denotes the Euclidean norm, ∥ · ∥1 denotes

the L1 norm, ∥ · ∥∞ denotes the sup-norm, and ∥ · ∥0 denotes the number of nonzeros. For matrices,

∥ · ∥ is the operator matrix norm induced by the L2 norm, and ∥ · ∥∞ is the matrix norm induced

by the supremum norm, i.e., the maximum absolute row sum of a matrix. For a square matrix

A, λmax(A) and λmin(A) are the maximum and minimum eigenvalues of A, respectively. [A]ij

denotes the (i, j)th entry of a generic matrix A. We will use SL to denote the unit circle in

RL, i.e., ∥a∥ = 1 for any a ∈ SL. For a real-valued function g(·) defined on a measure space

Z, let ∥g∥Q,2 := (
∫
Z |g|2dQ)1/2 be its L2-norm with respect to the measure Q. In addition, let

∥g∥∞ = supz∈Z |g(z)| be L∞-norm of g(·), and g(v)(z) = dvg(z)/dzv be the vth derivative for

v ≥ 0.

Asymptotics. For sequences of numbers or random variables, we use ln ≲ mn to denote that

lim supn |ln/mn| is finite, ln ≲P mn or ln = OP(mn) to denote lim supε→∞ lim supn P[|ln/mn| ≥ ε] =

0, ln = o(mn) implies ln/mn → 0, and ln = oP(mn) implies that ln/mn →P 0, where →P denotes
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convergence in probability. ln ≍ mn implies that ln ≲ mn and mn ≲ ln.

Empirical Process. We employ standard empirical process notation: En[g(vi)] =
1
n

∑n
i=1 g(vi),

and Gn[g(vi)] =
1√
n

∑n
i=1(g(vi)−E[g(vi)]) for a sequence of random variables {vi}ni=1. In addition,

we employ the notion of covering number extensively in the proofs. Specifically, given a measurable

space (A,A) and a suitably measurable class of functions G mapping A to R equipped with a

measurable envelop function Ḡ(z) ≥ supg∈G |g(z)|, the covering number of N(G, L2(Q), ε) is the

minimal number of L2(Q)-balls of radius ε needed to cover G for a measure Q. The covering number

of G relative to the envelope is denoted as N(G, L2(Q), ε∥Ḡ∥Q,2).

Partitions. Given the random partition ∆̂, we use the notation E
∆̂
[·] to denote the expectation

operator with the partition ∆̂ viewed as fixed. To further simplify notation, let ĥj = τ̂j − τ̂j−1 be

the width of the jth bin B̂j , and when the “limiting” partition ∆0 = {B1, · · · ,BJ} is defined (As-

sumption SA-RP(ii) holds), let hj be the width of Bj . Analogously to b̂p,s(x), bp,s(x) denotes the

binscatter basis of degree p that is (s−1)-times continuously differentiable and is constructed based

on the nonrandom partition ∆0. We sometimes write bp,s(x; ∆) = (bp,s,1(x; ∆), . . . , bp,s,Kp,s(x; ∆))′

to emphasize a binscatter basis is constructed based on a particular partition ∆. Therefore,

b̂p,s(x) = bp,s(x; ∆̂) and bp,s(x) = bp,s(x; ∆0). Accordingly, we use Ts to denote the transfor-

mation matrix based on the non-random partition ∆0 (which transforms bp,0(x) to bp,s(x)).

Other. Let D = [(yi, xi,w
′
i)
′ : i = 1, 2, . . . , n]. ⌈z⌉ outputs the smallest integer no less than z

and a ∧ b = min{a, b}. “w.p.a. 1” means “with probability approaching one”.

SA-2 Main Results

To simplify notation, we introduce the following quantities that will be extensively used throughout

the supplement:

ηi = η(µ0(xi) +w′
iγ0), η̂i = η(µ̂(xi) +w′

iγ̂),

ηi,1 = η(1)(µ0(xi) +w′
iγ0), η̂i,1 = η(1)(µ̂(xi) +w′

iγ̂),

η0,1(x,w) = η(1)(µ0(x) +w′γ0), η̂0,1(x, ŵ) = η(1)(µ̂(x) + ŵ′γ̂),

µ̂(xi) = b̂p,s(xi)
′β̂, ϵi = yi − ηi, ϵ̂i = yi − η̂i,

Q̂ := Q̂(∆̂) := En[b̂p,s(xi)b̂p,s(xi)
′Ψ̂1(xi,wi; η̂i)η̂

2
i,1],
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Q̄ := Q̄(∆̂) := En[b̂p,s(xi)b̂p,s(xi)
′Ψ1(xi,wi; ηi)η

2
i,1],

Q0 := Q(∆0) := E[bp,s(xi)bp,s(xi)
′Ψ1(xi,wi; ηi)η

2
i,1],

Σ̂ := Σ̂(∆̂) := En[b̂p,s(xi)b̂p,s(xi)
′ψ(ϵ̂i)

2η̂2i,1],

Σ̄ := Σ̄(∆̂) := En

[
E
[
b̂p,s(xi)b̂p,s(xi)

′ψ(ϵi)
2η2i,1

∣∣∣X,W]]
,

Σ0 := Σ(∆0) := E
[
bp,s(xi)bp,s(xi)

′ψ(ϵi)
2η2i,1

]
,

Ω̂µ(v)(x) := Ω̂µ(v)(x; ∆̂) := b̂(v)
p,s(x)

′Q̂−1Σ̂Q̂−1b̂(v)
p,s(x),

Ω̄µ(v)(x) := Ω̄µ(v)(x; ∆̂) := b̂(v)
p,s(x)

′Q̄−1Σ̄Q̄−1b̂(v)
p,s(x),

Ωµ(v)(x) := Ωµ(v)(x; ∆̂) := b̂(v)
p,s(x)

′Q−1
0 Σ0Q

−1
0 b̂(v)

p,s(x),

Ω̂ϑ(x) := Ω̂ϑ(x; ∆̂) := [η(1)(µ̂(x) + ŵ′γ̂)]2b̂p,s(x)
′Q̂−1Σ̂Q̂−1b̂p,s(x),

Ω̄ϑ(x) := Ω̄ϑ(x; ∆̂) := [η(1)(µ0(x) +w′γ0)]
2b̂p,s(x)

′Q̄−1Σ̄Q̄−1b̂p,s(x),

Ωϑ(x) := Ωϑ(x; ∆̂) := [η(1)(µ(x) +w′γ0)]
2b̂p,s(x)

′Q−1
0 Σ0Q

−1
0 b̂p,s(x),

Ω̂ζ(x) := Ω̂ζ(x; ∆̂) := [η(1)(µ̂(x) + ŵ′γ̂)]2b̂(1)
p,s(x)

′Q̂−1Σ̂Q̂−1b̂(1)
p,s(x),

Ω̄ζ(x) := Ω̄ζ(x; ∆̂) := [η(1)(µ0(x) +w′γ0)]
2b̂(1)

p,s(x)
′Q̄−1Σ̄Q̄−1b̂(1)

p,s(x), and

Ωζ(x) := Ωζ(x; ∆̂) := [η(1)(µ0(x) +w′γ0)]
2b̂(1)

p,s(x)
′Q−1

0 Σ0Q
−1
0 b̂(1)

p,s(x).

In addition, given the family ΠC of the quasi-uniform partitions defined in (SA-1.4), for any

∆ ∈ Π, we let β0(∆) ∈ RKp,s be any vector such that for every v ≤ p,

sup
x∈X

∣∣∣µ(v)0 (x)− b(v)
p,s(x; ∆)′β0(∆)

∣∣∣ ≲ J−p−1+v.

Let r0,v(x; ∆) = µ
(v)
0 (x)−b

(v)
p,s(x; ∆)′β0(∆) denote the corresponding approximation error. Accord-

ingly, given the random partition ∆̂, we let β̂0 := β0(∆̂), and r̂0,v(x) = µ
(v)
0 (x)− b̂

(v)
p,s(x)′β̂0 denote

the corresponding approximation error. The existence of such vectors is guaranteed by Assumption

SA-DGP and is verified in Lemma SA-4.5 in Section SA-4.
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SA-2.1 Preliminary Lemmas

Lemma SA-2.1 (Gram). Suppose that Assumptions SA-DGP, SA-GL hold and SA-RP(i) hold.

If J log J
n = o(1), then

1 ≲ λmin(Q̄) ≤ λmax(Q̄) ≲ 1, [Q̄−1]ij ≲ ϱ|i−j| w.p.a. 1, and ∥Q̄−1∥∞ ≲P 1,

where ϱ ∈ (0, 1) is some absolute constant.

If, in addition, Assumption SA-RP(ii) holds. Then,

1 ≲ λmin(Q0) ≤ λmax(Q0) ≲ 1,

∥Q̄−Q0∥ ≲P

(
J log J

n

)1/2
+ rRP, and ∥Q̄−1 −Q−1

0 ∥∞ ≲P

(
J log J

n

)1/2
+ rRP.

The next lemma shows that the limiting variance is bounded from above and below.

Lemma SA-2.2 (Asymptotic Variance). Suppose that Assumptions SA-DGP, SA-GL and SA-

RP(i) hold. If J log J
n = o(1), then w.p.a. 1,

J1+2v ≲ infx∈X Ω̄µ(v)(x) ≤ supx∈X Ω̄µ(v)(x) ≲ J1+2v,

J ≲ infx∈X Ω̄ϑ(x) ≤ supx∈X Ω̄ϑ(x) ≲ J,

J3 ≲ infx∈X Ω̄ζ(x) ≤ supx∈X Ω̄ζ(x) ≲ J3.

If, in addition, Assumption SA-RP(ii) holds, then w.p.a. 1,

J1+2v ≲ infx∈X Ωµ(v)(x) ≤ supx∈X Ωµ(v)(x) ≲ J1+2v,

J ≲ infx∈X Ωϑ(x) ≤ supx∈X Ωϑ(x) ≲ J,

J3 ≲ infx∈X Ωζ(x) ≤ supx∈X Ωζ(x) ≲ J3.

The next lemma gives a bound on the variance component of the nonlinear binscatter estimator.

Lemma SA-2.3 (Uniform Convergence: Variance). Suppose that Assumptions SA-DGP, SA-GL

9



and SA-RP(i) hold. If J
ν

ν−2 log J
n = o(1), then

sup
x∈X

∣∣∣b̂(v)
p,s(x)

′Q̄−1En[b̂p,s(xi)ηi,1ψ(ϵi)]
∣∣∣ ≲P J

v
(J log J

n

)1/2
.

Lemma SA-2.4 (Projection of Approximation Error). Under Assumptions SA-DGP, SA-GL and

SA-RP(i), if J
ν

ν−2 log J
n = o(1), then

sup
x∈X

∣∣∣b̂(v)
p,s(x)

′Q̄−1En

[
b̂p,s(xi)

(
ηi,1ψ(ϵi)− η(1)(b̂p,s(xi)

′β̂0 +w′
iγ0)ψ(yi; η(b̂p,s(xi)

′β̂0 +w′
iγ0))

)]∣∣∣
≲P J

−p−1+v + J
2v−p−1

2

(J log J

n

)1/2
+
J1+v log J

n
.

Lemma SA-2.5 (Uniform Consistency). Under Assumptions SA-DGP, SA-GL and SA-RP(i), if

J
2ν
ν−1 (log J)

ν
ν−1

n = o(1), then

∥β̂ − β̂0∥∞ = oP(J
−1/2) and sup

x∈X
|µ̂(x)− µ0(x)| = oP(1).

Remark SA-2.1. When ν → ∞, the rate restriction J
2ν
ν−1 (log J)

ν
ν−1

n = o(1) tends to be J2 log J
n =

o(1). We conjecture this rate restriction is stronger than needed. In fact, for piecewise polynomials

(i.e., s = 0), we can show that J
ν

ν−1 (log J)
ν

ν−1

n = o(1) suffices to establish the uniform consistency of

β̂, and this restriction is redundant in our main theorems in view of the condition J
ν

ν−2 (logn)
ν

ν−2

n =

o(1) imposed below. In other words, in this special case (s = 0), the condition J
2ν
ν−1 (log J)

ν
ν−1

n = o(1)

in all theorems below can be dropped.

Our result holds without imposing any smoothness restrictions on the estimation space. Specif-

ically, the estimation procedure (SA-1.3) searches for solutions in RKp,s , leading to an estimation

space {b̂p,s(x)
′β : β ∈ RKp,s}. In contrast, many studies of series (or sieve) methods restrict the

functions in the estimation space to satisfy certain smoothness conditions, e.g., Lipschitz continuity,

to derive the uniform consistency. See, for example, Chernozhukov, Imbens and Newey (2007). ⌟

Remark SA-2.2 (Improvements over literature). Most of the results in this subsection are new

to the literature, even in the case of non-random partitioning and without covariate-adjustments,

because they take advantage of the specific binscatter structure (i.e., locally bounded series basis).

The closest antecedent in the literature is Belloni, Chernozhukov, Chetverikov and Fernandez-Val
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(2019). Furthermore, relative to prior work, our results formally take into account the randomness

of the partition formed by empirical quantiles, and account for the semi-linear regression estimation

structure. ⌟

SA-2.2 Bahadur Representation

Theorem SA-2.1 (Bahadur Representation). Suppose that Assumptions SA-DGP, SA-GL and

SA-RP(i) hold and J
ν

ν−2 logn
n + J(logn)7/3

n + J
2ν
ν−1 (logn)

ν
ν−1

n = o(1). Then,

(i) µ̂(v)(x) satisfies that

sup
x∈X

∣∣∣µ̂(v)(x)− µ
(v)
0 (x) + b̂(v)

p,s(x)
′Q̄−1En[b̂p,s(xi)ηi,1ψ(ϵi)]

∣∣∣
≲P J

v
{(J log n

n

)3/4
log n+ J− p+1

2

(J log2 n

n

)1/2
+ J−p−1 + rγ

}
.

(ii) ϑ̂(x, ŵ) satisfies that

sup
x∈X

∣∣∣ϑ̂(x, ŵ)− ϑ0(x,w) + η(1)(µ0(x) +w′γ0)b̂p,s(x)
′Q̄−1En[b̂p,s(xi)ηi,1ψ(ϵi)]

∣∣∣
≲P

(J log n

n

)3/4
log n+ J− p+1

2

(J log2 n

n

)1/2
+ J−p−1 + rγ + ∥ŵ −w∥.

(iii) ζ̂(x, ŵ) satisfies that

sup
x∈X

∣∣∣ζ̂(x, ŵ)− ζ0(x,w) + η(1)(µ0(x) +w′γ0)b̂
(1)
p,s(x)

′Q̄−1En[b̂p,s(xi)ηi,1ψ(ϵi)]
∣∣∣

≲P

(J log n

n

)1/2
+ J

{(J log n

n

)3/4
log n+ J− p+1

2

(J log2 n

n

)1/2
+ J−p−1 + rγ

}
+ ∥ŵ −w∥

(
1 + J

(J log n

n

)1/2)
.

The following corollary is an immediate result of Lemma SA-2.3 and Theorem SA-2.1. The proof

is omitted.

Corollary SA-2.1 (Uniform Convergence). Suppose that the conditions of Theorem SA-2.1 hold
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and J(logn)5

n + logn
J ≲ 1. Then

sup
x∈X

|µ̂(v)(x)− µ
(v)
0 (x)| ≲P J

v
((J log n

n

)1/2
+ J−p−1

)
.

If, in addition, ∥ŵ −w∥ ≲P

(
J logn

n

)1/2
+ J−p−1, then

sup
x∈X

|ϑ̂(x)− ϑ0(x)| ≲P

(J log n

n

)1/2
+ J−p−1 and

sup
x∈X

|ζ̂(x)− ζ0(x)| ≲P J
((J log n

n

)1/2
+ J−p−1

)
.

The next theorem shows that the proposed variance estimator is consistent.

Theorem SA-2.2 (Variance Estimate). Suppose that Assumptions SA-DGP, SA-GL and SA-

RP(i) hold. If J
ν

ν−2 (logn)
ν

ν−2

n + J
2ν
ν−1 (logn)

ν
ν−1

n + J(logn)5

n + logn
J = o(1) and ∥ŵ−w∥ ≲P

(
J logn

n

)1/2
+

J−p−1, then

∥∥∥Σ̂− Σ̄
∥∥∥ ≲P J

−p−1 +
(J log n

n1−
2
ν

)1/2
,

sup
x∈X

∣∣∣Ω̂µ(v)(x)− Ω̄µ(v)(x)
∣∣∣ ≲P J

1+2v
(
J−p−1 +

(J log n

n1−
2
ν

)1/2)
,

sup
x∈X

∣∣∣Ω̂ϑ(x)− Ω̄ϑ(x)
∣∣∣ ≲P J

(
J−p−1 +

(J log n

n1−
2
ν

)1/2)
, and

sup
x∈X

∣∣∣Ω̂ζ(x)− Ω̄ζ(x)
∣∣∣ ≲P J

3
(
J−p−1 +

(J log n

n1−
2
ν

)1/2)
.

