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Abstract

This Supplemental Appendix contains an in-depth discussion of related literature, simulation

evidence, and omitted technical details in the proofs of the main results.
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SA.1 Related Literature

Decision-making is becoming a bustling task for consumers due to the abundance of options. For

example, Amazon US sells more than 606 million products (87 million products in Home & Kitchen

and 62 million in Books). This phenomenon is also witnessed in other domains such as healthcare

plans, car insurance, or financial services. The proliferation of so many options forces products to

compete with each other for consumer attention. Consumers cannot pay attention to all products:

some will be more appealing than others, and many will go unnoticed. The limited attention

phenomenon has been illustrated in different markets: investment decisions (Huberman and Regev,

2001), school choice (Laroche, Rosenblatt, and Sinclair, 1984; Rosen, Curran, and Greenlee, 1998),

job search (Sheridan, Richards, and Slocum, 1975), household grocery consumption (Demuynck

and Seel, 2018), PC purchases (Goeree, 2008), and airport choice (Başar and Bhat, 2004), just to

mention a few examples.

It is now well established in economics, marketing, and other social and behavioral sciences

that attention is both limited and stochastic (Hauser and Wernerfelt, 1990; Shocker, Ben-Akiva,

Boccara, and Nedungadi, 1991). While being a scarce resource, attention may be even more

fragmented and scattered due to fierce advertising competition. According to Statista, the US

spent over $253 billion dollars in advertising in 2019. The burden on consumers becomes excessive

with the bombardment of advertisements, cognitive overload, and an abundance of alternatives,

resulting in them not paying attention to some of the available products. Thus, the larger the

number of options available, the less likely consumers can pay attention to more of them. For

example, recent Ipsos eye-tracking research suggests that the majority of TV advertising time

(55%) is not paid attention to due to multitasking, switching channels, and fast-forwarding. It is

also noticed in the literature that consumers consider fewer items (Reutskaja and Hogarth, 2009;

Reutskaja, Nagel, Camerer, and Rangel, 2011) or choose the outside option more often (Iyengar

and Lepper, 2000) as choice sets expand.

The literature above motivates our proposed AOM and HAOM▷. In this section, we provide

an overview of the related decision theory literature with the goal of comparing and contrasting

AOM and HAOM▷ with other choice existing models. The Random Utility Model (RUM) assumes

attention homogeneity (i.e., full attention) but allows for preference heterogeneity. In contrast, early
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random limited attention models started with a focus on preference homogeneity while allowing for

(parametric or nonparametric) attention rule heterogeneity, but only recently they have began to

incorporate preference heterogeneity (via parametric assumptions).

Section SA.1.1 focuses on random attention models with homogeneous preferences, and thus

compares them to AOM. Section SA.1.2 considers random attention models that intend to capture

multiple preferences, and thus compares them to HAOM▷. Lastly, Section SA.1.3 discusses other

stochastic choices models that are related to AOM and/or HAOM▷.

SA.1.1 Random Attention Models with Homogeneous Preferences

Our AOM is a missing piece of the puzzle in the random limited consideration choice literature.

In the main text, we explored the two extreme cases of Ann and Ben, and showed how other

random limited attention models perform in terms of attention allocation behaviors under attention

overload. In this section, we also illustrate key differences in (observable) behavioral implications of

different random attention models with homogeneous preferences: we explore whether the models

explain different sets of choice data.

We first compare nonparametric models: Random Attention Model (RAM, Cattaneo, Ma,

Masatlioglu, and Suleymanov, 2020) and AOM. Due to the flexibility of the nonparametric atten-

tion rule in both models, the important challenge is to understand revealed preference. Consider

the two choice data examples in Table 1: Table 1a has an AOM representation but not a RAM

representation, while Table 1b has an RAM representation but not a AOM representation.

π(·|S) a b c

{a, b, c} 0.4 0.3 0.3
{a, b} 0.8 0.2
{a, c} 0.8 0.2
{b, c} 0.5 0.5

(a)

π(·|S) a b c d

{a, b, c, d} 1/2 1/2 0 0
{a, b, c} 0 2/3 1/3
{a, b} 1/2 1/2

(b)

Table 1: Examples for Differences in Explanatory Power: RAM vs. AOM

Recall that RAM predicts that a is preferred to b if there exists a, b ∈ S such that π(a|S \ b) <

π(a|S) (Cattaneo, Ma, Masatlioglu, and Suleymanov, 2020). Thus, the example in Table 1a does

not have a RAM representation because RAM predicts that b ≻ c and c ≻ b, but a cyclic preference
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cannot be explained by RAM. On the other hand, AOM implies a ≻ c and a ≻ b, which can be

rationalized through two different preferences: a ≻ b ≻ c or a ≻ c ≻ b. Therefore, it has two AOM

representations.

Interestingly, there does not exist a 3-alternative example that RAM can explain but AOM

cannot: AOM explains more choice data than RAM in settings with three alternatives. Therefore,

our second example in Table 1b resorts to a 4-alternative case to illustrate a case that can be

explained by RAM but not by AOM. In that example, AOM predicts that a ≻ b and b ≻ a, and

hence it could not be explained by AOM. On the other hand, revealed preference under RAM

implies a ≻ d and b ≻ c, and thus the data can be rationalized under RAM.

More generally, while AOM and RAM provide testable restrictions (inequalities) in terms of

the choice rule, they can take very different forms. To compare, first recall from our main charac-

terization result that a preference ordering has an AOM representation if and only if ≻-Regularity

holds: π(a|S) ≤ π(U⪰(a)|T ) for T ⊂ S. In contrast, RAM imposes a regularity condition when

removing “better” alternatives: it requires π(a|S) ≤ π(a|S \ b) whenever b ≻ a. Hence, the two

underlying regularity violations used for identification are conceptually different.

In the realm of nonparametric attention models, we can also compare to the convex hull of

deterministic consideration set mappings. For example, the random competition filter (RCF) is a

important special case of AOM. Let Γj(·) be deterministic consideration set mappings that satisfy

Competition Filter (Lleras, Masatlioglu, Nakajima, and Ozbay, 2017). A RCF model is specified

by an attention rule µRCF(T |S) =
∑J

j=1 αj1(Γj(S) = T ) with the respective attention frequency,

ϕRCF(a|S) =
∑

j:a∈Γj(S)
αj with αj ≥ 0, j = 1, 2, . . . , J , and

∑J
j=1 αj = 1. Random competition

filters satisfy attention overload because a ∈ Γj(T ) for all T ⊆ S if a ∈ Γj(S).