If, in addition, Assumption SA-RP(ii) holds, then

∥∥∥Σ̂−Σ0

∥∥∥ ≲P J
−p−1 +

(J log n

n1−
2
ν

)1/2
+ rRP,

sup
x∈X

∣∣∣Ω̂µ(v)(x)− Ωµ(v)(x)
∣∣∣ ≲P J

1+2v
(
J−p−1 +

(J log n

n1−
2
ν

)1/2
+ rRP

)
,

sup
x∈X

∣∣∣Ω̂ϑ(x)− Ωϑ(x)
∣∣∣ ≲P J

(
J−p−1 +

(J log n

n1−
2
ν

)1/2
+ rRP

)
, and

sup
x∈X

∣∣∣Ω̂ζ(x)− Ωζ(x)
∣∣∣ ≲P J

3
(
J−p−1 +

(J log n

n1−
2
ν

)1/2
+ rRP

)
.

Remark SA-2.3 (Improvements over literature). Theorem SA-2.1 and Corollary SA-2.1 construct

the Bahadur representation and uniform convergence of general binscatter-based M-estimators

12



under mild rate restrictions. Specifically, we require J
8
3 /n = o(1) up to log n terms when ν ≥ 4.

In fact, for piecewise polynomials (s = 0), we can show that the Bahadur representation still

holds under J/n = o(1) up to log n terms when a subexponential moment restriction holds for

the (transformed) error ψ(ϵi), which is analogous to the result for kernel-based estimators in the

literature (see, e.g., Kong et al., 2010). For series estimators, similar results were established for

particular choices of loss functions under more stringent conditions in the literature. For example,

Belloni et al. (2019) considers series-based quantile regression, and Theorem 2 and Corollary 2

therein can be used to establish a Bahadur representation and uniform convergence of the resulting

estimators under J4/n1−ε = o(1) for some ε > 0.

The results in Belloni et al. (2019) are slightly stronger than that in our Theorem SA-2.1 in the

sense that the expansion holds uniformly over both the evaluation point x ∈ X and the desired

quantiles u ∈ U for a compact set of quantile indices U ⊂ (0, 1). Our results regarding Bahadur

representation can be extended to achieve the same level of uniformity. In general, the parameter

of interest (SA-1.1) and the estimator (SA-1.2) are defined for each particular choice of the loss

function within a function class F . For the class of check functions used in quantile regression or

other function classes with low complexity, it can be shown that the Bahadur representation still

holds uniformly over the evaluation point x ∈ X and the loss function ρ ∈ F under rate restrictions

similar to those in Theorem SA-2.1, thereby providing an improvement over the literature. ⌟

SA-2.3 Pointwise Inference

Starting from this section, we consider statistical inference on µ
(v)
0 (x), ϑ0(x,w) and ζ0(x,w) based

on the following Studentized t-statistics:

Tµ(v),p(x) =
µ̂(v)(x)− µ

(v)
0 (x)√

Ω̂µ(v)(x)/n
,

Tϑ,p(x) =
ϑ̂(x, ŵ)− ϑ0(x,w)√

Ω̂ϑ(x)/n
and

Tζ,p(x) =
ζ̂(x, ŵ)− ζ0(x,w)√

Ω̂ζ(x)/n
.

The next theorem shows the pointwise asymptotic normality of the binscatter estimators.
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Theorem SA-2.3 (Pointwise Asymptotic Distribution). Suppose that Assumptions SA-DGP, SA-

GL and SA-RP(i) hold, supx∈X E[|ψ(ϵi)|ν |xi = x] ≲ 1 for some ν ≥ 3, and J
ν

ν−2 (logn)
ν

ν−2

n +

J
2ν
ν−1 (logn)

ν
ν−1

n + nJ−2p−3 = o(1). Then the following conclusions hold:

(i) For µ̂(v)(x),

sup
u∈R

∣∣∣P(Tµ(v),p(x) ≤ u)− Φ(u)
∣∣∣ = o(1), for each x ∈ X .

(ii) For ϑ̂(x, ŵ), if, in addition, ∥ŵ −w∥ = oP(
√
J/n), then

sup
u∈R

∣∣∣P(Tϑ,p(x) ≤ u)− Φ(u)
∣∣∣ = o(1) for each x ∈ X .

(iii) For ζ̂(x, ŵ), if, in addition, ∥ŵ −w∥ = oP(
√
J3/n+ (log n)−1/2), then

sup
u∈R

∣∣∣P(Tζ,p(x) ≤ u)− Φ(u)
∣∣∣ = o(1) for each x ∈ X .

Remark SA-2.4 (Improvements over literature). The result in this subsection is new to the

literature, even in the case of non-random partitioning and without covariate adjustments, because

it takes advantage of the specific binscatter structure (i.e., locally bounded series basis). The closest

antecedent in the literature is Belloni et al. (2019). Furthermore, relative to prior work, our results

formally take into account the randomness of the partition formed by empirical quantiles, and

account for the semi-linear regression estimation structure. ⌟

SA-2.4 Integrated Mean Squared Error

In this section we give a Nagar-type approximate IMSE expansion for each of the three estimators

µ̂(v)(x), ϑ̂(x, ŵ) and ζ̂(x, ŵ), with explicit characterization of the leading constants. Define

r⋆0,v(x) =
J−p−1+vµ

(p+1)
0 (x)

(p+ 1− v)!fX(x)p+1−v
Ep+1−v

(x− τLx
hx

)

where Em(·) is the mth Bernoulli polynomial for each m ∈ Z+, τ
L
x is the start of the interval in the

non-random partition ∆0 containing x and hx denotes its length.
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Theorem SA-2.4 (IMSE). Suppose that Assumptions SA-DGP, SA-GL and SA-RP (including

SA-RP(ii)) hold. Let ω(x) be a continuous weighting function over X bounded away from zero.

Also, assume that J
ν

ν−2 logn
n + J

2ν
ν−1 (logn)

ν
ν−1

n + J(logn)7

n + (logn)2

J = o(1).

(i) For µ̂(v)(x),

∫
X

(
µ̂(v)(x)− µ

(v)
0 (x)

)2
ω(x)dx = AISEµ(v) + oP

(J1+2v

n
+ J−2(p+1−v)

)

where

E[AISEµ(v) |X,W, ∆̂] =
J1+2v

n
Vn(p, s, v) + J−2(p+1−v)Bn(p, s, v) + oP

(J1+2v

n
+ J−2(p+1−v)

)
,

Vn(p, s, v) := J−(1+2v) trace
(
Q−1

0 Σ0Q
−1
0

∫
X
b(v)
p,s(x)b

(v)
p,s(x)

′ω(x)dx
)
≍ 1,

Bn(p, s, v) := J2p+2−2v

∫
X

(
r⋆0,v(x)− b(v)

p,s(x)
′Q−1

0 E[bp,s(xi)κ(xi,wi)r
⋆
0,0(xi)]

)2
ω(x)dx ≲ 1.

(ii) For ϑ̂(x, ŵ), if ∥ŵ −w∥ = oP(
√
J/n+ J−p−1), then

∫
X

(
ϑ̂(x, ŵ)− ϑ0(x,w)

)2
ω(x)dx = AISEϑ + oP

(J
n
+ J−2(p+1)

)

where

E[AISEϑ|X,W, ∆̂] =
J

n
Vn(p, s) + J−2(p+1)Bn(p, s) + oP

(J
n
+ J−2(p+1)

)
,

Vn(p, s) := J−1 trace
(
Q−1

0 Σ0Q
−1
0

∫
X
η0,1(x,w)2bp,s(x)bp,s(x)

′ω(x)dx
)
≍ 1,

Bn(p, s) := J2p+2

∫
X

[
η0,1(x,w)

(
r⋆0,0(x)− bp,s(x)

′Q−1
0 E[bp,s(xi)κ(xi,wi)r

⋆
0,0(xi)]

)]2
ω(x)dx ≲ 1.

(iii) For ζ̂(x, ŵ), if ∥ŵ −w∥ = oP(
√
J3/n+ J−p + (log n)−1/2), then

∫
X

(
ζ̂(x, ŵ)− ζ0(x,w)

)2
ω(x)dx = AISEζ + oP

(J3

n
+ J−2p

)
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where

E[AISEζ |X,W, ∆̂] =
J3

n
Vn(p, s) + J−2pBn(p, s) + oP

(J3

n
+ J−2p

)
,

Vn(p, s) := J−3 trace
(
Q−1

0 Σ0Q
−1
0

∫
X
η0,1(x,w)2b(1)

p,s(x)b
(1)
p,s(x)

′ω(x)dx
)
≍ 1,

Bn(p, s) := J2p

∫
X

[
η0,1(x,w)

(
r⋆0,1(x)− b(1)

p,s(x)
′Q−1

0 E[bp,s(xi)κ(xi,wi)r
⋆
0,0(xi)]

)]2
ω(x)dx ≲ 1.

In general, Bn(p, s, v) ≳ 1 (see Remark SA-3.7 in Cattaneo et al. (2023)), and thus the above

theorem implies that the (approximate) IMSE-optimal number of bins satisfies that JAIMSE ≍ n
1

2p+3 .

Relying on the IMSE expansion in Theorem SA-2.4, one may design a data-driven procedure to

select the IMSE-optimal number of bins for general binscatter-based M-estimators.

Remark SA-2.5 (Improvements over literature). The results in this subsection are new to the

literature, even in the case of non-random partitioning and without covariate-adjustments, for both

general nonlinear series estimators and binscatter (piecewise polynomials and splines) nonlinear

series estimators in particular. Furthermore, our results formally take into account the randomness

of the partition formed by empirical quantiles, and account for the semi-linear regression estimation

structure. ⌟

SA-2.5 Uniform Inference

Recall that (an : n ≥ 1) is a sequence of non-vanishing constants. We will first show that the

(feasible) Studentized t-statistic processes Tµ(v),p(·), Tϑ,p(·) and Tζ,p(·) can be approximated by

Gaussian processes in a proper sense at certain rate.

Theorem SA-2.5 (Strong Approximation). Suppose that Assumptions SA-DGP, SA-GL and SA-

RP(i) hold,

J(log n)2

n1−
2
ν

+
(J(log n)7

n

)1/2
+nJ−2p−3+

(log n)2

Jp+1
+nJ−1r2γ = o(a−2

n ) and
J

2ν
ν−1 (log n)

ν
ν−1

n
= o(1).

Then the following conclusions hold:

(i) On a properly enriched probability space, there exists some Kp,s-dimensional standard normal
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random vector NKp,s such that for any ξ > 0,

P
(
sup
x∈X

|Tµ(v),p(x)− Z̄µ(v),p(x)| > ξa−1
n

)
= o(1), Z̄µ(v),p(x) =

b̂
(v)
p,0(x)

′T̂′
sQ̄

−1Σ̄1/2√
Ω̄µ(v)(x)

NKp,s .

If Assumption SA-RP(ii) also holds with rRP = o(a−1
n (log n)−1/2), then

P
(
sup
x∈X

|Tµ(v),p(x)− Zµ(v),p(x)| > ξa−1
n

)
= o(1), Zµ(v),p(x) =

b̂
(v)
p,0(x)

′T′
sQ

−1
0 Σ

1/2
0√

Ωµ(v)(x)
NKp,s .

(ii) If ∥ŵ −w∥ = oP(a
−1
n

√
J/n), then on a properly enriched probability space there exists some

Kp,s-dimensional standard normal random vector NKp,s such that for any ξ > 0,

P
(
sup
x∈X

|Tϑ,p(x)− Z̄ϑ,p(x)| > ξa−1
n

)
= o(1), Z̄ϑ,p(x) =

b̂p,0(x)
′T̂′

sη0,1(x,w)Q̄−1√
Ω̄ϑ(x)

Σ̄1/2NKp,s .

If Assumption SA-RP(ii) also holds with rRP = o(a−1
n (log n)−1/2), then

P
(
sup
x∈X

|Tϑ,p(x)− Zϑ,p(x)| > ξa−1
n

)
= o(1), Zϑ,p(x) =

b̂p,0(x)
′T′

sη0,1(x,w)Q−1
0√

Ωϑ(x)
Σ

1/2
0 NKp,s .

(iii) If ∥ŵ − w∥ = oP(a
−1
n (

√
J3/n + (log n)−1/2)), then on a properly enriched probability space

there exists some Kp,s-dimensional standard normal random vector NKp,s such that for any

ξ > 0,

P
(
sup
x∈X

|Tζ,p(x)− Z̄ζ,p(x)| > ξa−1
n

)
= o(1), Z̄ζ,p(x) =

b̂
(1)
p,0(x)

′T̂′
sη0,1(x,w)Q̄−1√
Ω̄ζ(x)

Σ̄1/2NKp,s .

If Assumption SA-RP(ii) also holds with rRP = o(a−1
n (log n)−1/2), then

P
(
sup
x∈X

|Tζ,p(x)− Zζ,p(x)| > ξa−1
n

)
= o(1), Zζ,p(x) =

b̂
(1)
p,0(x)

′T′
sη0,1(x,w)Q−1

0√
Ωζ(x)

Σ
1/2
0 NKp,s .

The approximating processes Zµ(v),p(·), Zp,ϑ(·) and Zp,ζ(·) are Gaussian processes conditional on

X by construction. In practice, one can replace all unknowns in Zµ(v),p(·), Zϑ,p(·) and Zζ,p(·) by
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their sample analogues, and then construct the following feasible (conditional) Gaussian processes:

Ẑµ(v),p(x) =
b̂
(v)
p,0(x)

′T̂′
sQ̂

−1Σ̂1/2√
Ω̂µ(v)(x)

N⋆
Kp,s

=
b̂
(v)
p,s(x)′Q̂−1Σ̂1/2√

Ω̂µ(v)(x)
N⋆

Kp,s
,

Ẑϑ,p(x) =
b̂p,0(x)

′T̂′
sη̂0,1(x)Q̂

−1Σ̂1/2√
Ω̂ϑ(x)

N⋆
Kp,s

=
b̂p,s(x)

′η̂0,1(x)Q̂
−1Σ̂1/2√

Ω̂ϑ(x)
N⋆

Kp,s
,

Ẑζ,p(x) =
b̂
(1)
p,0(x)

′T̂′
sη̂0,1(x)Q̂

−1Σ̂1/2√
Ω̂ζ(x)

N⋆
Kp,s

=
b̂
(1)
p,s(x)′η̂0,1(x)Q̂

−1Σ̂1/2√
Ω̂ζ(x)

N⋆
Kp,s

,

where N⋆
Kp,s

denotes a Kp,s-dimensional standard normal vector independent of the data D.

For ease of presentation, from now on we will always require a fast convergence rate of ŵ:

∥ŵ−w∥ = oP(a
−1
n

√
J/n). Nevertheless, it should be clear that as shown in Theorem SA-2.5, such

a rate restriction on ŵ can be different for inference of ϑ0(x,w) and ζ0(x,w) and are unnecessary

for inference of µ
(v)
0 (x).

Theorem SA-2.6 (Plug-in Approximation). Suppose that Assumptions SA-DGP, SA-GL and

SA-RP(i) hold,

J(logn)2

n1− 2
ν

+
(
J(logn)7

n

)1/2
+ nJ−2p−3 + (logn)2

Jp+1 + nJ−1r2γ = o(a−2
n ),

J
2ν
ν−1 (logn)

ν
ν−1

n = o(1), and ∥ŵ −w∥ = oP(a
−1
n

√
J/n).

Then on a properly enriched probability space, there exists a Kp,s-dimensional standard normal

random vector N⋆
Kp,s

independent of D such that for any ξ > 0,

(i) P
(
supx∈X |Ẑµ(v),p(x)− Z̄µ(v),p(x)| > ξa−1

n

∣∣∣D)
= oP(1),

(ii) P
(
supx∈X |Ẑϑ,p(x)− Z̄ϑ,p(x)| > ξa−1

n

∣∣∣D)
= oP(1),

(iii) P
(
supx∈X |Ẑζ,p(x)− Z̄ζ,p(x)| > ξa−1

n

∣∣∣D)
= oP(1).

If Assumption SA-RP(ii) also holds with rRP = o(a−1
n (log n)−1/2), then

(iv) P
(
supx∈X |Ẑµ(v),p(x)− Zµ(v),p(x)| > ξa−1

n

∣∣∣D)
= oP(1),

(v) P
(
supx∈X |Ẑϑ,p(x)− Zϑ,p(x)| > ξa−1

n

∣∣∣D)
= oP(1),
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(vi) P
(
supx∈X |Ẑζ,p(x)− Zζ,p(x)| > ξa−1

n

∣∣∣D)
= oP(1).

Remark SA-2.6 (Improvements over literature). Theorems SA-2.5 and SA-2.6 provide empirical

researchers with powerful tools for uniform inference based on binscatter methods. Importantly, we

take into account the randomness of the empirical-quantile-based partition and construct a novel

strong approximation of general binscatter-based M-estimators under mild rate restrictions. For

an =
√
log n and ν ≥ 4, we require J

8
3 /n = o(1), up to log n terms. In the literature, similar

results were only available in some special cases under stringent rate restrictions. For instance,

Belloni et al. (2019) considers strong approximations of general series-based quantile regression

estimators. For the binscatter basis considered in this paper, their Theorem 11 can be applied to

construct strong approximation of the t-statistic process based on pivotal coupling that achieves

the approximation rate an = n−ε′ under J4/n1−ε = o(1) for some constants ε, ε′ > 0, whereas their

Theorem 12 can be used to construct strong approximation based on Gaussian processes under

J5/n1−ε = o(1). It should be noted that their notion of strong approximation is stronger than ours

in the sense that it holds uniformly over both the evaluation point x ∈ X and the desired quantile

u ∈ U for a compact set of quantile indices U ⊂ (0, 1). On the other hand, our methods allow for

other loss functions (e.g., Huber regression) and for semi-linear covariate adjustment, leading to

new results that were previously unavailable in the literature. ⌟

Theorems SA-2.5 and SA-2.6 offer a way to approximate the distribution of the whole t-statistic

process based on µ̂(v)(·), ϑ̂(·, ŵ) or ζ̂(·, ŵ). A direct application of these results is the distributional

approximations to the suprema of these t-statistic processes.

Theorem SA-2.7 (Supremum Approximation). Suppose that Assumptions SA-DGP, SA-GL and

SA-RP (including SA-RP(ii)) hold,

J(logn)2

n1− 2
ν

+ nJ−2p−3 + nJ−1r2γ = o((log J)−1),

J
2ν
ν−1 (logn)

ν
ν−1

n = o(1), ∥ŵ −w∥ = oP

(√
J

n log J

)
, and rRP = o

(
1√

logn log J

)
.

Then,

sup
u∈R

∣∣∣P( sup
x∈X

|Tµ(v),p(x)| ≤ u
)
− P

(
sup
x∈X

|Ẑµ(v),p(x)| ≤ u
∣∣∣D)∣∣∣ = oP(1),
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sup
u∈R

∣∣∣P( sup
x∈X

|Tϑ,p(x)| ≤ u
)
− P

(
sup
x∈X

|Ẑϑ,p(x)| ≤ u
∣∣∣D)∣∣∣ = oP(1), and

sup
u∈R

∣∣∣P( sup
x∈X

|Tζ,p(x)| ≤ u
)
− P

(
sup
x∈X

|Ẑζ,p(x)| ≤ u
∣∣∣D)∣∣∣ = oP(1).

SA-2.6 Confidence Bands

Let

Îµ(v),p(x) =
[
µ̂(v)(x)± cµ(v)

√
Ω̂µ(v)(x)/n

]
,

Îϑ,p(x,w) =
[
ϑ̂(x, ŵ)± cϑ

√
Ω̂ϑ(x)/n

]
and

Îζ,p(x,w) =
[
ζ̂(x, ŵ)± cζ

√
Ω̂ζ(x)/n

]

be confidence bands for µ
(v)
0 (·), ϑ0(·,w) and ζ0(·,w) respectively, where cµ(v) , cϑ and cζ are cor-

responding critical values to be specified. Recall that w here is taken as a fixed evaluation point

for the control variables, and these bands are constructed based on a certain choice of J and the

pth-order binscatter basis. Using the previous results, we have the following theorem.

Theorem SA-2.8. Suppose that Assumptions SA-DGP, SA-GL and SA-RP(i) hold,

J(logn)2

n1− 2
ν

+ nJ−2p−3 + nJ−1r2γ = o((log J)−1),

J
2ν
ν−1 (logn)

ν
ν−1

n = o(1), and ∥ŵ −w∥ = oP

(√
J

n log J

)
.

(i) If cµ(v) = inf
{
c ∈ R+ : P[supx∈X |Ẑµ(v),p(x)| ≤ c |D] ≥ 1− α

}
, then

P
[
µ
(v)
0 (x) ∈ Îµ(v),p(x), for all x ∈ X

]
= 1− α+ o(1).

(ii) If cϑ = inf
{
c ∈ R+ : P[supx∈X |Ẑϑ,p(x)| ≤ c |D] ≥ 1− α

}
, then

P
[
ϑ0(x,w) ∈ Îϑ,p(x,w), for all x ∈ X

]
= 1− α+ o(1).
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(iii) If cζ = inf
{
c ∈ R+ : P[supx∈X |Ẑζ,p(x)| ≤ c |D] ≥ 1− α

}
, then

P
[
ζ0(x,w) ∈ Îζ,p(x,w), for all x ∈ X

]
= 1− α+ o(1).

Remark SA-2.7. The above results construct valid uniform confidence bands for general binscatter-

based M-estimators under mild rate restrictions. Specifically, when ν ≥ 4, we require J
8
3 /n = o(1),

up to log n terms. In contrast, Belloni et al. (2019) considers general series-based quantile regres-

sion estimators, and Theorem 15 therein can be used to construct confidence bands for binscatter

estimators via various resampling methods under J4/n1−ε = o(1) for some ε > 0. ⌟

SA-2.7 Parametric Specification Tests

As another application, we can test parametric specifications of µ
(v)
0 (x), ϑ0(x,w) and ζ0(x,w). We

introduce the following tests:

Ḣµ(v)

0 : sup
x∈X

∣∣∣µ(v)0 (x)−m(v)(x;θ)
∣∣∣ = 0, for some θ, vs.

Ḣµ(v)

A : sup
x∈X

∣∣∣µ(v)0 (x)−m(v)(x;θ)
∣∣∣ > 0, for all θ.

where m(x;θ) is some known function depending on some finite dimensional parameter θ. This

testing problem can be viewed as a two-sided test where the equality between two functions holds

uniformly over x ∈ X . In this case, we introduce θ̃ and γ̃ as consistent estimators of θ and γ0

under Ḣµ(v)

0 . Then we rely on the following test statistic:

Ṫµ(v),p(x) :=
µ̂(v)(x)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n
.

The null hypothesis is rejected if supx∈X |Ṫµ(v),p(x)| > cµ(v) for some critical value cµ(v) .

Similarly, to test the specification of ϑ0(x,w), we introduce

Ḣϑ
0 : sup

x∈X

∣∣∣ϑ0(x,w)−M(x,w;θ,γ0)
∣∣∣ = 0, for some θ, vs.

Ḣϑ
A : sup

x∈X

∣∣∣ϑ0(x,w)−M(x,w;θ,γ0)
∣∣∣ > 0, for all θ.
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where M(x,w;θ,γ0) = η(m(x;θ) +w′γ0). We rely on the following test statistic:

Ṫϑ,p(x) :=
ϑ̂(x, ŵ)−M(x, ŵ; θ̃, γ̃)√

Ω̂ϑ(x)/n
.

The null hypothesis is rejected if supx∈X |Ṫϑ,p(x)| > cϑ for some critical value cϑ.

To test the specification of ζ0(x,w), we introduce

Ḣζ
0 : sup

x∈X

∣∣∣ζ0(x,w)−M (1)(x,w;θ,γ0)
∣∣∣ = 0, for some θ, vs.

Ḣζ
A : sup

x∈X

∣∣∣ζ0(x,w)−M (1)(x,w;θ,γ0)
∣∣∣ > 0, for all θ.

where M (1)(x,w;θ,γ0) := η(1)(m(x;θ) +w′γ0)m
(1)(x;θ). We rely on the following test statistic:

Ṫζ,p(x) :=
ζ̂(x, ŵ)−M (1)(x, ŵ; θ̃, γ̃)√

Ω̂ζ(x)/n
.

The null hypothesis is rejected if supx∈X |Ṫζ,p(x)| > cζ for some critical value cζ .

Theorem SA-2.9 (Specification Tests). Suppose that the conditions in Theorem SA-2.8 hold.

(i) Let cµ(v) = inf{c ∈ R+ : P[supx∈X |Ẑµ(v),p(x)| ≤ c|D] ≥ 1− α}.

Under Ḣµ(v)

0 , if supx∈X |µ(v)(x)−m(v)(x; θ̃)| = oP

(√
J1+2v

n log J

)
, then

lim
n→∞

P
[
sup
x∈X

|Ṫµ(v),p(x)| > cµ(v)

]
= α.

Under Ḣµ(v)

A , if there exist some fixed θ̄ such that supx∈X |m(v)(x; θ̃) − m(v)(x; θ̄)| = oP(1),

and Jv
(
J log J

n

)1/2
= o(1), then

lim
n→∞

P
[
sup
x∈X

|Ṫµ(v),p(x)| > cµ(v)

]
= 1.

(ii) Let cϑ = inf{c ∈ R+ : P[supx∈X |Ẑϑ,p(x)| ≤ c|D] ≥ 1− α}.
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Under Ḣϑ
0 , if supx∈X |ϑ0(x,w)−M(x, ŵ; θ̃, γ̃)| = oP

(√
J1+2v

n log J

)
, then

lim
n→∞

P
[
sup
x∈X

|Ṫϑ,p(x)| > c
]
= α.

Under Ḣϑ
A, if there exist some fixed θ̄ and γ̄ such that supx∈X |M(x, ŵ; θ̃, γ̃)−M(x,w; θ̄, γ̄)| =

oP(1), and J
v
(
J log J

n

)1/2
= o(1), then

lim
n→∞

P
[
sup
x∈X

|Ṫϑ,p(x)| > c
]
= 1.

(iii) Let cζ = inf{c ∈ R+ : P[supx∈X |Ẑζ,p(x)| ≤ c|D] ≥ 1− α}.

Under Ḣζ
0, if supx∈X |ζ0(x,w)−M (1)(x, ŵ; θ̃, γ̃)| = oP

(√
J1+2v

n log J

)
, then

lim
n→∞

P
[
sup
x∈X

|Ṫζ,p(x)| > c
]
= α.

Under Ḣζ
A, if there exist some fixed θ̄ and γ̄ such that supx∈X |M (1)(x, ŵ; θ̃, γ̃)−M (1)(x,w; θ̄, γ̄)| =

oP(1), and J
v
(
J log J

n

)1/2
= o(1), then

lim
n→∞

P
[
sup
x∈X

|Ṫζ,p(x)| > c
]
= 1.

SA-2.8 Shape Restriction Tests

The third application of our results is to test certain shape restrictions on µ
(v)
0 (x), ϑ0(x,w) and

ζ0(x,w). To be specific, consider the following problem:

Ḧµ(v)

0 : sup
x∈X

(µ(v)(x)−m(v)(x; θ̄)) ≤ 0 for certain θ̄ and γ̄ v.s.

Ḧµ(v)

A : sup
x∈X

(µ(v)(x)−m(v)(x; θ̄)) > 0 for θ̄ and γ̄.

This testing problem can be viewed as a one-sided test where the inequality holds uniformly over

x ∈ X . Importantly, it should be noted that under both Ḧµ(v)

0 and Ḧµ(v)

A , we fix θ̄ and γ̄ to be the

same values in the parameter space. In such a case, we introduce θ̃ and γ̃ as consistent estimators
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of θ̄ and γ̄ under both Ḧµ(v)

0 and Ḧµ(v)

A . Then we will rely on the following test statistic:

T̈µ(v),p(x) :=
µ̂(v)(x)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n
.

The null hypothesis is rejected if supx∈X T̈µ(v),p(x) > cµ(v) for some critical value cµ(v) .

Similarly, define the test for the shape of ϑ0(x,w):

Ḧϑ
0 : sup

x∈X
(ϑ0(x,w)−M(x,w; θ̄, γ̄)) ≤ 0 for certain θ̄ and γ̄ v.s.

Ḧϑ
A : sup

x∈X
(ϑ0(x,w)−M(x,w; θ̄, γ̄)) > 0 for θ̄ and γ̄.

We will rely on the following test statistic:

T̈ϑ,p(x) :=
ϑ̂(x, ŵ)−M(x, ŵ; θ̃, γ̃)√

Ω̂ϑ(x)/n
.

The null hypothesis is rejected if supx∈X T̈ϑ,p(x) > cϑ for some critical value cϑ.

Also, define the test for the shape of ζ0(x,w):

Ḧζ
0 : sup

x∈X
(ζ0(x,w)−M (1)(x,w; θ̄, γ̄)) ≤ 0 for certain θ̄ and γ̄ v.s.

Ḧζ
A : sup

x∈X
(ζ0(x,w)−M (1)(x,w; θ̄, γ̄)) > 0 for θ̄ and γ̄.

We will rely on the following test statistic:

T̈ζ,p(x) :=
ζ̂(x, ŵ)−M (1)(x, ŵ; θ̃, γ̃)√

Ω̂ζ(x)/n
.

The null hypothesis is rejected if supx∈X T̈ζ,p(x) > cζ for some critical value cζ .

The following theorem characterizes the size and power of such tests.

Theorem SA-2.10 (Shape Restriction Tests). Suppose that the conditions in Theorem SA-2.8

hold.

(i) Assume supx∈X |m(x; θ̃)−m(x; θ̄)| = oP

(√
J1+2v

n log J

)
. Let cµ(v) = inf{c ∈ R+ : P[supx∈X Ẑµ(v),p(x) ≤

c|D] ≥ 1− α}.
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Under Ḧµ(v)

0 ,

lim
n→∞

P
[
sup
x∈X

T̈µ(v),p(x) > cµ(v)

]
≤ α.

Under Ḧµ(v)

A , if Jv
(
J log J

n

)1/2
= o(1),

lim
n→∞

P
[
sup
x∈X

T̈µ(v),p(x) > cµ(v)

]
= 1.

(ii) Assume supx∈X |M(x, ŵ; θ̃, γ̃) − M(x,w; θ̄, γ̄)| = oP

(√
J1+2v

n log J

)
. Let cϑ = inf{c ∈ R+ :

P[supx∈X Ẑϑ,p(x) ≤ c|D] ≥ 1− α}.

Under Ḧϑ
0 ,

lim
n→∞

P
[
sup
x∈X

T̈ϑ,p(x) > cϑ

]
≤ α.

Under Ḧϑ
A, if J

v
(
J log J

n

)1/2
= o(1),

lim
n→∞

P
[
sup
x∈X

T̈ϑ,p(x) > cϑ

]
= 1.

(iii) Assume supx∈X |M (1)(x, ŵ; θ̃, γ̃) −M (1)(x,w; θ̄, γ̄)| = oP

(√
J1+2v

n log J

)
. Let cζ = inf{c ∈ R+ :

P[supx∈X Ẑζ,p(x) ≤ c|D] ≥ 1− α}.

Under Ḧζ
0,

lim
n→∞

P
[
sup
x∈X

T̈ζ,p(x) > cζ

]
≤ α.

Under Ḧζ
A, if J

v
(
J log J

n

)1/2
= o(1),

lim
n→∞

P
[
sup
x∈X

T̈ζ,p(x) > cζ

]
= 1.

Remark SA-2.8 (Improvements over literature). The previous results in Sections SA-2.6–SA-2.8

are new to the literature, even in the case of non-random partitioning and without covariate-

adjustments, because they take advantage of the specific binscatter structure (i.e., locally bounded

series basis). Furthermore, relative to prior work, our results formally take into account the ran-

domness of the partition formed by empirical quantiles, account for the generalized semi-linear
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structure, and consider an array of possibly nonlinear estimation and inference problems. In par-

ticular, the approach taken in Theorems SA-2.5 and SA-2.7 to establish strong approximation

and related distributional approximations for nonlinear binscatter statistics may be of independent

interest. ⌟

SA-3 Implementation Details

SA-3.1 Standard Error Computation

In Section SA-2, we have given the variance formulas Ω̂µ(v)(x), Ω̂ϑ(x) and Ω̂ζ(x) that can be used to

obtain the standard errors of µ̂(v)(x), ϑ̂(x, ŵ) and ζ̂(x, ŵ). Recall that the formula for the estimator

Σ̂ of Σ0 is

Σ̂ = En

[
b̂p,s(xi)b̂p,s(xi)

′ψ(ϵ̂i)
2η(1)(µ̂(xi) +w′

iγ̂)
2
]
.

Note that it only relies on known or estimable quantities such as the derivative of the loss function

ψ(·), the derivative of the inverse link function η(1)(·), the residual ϵ̂i and the binscatter estimates

µ̂(·) and γ̂. Thus, Σ̂ and other types of heteroskedasticity-robust “meat” matrix estimators can

be easily constructed using the data. Then, it remains to obtain an estimator Q̂ of Q0, which in

general relies on another estimator Ψ̂1(·) and can be constructed in a case-by-case basis. In the

following we discuss several examples.

Example 1 (Least Squares Regression). For least squares regression, the loss function ρ(y; η) =

1
2(y − η)2 and the (inverse) link function η(θ) = θ. Therefore, ψ(ϵi) = −ϵi and ηi,1 = 1. Thus, the

formula for Q̂ given in Section SA-2 reduces to En[b̂p,s(xi)b̂p,s(xi)
′], which is immediately feasible

in practice.

Example 2 (Logistic Regression). For logistic regression, the loss function is given by the

corresponding likelihood function, i.e., −ρ(y; η) = y log η + (1 − y) log(1 − η), and the inverse link

is given by the logistic function η(θ) = eθ

1+eθ
. Accordingly, an estimator of Q0 is given by

Q̂ = En

[
b̂p,s(xi)b̂p,s(xi)

′η̂i(1− η̂i)
]
, η̂i = η(µ̂(xi) +w′

iγ̂).

Example 3 (Quantile Regression). For quantile regression, ρ(y; η) = (q − 1(y < η))(y − η) for
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some q ∈ (0, 1) and η(θ) = θ. Accordingly, ψ(ϵi) = 1(ϵi < 0)− q, and one needs to estimate

Q0 = E
[
bp,s(xi)bp,s(xi)

′fY |XW (µ0(xi) +w′
iγ0|xi,wi)

]
.

The key is to estimate the conditional density fY |XW (·|xi,wi) evaluated at the conditional quantile

of interest (µ0(xi) +w′
iγ0), whose reciprocal is termed “sparsity function” in the literature. Many

different methods have been proposed. For example, the sparsity function is simply the derivative of

the conditional quantile function with respect to the quantile, which can be estimated by using the

difference quotient of the estimated conditional quantile function. Alternatively, Q0 can be viewed

as a matrix-weighted density function, and one can construct a corresponding estimator based on

kernel density estimation ideas. In addition, one can use bootstrapping methods to estimate the

variance, avoiding the technical difficulty of estimating the sparsity function. See Section 3.4 and

Section 3.9 of Koenker (2005) for more discussion of variance estimation for quantile regression.