The RCF model nests two other choice models of interest: bounded rationalization and impre-

cise narrowing down. Bounded rationalization is a generalization of Cherepanov, Feddersen, and

Sandroni (2013). It states that the decision maker does not always stick to the same set of rationale

given the same choice set. Hence, it is as-if the decision maker assigns a probability distribution

over the power set on the set of rationale. Since Cherepanov, Feddersen, and Sandroni (2013) is

a special case of Lleras, Masatlioglu, Nakajima, and Ozbay (2017), it follows that the bounded

rationalization model is a special case of RCF. Imprecise narrowing down shares a similar idea.
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Given the same choice set, the decision maker does not necessarily follow the same procedure on

setting up criteria. Thus, it is as-if the decision maker assigns a probability distribution over the

set of all possible procedures. It makes imprecise narrow down again a special case of RCF.

Lastly, we consider several parametric models and compare them to AOM in terms of explana-

tory power. First, the Independent Attention model of Manzini and Mariotti (2014) is a special

case of AOM. They assume that each alternative a has a fixed probability, γ(a), to be considered.

In other words, the attention frequency, ϕMM(a|S), is held fixed across different choice problems in

their model (ϕMM(a|S) = γ(a)). Since attention overload requires only weak inequality, the model

falls into AOM. While full encapsulating the variability in attention rule, any choice rule that is

explained by the independent attention model can be explained by AOM.

Second, the Elimination by Aspects attention model of Aguiar (2017) is also a special of AOM:

the author assumes that each category D has a fixed probability m(D). If the category is available,

the decision maker picks the best alternative out of it. If not, she chooses the default option. Let the

set of all categories be D. Then the attention frequency is given by ϕAguiar(a|S) =
∑

a∈D∈D m(D).

It is straightforward to see that this attention rule satisfies attention overload, and thus AOM nests

all the explanatory power of that model.

Third, the Bounded Processing Capacity Rule (BPCR) of Marchant and Sen (2023) is another

special case of AOM. The model assumes that the DM has a fixed capacity, k, for considering

alternatives. In particular, when the size of menu is less than k, the DM considers everything;

when the size of menu exceeds k, the DM considers all menus of size k with equal probability. The

attention frequency is then given by ϕMS(a|S) = 1 if |S| ≤ k, and ϕMS(a|S) = (|S|−1
k−1 )
(|S|

k )
if |S| > k. It

can be shown that attention frequency satisfies attention overload. Therefore, BPCR necessarily

falls under the scope of AOM regarding choice behaviors.

Fourth, as illustrated in the previous discussion, the attention rule in the Logit Attention model

(e.g., Brady and Rehbeck, 2016) may fall outside of attention overload (depending on the parameter

specification). Indeed, the Logit Attention model would capture certain behaviors that AOM would

not capture. To see this, we generate a choice from the Logit Attention model. Consider a Luce

weight, say ℓ(.), as a function on menu so that ℓ(abcd) = 1
2 , ℓ(bcd) = 1

2 , ℓ(bc) = 2
3 , ℓ(c) = 1

2 ,

ℓ(ab) = 1
2 , ℓ(b) = 1

2 and for all other S ⊆ {a, b, c, d}, we let ℓ(S) = 0. (For ease of illustration,
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we relax the assumptions for ℓ to be strictly between 0 and 1; but it is possible to construct an

example with a similar result without this relaxation.) We also let a ≻ b ≻ c ≻ d. This will

produce the choice data in Table 1b, and hence it cannot be explained by AOM. On the other

hand, it is also true that AOM can explain choice data and the Logit Attention model cannot

explain. For example, recall that the choice data in Table 1a cannot be explained by RAM, but

the Logit Attention model is a special case of RAM (Cattaneo, Ma, Masatlioglu, and Suleymanov,

2020), which implies that the choice data cannot be explained by the Logit attention model either

while it can be rationalized by AOM.

Finally, Demirkan and Kimya (2020) considers a version of independent consideration from

Manzini and Mariotti (2014) with a menu-dependent attraction parameter. In other words, they

specify a parameter, say γ(a, S), which depends on both the alternative and the menu. Since it

is now possible that γ(a, S) > γ(a, T ), their model can produce choice behavior that is outside of

AOM. On the other hand, due to the parametric nature of the model, there exists choice behaviors

that can be captured by AOM but not their model.

SA.1.2 Random Attention Models with Heterogeneous Preferences

There exist only a few papers combining random utility (heterogeneous preferences) and random

limited attention. Within the paradigm of nonparametric identification, Kashaev and Aguiar (2022)

attempts to generalize RAM by incorporating random utility (set-monotone and stable RAUM).

There are two key differences between that model and HAOM▷. First, we aim at the property of list-

based attention overload, which can better capture attention allocation behavior under attention

scarcity, while set-monotone and stable RAUM focuses on the RAM model. Second, in order to

provide sharp identifications of preference and attention, we limit the variability of attention and

preference through a list ▷, while Kashaev and Aguiar (2022) can only obtain partial identification

results because full preference and attention heterogeneity (in terms of RAM) are allowed in their

model.

Outside of the nonparametric identification paradigm, there are several papers allowing for

heterogeneous preferences and random limited attention via parametric restrictions. For example,

Aguiar, Boccardi, Kashaev, and Kim (2023) assumes a family of the parametric models with the
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attention index model, Gibbard (2021) utilize a version of independence consideration model as

discussed in Horan (2019), and Dardanoni, Manzini, Mariotti, and Tyson (2020) models parame-

terize cognitive capacities with a fixated size of consideration sets. In contrast, HAOM▷ relies on a

nonparametric assumption on attention which captures attention overload.

A different strand of the literature relies on enriched type of choice data to allow for het-

erogeneous preferences and random limited attention. For example, Gibbard (2021) assumes a

frame-dependent choice function, and Dardanoni, Manzini, Mariotti, Petri, and Tyson (2023) uti-

lizes mixture choice data. In contrast, AOM and HAOM▷ only require standard choice data for

identification, estimation and inference for preferences and attention frequencies.

Finally, the literature on discrete choice has always prioritized heterogeneous preference, and

a fraction of that literature has also factored in variations in attention. We discuss a few recent

contributions to this literature, and explain how they differ from AOM and HAOM▷. Barseghyan,

Coughlin, Molinari, and Teitelbaum (2021) study partial identification of preference and consider-

ation set formation. Unlike AOM, which imposes monotonicity of the attention frequency across

nested choice problems, they restrict the size of consideration sets (or, alternatively, assume that

the decision maker cannot pay attention to singleton sets too often). Their nonparametric identify-

ing assumption is thus similar in spirit to our (additional) attentive at binary assumption in AOM

and the full attention assumption over binary sets in HAOM▷, both of which aiming to increase

identification power. Abaluck and Adams (2021) exploit asymmetries in cross-partial derivatives

and show that consideration set formation and preference distribution can be separately identified

from observed choices when there is rich exogenous variation in observed covariates. Conceptually,

HAOM▷ shares the feature of richness by assuming choices from all menus are observed (but not

AOM) for characterization. Nonetheless, identification of preferences in HAOM▷ requires only bi-

nary menus. Barseghyan, Molinari, and Thirkettle (2021) and Barseghyan and Molinari (2023),

on the other hand, provide identification results for risk preference when exogenous variation in

observed covariates is more restricted. They also demonstrate the trade-off between the exclusion

restrictions and the assumptions on choice set formation. In contrast, AOM and the non-parametric

attention literature in general, remains in the abstract domain where the object of choice can be

arbitrary. It will be interesting to see how the other side of the spectrum of the attention literature
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can also benefit in terms of identification power when restricted to risky choices.

SA.1.3 Other Related Stochastic Choice Models

Since AOM is a general model that does not require regularity, it is natural to ask whether other

stochastic choice models would fall within AOM in terms of explanatory power. Indeed, there are

a number of them: the random utility model (RUM) is a prime example. Standard RUM can be

represented by AOM because ≻-Regularity is satisfied when a model satisfies regularity.

There are several other models nested in AOM. For example, Gul, Natenzon, and Pesendorfer

(2014) consider an attribute rule in which the decision maker first draws an attribute and then

picks an alternative which contains such attribute. They show that every attribute rule is a RUM;

hence, every attribute rule can be represented by AOM. Fudenberg, Iijima, and Strzalecki (2015)

introduce the additive perturbed utility model where the decision maker intentionally randomizes

as deterministic choices can be costly. Since the choices in their model always satisfy regularity,

any choice rule in the additive perturbed utility model has an AOM representation.

Moreover, there are several stochastic choice models that allow for regularity violations. In-

triguingly, we can show that some of them are AOM by directly checking ≻-Regularity. Important

examples include Echenique, Saito, and Tserenjigmid (2018) and Echenique and Saito (2019).

In addition, Filiz-Ozbay and Masatlioglu (2023) introduces the Less-is-more Progressive Random

Choice model relying on the less-is-more choice function from Lleras, Masatlioglu, Nakajima, and

Ozbay (2017). Since each less-is-more choice function can be mapped back to a competition filter,

the model is essentially a special case of RCF and thus it can be rationalized by AOM.

HAOM▷ is of course related to the literature on choice over a list. We focus on the differences

between HAOM▷ and models on choices over lists in terms of modeling ideas and approaches.

Rubinstein and Salant (2006) consider a deterministic model of choice function from lists and,

building on their deterministic model, they consider random choice rules defined over menus in

which the decision maker chooses from a randomly appearing list. On the other hand, Guney

(2014) and Yildiz (2016) consider models of choice procedure of successive elimination over a list.

Similar to the framework of Rubinstein and Salant (2006), Guney (2014) explicitly considers a

model building on choice function over lists, while Yildiz (2016) assumes the list is unobservable and
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considers a nested and recursive structure in the random choice function. The focus of this strand

of literature is different from HAOM▷: they intend to capture specific elimination procedures under

a binary relation (which need not be a preference), while HAOM▷ looks at decisions made under a

set of well-defined heterogenours preferences with random limited attention. Interestingly, HAOM▷

is closely related to the Random Depth Model (RDM) of Ishii, Kovach, and Ülkü (2021). The RDM

assumes that the decision maker can have a random preference and a random depth parameter

when making their choices over a list. In particular, a depth parameter, says k, determines how

far down the list she will explore, whereas our list-based attention overload assumes the decision

makers will consider items up to certain alternative down a list. RDM considers a fixed choice set

and exogenous variation in list, while HAOM▷ allows for endogenous lists focusing on attention

overload across choice sets.

Finally, outside of the literature on choice over list, Honda (2021) considers a Random Craving

Model (RCM). RCM is a special case of RUM where the set of preferences is restricted to the temp-

tation preferences. In particular, for a true underlying preference ≻, the collection of temptation

preference is defined by improving the ranking of an element in the preference to the best position.

In our notation, for m alternatives, {≻i1}mi=1 is a collection of temptation. Therefore, RCM can be

seen as a special case of HAOM▷ where full attention is assumed and the reference point can only

be moved to the top.

SA.2 Simulation Evidence

The grand set contains six alternatives, and without loss of generality, we assume the preference

ordering a1 ≻ a2 ≻ · · · ≻ a6. We employ the logit attention rule of Brady and Rehbeck (2016),

which takes the form µ(T |S) = |T |ς∑
T ′⊆S |T ′|ς , where recall that |T | denotes the size (cardinality) of

a set. For specificity, we set ς = 2 in our simulation study. Explicit calculation shows that this

logit attention rule satisfies attention overload (Assumption 1). (With the logit attention rule, the

attention frequency only depends on the size of the choice problem but not the alternatives. For

|S| = 2, 3, 4, 5, 6, the attention frequencies are 0.833, 0.750, 0.700, 0.667 and 0.643, respectively.)

With the preference and the attention rule introduced above, we are able to find the choice rule

according to Definition 2. We then generate the choice data. In our simulation studies, we assume
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each choice problem has the same effective sample size NS ∈ {50, 100, 200}.