SA-3.2 Number of Bins Selector

We discuss the implementation details for data-driven selection of the number of bins, based on

the approximate integrated mean squared error expansion in Theorem SA-2.4.

We offer two procedures for estimating the bias and variance constants, and once these estimates

(B̂n(p, s, v) and V̂n(p, s, v)) are available, the estimated optimal J is

ĴIMSE =

⌈(
2(p− v + 1)B̂n(p, s, v)

(1 + 2v)V̂n(p, s, v)

) 1
2p+3

n
1

2p+3

⌉
.

We always let ω(x) = fX(x) as weighting function for concreteness.

SA-3.2.1 Rule-of-thumb Selector

A rule-of-thumb choice of J can be obtained based on Corollary SA-3.2 in Cattaneo et al. (2023),

which gives an explicit characterization of the variance and bias constants for least squares bin-

scatter using piecewise polynomials (s = 0).

27



Specifically, the variance constant V (p, 0, v) is estimated by

V̂ (p, 0, v) = trace
{(∫ 1

0
φ(z)φ(z)′dz

)−1
∫ 1

0
φ(v)(z)φ(v)(z)′dz

}
× 1

n

n∑
i=1

σ̂2(xi,wi)f̂X(xi)
2v

where φ(z) = (1, z, . . . , zp)′, σ̂2(xi,wi) is some estimate of the conditional variance V[yi|xi,wi] and

f̂X(xi) is some estimate of the density fX(xi). On the other hand, the bias constant B(p, 0, v) is

estimated by

B̂(p, 0, v) =

∫ 1
0 [Bp+1−v(z)]

2dz

((p+ 1− v)!)2
× 1

n

n∑
i=1

[µ̂(p+1)(xi)]
2

f̂X(xi)2p+2−2v
.

where Bp(z) = (−1)p
∑p

k=0

(
p
k

)(
p+k
k

)
(−z)k/

(
2p
p

)
for each p ∈ Z+ and µ̂(p+1)(xi) is some preliminary

estimate of µ
(p+1)
0 (xi). The details about getting the estimates σ̂2(xi,wi), f̂X(xi) and µ̂(p+1)(xi)

can be found in Section SA-4.1 in Cattaneo et al. (2023).

Note that this procedure still yields a choice of J with the correct rate, though the constant

approximations are inconsistent for general loss.

SA-3.2.2 Direct-plug-in Selector

The direct-plug-in selector is implemented based on nonlinear binscatter estimators, which applies

to any user-specified p, s and v. It requires a preliminary choice of J , for which the rule-of-thumb

selector previously described can be used.

More generally, suppose that a preliminary choice Jpre is given, and then a binscatter basis

b̂p,s(x) (of order p) can be constructed immediately on the preliminary partition. Implementing

a nonlinear binscatter estimation using this basis and partitioning, we can obtain the variance

constant estimate using the variance matrix estimators discussed in Section SA-3.1.

Regarding the bias constant, the key unknown in the expression of the leading approximation

error r⋆0,v(x) in Theorem SA-2.4 is µ
(p+1)
0 (x), which can be estimated by implementing a nonlinear

binscatter estimation of order p+1 (with the preliminary partition unchanged). Also note that an

estimate of fX(xi)
−1 in r⋆0,v(x) is Jĥxi where ĥxi denotes the length of the interval in ∆̂ containing

xi. All other quantities in the expression of B(p, s, v) can be replaced by their sample analogues.

Then, a bias constant estimate is available.

By this construction, the direct-plug-in selector employs the correct rate and consistent constant
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approximations for any nonlinear binscatter with any choice of p, s and v.
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SA-4 Proof

SA-4.1 Technical Lemmas

In this section we collect some technical lemmas used in the proof of our main results.

We first give several simple facts about ∆̂ in the following lemma, which are immediate from

Assumption SA-RP(ii).

Lemma SA-4.1 (Quasi-Uniformity). Suppose that Assumption SA-RP(ii) holds. Then, (i) J−1 ≲

min1≤j≤J hj ≤ max1≤j≤J hj ≲ J−1, (ii) max1≤j≤J |τ̂j − τj | ≲P rRP, and (iii) ∆̂ ∈ Π2cQU+1 w.p.a. 1.

Proof. By Assumption SA-RP(ii), len(X ) =
∑J

j=1 hj ≥ J min1≤j≤J hj ≥ c−1
QU J max1≤j≤J hj where

len(X ) denotes the length of X (which is a fixed number). On the other hand, len(X ) ≤ J max1≤j≤J hj

≤ cQUJ max1≤j≤J hj . Therefore, c
−2
QU J

−1len(X ) ≤ min1≤j≤J hj ≤ max1≤j≤J hj ≤ cQUJ
−1len(X ).

Next, by Assumption SA-RP(ii), max1≤j≤J |τ̂j−τj | = max1≤j≤J |
∑j

l=1(ĥl−hl)| ≤ J max1≤l≤J |ĥl−

hl| ≲ rRP. In addition, max1≤j≤J |ĥj − hj | ≤ 1
2c

−2
QU J

−1len(X ) w.p.a. 1, and thus

max1≤j≤J ĥj

min1≤j≤J ĥj
=

max1≤j≤J hj +max1≤j≤J |ĥj − hj |
min1≤j≤J hj −max1≤j≤J |ĥj − hj |

≤ 2cQU + 1.

Then, the proof is complete.

The next lemma then verifies Assumption SA-RP(ii) for the special case of quantile-spaced

partitions. The proof is available in the supplemental appendix of Cattaneo et al. (2023) (see

Section SA-3.1 therein) and thus omitted here.

Lemma SA-4.2 (Quasi-Uniformity of Quantile-Spaced Partitions). Suppose that Assumption SA-

DGP(i) holds and ∆̂ is generated by sample quantiles, i.e., τ̂j = F̂−1
X (j/J). If J log J

n = o(1) and

logn
J = o(1), then Assumption SA-RP(ii) holds with τj = F−1

X (j/J) and rRP =
(
J log J

n

)1/2
.

The next three lemmas SA-4.3–SA-4.5 concern the properties of binscatter basis functions. Their

proofs are the same as those for quantile-based partitions that are available in the supplemental

appendix of Cattaneo et al. (2023) (see Section SA-3.1 therein) and are omitted here to conserve

space.
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Lemma SA-4.3 (Transformation Matrix). Suppose that Assumption SA-RP(i) holds. Then b̂p,s(x) =

T̂sb̂p,0(x) with ∥T̂s∥∞ ≲P 1 and ∥T̂s∥ ≲P 1. If, in addition, Assumption SA-RP(ii) holds, then

∥T̂s −Ts∥∞ ≲P rRP and ∥T̂s −Ts∥ ≲P rRP.

Lemma SA-4.4 (Local Basis). Suppose that Assumption SA-RP(i) holds. Then supx∈X ∥b̂(v)
p,s(x)∥0 ≤

(p+ 1)2 and supx∈X ∥b̂(v)
p,s(x)∥ ≲P J

1
2
+v.

The following lemma provides a particular way to define β0(∆) and β̂0 so that the required

approximation rate is achieved. We define

βLS
0 (∆) := argmin

β∈RKp,s

E[(µ0(xi)− bp,s(xi; ∆)′β)2], β̂LS
0 = βLS

0 (∆̂).

Lemma SA-4.5 (Approximation Error). Suppose that Assumption SA-RP(i) holds. Then

sup
∆∈Π

sup
x∈X

|b(v)
p,s(x; ∆)′βLS

0 (∆)− µ
(v)
0 (x)| ≲ J−p−1+v and sup

x∈X
|b̂(v)

p,s(x)
′β̂LS

0 − µ
(v)
0 (x)| ≲P J

−p−1+v.

Next, the following maximal inequality is useful in our analysis. Its proof is available in Cattaneo

et al. (2022) and thus omitted here.

Lemma SA-4.6 (Maximal Inequality). Let Z1, · · · , Zn be independent but not necessarily iden-

tically distributed random variables taking values in a measurable space (S;S ). Denote the joint

distribution of Z1, · · · , Zn by P and the marginal distribution of Zi by Pi, and let P̄ = 1
n

∑n
i=1 Pi.

Let F be a class of Borel measurable functions from S to R which is pointwise measurable. Let

F̄ be a measurable envelope function for F . Suppose that ∥F̄∥L2(P̄) < ∞. Let σ̄ > 0 satisfy

supf∈F ∥f∥L2(P̄) ≤ σ̄ ≤ ∥F̄∥L2(P̄) and define ¯̄F = max1≤i≤n F̄ (Zi). Then, with δ = σ̄/∥F̄∥L2(P̄),

E
[
sup
f∈F

∣∣∣ 1√
n

n∑
i=1

(
f(Zi)− E[f(Zi)]

)∣∣∣] ≲ ∥F̄∥L2(P̄)J(δ,F , F̄ ) +
∥ ¯̄F∥L2(P)J(δ,F , F̄ )2

δ2
√
n

,

where

J(δ,F , F̄ ) =
∫ δ

0

√
1 + sup

Q
logN(F , L2(Q), ε∥F̄∥L2(Q))dε.
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SA-4.2 Proof for Section SA-2

SA-4.2.1 Proof of Lemma SA-2.1

Proof. We write Ψi,1 := Ψ1(xi,wi; ηi).

(i) We first prove a convergence result of Q̄. In view of Lemma SA-4.3, it suffices to show the

convergence for s = 0. Let An denote the event on which ∆̂ ∈ Π. By Assumption SA-RP(i),

P(Ac
n) = o(1). On An,

∥∥∥En[b̂p,0(xi)b̂p,0(xi)
′Ψi,1η

2
i,1]− E

∆̂
[b̂p,0(xi)b̂p,0(xi)

′Ψi,1η
2
i,1]

∥∥∥
≤ sup

∆∈Π
∥En[bp,0(xi; ∆)bp,0(xi; ∆)′Ψi,1η

2
i ]− E[bp,0(xi; ∆)bp,0(xi; ∆)′Ψi,1η

2
i ]∥∞.

Let akl be a generic (k, l)th entry of the matrix inside the norm, i.e.,

|akl| =
∣∣∣En[bp,0,k(xi; ∆)bp,0,l(xi; ∆)′Ψi,1η

2
i,1]− E[b0,k(xi; ∆)b0,l(xi; ∆)′Ψi,1η

2
i,1]

∣∣∣.
Clearly, if bp,0,k(· ; ∆) and bp,0,l(· ; ∆) are basis functions with different supports, akl is zero. Now

define the following function class

G =
{
(x1,w1) 7→ bp,0,k(x1; ∆)bp,0,l(x1; ∆)Ψiη

2
i,1 : 1 ≤ k, l ≤ J(p+ 1),∆ ∈ Π

}
.

We have supg∈G |g|∞ ≲ J and supg∈G V[g] ≤ supg∈G E[g2] ≲ J, by Assumption SA-GL. Also, by

Proposition 3.6.12 of Giné and Nickl (2016), the collection G is of VC type with a bounded index.

Then, by Lemma SA-4.6,

sup
g∈G

∣∣∣ 1
n

n∑
i=1

g(xi)− E[g(xi)]
∣∣∣ ≲P

√
J log J/n,

which implies ∥En[b̂p,0(xi)b̂p,0(xi)
′Ψi,1η

2
i,1]− E

∆̂
[b̂p,0(xi)b̂p,0(xi)

′Ψi,1η
2
i,1]∥ ≲P

√
J log J/n.

Then, the lower bound on the minimum eigenvalue of Q̄ follows by Theorem 4.42 of Schumaker

(2007) and Assumption SA-RP(i). The upper bound immediately follows by Assumption SA-RP(i)

and Lemmas SA-4.3 and SA-4.4.

Given the above fact, it follows that ∥Q̄−1∥ ≲P 1. Notice that Q̄ is a banded matrix with a
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finite band width. Then, the bounds on the elements of Q̄−1 and ∥Q̄−1∥∞ hold by Theorem 2.2 of

Demko (1977).

(ii) By Assumption SA-DGP(iii) and SA-GL(iii), Ψi,1η
2
i,1 is bounded and bounded away from

zero uniformly over 1 ≤ i ≤ n. Then, E[bp,s(xi)bp,s(xi)
′] ≲ Q0 ≲ E[bp,s(xi)bp,s(xi)

′]. The desired

bounds on the minimum and maximum eigenvalues of Q0 follow from Lemma SA-3.5 of Cattaneo

et al. (2023).

Next, we show the convergence of Q̄ to Q0. Let αkl be a generic (k, l)th entry of

E
∆̂
[b̂p,0(xi)b̂p,0(xi)

′Ψi,1η
2
i,1]/J − E[bp,0(xi)bp,0(xi)

′Ψi,1η
2
i,1]/J.

By definition, it is either equal to zero or

αkl =

∫
B̂j

(x− τ̂j

ĥj

)ℓ
φ(xi)fX(x)dx−

∫
Bj

(x− τj
hj

)ℓ
φ(xi)fX(x)dx

=ĥj

∫ 1

0
zℓφ(zĥj + τ̂j)fX(zĥj + τ̂j)dz − hj

∫ 1

0
zℓφ(zhj + τj)fX(zhj + τj)dz

=(ĥj − hj)

∫ 1

0
zℓφ(zĥj + τ̂j)fX(zĥj + τ̂j)dz

+ hj

∫ 1

0
zℓ
(
φ(zĥj + τ̂j)fX(zĥj + τ̂j)− φ(zhj + τj)fX(zhj + τj)

)
dz

for some 1 ≤ j ≤ J and 0 ≤ ℓ ≤ 2p and φ(xi) = E[κ(xi,wi)|xi]. By Assumptions SA-DGP and

SA-GL and the argument in the proof of Lemma SA-3.5 of Cattaneo et al. (2023),

∥E
∆̂
[b̂p,0(xi)b̂p,0(xi)

′Ψi,1η
2
i,1]−Q0∥ ≲P rRP.

Since Q̄ and Q0 are banded matrices with finite band widths. Then, the bound ∥Q̄−1 −Q−1
0 ∥∞

hold by Theorem 2.2 of Demko (1977). This completes the proof.

SA-4.2.2 Proof of Lemma SA-2.2

Proof. Since E[ψ(ϵi)2|xi = x,wi = w] and (η(1)(µ0(x) + w′γ0))
2 is bounded and bounded away

from zero uniformly over x ∈ X and w ∈ W, En[b̂p,s(xi)b̂p,s(xi)
′] ≲ Σ̄ ≲ En[b̂p,s(xi)b̂p,s(xi)

′]. By

the same argument in the proof of Lemma SA-2.1 (we can simply drop the additional term Ψi,1η
2
i,1
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in Q̄), the eigenvalues of En[b̂p,s(xi)b̂p,s(xi)
′] and thus Σ̄ are bounded and bounded away from zero.

Then, the desired results follow from Lemma SA-2.1 and the fact that infx∈X ∥b̂(v)
p,s(x)∥ ≳ J1/2+v

w.p.a. 1 (it was shown in the proof of Lemma SA-3.6 of Cattaneo et al. (2023)).

SA-4.2.3 Proof of Lemma SA-2.3

Proof. By Lemmas SA-4.3, SA-4.4 and SA-2.1, supx∈X ∥b̂(v)
p,s(x)∥1 ≲P J

1/2+v, ∥Q̄−1∥∞ ≲P 1 and

∥T̂s∥∞ ≲P 1. Define the following function class

G =
{
(x1,w1, ϵ1) 7→ bp,0,l(x1; ∆)η(1)(µ0(x1) +w′

1γ0)ψ(ϵ1) : 1 ≤ l ≤ J(p+ 1),∆ ∈ Π
}
.

Then, supg∈G |g| ≲
√
J |ψ(ϵ1)|, and hence take an envelop Ḡ = C

√
J |ψ(ϵ1)| for some C large enough.

Moreover, supg∈G V[g] ≲ 1 and G is of VC type with a bounded index. By Proposition 6.1 of Belloni

et al. (2015),

sup
g∈G

∣∣∣ 1
n

n∑
i=1

g(xi, ϵi)
∣∣∣ ≲P

√
log J

n
+
J

ν
2(ν−2) log J

n
≲

√
log J

n
,

and the desired result follows.

SA-4.2.4 Proof of Lemma SA-2.4

Proof. Let ϵ̃i = yi − η(b̂p,s(xi)
′β̂0 +w′

iγ0). We write r(xi,wi, yi) := r(xi,wi, yi; ∆̂) := ηi,1ψ(ϵi) −

η(1)(b̂p,s(xi)
′β̂0 +w′

iγ0)ψ(ϵ̃i) = A1(xi,wi, yi) +A2(xi,wi, yi) where

A1(xi,wi, yi) := A1(xi,wi, yi; ∆̂) := (ηi,1 − η(1)(b̂p,s(xi)
′β̂0 +w′

iγ0))ψ(ϵi) and

A2(xi,wi, yi) := A2(xi,wi, yi; ∆̂) := η(1)(b̂p,s(xi)
′β̂0 +w′

iγ0)(ψ(ϵi)− ψ(ϵ̃i))

First, by Assumption SA-GL and Lemma SA-4.5, supx∈X ,w∈W |η(1)(µ0(x)+w′γ0)−η(1)(b̂p,s(x)
′β̂0+

w′γ0)| ≲ J−p−1. Also, for every 1 ≤ l ≤ Kp,s and ∆ ∈ Π,

bp,s,l(x; ∆)
(
η(µ0(x) +w′γ0)− η(bp,s(x; ∆)′β0(∆) +w′γ0)

)
= bp,s,l(x; ∆)η(µ0(x) +w′γ0)− bp,s,l(x; ∆)η

( kl+p∑
k=kl

bp,s,k(x; ∆)β0,k(∆) +w′γ0

)

for some integer kl ∈ [1,Kp,s] where β0,k(∆) denotes the kth element in β0(∆). Then, the function
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class G = {(x,w, y) 7→ bp,s,l(x; ∆)A1(x,w, y; ∆) : 1 ≤ l ≤ Kp,s,∆ ∈ Π} is of VC type with a

bounded index. By the same argument given in the proof of Lemma SA-2.3,

∥En[b̂p,s(xi)A1(xi,wi, yi)]∥∞ ≲P J
−p−1

( log J
n

)1/2
.