We implement our test (Theorem 1) against four hypothesized preferences. The first preference,

a1 ≻ a2 ≻ a3 ≻ a4 ≻ a5 ≻ a6, is compatible with our AOM, and hence we do not expect rejecting

the null hypothesis very often. In other words, the rejection probability in this case corresponds

to the size of our test. The other three preferences, however, cannot be represented by the AOM,

and therefore the rejection probabilities will shed light on the power of the test. In each simulation

setting, we conduct 2,000 repetitions and the average rejection probabilities are reported in Table 2

(row “rej prob”). The nominal size is 0.05. Our implementation employs the generalized moment

selection method (Andrews and Soares, 2010, equation 4.4).

We focus on the first column, which reports simulation evidence for the complete data scenario

(i.e., all 57 choice problems are available in the simulated dataset). There are 664 inequality

constraints in total (row “# restrictions”). As the first preference ordering satisfies our AOM,

none of these constraints will be violated. On the other hand, for the other three preferences,

90, 6 and 23 out of the 664 inequalities are strictly positive (row “# violations”). We also

show the largest inequality constraint (row “max inequality”). A larger number indicates that

the preference is further away from the null space, and hence it should be easier for our test to

detect. To be more precise, for the specific logit attention rule that we consider, the AOM is

best at eliciting the “best” alternative, that is, it is most powerful against mistakes regarding

the most preferred alternative, a1. As we can see from the table (row “rej prob”), among the

three preferences in the alternative space, the AOM has the highest power for testing the second

preference, a2 ≻ a3 ≻ a4 ≻ a5 ≻ a6 ≻ a1. This is because by placing a1 in the last position, lots of

the inequalities will be violated according to our AOM. As a comparison, although the third and

fourth preferences are also rejected by our AOM, they are relatively close to the null space due to

the small fraction of violated inequality constraints, and hence power is not high.

In practice, not all choice problems are available. Fortunately, our Theorem 1 adapts to in-

complete data. As a sensitively analysis, we also conduct simulation studies where only a subset of

choice problems are used to test against each of the four preferences. The results are reported in

columns 2 to 7. For example, the second column of Table 2 contains rejection probabilities when

the data consists of choice problems of size 3, 4, 5, and 6. It is not surprising that the number of

9



inequalities constraints varies significantly: while there are 664 inequalities in the complete data

scenario (column 1), there are only 15 constraints for the setting of Column 6 (choice problems of

size 2 and 6; that is, only the grand set and binary comparisons are available). Overall, we see that

our test demonstrates satisfactory size and power properties.

As our testing procedure involves estimating and evaluating a large number of inequality con-

straints, it can be conservative. For theoretical comparison, we also show the size adjusted rejection

probabilities (row “rej prob (size adj)”). These are obtained by employing the (infeasible) critical

values which are simulated from the correctly centered multivariate normal distribution. It should

not come as a surprise that the empirical rejection probabilities are closer to the nominal size for

the first preference, and that the power of the test becomes higher.

Implementing Theorem 1 can be numerically challenging when there are many alternatives

to choose from. For example, ≻-Regularity implies
∑|X|

k=3

(|X|
k

)∑k−1
ℓ=2

(
k
ℓ

)
(ℓ − 1) inequalities in a

complete data scenario. Before closing this subsection, we illustrate the computing time needed

by our numerical procedure (on a standard MacBook). We first abstract away from econometric

implementation aspects: we assume that the choice rule π is observed in the discussion below.

Testing ≻-Regularity involves two steps: organizing choice problems into T ⊂ S pairs, and

comparing choice probabilities according to ≻-Regularity. It turns out that the first step is much

more time consuming. Once subset relationships have been established, comparing choice proba-

bilities across choice problems is quite straightforward. For example, we form T ⊂ S pairs given a

collection of choice problems using for-loops. With 10 alternatives in the grand set X, this takes

about seven seconds (only needs to be done once, since subset relationship is not specific to any

preference ordering). Once we form subset pairs, checking ≻-Regularity only takes about 0.007

seconds for any preference. Even if we increase the number of alternatives to |X| = 15 (which is a

very large choice problem), forming subset pairs will take about 30 minutes, after which each pref-

erence can be tested in about three seconds. Econometric implementation of Theorem 1 requires

an additional step: computing the critical values. This requires simulating normal random vectors

and is usually quite fast.

Finally, we illustrate numerically the computation gains from using Proposition 1 relative to

Theorem 1. As we demonstrated in the main paper (Example 1), employing Proposition 1 first
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can drastically reduce the number of preference orderings to be tested. This potentially leads

to substantial time save and makes our numerical procedure more scalable. In fact, employing

Proposition 1 first has another advantage: it is also numerically much faster to implement than

checking ≻-Regularity. This is because one does not need to form all subset relations. With 15

alternatives in the grand set, checking Proposition 1 for one pair (a ≻ b) only takes about 0.02

seconds. Even checking all pairs of alternatives will take less than two seconds. If we increase |X|

to 25, numerically testing the inequalities in Proposition 1 takes about 30 seconds for one pair of

alternatives. Therefore, we believe that Proposition 1 and Theorem 1 are complimentary. It is

much easier to first use Proposition 1 to screen out certain preference orderings, and then test the

remaining with Theorem 1.

As a final remark, the computing time reported above reflects the worst case scenario. First,

our algorithm does not assume any particular structure on the input, and only requires a collection

of choice problems and choice probabilities. As such, the algorithm has to loop over choice problems

and alternatives. Second, when there are many alternatives in the grand set X, it is unlikely that

one has complete data: many choice problems will not be present. This will decrease the number

of subset pairs and the number of inequalities to compute/compare.

We also provide simulation evidence on the identification of heterogeneous preferences when

alternatives are ordered in a list. Recall from Section 3 of the main paper that the list is represented

by ⟨a1, a2, . . . , am⟩. Given a choice problem S, we also recall that its elements are labeled by

s1, s2, . . . , s|S|. We continue employing the logit attention rule of Brady and Rehbeck (2016). In

addition, the first two alternatives in each choice problem, as1 and as2 , always receive attention.

For this simulation study, we assume there are six alternatives in the grand set, that is, m = 6.

The preferences are distributed as τ(≻kj) = 0.05 for k > j, and τ(≻11) = 0.25. This leads to θkj =

∑
ℓ≤j τ(≻kℓ) = 0.05j. We further assume the random attention is independent of the heterogeneous

preference for simplicity. It is worth noting that our theory and econometric implementation do

not require such independence.

In Figure 1, we first show the true preference distribution (red dots). However, depending on

which choice problems are available, the lower bound implied by Proposition 3 (red crosses) may

not coincide with the true preference distribution. For example, a6 never receives full attention
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unless binary comparisons are available. Therefore, we see from panel (b)–(d) that the the lower

bounds involving a6 (i.e., θ6j for j = 1, 2, . . . , 5) always sit below the true preference distributions

(θ6j for j = 1, 2, . . . , 5).

We also conducted 2,000 Monte Carlo simulations to investigate the performance of our econo-

metric procedure for bounding the preference distribution. In each simulation iteration, we estimate

the lower bound using the methods proposed in Section 3.5. We set α = 0.05, which means the

estimates should not cross the theoretical bounds more than 5%. In the same figure, we plot the

95th percentile of the estimated lower bounds for different effective sample sizes (blue diamonds).

Indeed, they are always below the theoretical lower bounds.

SA.3 Technical Lemmas for Theorem 4

For ease of presentation, we will first write the choice probability as a vector, which is denoted by

π. This will also allow us to collect all constraints implied by ≻-Regularity into a matrix. The

choice probabilities are estimated by the sub-sample averages π̂(a|S) = 1
NS

∑n
i=1 1(yi = a, Yi = S),

where NS =
∑n

i=1 1(Yi = S) is the effective sample size for the choice problem S. For developing

econometric methods and establish their formal statistical properties, it is more convenient to write

the vector of choice probabilities as an average: π̂ = 1
n

∑n
i=1 zi, where zi is a long vector expressing

the choice of the ith unit. The new variables, zi, are mutually independent if NS are nonrandom

or if we condition on the realizations of the choice problems. For each zi, pre-multiplying by a row

of R≻ can either leave zi unchanged, alter its sign, or lead to a zero vector. The last scenario arises

if a data point is not relevant for a specific constraint.

Each inequality restriction corresponds to a pair T ⊂ S and an alternative a ∈ T . Therefore, we

the corresponding row vector in R≻ will be denoted by r≻(a|S, T )⊤. We also define zi,≻(a|S, T ) =

r≻(a|S, T )⊤zi, which is simply one element in zi,≻. The standard deviation of r≻(a|S, T )⊤π̂ is

σ(a|S, T ). We collect the individual standard deviations into the vector σ in a conformable way:

σ2 contains the diagonal elements in the covariance matrix R≻V[π̂]R⊤
≻.
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SA.3.1 Lemma A.4

We employ the following technical result.

Lemma SA.1 (Theorem 2.1 in Chernozhukov, Chetverikov, Kato, and Koike 2022). Let {xi, 1 ≤

i ≤ n} be mean-zero independent random vectors of dimension c1, and {x̃i, 1 ≤ i ≤ n} be mean-zero

independent normal random vectors such that xi and x̃i have the same covariance matrix. Assume

the following holds.

(i) For some fixed constants C,C ′ > 0, C ≤ 1
n

∑n
i=1 E[x2i,ℓ] ≤ C ′, ∀1 ≤ ℓ ≤ c1.

(ii) For some fixed constant C ′ > 0 and some sequence c2 > 0 which can depend on the sample

size, 1
n

∑n
i=1 E[|xi,ℓ|4] ≤ c22C

′, ∀1 ≤ ℓ ≤ c1, and E
[
exp

(
|xi,ℓ|2/c22

)]
≤ 2, ∀1 ≤ ℓ ≤ c1, 1 ≤ i ≤ n.

Then,

sup
A⊆Rc1

A rectangular

∣∣∣∣∣P
[

1√
n

n∑

i=1

xi ∈ A

]
− P

[
1√
n

n∑

i=1

x̃i ∈ A

]∣∣∣∣∣ ≤ c

(
c22 log

5(nc1)

n

) 1
4

,

where the constant c only depends on C and C ′ in conditions (i) and (ii).

We apply Lemma SA.1 to xi(a|S, T ) = zi,≻(a|S,T )−E[zi,≻(a|S,T )]√
nσ(a|S,T )

. Condition (i) there is trivially

satisfied with C = C ′ = 1. To verify condition (ii), we will need to take a closer look at the

individual summands along each coordinate, xi(a|S, T ). We first consider zi,≻(a|S, T ).

From the previous discuss, it should be clear that each constraint will involve comparing

choice probabilities across two choice problems. This means that zi,≻(a|S, T ) is nonzero for at

most NS + NT observations (recall that NS is the effective sample size for the choice problem

S in the data). For those observations such that zi,≻(a|S, T ) is nonzero, we have |zi,≻(a|S, T ) −

E[zi,≻(a|S, T )]| bounded by either n
NS

or n
NT

, and E[|zi,≻(a|S, T ) − E[zi,≻(a|S, T )]|2+ε] bounded

by either 2
(

n
NS

)2+ε
π(a|S)(1 − π(a|S)) or 2

(
n
NT

)2+ε
π(U⪰(a)|T )(1 − π(U⪰(a)|T )). As a result,

1
n

∑n
i=1 E[|zi,≻(a|S, T )− E[zi,≻(a|S, T )]|2+ε] is bounded by

2
[
(n/NS)

1+ε π(a|S)(1− π(a|S)) + (n/NT )
1+ε π(U⪰(a)|T )(1− π(U⪰(a)|T ))

]
.

13



Now consider
√
nσ(a|S, T ), which takes the form

√
nσ(a|S, T ) =

√
n

NS
π(a|S)(1− π(a|S)) + n

NT
π(U⪰(a)|T )(1− π(U⪰(a)|T )).

Combining previous results, we have

(
1

n

n∑

i=1

E[|xi(a|S, T )|2+ε]

) 1
ε

≤ 2

(
n

NS
∨ n

NT

)
1√

nσ(a|S, T ) .