Next, let FXW∆ be the σ-field generated by {(xi,wi)}ni=1 and ∆̂. Note that

En[b̂p,s(xi)A2(xi,wi, yi)] = En[E[b̂p,s(xi)A2(xi,wi, yi)|FXW∆]]+

En

[
b̂p,s(xi)A2(xi,wi, yi)− E[b̂p,s(xi)A2(xi,wi, yi)|FXW∆]

]
.

By Assumption SA-GL(ii) and (iii) and Lemma SA-4.5,

max
1≤i≤n

|E[A2(xi,wi, yi)|FXW∆]|

= max
1≤i≤n

|η(1)(b̂p,s(xi)
′β̂0 +w′

iγ0)Ψ(xi,wi; η(b̂p,s(xi)
′β̂0 +w′

iγ0))| ≲P J
−p−1.

Then, ∥En[E[b̂p,s(xi)A2(xi,wi, yi)|FXW∆]]∥∞ ≲P J
−p−1−1/2 by the same argument in the proof of

Lemma SA-2.1. On the other hand, define the following function class

G :=
{
(x,w, y) 7→ bp,s,l(x; ∆)A2(x,w, y; ∆) : 1 ≤ l ≤ Kp,s,∆ ∈ Π

}
.

By Assumption SA-GL, supg∈G ∥g∥∞ ≲ J1/2, and supg∈G V[g(xi,wi, yi)] ≲ J−p−1. By a similar

argument given before, this function class is of VC type with a bounded index. Then, as in the

proof of Lemma SA-2.3, by Proposition 6.1 of Belloni et al. (2019),

sup
g∈G

∣∣∣ 1
n

n∑
i=1

(g(xi,wi, yi)− E[g(xi,wi, yi)])
∣∣∣ ≲P J

− p+1
2

√
log J

n
+
J1/2 log J

n
.

Collecting these results, we conclude that

b̂(v)
p,s(x)

′Q̄−1E[b̂p,s(xi)r(xi,wi, yi)] ≲P J
−p−1+v + J

2v−p−1
2

(J log J

n

)1/2
+
J1+v log J

n
.

The proof is complete.
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SA-4.2.5 Proof of Lemma SA-2.5

Proof. By convexity of ρ(y; η(·)), we only need to consider β = β̂0 + εα/
√
J for any sufficiently

small fixed ε > 0 and α ∈ RKp,s such that ∥α∥ = 1. For notational simplicity, let b̂i := b̂p,s(xi).

For this choice of β and γ ∈ Rd,

δi(β,γ) = ρ(yi; η(b̂
′
iβ +w′

iγ))− ρ(yi; η(b̂
′
iβ̂0 +w′

iγ))

=

∫ εb̂′
iα/

√
J

0
ψ
(
yi; η(b̂

′
iβ̂0 +w′

iγ + t)
)
η(1)(b̂′

iβ̂0 +w′
iγ + t)dt.

Let FXW∆ be the σ-field generated by {(xi,wi)}ni=1 and ∆̂. We have

En[δi(β, γ̂)] =
1√
n
Gn[δi(β, γ̂)] + En

[
E[δi(β, γ̂)|FXW∆]

]
,

where Gn[·] denotes
√
n(En[·]−E[·|FXW∆]) and E[δi(β, γ̂)|FXW∆] := E[δi(β,γ)|FXW∆]|γ=γ̂ , that

is, the conditional expectation with γ̂ viewed as fixed. By Assumption SA-GL,

E[δi(β, γ̂)|FXW∆] =

∫ εb̂′
iα/

√
J

0
Ψ
(
xi,wi; η(b̂

′
iβ̂0 +w′

iγ̂ + t)
)
η(1)(b̂′

iβ̂0 +w′
iγ̂ + t)dt

=

∫ εb̂′
iα/

√
J

0
Ψ1(xi,wi; ξi,t)(η(b̂

′
iβ̂0 +w′

iγ̂ + t)− ηi)η
(1)(b̂′

iβ̂0 +w′
iγ̂ + t)dt,

where ξi,t is between η(b̂
′
iβ̂0+w′

iγ̂+t) and η(µ0(xi)+w′
iγ0) and we use the fact that Ψ(x,wi; ηi) = 0.

By Lemma SA-4.5, the fact that η(·) is strictly monotonic and γ̂ − γ0 = oP(
√
J/n + J−p−1) and

the rate condition imposed, we have En[E[δi(β, γ̂)|FXW∆]] ≳P ε
2α′En[b̂ib̂

′
i]α/J ≳P J

−1ε2.

On the other hand, let H := {γ : ∥γ − γ0∥ ≤ Crγ} and define the following function class

G :=
{
(xi,wi, yi) 7→ δi(β,γ) : α ∈ SKp,s ,γ ∈ H

}
.

Note that

δi(β,γ) =

∫ εb̂′
iα/

√
J

0

(
ψ(yi; η(b̂

′
iβ̂0 +w′

iγ + t))− ψ(yi; ηi)
)
η(1)(b̂′

iβ̂0 +w′
iγ + t)dt +∫ εb̂′

iα/
√
J

0
ψ(yi; ηi)η

(1)(b̂′
iβ̂0 +w′

iγ + t)dt.
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By Assumption SA-GL, we have supg∈G |g| ≲ ε(1 + |ψ(ϵi)|), ∥max1≤i≤n |ψ(ϵi)|∥L2(P) ≲ n1/ν ,

supg∈G En[E[g2|FXW∆]] ≲P J
−1ε2, and the VC-index of G is bounded by CKp,s for an absolute

constant C > 0. Therefore, by Lemma SA-4.6 and the rate restriction,

sup
g∈G

∣∣∣ 1√
n
Gn[δi(β,γ)]

∣∣∣ ≲P J
−1

(J2 log J

n

)1/2
ε+ J−1J

2 log J

n1−
1
ν

ε = o(ε/J).

Thus, for any fixed (sufficiently small) ε > 0, En[δi(β, γ̂)] > 0 when n is sufficiently large. Thus,

∥β̂ − β̂0∥ = oP(J
−1/2), implying ∥β̂ − β̂0∥∞ = oP(J

−1/2) immediately.

SA-4.2.6 Proof of Theorem SA-2.1

Proof. The proof is long. We divide it into several steps.

Step 0: We first prepare some notation and useful facts. To simplify the presentation, in this

proof we drop the scaling factor
√
J in the basis by defining

b̆i := b̂p,s(xi)/
√
J = (̂bp,s,1(xi), · · · , b̂p,s,Kp,s(xi))

′/
√
J and β̆0 =

√
Jβ̂0.

Throughout the proof, C, c, C1, c1, C2, c2, · · · denote (strictly positive) absolute constants, FXW∆

denotes the σ-field generated by {(xi,wi)}ni=1 and ∆̂, and supp(g(·)) denotes the support of a

generic function g(·). Moreover, define

V = {(v1, · · · , vKp,s)
′ : ∃k ∈ {1, · · · ,Kp,s}, |vℓ| ≤ ϱ|k−ℓ|εn for |ℓ− k| ≤Mn and vℓ = 0 otherwise},

Hl = {v ∈ RKp,s : ∥v∥∞ ≤ rl,n} for l = 1, 2, and H3 = {v ∈ Rd : ∥v∥ ≤ r3,n},

where ϱ ∈ (0, 1) is the constant given in Lemma SA-2.1, r1,n = C1[(J log n/n)1/2 + J−p−1], r2,n =

zr2,n for z > 0, εn = z′r2,n for z′ > 0, r2,n = [(J logn
n )3/4 log n+J− p+1

2

√
J
n log n+J−2p−2+ rγ ], r3,n =

Crγ , and Mn = c1 log n. In the last step of the proof, we will consider z = 2ℓ, ℓ = L,L + 1, · · · , L̄

where L̄ is the smallest number such that 2L̄r2n ≥ c for some sufficiently small constant c > 0,

and εn is a quantity that we can choose. Note that by Assumption SA-GL, γ̂ − γ0 ∈ H3 with

probability approaching one for C large enough, and by Lemma SA-2.5,
√
Jβ̂ − β̆0 ≤ c with

probability approaching one.
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For any β1 ∈ H1,β2 ∈ H2, υ ∈ V and γ := γ0 + γ1 with γ1 ∈ H3, define

δi(β1,β2,υ,γ) = ρ
(
yi; η(b̆

′
i(β̆0 + β1 + β2) +w′

iγ)
)
− ρ

(
yi; η(b̆

′
i(β̆0 + β1 + β2 − υ) +w′

iγ)
)

−
[
η(b̆′

i(β̆0 + β1 + β2) +w′
iγ)− η(b̆′

i(β̆0 + β1 + β2 − υ) +w′
iγ)

]
× ψ(yi; η(b̆

′
iβ̆0 +w′

iγ0))

=

∫ 0

−b̆′
iυ

[
ψ
(
yi; η(b̆

′
i(β̆0 + β1 + β2) +w′

iγ + t)
)
− ψ

(
yi; η(b̆

′
iβ̆0 +w′

iγ0)
)]

× η(1)
(
b̆′
i(β̆0 + β1 + β2) +w′

iγ + t
)
dt.

Note that δi(β1,β2,υ,γ) ̸= 0 only if b̆′
iυ ̸= 0. For each υ ∈ V, let Jυ = {j : υj ̸= 0}. By

construction, the cardinality of Jυ is bounded by 2Mn + 1. We have δi(β1,β2,υ,γ) ̸= 0 only if

b̆j(xi) ̸= 0 for some j ∈ Jυ, which happens only when xi ∈ supp(b̆j(·)) for some j ∈ Jυ. Let

Iυ = ∪j∈Jυ supp(b̆j(·)). Since the basis functions are locally supported, Iυ includes at most c2Mn

(connected) intervals for all υ ∈ V. Moreover, at most c3Mn basis functions in b̆(·) have supports

overlapping with Iυ. Denote the set of indices for such basis functions by J̄υ. Let β̆0,j , β1,j and

β2,j be the jth entries of β̆0, β1, and β2 respectively, and υj be the jth entry of υ. Based on the

above observations, we have δi(β1,β2,υ,γ) ≡ δi(β1,J̄υ
,β2,J̄υ

,υ,γ) where

δi(β1,J̄υ
,β2,J̄υ

,υ,γ) :=

∫ 0

−
∑

j∈Jυ

b̆i,jυj

[
ψ
(
yi; η

( ∑
l∈J̄υ

b̆i,l(β̆0,l + β1,l + β2,l) +w′
iγ + t

))

−ψ
(
yi;η

( ∑
l∈J̄υ

b̆i,lβ̆0,l +w′
iγ0

))]
× η(1)

( ∑
l∈J̄υ

b̆i,l(β̆0,l + β1,l + β2,l) +w′
iγ + t

)
dt1i,υ,

1i,υ = 1(xi ∈ Iυ), and β1,J̄υ
and β2,J̄υ

respectively denote the subvectors of β1 and β2 whose

indices belong to J̄υ. Accordingly, define the following function class

G =
{
(xi,wi, yi) 7→ δi(β̃1, β̃2,υ,γ) : υ ∈ V, β̃1 ∈ Rc3Mn , β̃2 ∈ Rc3Mn ,

∥β̃1∥∞ ≤ r1,n, ∥β̃2∥∞ ≤ r2,n,γ − γ0 ∈ H3

}
.

Step 1: We bound supg∈G |En[g(xi,wi, yi)] − E[g(xi,wi, yi)|FXW∆]| in this step. Let ai(t) :=
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η(
∑

l∈J̄υ
b̆′i,lβ̆0,l +w′

iγ0 + t). Define

ai = min
{
ai(0), ai

( ∑
l∈J̄υ

b̆i,l(β1,l + β2,l) +w′
iγ1

)
, ai

( ∑
l∈J̄υ

b̆i,l(β1,l + β2,l) +w′
iγ1 +

∑
j∈Jυ

b̆i,jυj

)}
and

āi = max
{
ai(0), ai

( ∑
l∈J̄υ

b̆i,l(β1,l + β2,l) +w′
iγ1

)
, ai

( ∑
l∈J̄υ

b̆i,l(β1,l + β2,l) +w′
iγ1 +

∑
j∈Jυ

b̆i,jυj

)}
.

Consider the following two cases.

First, suppose that (yi − āi, yi − ai) does not contain any discontinuity points. By Assumption

SA-GL, for all t in the interval of integration [−
∑

j∈Jυ
b̆i,jυj , 0] (or [0,−

∑
j∈Jυ

b̆i,jυj ]),

∣∣∣ψ(yi; ai( ∑
l∈J̄υ

b̆i,l(β1,l + β2,l) +w′
iγ + t

))
− ψ(yi; ai(0))

∣∣∣ ≲ r1,n + r2,n + εn + r3,n.

Second, if (yi − āi, yi − ai) contains at least one discontinuity point, say ȷ. For any t in the interval

of integration, by Assumption SA-DGP,

∣∣∣ψ(yi; ai( ∑
l∈J̄υ

b̆i,l(β1,l + β2,l) +w′
iγ + t

))
− ψ(yi; ai(0))

∣∣∣ ≲ 1 + r3,n

for any (xi,wi, yi), and in this case yi ∈ (ȷ+ ai, ȷ+ āi). By Assumption SA-GL,

|āi − ai| ≲ (r1,n + r2,n + r3,n + εn)(|ηi,1|+ r1,n + r2,n + r3,n + εn).

Note that by construction, for each υ ∈ V, there exists some kυ such that |υℓ| ≤ ϱ|ℓ−kυ |εn for

|ℓ − kυ| ≤ Mn. Therefore, we can further write 1i,υ =
∑

j:B̂j⊂Iυ 1i,υ,j where each 1i,υ,j is an

indicator of the subinterval involved in Iυ, and the above facts imply that for any xi ∈ B̂l for some

B̂l ⊂ Iυ,

V[δi(β1,β2,υ,γ)|FXW∆] ≲ ϱ2|(p−s+1)l−kυ |ε2n(r1,n + r2,n + εn + r3,n)(|ηi,1|+ r1,n + r2,n + εn + r3,n).

In addition, since δi(β1,β2,υ,γ) ̸= 0 only if xi ∈ Iυ, for all g ∈ G (each corresponds to a particular

39



υ),

En[V[g(xi,wi, yi)|FXW∆]] ≲ ε2n(r1,n + r2,n + εn + r3,n)
∑

l:B̂l⊂Iυ

En[1i,υ,l]ϱ
2|(p−s+1)l−kυ |.

Note that this inequality holds for any event in FXW∆. Define an eventA1 on which sup1≤j≤J En[1i,j ] ≤

C2J
−1 for some large enough C2 > 0 where 1i,j = 1(xi ∈ B̂j). By the argument in Lemma SA-2.1,

P(Ac
1) → 0. On A1,

σ̄2 := sup
g∈G

En[V[g(xi,wi, yi)|FXW∆]] ≲ ε2nJ
−1(r1,n + r2,n + εn + r3,n).

On the other hand,

Ḡ := sup
g∈G

|g(xi,wi, yi)| ≲ εn(1 + r3,n)(|ηi,1|+ r1,n + r2,n + εn + r3,n).

Also, for any g, g̃ ∈ G, denote the corresponding parameters defining g and g̃ by (β1,β2,υ,γ) and

(β̃1, β̃2, υ̃, γ̃). We have

g̃(xi,wi, yi)− g(xi,wi, yi) =

∫ Λ1

0

[
ψ(yi; η(b̆

′
i(β̆0 + β1 + β2) +w′

iγ + t))

− ψ(yi; η(b̆
′
iβ̆0 +w′

iγ0))
]
× η(1)(b̆′

i(β̆0 + β1 + β2) +w′
iγ + t)dt

−
∫ Λ2

0

[
ψ(yi; η(b̆

′
i(β̆0 + β1 + β2 − υ) +w′

iγ + t))

− ψ(yi; η(b̆
′
iβ̆0 +w′

iγ0))
]
× η(1)(b̆′

i(β̆0 + β1 + β2 − υ) +w′
iγ + t)dt

≲ (1 + Λ1 + Λ2)(|ηi,1|+ r1,n + r2,n + Λ1 + Λ2 + r3,n)

× (∥(β̃1 − β1∥∞ + ∥β̃2 − β2)∥∞ + ∥υ̃ − υ∥∞ + ∥γ̃ − γ∥),

where Λ1 = b̆′
i(β̃1+β̃2−β1−β2)+w′

i(γ̃−γ) and Λ2 = Λ1−b̆′
i(υ̃−υ). Based on these observations,

∥Ḡ∥P̄,2
∫ σ̄

∥Ḡ∥P̄,2

0

√
1 + sup

Q
logN(G, L2(Q), t∥Ḡ∥Q,2)dt ≲ σ̄

(√
log J +

√
log n log

1

σ̄

)
≲ σ̄ log n,

where the supremum is taken over all finite discrete probability measures Q. Then, by Lemma
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SA-4.6,

E
[
sup
g∈G

∣∣∣Gn[g(xi,wi, yi)]
∣∣∣∣∣∣∣FXW∆

]
≲ σ̄ log n+

√
E[ ¯̄G2] log2 n

√
n

,

where ¯̄G = max1≤i≤n Ḡ(xi,wi, yi). Note that (E[ ¯̄G2])1/2 ≲ εn.