To apply Lemma SA.1, set ε = 2 and c2 = 2
√
n [minS∈D NS ]

−1
[
mina∈T⊂S

T,S∈D
σ(a|S, T )

]−1
. The above

choice satisfies the first part of condition (ii) in Lemma SA.1. For the second part in condition (ii),

we note that
∣∣∣xi(a|S,T )

c2

∣∣∣ ≤
∣∣∣zi,≻(a|S, T )−E[zi,≻(a|S, T )]

∣∣∣minS∈D NS

2n . Next observe that zi,≻(a|S, T ) is

simply a centered Bernoulli random variable scaled by n/NS for some S, which means the second

part of condition (ii) also holds with the above choice of c2.

SA.3.2 Lemma A.5

For now, let σ̂ be some estimator, then 1
n

∑n
i=1

zi,≻(a|S,T )−E[zi,≻(a|S,T )]
σ̂(a|S,T ) takes the form

1

n

n∑

i=1

zi,≻(a|S, T )− E[zi,≻(a|S, T )]
σ(a|S, T ) +

(
1

n

n∑

i=1

zi,≻(a|S, T )− E[zi,≻(a|S, T )]
σ(a|S, T )

)(
σ(a|S, T )
σ̂(a|S, T ) − 1

)
,

which means

max
a∈T⊂S
T,S∈D

∣∣∣∣∣
1

n

n∑

i=1

zi,≻(a|S, T )− E[zi,≻(a|S, T )]
σ̂(a|S, T ) − 1

n

n∑

i=1

zi,≻(a|S, T )− E[zi,≻(a|S, T )]
σ(a|S, T )

∣∣∣∣∣

≤ max
a∈T⊂S
T,S∈D

∣∣∣∣∣
1

n

n∑

i=1

zi,≻(a|S, T )− E[zi,≻(a|S, T )]
σ(a|S, T )

∣∣∣∣∣ · max
a∈T⊂S
T,S∈D

∣∣∣∣
σ(a|S, T )
σ̂(a|S, T ) − 1

∣∣∣∣ .

We will control the two terms on the right-hand side separately.

Let ξ1 be some generic constant which can depend on the sample size. Then by the triangle

14



inequality,

P


 max
a∈T⊂S
T,S∈D

∣∣∣∣∣
1

n

n∑

i=1

zi,≻(a|S, T )− E[zi,≻(a|S, T )]
σ(a|S, T )

∣∣∣∣∣ ≥ ξ1


 ≤ P [∥ž∥∞ ≥ ξ1]︸ ︷︷ ︸

(I)

+

∣∣∣∣∣∣
P


 max
a∈T⊂S
T,S∈D

∣∣∣∣∣
1

n

n∑

i=1

zi,≻(a|S, T )− E[zi,≻(a|S, T )]
σ(a|S, T )

∣∣∣∣∣ ≥ ξ1


− P [∥ž∥∞ ≥ ξ1]

∣∣∣∣∣∣
︸ ︷︷ ︸

(II)

,

where ž is defined in Lemma A.4.

By Markov’s inequality, (I) ≤ cξ−1
1

√
log c1 with c is an absolute constant. By Lemma A.4,

(II) ≤ c
(
log5(nc1)/c

2
2

) 1
4 , which holds for any ξ1, where c is another absolute constant.

Next consider the standard error estimator, σ̂(a|S, T ). Then,

∣∣σ̂(a|S, T )2 − σ(a|S, T )2
∣∣ ≤ 1

NS
|π̂(a|S)− π(a|S)|+ 1

NT
|π̂(U⪰(a)|T )− π(U⪰(a)|T )| .

Consider, for example, the first term on the right-hand side in the above. Using Bernstein’s

inequality, one has

P
[

1

NSσ(a|S, T )2
|π̂(a|S)− π(a|S)| ≥ ξ2

]
≤ 2 exp

{
−1

4
N2

Sσ(a|S, T )2ξ22
}

≤ 2 exp

{
−1

4
c22ξ

2
2

}
.

provided that ξ2 → 0. Using the union bound, we deduce that

P


 max
a∈T⊂S
T,S∈D

|σ̂(a|S, T )− σ(a|S, T )|
σ(a|S, T ) ≥ ξ2


 ≤ 4 exp

{
− 1

16
c22ξ

2
2 + log c1

}
, provided that ξ2 → 0.

This closes the proof of the first claim.

To show the second claim, we note that given any two vectors, a and b in Rc1 , max1≤ℓ≤c1 aℓ −

max1≤ℓ≤c1 bℓ ≤ max1≤ℓ≤c1 |aℓ − bℓ| and max1≤ℓ≤c1 aℓ −max1≤ℓ≤c1 bℓ ≥ −max1≤ℓ≤c1 |bℓ − aℓ|. Then,

taking aℓ =
1
n

∑n
i=1

zi,≻(a|S,T )−E[zi,≻(a|S,T )]
σ̂(a|S,T ) and bℓ =

1
n

∑n
i=1

zi,≻(a|S,T )−E[zi,≻(a|S,T )]
σ(a|S,T ) gives the result.

As a byproduct of the discussion, we have

Lemma SA.2. Let ξ2 > 0 with ξ2 → 0. Then, P[∥ (σ̂≻ − σ≻)⊘σ≻∥∞ ≥ ξ2] ≤ c exp
{
−1

c c
2
2ξ

2
2 + log c1

}
.
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SA.3.3 Feasible Gaussian Approximation

We now state the properties of the estimated correlation matrix.

Lemma SA.3. Let ξ2 > 0 with ξ2 → 0. Then, P[∥Ω̂−Ω∥∞ ≥ ξ2] ≤ c exp
{
−1

c c
2
2ξ

2
2 + 2 log c1

}
.

To show this result, first recall that each restriction involves comparing choice probabilities

across two choice problems. For two restrictions, ℓ and ℓ′, there will be at most four choice

problems involved, which we denote by T ⊂ S and T ′ ⊂ S′. Now consider the case where the

two restrictions are non-overlapping, meaning that T ̸= T ′ or S′ and S ̸= T ′ or S′. Then both the

population covariance/correlation and its estimate will be zero. (The reason that the estimated

covariance/correlation is because the “middle matrix,” V̂[π̂], is block diagonal.) As a result, the

estimation error of the correlation matrix is trivially 0 in this special case.

Given the previous discussions, we will consider the estimation error when the two restrictions

involve overlapping choice problems.

To start, we first decompose the difference as

∣∣∣∣
σ̂(a|S, T ; a′|S′, T ′)

σ̂(a|S, T )σ̂(a′|S′, T ′)
− σ(a|S, T ; a′|S′, T ′)

σ(a|S, T )σ(a′|S′, T ′)

∣∣∣∣

≤
∣∣∣∣
σ̂(a|S, T ; a′|S′, T ′)− σ(a|S, T ; a′|S′, T ′)

σ(a|S, T )σ(a′|S′, T ′)

∣∣∣∣+ 2

∣∣∣∣
σ̂(a|S, T )
σ(a|S, T ) − 1

∣∣∣∣ ∨
∣∣∣∣
σ̂(a′|S′, T ′)

σ(a′|S′, T ′)
− 1

∣∣∣∣

+

∣∣∣∣
σ̂(a|S, T )
σ(a|S, T ) − 1

∣∣∣∣ ·
∣∣∣∣
σ̂(a′|S′, T ′)

σ(a′|S′, T ′)
− 1

∣∣∣∣ .

Therefore,

max
a∈T⊂S
T,S∈D

max
a′∈T ′⊂S′

T ′,S′∈D

∣∣∣∣
σ̂(a|S, T ; a′|S′, T ′)

σ̂(a|S, T )σ̂(a′|S′, T ′)
− σ(a|S, T ; a′|S′, T ′)

σ(a|S, T )σ(a′|S′, T ′)

∣∣∣∣

≤ max
a∈T⊂S
T,S∈D

max
a′∈T ′⊂S′

T ′,S′∈D

∣∣∣∣
σ̂(a|S, T ; a′|S′, T ′)− σ(a|S, T ; a′|S′, T ′)

σ(a|S, T )σ(a′|S′, T ′)

∣∣∣∣

+ 2 max
a∈T⊂S
T,S∈D

∣∣∣∣
σ̂(a|S, T )
σ(a|S, T ) − 1

∣∣∣∣+ max
a∈T⊂S
T,S∈D

∣∣∣∣
σ̂(a|S, T )
σ(a|S, T ) − 1

∣∣∣∣
2

.

We already have an error bound for the last two terms from Lemma A.6, and hence it suffices to

study the first term in the above display.
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To proceed, consider four possible scenarios: (i) S = S′ ⊃ T ̸= T ′, (ii) S ̸= S′ ⊃ T = T ′, (iii)

S ⊃ T = S′ ⊃ T ′, and (iv) S = S′ ⊃ T = T ′.

Case (i). The covariance σ(a|S, T ; a′|S′, T ′) can take two forms: 1
NS

π(a|S)(1−π(a|S)) or− 1
NS

π(a|S)π(a′|S).

Nevertheless, the following bound applies

∣∣σ̂(a|S, T ; a′|S′, T ′)− σ(a|S, T ; a′|S′, T ′)
∣∣ ≤ 1

NS
|π̂(a|S)− π(a|S)|+ 1

NS

∣∣π̂(a′|S)− π(a′|S)
∣∣ .

Next we apply Bernstein’s inequality, which gives

P
[

1

NSσ(a|S, T )σ(a′|S′, T ′)
|π̂(a|S)− π(a|S)| ≥ ξ2

]

≤ 2 exp

{
−1

4
N2

S(σ(a|S, T ) ∧ σ(a′|S′, T ′))2ξ22

}
≤ 2 exp

{
−1

4
c22ξ

2
2

}
.

provided that ξ2 → 0. Therefore, we have

P
[

1

σ(a|S, T )σ(a′|S′, T ′)

∣∣σ̂(a|S, T ; a′|S′, T ′)− σ(a|S, T ; a′|S′, T ′)
∣∣ ≥ ξ2

]
≤ 4 exp

{
− 1

16
c22ξ

2
2

}
.

Case (ii). The covariance σ(a|S, T ; a′|S′, T ′) can be conveniently written as

σ(a|S, T ; a′|S′, T ′) =
1

NT

(
π(U⪰(a)|T ) ∧ π(U⪰(a

′)|T )− π(U⪰(a)|T )π(U⪰(a
′)|T )

)
.

Then, we have the bound

∣∣σ̂(a|S, T ; a′|S′, T ′)− σ(a|S, T ; a′|S′, T ′)
∣∣

≤ 1

NT
|π̂(U⪰(a)|T )− π(U⪰(a)|T )|+

1

NT

∣∣π̂(U⪰(a
′)|T )− π(U⪰(a

′)|T )
∣∣ .

Again by using the union bound and Bernstein’s inequality, one has

P
[

1

σ(a|S, T )σ(a′|S′, T ′)

∣∣σ̂(a|S, T ; a′|S′, T ′)− σ(a|S, T ; a′|S′, T ′)
∣∣ ≥ ξ2

]
≤ 4 exp

{
− 1

16
c22ξ

2
2

}
.

17



Case (iii). The covariance σ(a|S, T ; a′|S′, T ′) can take two forms:

− 1

NT
π(U⪰(a)|T )π(a′|S′)

︸ ︷︷ ︸
if a′ ̸∈ U⪰(a)

or
1

NS
π(a′|S′)− π(a′|S′)π(U⪰(a)|T )

︸ ︷︷ ︸
if a′ ∈ U⪰(a)

.

In either case, we have

∣∣σ̂(a|S, T ; a′|S′, T ′)− σ(a|S, T ; a′|S′, T ′)
∣∣ ≤ 1

NT
|π̂(U⪰(a)|T )− π(U⪰(a)|T )|+

1

NT
|π̂(a|T )− π(a|T )| .

Again by using the union bound and Bernstein’s inequality, one has

P
[

1

σ(a|S, T )σ(a′|S′, T ′)

∣∣σ̂(a|S, T ; a′|S′, T ′)− σ(a|S, T ; a′|S′, T ′)
∣∣ ≥ ξ2

]
≤ 4 exp

{
− 1

16
c22ξ

2
2

}
.