Therefore, on A1 (whose probability approaches one),

sup
β1∈H1,β2∈H2,υ∈V,γ1∈H3

∣∣∣En

[
δi(β1,β2,υ,γ)

]
− En

[
E[δi(β1,β2,υ,γ)|FXW∆]

]∣∣∣
≲

(
J−1εn

√
Ln

√
J

n
log n+

εn(log n)
2

n

)
for Ln = r1,n + r2,n + r3,n + εn.

Step 2: For Q̃ := En[b̆ib̆
′
iΨ1(xi,wi; η(b̆

′
iβ̆0 +w′

iγ0))(η
(1)(b̆iβ̆0 +w′

iγ0))
2], by Assumption SA-

GL and the same argument in the proof of Lemma SA-2.1, ∥Q̄ − Q̃∥∞ ∨ ∥Q̄ − Q̃∥ ≲ J−p−1J−1.

Therefore,

sup
β1∈H1,β2∈H2,υ∈V

|υ′(Q̃− Q̄)(β1 + β2)| ≲ J−p−2εn(r1,n + r2,n).

In addition, by Lemmas SA-2.3 and SA-2.4, ∥β̄∥∞ ≤ r1,n with probability approaching one for C1

large enough, where

β̄ := −Q̄−1En

[
b̆iη

(1)(b̆′
iβ̆0 +w′

iγ0)ψ
(
yi; η(b̆

′
iβ̆0 +w′

iγ0)
)]
.

Step 3: By Taylor expansion, we have

En

[
E[δi(β1,β2,υ,γ)|FXW∆]

]
= En

[ ∫ 0

−b̆′
iυ

{
Ψ(xi,wi; η(b̆

′
i(β̆0 + β1 + β2) +w′

iγ + t))

−Ψ(xi,wi; η(b̆
′
iβ̆0 +w′

iγ0))
}
× η(1)

(
b̆′
i(β̆0 + β1 + β2) +w′

iγ + t
)
dt

]
= En

[ ∫ 0

−b̆′
iυ

{
Ψ1(xi,wi; η(b̆

′
iβ̆0 +w′

iγ0))
(
η(1)(b̆′

iβ̆0 +w′
iγ0)(b̆

′
i(β1 + β2) +w′

iγ1 + t)

+
1

2
η(2)(ξi,t)(b̆

′
i(β1 + β2) +w′

iγ1 + t)2
)

+
1

2
Ψ2(xi,wi; ξ̃i,t)

(
η(b̆′

i(β̆0 + β1 + β2) +w′
iγ + t)− η(b̆′

iβ̆0 +w′
iγ0)

)2}
×
(
η(1)(b̆′

iβ̆0 +w′
iγ0) + η(2)(ξ̌i,t)(b̆

′
i(β1 + β2) +w′

iγ1 + t)
)
dt

]
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= υ′Q̃(β1 + β2) + υ′En[biκ̃iw
′
i]γ1 −

1

2
υQ̃υ + I + II + III,

where ξi,t and ξ̌i,t are between b̆′
iβ̆0+w′

iγ0 and b̆′
i(β̆0+β1+β2)+w′

iγ+ t, ξ̃i,t is between η(b̆
′
iβ̆0+

w′
iγ0) and η(b̆′

i(β̆0 + β1 + β2) +w′
iγ + t), Ψ2(x,w; τ) = ∂2

∂τ2
Ψ(x,w; τ), κ̃i = Ψ1(xi,wi; η(b̆

′
iβ̆0 +

w′
iγ0))(η

(1)(b̆′
iβ̆0 + w′

iγ0))
2, υ′En[biκ̃iw

′
i]γ1 ≲ εnr3,n/J , −1

2υQ̃υ ≲ ε2n/J , and I, II, and III are

defined and bounded as follows:

I = En

[ ∫ 0

−b̆′
iυ

Ψ1(xi; η(b̆
′
iβ̆0 +w′

iγ0))η
(1)(b̆′

iβ̆0 +w′
iγ0)

× η(2)(ξ̌i,t)(b̆
′
i(β1 + β2) +w′

iγ1 + t)2dt1i,υ

]
≲ εnJ

−1(r1,n + r2,n + εn + r3,n)
2,

II = En

[ ∫ 0

−b̆′
iυ

Ψ1(xi; η(b̆
′
iβ̆0 +w′

iγ0))×
1

2
η(2)(ξi,t)(b̆

′
i(β1 + β2) +w′

iγ1 + t)2

× η(1)
(
b̆′
i(β̆0 + β1 + β2) +w′

iγ + t
)
dt1i,υ

]
≲ εnJ

−1(r1,n + r2,n + εn + r3,n)
2,

III = En

[ ∫ 0

−b̆′
iυ

1

2
Ψ2(ξ̃i,t)

(
η(b̆′

i(β̆0 + β1 + β2) +w′
iγ + t)− η(b̆′

iβ̆0 +w′
iγ0)

)2

× η(1)
(
b̆′
i(β̆0 + β1 + β2) +w′

iγ + t
)
dt1i,υ

]
≲ εnJ

−1(r1,n + r2,n + εn + r3,n)
2.

These bounds hold uniformly for υ ∈ V, β1 ∈ H1, β2 ∈ H2 and γ1 ∈ H3 (that is, uniformly over

the function class G), and on an event A1 ∩ A2 where A2 = {λmax(Q̃) ≤ c4J
−1} for some large

enough c4 > 0. Note that P(A1 ∩ A2) → 1 by Lemma SA-2.1.

Step 4: By Assumption SA-GL and Taylor’s expansion,

IV = En

[(
η(b̆′

i(β̆0 + β1 + β2) +w′
iγ)− η(b̆′

i(β̆0 + β1 + β2 − υ) +w′
iγ)

)
ψ(yi; η(b̆

′
iβ̆0 +w′

iγ0))

]
− En

[
υ′b̆iψ(yi, η(b̆

′
iβ̆0 +w′

iγ0))η
(1)(b̆′

iβ̆0 +w′
iγ0)

]
= En

[
υ′b̆iψ(yi, η(b̆

′
iβ̆0 +w′

iγ0))
(
η(2)(ξi)(b̆

′
i(β1 + β2 − υ) +w′

iγ1) +
1

2
η(2)(ξ̃i)υ

′b̆i

)]
≲ J−1((J log n/n)1/2 + J−p−1)(εn + r1,n + r2,n + r3,n)εn,

where ξi is between b̆′
iβ̆0+w′

iγ0 and b̆′
i(β̆0+β1+β2−υ)+w′

iγ and ξ̃i is between b̆′
i(β̆0+β1+β2)+w′

iγ
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and b̆′
i(β̆0 + β1 + β2 − υ) +w′

iγ. The last line holds on the event

A3 =

{
sup

(∥∥∥En

[
b̆ib̆

′
iψ(yi; η(b̆

′
iβ̆0 +w′

iγ0))η
(2)(ϖi)

]∥∥∥
∞
+∥∥∥En

[
b̆iψ(yi; η(b̆

′
iβ̆0 +w′

iγ0))η
(2)(ϖi)wi

]∥∥∥
∞

)
≲ J−1

((J log n

n

)1/2
+ J−p−1

)}
,

where the supremum is taken over β1 ∈ H1,β2 ∈ H2,υ ∈ V,γ1 ∈ H3 and ϖi within the range

of ξi or ξ̃i. Note that E[ψ(yi, ηi)|FXW∆] = 0 and b̆′
iβ̆0 − µ0(xi) ≲ J−p−1. Then, we can use the

argument in the proof of Lemmas SA-2.3 and SA-2.4 to obtain P(A3) → 1 by choosing C3 > 0

sufficiently large.

Step 5: Let ῡ = c5εnJ
−1[Q̄−1]k· for some k such that |β2,k| = ∥β2∥∞ for some c5 > 0 where

[Q̄−1]k· denotes the kth row of Q̄−1. Note that υ′Q̄β2 = β2,k. Take υ = (υ1, · · · , υKp,s) where

υj = ῡj for |j − k| ≤ Mn and zero otherwise. Clearly, υ ∈ V on an event A4 with P(A4) → 1. On

A2 ∩ A4,

|(υ − ῡ)′Q̄β2| ≲ εnJ
−1r2,nn

−c6

for some large c6 > 0 if we let c1 be sufficiently large.

Step 6: Finally, partition the whole parameter space into shells: O = ∪L̄
ℓ=−∞Oℓ where Oℓ =

{β ∈ RKp,s : 2ℓ−1r2,n ≤ ∥β − β̆0 − β̄∥∞ ≤ 2ℓr2,n} for the smallest L̄ such that 2L̄r2,n ≥ c, and

Q̄β̄ = −En[b̆iη
(1)(b̆′

iβ̆0+w′
iγ0)ψ(yi; η(b̆

′
iβ̆0+w′

iγ0))]. DefineA = ∩4
j=1Aj . Then, for some constant

L ≤ L̄, we have by Lemma SA-2.5 and the results given in the previous steps,

P(∥β̆ − β̆0 − β̄∥∞ ≥ 2Lr2,n|FXW∆)

≤ P
( L̄⋃

ℓ=L

{
inf

β∈Oℓ

sup
υ∈V

En[ρ(yi; η(b̆
′
iβ +w′

iγ̂))− ρ(yi; η(b̆
′
i(β − υ) +w′

iγ̂))] < 0
}∣∣∣FXW∆

)
+ oP(1)

= P
( L̄⋃

ℓ=L

{
inf

β∈Oℓ

sup
υ∈V

{
E
[
ρ(yi; η(b̆

′
iβ +w′

iγ̂))− ρ(yi; η(b̆
′
i(β − υ) +w′

iγ̂))

− [η(b̆′
iβ +w′

iγ̂)− η(b̆′
i(β − υ) +w′

iγ̂)]ψ(yi; η(b̆
′
iβ̆0 +w′

iγ̂))|FXW∆

]
+

En

[
(η(b̆′

iβ +w′
iγ̂)− η(b̆′

i(β − υ) +w′
iγ̂))ψ(yi; η(b̆

′
iβ̆0 +w′

iγ̂))
]
+

1√
n
Gn

[
ρ(yi; η(b̆

′
iβ +w′

iγ̂))− ρ(yi; η(b̆
′
i(β − υ) +w′

iγ̂))−

[η(b̆′
iβ +w′

iγ̂)− η(b̆′
i(β − υ) +w′

iγ̂)]ψ(yi; η(b̆
′
iβ̆0 +w′

iγ̂))
]}

< 0
}∣∣∣FXW∆

)
+ oP(1)
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≤ P
( L̄⋃

ℓ=L

{
sup

β1∈H1

sup
β2∈H2,ℓ

sup
γ1∈H3

sup
υ∈V

1√
n

∣∣∣(1(A1) + 1(Ac
1))Gn[δi(β1,β2,υ,γ)]

∣∣∣ >
C4J

−12ℓr2,nεn

}
∩ A

∣∣∣FXW∆

)
+ oP(1)

≤
L̄∑

ℓ=L

(C6J
−12ℓr2,nεn)

−11(A1)E
[

sup
β1∈H1

sup
β2∈H2,ℓ

sup
γ1∈H3

sup
υ∈V

1√
n
Gn[δi(β1,β2,υ,γ)]

∣∣∣FXW∆

]
+ oP(1),

where Gn[·] is understood as
√
n(En[·]− E[·|FXW ]) in the above, we let εn = 2Lr2,n, and 1(A1) is

an indicator of the event A1. Using the result in Step 1 and the rate condition, the first term in

the last line can be made arbitrarily small by choosing L large enough, when n is sufficiently large.

Then, the proof for part (i) is complete.

Step 7: To show part (ii) and part (iii), note that by Taylor expansion and the result in part

(i),

η(µ̂(x) + ŵ′γ̂)− η(µ0(x) +w′γ0)

= η(1)(µ0(x) +w′γ0)
(
b̂p,s(x)

′β̂ − µ0(x)
)

+OP

(
∥ŵ −w∥+ ∥γ̂ − γ0∥+

J log n

n
+ J−2p−2 + r22,n

)
= − η(1)(µ0(x) +w′γ0)b̂p,s(x)

′Q̄−1En[b̂p,s(xi)ηi,1ψ(ϵi)]

+OP

(
J−p−1 +

(J log n

n

)3/4
log n+ J− p+1

2

(J log2 n

n

)1/2
+ rγ + ∥ŵ −w∥

)
,

and

η(1)(µ̂(x) + ŵ′γ̂)µ̂(1)(x)− η(1)(µ0(x) +w′γ0)µ
(1)
0 (x)

= η(1)(µ0(x) +w′γ0)
(
µ̂(1)(x)− µ

(1)
0 (x)

)
+OP

((J log n

n

)1/2
+ J−p−1 + ∥ŵ −w∥+ r2,n

)
OP

(
1 + J

((J log n

n

)1/2
+ J−p−1 + r2,n

))
= − η(1)(µ0(x) +w′γ0)b̂

(1)
p,s(x)

′Q̄−1En[b̂p,s(xi)ηi,1ψ(ϵi)]+

OP

((J log n

n

)1/2
+ J−p + J

(J log n

n

)3/4
log n+ J− p−1

2

(J log2 n

n

)1/2
+ Jrγ

+ ∥ŵ −w∥
(
1 +

(J3 log n

n

)1/2))
.

Note that in the above derivation the probability bound holds uniformly over x ∈ X as well. Then
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the proof is complete.

SA-4.2.7 Proof of Theorem SA-2.2

Proof. Since ϵ̂i := ϵi + ηi − η̂i =: ϵi + ui, we can write

En[b̂p,s(xi)b̂p,s(xi)
′η̂2i,1ψ(ϵ̂i)

2]− E[bp,s(xi)bp,s(xi)
′η2i,1σ

2(xi,wi)]

= En

[
b̂p,s(xi)b̂p,s(xi)

′η̂2i,1

(
ψ(ϵi + ui)

2 − ψ(ϵi)
2
)]

+ En

[
b̂p,s(xi)b̂p,s(xi)

′
(
η̂2i,1 − η2i,1

)
ψ(ϵi)

2
]

+ En[b̂p,s(xi)b̂p,s(xi)
′η2i,1(ψ(ϵi)

2 − σ2(xi,wi))]

+
(
En[b̂p,s(xi)b̂p,s(xi)

′η2i,1σ
2(xi,wi)]− E[bp,s(xi)bp,s(xi)

′η2i,1σ
2(xi,wi)]

)
=:V1 +V2 +V3 +V4.

Now, we bound each term in the following. Note that the first part of the results only concerns

V1+V2+V3, and the second part of the results needs a bound on V4 as well where the additional

Assumption SA-RP(ii) is used.

Step 1: For V1, we further write V1 = V11 +V12 where

V11 := En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1

(
ψ(ϵi + ui)

2 − ψ(ϵi)
2
)]
,

V12 := En

[
b̂p,s(xi)b̂p,s(xi)

′
(
η̂2i,1 − η2i,1

)(
ψ(ϵi + ui)

2 − ψ(ϵi)
2
)]
.

Let r1,n = C1(J log n/n)1/2 + J−p−1 for a constant C1 > 0. By Assumption SA-GL and Corollary

SA-2.1, max1≤i≤n |ui| ≤ r1,n with arbitrarily large probability for C1 sufficiently large. For V11,

let J be the set of all discontinuity points of ψ(·). Define 1i,D := 1(ϵi ∈ D) and 1i,Dc := (1− 1i,D)

where D := {a : |a− ȷ| ≤ r1,n for some ȷ ∈ J }. Define

V111 := En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1

(
ψ(ϵi + ui)

2 − ψ(ϵi)
2
)
1i,D

]
,

V112 := En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1

(
ψ(ϵi + ui)

2 − ψ(ϵi)
2
)
1i,Dc

]
.

By definition of D and Assumption SA-GL,

∥V111∥ ≲ ∥En[b̂p,s(xi)b̂p,s(xi)
′E[1i,D|FXW∆]]∥+ ∥En[b̂p,s(xi)b̂p,s(xi)

′(1i,D − E[1i,D|FXW∆])]∥.
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By Assumption SA-GL and Lemma SA-3.5 of Cattaneo et al. (2023), the first term on the right

hand side is OP(r1,n). For the second term, conditional on FXW∆, it is an independent sequence

with mean zero. Thus, we can apply the argument given in Step 3 below and conclude that the

second term is OP(
√
r1,nJ log J/n+J log J/n). Note that in this case, the indicator 1i,D is trivially

bounded uniformly.

On the other hand, by Assumption SA-GL,

∥V112∥ ≲ r1,n∥En[b̂p,s(xi)b̂p,s(xi)
′η2i,1|ψ(ϵi + ui) + ψ(ϵi)|]∥.

Since |c| ≤ 1
2(1 + c2) for any scalar c, we have

En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1|ψ(ϵi)|
]
≤ 1

2
En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1(1 + ψ(ϵi)
2)
]
≲P 1,

by Lemma SA-2.1 and the result in Step 3. In addition, we further write

En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1|ψ(ϵi + ui)|
]
= En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1|ψ(ϵi) + (ψ(ϵi + ui)− ψ(ϵi))|
]
.

Repeat the previous argument to bound this term. We conclude that ∥V11∥ ≲P r1,n.

V12 can be treated using the previous argument combined with the argument given in Step 2

and the result in Step 3. It leads to ∥V12∥ ≲P r1,n.

Step 2: For V2, by Assumption SA-GL, Corollary SA-2.1 and the argument given later in Step

3, we have

∥V2∥ ≤ max
1≤i≤n

|η̂2i,1 − η2i,1|∥En[b̂p,s(xi)b̂p,s(xi)
′ψ(ϵi)

2]∥ ≲P (J log n/n)1/2 + J−p−1.

Step 3: For V3, in view of Lemmas SA-4.2 and SA-4.3, it suffices to show that

sup
∆∈Π

∥∥∥En[bp,0(xi; ∆)bp,0(xi; ∆)′η2i,1(ψ(ϵi)
2 − σ2(xi,wi))]

∥∥∥ ≲P

(J log J

n
ν−2
ν

)1/2
.

For notational simplicity, we write φi = ψ(ϵi)
2 − σ2(xi,wi), φ

−
i = φi1(|φi| ≤ M) − E[φi1(|φi| ≤

M)|xi,wi], φ
+
i = φi1(|φi| > M) − E[φi1(|φi| > M)|xi,wi] for some M > 0 to be specified later.
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Since E[φi|xi,wi] = 0, φi = φ−
i + φ+

i . Then, define a function class

G =
{
(x1,w1, φ1) 7→ bp,0,l(x1; ∆)bp,0,k(x1; ∆)η2i,1φ1 : 1 ≤ l ≤ J(p+ 1), 1 ≤ k ≤ J(p+ 1),∆ ∈ Π

}
.

For g ∈ G,
∑n

i=1 g(xi,wi, φi) =
∑n

i=1 g(xi,wi, φ
+
i ) +

∑n
i=1 g(xi,wi, φ

−
i ).

Now, for the truncated piece, we have supg∈G |g(xi,wi, φ
−
i )| ≲ JM , and

sup
g∈G

V[g(x1,w1, φ
−
1 )] ≲ sup

x∈X ,w∈W
E[(φ−

i )
2|xi = x,wi = w] sup

∆∈Π
sup

1≤l,k≤J(p+1)
E[b2p,0,l(xi; ∆)b2p,0,k(xi; ∆)η4i,1]

≲ JM sup
x∈X ,w∈W

E
[
|φ1|

∣∣∣xi = x
]
≲ JM.

The VC condition holds by the same argument given in the proof of Lemma SA-2.1. Then, by

Lemma SA-4.6,

E
[
sup
g∈G

∣∣∣En[g(xi,wi, φ
−
i )]

∣∣∣] ≲

√
JM log(JM)

n
+
JM log(JM)

n
.

Regarding the tail, we apply Theorem 2.14.1 of van der Vaart and Wellner (1996) and obtain

E
[
sup
g∈G

∣∣∣En[g(xi,wi, φ
+
i )]

∣∣∣] ≲
1√
n
JE

[√
En[|φ+

i |2]
]

≤ 1√
n
J(E[ max

1≤i≤n
|φ+

i |])
1/2(E[En[|φ+

i |])
1/2

≲
J√
n
· n

1
ν

M (ν−2)/4
,

where the second line follows from Cauchy-Schwarz inequality and the third line uses the fact that

E[ max
1≤i≤n

|φ+
i |] ≲ E[ max

1≤i≤n
ψ(ϵi)

2] ≲ n2/ν and E[En[|φ+
i |]] ≤ E[|φ1|+|] ≲

E[|ψ(ϵ1)|ν ]
M (ν−2)/2

.

Then the desired result follows simply by setting M = J
2

ν−2 and the sparsity of the basis.

Step 4: For V4, since by Assumption SA-GL, supx∈X ,w∈W E[ψ(ϵi)2|xi = x] ≲ 1. Then, by the

same argument given in the proof of Lemma SA-2.1,

sup
∆∈Π

∥∥∥ 1√
n
Gn[bp,s(xi; ∆)bp,s(xi; ∆)′η2i,1σ

2(xi,wi)]
∥∥∥ ≲P

√
J log J/n and
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∥∥∥E∆̂

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1ψ(ϵi)
2
]
− E

[
bp,s(xi)bp,s(xi)

′η2i,1ψ(ϵi)
2
]∥∥∥ ≲P

√
J log J/n+ rRP.

The proof for the first conclusion is complete.

Step 5: The results about Ω̂µ(v)(x), Ω̂ϑ(x) and Ω̂ζ(x) follow by Assumption SA-GL, Lemmas

SA-4.4 and SA-2.1 and Corollary SA-2.1. The proof is complete.

SA-4.2.8 Proof of Theorem SA-2.3

Proof. We first show that for each fixed x ∈ X ,

Ω̄µ(v)(x)−1/2b̂(v)
p,s(x)

′Q̄−1Gn[b̂p,s(xi)ηi,1ψ(ϵi)] =: Gn[aiψ(ϵi)]

is asymptotically normal. Conditional on FXW∆, the σ-field generated by {(xi,wi)}ni=1 and ∆̂,

it is an independent mean-zero sequence over i with variance equal to 1. Then by Berry-Esseen

inequality,

sup
u∈R

∣∣∣P(Gn[aiψ(ϵi)] ≤ u|)− Φ(u)
∣∣∣ ≤ min

(
1,

∑n
i=1 E[|aiψ(ϵi)|3|FXW∆]

n3/2

)
.

By Lemmas SA-4.4, SA-2.1 and SA-2.2,

1

n3/2

n∑
i=1

E
[
|aiψ(ϵi)|3

∣∣∣FXW∆

]
≲ Ω̄µ(v)(x)−3/2 1

n3/2

n∑
i=1

E
[
|b̂(v)

p,s(x)
′Q̄−1b̂p,s(xi)ηi,1ψ(ϵi)|3

∣∣∣FXW∆

]
≲ Ω̄µ(v)(x)−3/2 1

n3/2

n∑
i=1

|b̂(v)
p,s(x)

′Q̄−1b̂p,s(xi)|3

≤ Ω̄µ(v)(x)−3/2 supx∈X supz∈X |b̂(v)
p,s(x)′Q̄−1b̂p,s(z)|

n3/2

n∑
i=1

|b̂(v)
p,s(x)

′Q̄−1b̂p,s(xi)|2

≲P
1

J3/2+3v
· J

1+v

√
n

· J1+2v → 0

since J/n = o(1). By Theorem SA-2.2, the above weak convergence still holds if Ω̄µ(v)(x) is replaced

by Ω̂µ(v)(x). Then, the desired results follow by Theorem SA-2.1.
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SA-4.2.9 Proof of Theorem SA-2.4

Proof. We let β̂0 and r̂0,v be defined as in Lemma SA-4.5. By Lemmas SA-4.5 and SA-2.1, Theorem

SA-2.1 and the results given in the proof of Lemma SA-2.4, we have

µ̂(v)(x)− µ
(v)
0 (x) =b̂p,s(xi)

′(β̂ − β̂0)− r̂0,v(x)

=− b̂(v)
p,s(x)

′Q−1
0 En[b̂p,s(xi)ηi,1ψ(ϵi)]− b̂(v)

p,s(x)
′Q−1

0 En[b̂p,s(xi)ηi,1Ψ(xi,wi; η̌i)]

− r̂0,v(x) +OP

(
Jv

{(J log n

n

)3/4√
log n+ J− p+1

2

(J log2 n

n

)1/2
+ rγ

})
,

where η̌i = η(b̂p,s(xi)
′β̂0+w′

iγ0). Recall that the OP(·) in the last line holds uniformly over x ∈ X ,

and thus the integral of the squared remainder is oP(J
1+2v/n + J−2(p+1−v)) by the rate condition

imposed. Then,

AISEµ(v) =

∫
X

(
b̂(v)
p,s(x)

′Q−1
0 En[b̂p,s(xi)ηi,1ψ(ϵi)]

+ b̂(v)
p,s(x)

′Q−1
0 En[b̂p,s(xi)ηi,1Ψ(xi,wi; η̌i)] + r̂0,v(x)

)2
ω(x)dx.

Next, taking conditional expectation given X, W and ∆̂ and using the argument in the proof of

Lemma SA-2.1 again, we have

E[AISEµ(v) |X,W, ∆̂] =
1

n
trace

(
Q−1

0 Σ0Q
−1
0

∫
X
b(v)
p,s(x)b

(v)
p,s(x)

′ω(x)dx
)
+ oP(J

2v+1/n)

+

∫
X

(
b̂(v)
p,s(x)

′β̂0 − µ
(v)
0 (x)

)2
ω(x)dx

+

∫
X

(
b̂(v)
p,s(x)

′Q−1
0 En[b̂p,s(xi)ηi,1Ψ(xi,wi; η̌i)]

)2
ω(x)dx

+ 2

∫
X
b̂(v)
p,s(x)

′Q−1
0 En[b̂p,s(xi)ηi,1Ψ(xi,wi; η̌i)]r̂0,v(x)ω(x)dx.

Note that by Assumption SA-GL, Ψ(xi,wi; η̌i) = −Ψ1(xi,wi; ηi,0)ηi,1r̂0(xi) + OP(J
−2p−2) where

OP(·) holds uniformly over i. The terms in the last three lines correspond to the integrated squared

bias. Also, using the same argument in the proof of Lemma SA-2.1, En[·] in the last two lines can

be safely replaced by E
∆̂
[·], which only introduces some additional approximation error of order

oP(J
−2p−2+2v).
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The proof of Theorem SA-3.4 in Cattaneo et al. (2023) shows that

r̂0,v(x) = µ
(v)
0 (x)− b̂(v)

p,s(x)
′β̂0

=
J−p−1+vµ

(p+1)
0 (x)

(p+ 1− v)!fX(x)p+1−v
Ep+1−v

(x− τ̂Lx

ĥx

)
− J−p−1b̂(v)

p,s(x)
′Q−1

0 TsE∆̂

[
b̂p,0(xi)

µ
(p+1)
0 (xi)

(p+ 1)!fX(xi)p+1
Ep+1

(xi − τ̂Lxi

ĥxi

)]
+ oP(J

−p−1+v),

where τ̂Lx is the start of the (random) interval in ∆̂ containing x and ĥx denotes its length. Then,

using the same argument as in the proof of Theorem SA-3.4 in Cattaneo et al. (2023), we can

approximate the integrated squared bias by the analogue based on the non-random partition ∆0,

i.e.,
∫
X (r

†
0,v(x)− b

(v)
p,s(x)′Q

−1
0 E[bp,s(xi)κ(xi,wi)r

†
0,0(xi)])

2ω(x)dx where

r†0,v(x) =
J−p−1+vµ

(p+1)
0 (x)

(p+ 1− v)!fX(x)p+1−v
Ep+1−v

(x− τLx
hx

)
− J−p−1b̂(v)

p,s(x)
′Q−1

0 TsE
[
bp,0(xi)

µ
(p+1)
0 (xi)

(p+ 1)!fX(xi)p+1
Ep+1

(xi − τLxi

hxi

)]
.

The expression of the bias term can be further simplified. Note that for both Rv(x) = r†0,v(x)

and Rv(x) = r⋆0,v(x), there exists some vector β such that supx∈X |µ0(x) − bp,s(xi)
′β − Rv(x)| =

o(J−p−1+v) (see Lemma SA-4.5 and Lemma SA-6.1 of Cattaneo et al. (2020)). Define

rP0,v(x) = µ
(v)
0 (x)− b(v)

p,s(x)
′Q−1

0 E[bp,s(xi)κ(xi,wi)µ0(xi)].

Then, it follows that rP0,v(x) = Rv(x)−bp,s(x)
′Q−1

0 E[bp,s(xi)κ(xi,wi)R0(xi)] + o(J−p−1+v). Thus,

{r†0,v(x)− b(v)
p,s(x)

′Q−1
0 E[bp,s(xi)κ(xi,wi)r

†
0,0(xi)]}

−{[r⋆0,v(x)− b(v)
p,s(x)

′Q−1
0 E[bp,s(xi)κ(xi,wi)r

⋆
0,0(xi)]]} = o(J−p−1+v).

Therefore, the expression of Bn(p, s, v) given in the theorem holds.

Finally, the desired results in part (ii) and part (iii) follow by Theorem SA-2.1, the rate condition

imposed and the same argument for part (i).

50



SA-4.2.10 Proof of Theorem SA-2.5

Proof. The proof is divided into several steps.

Step 1: Note that

sup
x∈X

∣∣∣∣ µ̂(v)(x)− µ
(v)
0 (x)√

Ω̂µ(v)(x)/n
− µ̂(v)(x)− µ

(v)
0 (x)√

Ω̄µ(v)(x)/n

∣∣∣∣
≤ sup

x∈X

∣∣∣∣ µ̂(v)(x)− µ
(v)
0 (x)√

Ω̄µ(v)(x)/n

∣∣∣∣ sup
x∈X

∣∣∣∣ Ω̂µ(v)(x)1/2 − Ω̄µ(v)(x)1/2

Ω̂µ(v)(x)1/2

∣∣∣∣
≲P

(√
log n+

√
nJ−p−1−1/2

)(
J−p−1 +

√
J log n

n1−
2
ν

)

where the last step uses Lemma SA-2.2 and Corollary SA-2.1. Then, in view of Lemmas SA-4.5,

SA-2.4, Theorems SA-2.1, SA-2.2 and the rate restriction given in the lemma, we have

sup
x∈X

∣∣∣∣ µ̂(v)(x)− µ
(v)
0 (x)√

Ω̂µ(v)(x)/n
+

b̂
(v)
p,s(x)′Q̄−1√
Ω̄µ(v)(x)

Gn[b̂p,s(xi)ηi,1ψ(ϵi)]

∣∣∣∣ = oP(a
−1
n ).

Step 2: Let us write K (x, xi) = Ωµ(v)(x)−1/2b̂
(v)
p,s(x)′Q̄−1b̂p,s(xi) (the dependence of b̂

(v)
p,s(x), Q̄

and Ω̄µ(v)(x) on X, W and ∆̂ is omitted for simplicity). Now we rearrange {xi}ni=1 as a sequence of

order statistics {x(i)}ni=1, i.e., x(1) ≤ · · · ≤ x(n). Accordingly, {ϵi}ni=1, {wi}ni=1 and {σ2(xi,wi)}ni=1

are ordered as concomitants {ϵ[i]}ni=1, {w[i]} and {σ2[i]}
n
i=1 where σ2[i] = σ2(x(i),w[i]). Clearly, con-

ditional on FXW∆ (the σ-field generated by {(xi,wi)} and ∆̂), {ψ(ϵ[i])}ni=1 is still an independent

mean-zero sequence. Then by Assumptions SA-DGP, SA-GL and the result of Sakhanenko (1991),

there exists a sequence of i.i.d. standard normal random variables {ζ[i]}ni=1 such that

max
1≤ℓ≤n

|Sℓ| := max
1≤ℓ≤n

∣∣∣ ℓ∑
i=1

η(1)(µ0(x(i)) +w′
[i]γ0)ψ(ϵ[i])−

ℓ∑
i=1

η(1)(µ0(x(i)) +w′
[i]γ0)σ[i]ζ[i]

∣∣∣ ≲P n
1
ν .

Then, using summation by parts,

sup
x∈X

∣∣∣∣∣
n∑

i=1

K (x, x(i))η
(1)(µ0(x(i)) +w′

[i]γ0)(ψ(ϵ[i])− σ[i]ζ[i])

∣∣∣∣∣
= sup

x∈X

∣∣∣∣∣K (x, x(n))Sn −
n−1∑
i=1

Si
(
K (x, x(i+1))− K (x, x(i))

)∣∣∣∣∣
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≤ sup
x∈X

max
1≤i≤n

|K (x, xi)||Sn|+ sup
x∈X

∣∣∣∣∣∣ b̂
(v)
p,s(x)′Q̄−1√
Ω̄µ(v)(x)

n−1∑
i=1

Si

(
b̂p,s(x(i+1))− b̂p,s(x(i))

)∣∣∣∣∣∣
≤ sup

x∈X
max
1≤i≤n

|K (x, xi)||Sn|+ sup
x∈X

∥∥∥∥∥Q̄−1b̂
(v)
p,s(x)√

Ω̄µ(v)(x)

∥∥∥∥∥
1

∥∥∥∥∥
n−1∑
i=1

Si

(
b̂p,s(x(i+1))− b̂p,s(x(i))

)∥∥∥∥∥
∞

.

By Lemmas SA-4.4, SA-2.1 and SA-2.2, supx∈X supxi∈X |K (x, xi)| ≲P
√
J , and

sup
x∈X

∥∥∥∥∥Q̄−1b̂
(v)
p,s(x)√

Ω̄µ(v)(x)

∥∥∥∥∥
1

≲P 1.

Then, notice that

max
1≤l≤Kp,s

∣∣∣∣ n−1∑
i=1

(
b̂p,s,l(x(i+1))− b̂p,s,l(x(i))

)
Sl

∣∣∣∣ ≤ max
1≤l≤Kp,s

n−1∑
i=1

∣∣∣̂bp,s,l(x(i+1))− b̂p,s,l(x(i))
∣∣∣ max
1≤ℓ≤n

∣∣∣Sℓ∣∣∣.
By construction of the ordering, max1≤l≤Kp,s

∑n−1
i=1

∣∣∣̂bp,s,l(x(i+1)) − b̂p,s,l(x(i))
∣∣∣ ≲ √

J . Under the

rate restriction in the theorem, this suffices to show that for any ξ > 0,

P
(
sup
x∈X

∣∣∣Gn[K (x, xi)η
(1)(µ0(xi) +w′

iγ0)(ψ(ϵi)− σiζi)]
∣∣∣ > ξa−1

n

∣∣∣FXW∆

)
= oP(1),

where we recover the original ordering. Since Gn[b̂p,s(xi)ζiσiηi,1] =d|FXW∆
N(0, Σ̄) (=d|FXW

de-

notes “equal in distribution conditional on FXW∆”), the above steps construct the following ap-

proximating process:

Z̄µ(v),p(x) :=
b̂
(v)
p,s(x)′Q̄−1√
Ω̄µ(v)(x)

Σ̄1/2NKp,s .

Step 3: Now, suppose that Assumption SA-RP(ii) also holds. Note that

sup
x∈X

|Z̄µ(v),p(x)− Zµ(v),p(x)|

≤ sup
x∈X

∣∣∣∣ b̂(v)(x)′(Q̄−1 −Q−1
0 )√

Ωµ(v)(x)
Σ̄1/2NKp,s

∣∣∣∣+ sup
x∈X

∣∣∣∣ b̂(v)(x)′Q−1
0√

Ωµ(v)(x)

(
Σ̄1/2 −Σ

1/2
0

)
NKp,s

∣∣∣∣+
sup
x∈X

∣∣∣∣ b̂(v)
p,0(x)

′(T̂s −Ts)Q
−1
0√

Ωµ(v)(x)
Σ

1/2
0 NKp,s

∣∣∣∣+ sup
x∈X

∣∣∣∣( 1√
Ω̄µ(v)(x)

− 1√
Ωµ(v)(x)

)
b̂
(v)
p,0(x)

′T̂sQ̄
−1Σ̄1/2NKp,s

∣∣∣∣
= I + II + III + IV,
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where each term on the right-hand side is a mean-zero Gaussian process conditional on FXW∆. By

Theorem SA-2.2 (see Step 4 of its proof), supx∈X |Ω̄µ(v)(x)−Ωµ(v)(x)| ≲P J
1+2v(

√
J log n/n+ rRP).

By a similar calculation given in Step 1 and the rate condition imposed, the last term is oP(a
−1
n ).

By Lemmas SA-4.3 and SA-2.1, ∥Q̄−1 − Q−1
0 ∥ ≲P

√
J log J/n and ∥T̂s − Ts∥ ≲P

√
J log J/n.

Also, using the argument in the proof of Lemma SA-4.4 and Theorem X.3.8 of Bhatia (2013),

∥Σ̄1/2−Σ
1/2
0 ∥ ≲P

√
J log J/n. By Gaussian Maximal Inequality (van der Vaart and Wellner, 1996,

Corollary 2.2.8),

E
[
I + II + III

∣∣∣FXW∆

]
≲P

√
log J

(
∥Σ̄1/2 −Σ

1/2
0 ∥+ ∥Q̄−1 −Q−1

0 ∥+ ∥T̂s −Ts∥
)
= oP(a

−1
n )

where the last line follows from the imposed rate restriction. Then the proof for part (i) is complete.

The results in parts (ii) and (iii) immediately follow by Theorem SA-2.1 and the fact that the

leading variance term in the Bahadur representation for ϑ̂(x, ŵ) or ζ̂(x, ŵ) differs from that for

µ̂(x) or µ̂(1)(x) up to a sign only.

SA-4.2.11 Proof of Theorem SA-2.6

Proof. This conclusion follows from Lemmas SA-4.4, SA-2.1, Theorem SA-2.2 and Gaussian Max-

imal Inequality as applied in Step 3 in the proof of Theorem SA-2.5.

SA-4.2.12 Proof of Theorem SA-2.7

Proof. We first show that

sup
u∈R

∣∣∣P( sup
x∈X

|Tµ(v),p(x)| ≤ u
)
− P

(
sup
x∈X

|Zµ(v),p(x)| ≤ u
)∣∣∣ = o(1).

By Theorem SA-2.5, there exists a sequence of constants ξn such that ξn = o(1) and

P
(∣∣∣ sup

x∈X
|Tµ(v),p(x)| − sup

x∈X
|Zµ(v),p(x)|

∣∣∣ > ξn/an

)
= o(1).

Then,

P
(
sup
x∈X

|Tµ(v),p(x)| ≤ u
)
≤ P

({
sup
x∈X

|Tµ(v),p(x)| ≤ u
}
∩
{∣∣∣ sup

x∈X
|Tµ(v),p(x)| − sup

x∈X
|Zµ(v),p(x)|

∣∣∣ ≤ ξn/an

})
+ o(1)
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≤ P
(
sup
x∈X

|Zµ(v),p(x)| ≤ u+ ξn/an

)
+ o(1)

≤ P
(
sup
x∈X

|Zµ(v),p(x)| ≤ u
)
+ sup

u∈R
E
[
P
(∣∣∣ sup

x∈X
|Zµ(v),p(x)| − u

∣∣∣ ≤ ξn/an

∣∣∣∆̂)]
≤ P

(
sup
x∈X

|Zµ(v),p(x)| ≤ u
)
+ E

[
sup
u∈R

P
(∣∣∣ sup

x∈X
|Zµ(v),p(x)| − u

∣∣∣ ≤ ξn/an

∣∣∣∆̂)]
+ o(1).

Now, apply the Anti-Concentration Inequality conditional on ∆̂ (see Chernozhukov et al., 2014) to

the second term:

sup
u∈R

P
(∣∣∣ sup

x∈X
|Zµ(v),p(x)| − u

∣∣∣ ≤ ξn/an

∣∣∣∆̂)
≤ 4ξna

−1
n E

[
sup
x∈X

|Zµ(v),p(x)|
∣∣∣∆̂]

+ o(1)

≲P ξna
−1
n

√
log J + o(1) → 0

where the last step uses Gaussian Maximal Inequality (see van der Vaart and Wellner, 1996, Corol-

lary 2.2.8). By Dominated Convergence Theorem,

E
[
sup
u∈R

P
(∣∣∣ sup

x∈X
|Zµ(v),p(x)| − u

∣∣∣ ≤ ξn/an

∣∣∣∆̂)]
= o(1).

The other side of the inequality follows similarly.

By similar argument, using Theorem SA-2.6, we have

sup
u∈R

∣∣∣P( sup
x∈X

|Ẑµ(v),p(x)| ≤ u
∣∣∣D)

− P
(
sup
x∈X

|Zµ(v),p(x)| ≤ u
∣∣∣∆̂)∣∣∣ = oP(1).

Then it remains to show that

sup
u∈R

∣∣∣P( sup
x∈X

|Zµ(v),p(x)| ≤ u
)
− P

(
sup
x∈X

|Zµ(v),p(x)| ≤ u|∆̂
)∣∣∣ = oP(1). (SA-4.1)

Now, note that we can write

Zµ(v),p(x) =
b̂
(v)
p,0(x)

′√
b̂
(v)
p,0(x)

′V0b̂
(v)
p,0(x)

N̆Kp,0

where V0 = T′
sQ

−1
0 Σ0Q

−1
0 Ts and N̆Kp,0 := T′

sQ
−1
0 Σ

1/2
0 NKp,s is a Kp,0-dimensional Gaussian

random vector. Importantly, by this construction, N̆Kp,0 and V0 do not depend on ∆̂ and x, and
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they are only determined by the deterministic partition ∆0.

Now, first consider v = 0. For any two partitions ∆1,∆2 ∈ Π, for any x ∈ X , there exists x̌ ∈ X

such that

b
(0)
p,0(x; ∆1) = b

(0)
p,0(x̌; ∆2),

and vice versa. Therefore, the following two events are equivalent: {ω : supx∈X |Zp(x; ∆1)| ≤ u} =

{ω : supx∈X |Zp(x; ∆2)| ≤ u} for any u. Thus,

E
[
P
(
sup
x∈X

|Zµ(v),p(x)| ≤ u
∣∣∣∆̂)]

= P
(
sup
x∈X

|Zµ(v),p(x)| ≤ u
∣∣∣∆̂)

+ oP(1).

Then for v = 0, the desired result follows.

For v > 0, simply notice that b̂
(v)
p,0(x) = T̂vb̂p,0(x) for some transformation matrix T̂v. Clearly, T̂v

takes a similar structure as T̂s: each row and each column only have a finite number of nonzeros.

Each nonzero element is simply ĥ−v
j up to some constants. By Lemma SA-4.2, it can be shown that

∥T̂v − Tv∥ ≲ Jv
√
J log J/n where Tv is the population analogue (ĥj replaced by hj). Repeating

the argument given in the proof of Theorems SA-2.5 and SA-2.6, we can replace T̂v in Zµ(v),p(x)

by Tv without affecting the approximation rate. Then the desired result for Tµ(v),p(x) follows by

repeating the argument given for v = 0 above.

Finally, the result for Tϑ,p(x) (Tζ,p(x)) follows by the fact that Zϑ,p(x) and Ẑϑ,p(x) (Zζ,p(x) and

Ẑζ,p(x)) differ from Zµ(v),p(x) and Ẑµ(v),p(x) up to a sign only.

SA-4.2.13 Proof of Theorem SA-2.8

Proof. We only consider Îµ(v),p(x). The results in part (ii) and part (iii) follow similarly.

Let ξ1,n = o(1), ξ2,n = o(1) and ξ3,n = o(1). Then,

P
[
sup
x∈X

|Tµ(v),p(x)| ≤ cµ(v)

]
≤ P

[
sup
x∈X

|Z̄µ(v),p(x)| ≤ cµ(v),p + ξ1,n/an

]
+ o(1)

≤ P
[
sup
x∈X

|Z̄µ(v),p(x)| ≤ c0(1− α+ ξ3,n) + (ξ1,n + ξ2,n)/an

]
+ o(1)

≤ P
[
sup
x∈X

|Z̄µ(v),p(x)| ≤ c0(1− α+ ξ3,n)

]
+ o(1) → 1− α,

where c0(1−α+ξ3,n) denotes the (1−α+ξ3,n)-quantile of supx∈X |Z̄µ(v),p(x)| conditional on FXW∆
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(the σ-field generated by X, W and the partition ∆̂), the first inequality holds by Theorem SA-2.5,

the second by Lemma A.1 of Belloni et al. (2015), and the third by Anti-Concentration Inequality

in Chernozhukov et al. (2014). The other side of the bound follows similarly.

SA-4.2.14 Proof of Theorem SA-2.9

Proof. We only consider the proof for part (i). The results in part (ii) and part (iii) follow similarly.

Throughout this proof, we let ξ1,n = o(1), ξ2,n = o(1) and ξ3,n = o(1) be sequences of vanishing

constants. Moreover, let An be a sequence of diverging constants such that
√
log JAn ≲

√
n

J1+2v .

Note that

sup
x∈X

|Ṫµ(v),p(x)| ≤ sup
x∈X

∣∣∣∣ µ̂(x)− µ
(v)
0 (x)√

Ω̂µ(v)(x)/n

∣∣∣∣+ sup
x∈X

∣∣∣∣µ(v)0 (x)−m(v)(x; θ̃)√
Ω̂µ(v)(x)/n

∣∣∣∣.
Therefore, under Ḣµ(v)

0 ,

P
[
sup
x∈X

|Ṫµ(v),p(x)| > cµ(v)

]
≤ P

[
sup
x∈X

|Tµ(v),p(x)| > cµ(v) − sup
x∈X

∣∣∣∣µ(v)0 (x)−m(v)(x; θ̃)√
Ω̂µ(v)(x)/n

∣∣∣∣]

≤ P
[
sup
x∈X

|Z̄µ(v),p(x)| > cµ(v) − ξ1,n/an − sup
x∈X

∣∣∣∣µ(v)0 (x)−m(v)(x; θ̃)√
Ω̂µ(v)(x)/n

∣∣∣∣]+ o(1)

≤ P
[
sup
x∈X

|Z̄µ(v),p(x)| > c0(1− α− ξ3,n)− (ξ1,n + ξ2,n)/an−

sup
x∈X

∣∣∣∣µ(v)0 (x)−m(v)(x; θ̃)√
Ω̂µ(v)(x)/n

∣∣∣∣]+ o(1)

≤ P
[
sup
x∈X

|Z̄µ(v),p(x)| > c0(1− α− ξ3,n)
]
+ o(1)

= α+ o(1)

where c0(1−α−ξ3,n) denotes the (1−α−ξ3,n)-quantile of supx∈X |Z̄µ(v),p(x)| conditional on FXW∆

(the σ-field generated byX, W and ∆̂), the second inequality holds by Theorem SA-2.5, the third by

Lemma A.1 of Belloni et al. (2015), the fourth by the fact that supx∈X
∣∣µ(v)

0 (x)−m(v)(x;θ̃)√
Ω̂

µ(v)
(x)/n

∣∣ = oP(
1√
log J

)

and Anti-Concentration Inequality in Chernozhukov et al. (2014). The other side of the bound

follows similarly.
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On the other hand, under Ḣµ(v)

A ,

P
[
sup
x∈X

|Ṫµ(v),p(x)| > cµ(v)

]
=P

[
sup
x∈X

∣∣∣Tµ(v),p(x) +
µ
(v)
0 (x)−m(v)(x; θ̄)√

Ω̂µ(v)(x)/n
+
m(v)(x; θ̄)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n

∣∣∣ > cµ(v)

]

≥P
[
sup
x∈X

|Tµ(v),p(x)| < sup
x∈X

∣∣∣∣µ(v)0 (x)−m(v)(x; θ̄)√
Ω̂µ(v)(x)/n

+
m(v)(x; θ̄)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n

∣∣∣∣− cµ(v)

]

≥P
[
sup
x∈X

|Z̄µ(v),p(x)| ≤
√
log JAn − ξ1,n/an

]
− o(1)

≥ 1− o(1).

where the fourth line holds by Lemma SA-2.2, Theorem SA-2.2, Theorem SA-2.5, the condition

that Jv
√
J log J/n = o(1) and the definition of An, and the last by the Talagrand-Samorodnitsky

Concentration Inequality (van der Vaart and Wellner, 1996, Proposition A.2.7).

SA-4.2.15 Proof of Theorem SA-2.10

Proof. We only consider the proof for part (i). The results in part (ii) and part (iii) follow similarly.

Throughout this proof, the definitions of An, ξ1,n, ξ2,n and ξ3,n are the same as in the proof of

Theorem SA-2.9. Note that under Ḧµ(v)

0 ,

sup
x∈X

T̈µ(v),p(x) ≤ sup
x∈X

Tµ(v),p(x) + sup
x∈X

|m(v)(x; θ̄)−m(v)(x; θ̃)|√
Ω̂µ(v)(x)/n

.

Then,

P
[
sup
x∈X

T̈µ(v),p(x) > cµ(v)

]
≤ P

[
sup
x∈X

Tµ(v),p(x) > cµ(v) − sup
x∈X

|m(v)(x; θ̄)−m(v)(x; θ̃)|√
Ω̂µ(v)(x)/n

]

≤ P
[
sup
x∈X

Z̄µ(v),p(x) > cµ(v) − ξ1,n/an

]
+ o(1)

≤ P
[
sup
x∈X

Z̄µ(v),p(x) > c0(1− α− ξ3,n)− (ξ1,n + ξ2,n)/an

]
+ o(1)

≤ P
[
sup
x∈X

Z̄µ(v),p(x) > c0(1− α− ξ3,n)
]
+ o(1)

= α+ o(1)
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where c0(1−α− ξ3,n) denotes the (1−α− ξ3,n)-quantile of supx∈X Z̄µ(v),p(x) conditional on FXW∆

(the σ-field generated by X, W and ∆̂), the second line holds by Theorem SA-2.5, the third by

Lemma A.1 of Belloni et al. (2015), the fourth by Anti-Concentration Inequality in Chernozhukov

et al. (2014).

On the other hand, under Ḧµ(v)

A ,

P
[
sup
x∈X

T̈µ(v),p(x) > cµ(v)

]
= P

[
sup
x∈X

(
Tµ(v),p(x) +

µ
(v)
0 (x)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n
− cµ(v)

)
> 0

]

≥ P
[
sup
x∈X

|Tµ(v),p(x)| < sup
x∈X

µ
(v)
0 (x)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n
− cµ(v) ,

sup
x∈X

µ
(v)
0 (x)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n
> cµ(v)

]

≥ P
[
sup
x∈X

|Tµ(v),p(x)| < sup
x∈X

µ
(v)
0 (x)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n
− cµ(v)

]
− o(1)

≥ P
[
sup
x∈X

|Tµ(v),p(x)| <
√
log JAn

]
− o(1)

≥ P
[
sup
x∈X

|Z̄µ(v),p(x)| <
√

log JAn − ξ1,n/an

]
− o(1)

≥ 1− o(1)

where the third line holds by Lemma SA-2.2, Theorem SA-2.2, Lemma A.1 of Belloni et al. (2015),

the assumption that supx∈X |m(v)(x; θ̃)−m(v)(x; θ̄)| = oP(1) and J
v
√
J log J/n = o(1), the fourth

by definition of An, and the fifth by Theorem SA-2.5, and the last by Proposition A.2.7 in van der

Vaart and Wellner (1996).
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