Case (iv). First note that j(ℓ) = j(ℓ′) and j′(ℓ) = j′(ℓ′) in this case. The covariance σ(a|S, T ; a′|S′, T ′)

can take two forms:

=
1

NS
π(a|S)(1− π(a|S)) + 1

NT

(
π(U⪰(a)|T ) ∧ π(U≻(a

′)|T )− π(U⪰(a)|T )π(U≻(a
′)|T )

)

︸ ︷︷ ︸
if a = a′

or − 1

NS
π(a|S)π(a′|S) + 1

NT

(
π(U⪰(a)|T ) ∧ π(U≻(a

′)|T )− π(U⪰(a)|T )π(U≻(a
′)|T )

)

︸ ︷︷ ︸
if a ̸= a′

.

Then, |σ̂(a|S, T ; a′|S′, T ′)− σ(a|S, T ; a′|S′, T ′)| ≤ 1
NS

|π̂(a|S)− π(a|S)| + 1
NS

|π̂(a′|S)− π(a′|S)| +
1

NT
|π̂(U⪰(a)|T )− π(U⪰(a)|T )|+ 1

NT
|π̂(U≻(a

′)|T )− π(U≻(a
′)|T )|. Again, by using the union bound

and Bernstein’s inequality,

P
[

1

σ(a|S, T )σ(a′|S′, T ′)

∣∣σ̂(a|S, T ; a′|S′, T ′)− σ(a|S, T ; a′|S′, T ′)
∣∣ ≥ ξ2

]
≤ 8 exp

{
− 1

64
c22ξ

2
2

}
.

Now we are ready to state the following result, which provides a feasible Gaussian approximation

to ž (defined in Lemma A.4).

Lemma SA.4. Let z be a mean-zero Gaussian random vector with a covariance matrix Ω̂. Take

ξ3 > 0 such that ξ3 → 0. Then, P[ϱ̂2 ≤ cξ
1
2
3 log c1] ≥ 1 − c exp

{
−1

c c
2
2ξ

2
3 + 2 log c1

}
for ϱ̂2 =
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sup
A⊆Rc1

A rectangular

|P[ž ∈ A]− P[z ∈ A|Data]|.

This follows directly from Lemma SA.3 and the result below.

Lemma SA.5 (Corollary 5.1 in Chernozhukov, Chetverikov, Kato, and Koike 2022). Let x,y ∈ Rc1

be two mean-zero Gaussian random vectors with covariance matrices Σx and Σy, respectively.

Further assume that the diagonal elements in Σx are all one. Define ξ3 = max1≤ℓ,ℓ′≤c1 |Σx
ℓ,ℓ′ −Σy

ℓ,ℓ′ |,

where Σ·
ℓ,ℓ′ denotes the (ℓ, ℓ

′)th element in the matrixΣ·. Then, sup A⊆Rc1

A rectangular
|P[x ∈ A]−P[y ∈ A]|

is bounded by cξ
1
2
3 log c1, where c is an absolute constant.

SA.3.4 Lemma A.6

Take TG(≻) as an example. It is easy to see that P
[
ŤG(≻) ≤ t

]
= P [max(ž) ≤ t], where the set

· ≤ t in the second probability above is a rectangular region. And hence the first part of this lemma

follows from Lemma SA.4. Next, note that by conditioning on the following event,

sup
t

∣∣P
[
ŤG(≻) ≤ t

]
− P

[
TG(≻) ≤ t

∣∣Data
]∣∣ ≤ cξ

1
3
3 log

2
3 c1,

one has P[TG(≻) > čv(α − cξ
1
3
3 log

2
3 c1,≻)|Data] ≤ α − cξ

1
3
3 log

2
3 c1 + cξ

1
3
3 log

2
3 c1 = α, which implies

that cv(α,≻) ≤ čv
(
α − cξ

1
3
3 log

2
3 c1,≻

)
. Similarly, P

[
ŤG(≻) > cv (α,≻)

∣∣Data
]
≤ α + cξ

1
3
3 log

2
3 c1,

which implies cv(α,≻) ≥ čv
(
α + cξ

1
3
3 log

2
3 c1,≻

)
. This concludes our proof of the second part of

this lemma.

SA.4 Technical Lemmas for Theorem 5

For simplicity, we continue using the notation zi, so that the average
∑n

i=1 zi/n = π̂ estimates

the vector of choice probabilities. We denote by zi,ϕ(a|S) = Rϕ(a|S)zi, and the row in zi,ϕ(a|S) for

estimating π̂(a|R) is represented by zi(a|R).
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SA.4.1 Lemma A.11

We again adopt the normal approximation result in Lemma SA.1, and consider

xi(a|R) =

n
NR

(1(yi = a, Yi = R)− π(a|R)1(Yi = R))
√
nσ(a|R)

.

Condition (i) there is trivially satisfied with C = C ′ = 1. To verify condition (ii), we will need to

take a closer look at the individual summands along each coordinate, xi(a|R). We observe that

∣∣∣∣
n

NR
(1(yi = a, Yi = R)− π(a|R)1(Yi = R))

∣∣∣∣ ≤
n

NR

E

[∣∣∣∣
n

NR
(1(yi = a, Yi = R)− π(a|R)1(Yi = R))

∣∣∣∣
2+ε
]
≤ 2

(
n

NR

)2+ε

π(a|R)(1− π(a|R)).

In addition, the summands are nonzero for at most NR observations. As a result,

1

n

n∑

i=1

E

[∣∣∣∣
n

NR
(1(yi = a, Yi = R)− π(a|R)1(Yi = R))

∣∣∣∣
2+ε
]
≤ 2

(
n

NR

)1+ε

π(a|R)(1− π(a|R)).

Now consider
√
nσ(a|R), which takes the form

√
nσ(a|R) =

√
n
NR

π(a|R)(1− π(a|R)). Combining

previous results, we have ( 1n
∑n

i=1 E[|xi(a|R)|2+ε])
1
ε ≤ 2( n

NR
) 1√

nσ(a|R)
. To apply Lemma SA.1, set

ε = 2 and c2 = 2
√
n [minR⊇S,R∈D NR]

−1 [minR⊇S,R∈D σ(a|R)]−1. The above choice satisfies the first

part of condition (ii) in Lemma SA.1. For the second part in condition (ii), we note that

∣∣∣∣
xi(a|R)

c2

∣∣∣∣ ≤
∣∣∣ n

NR
(1(yi = a, Yi = R)− π(a|R)1(Yi = R))

∣∣∣minR⊇S,R∈D NR

2n
,

which closes the proof.

SA.4.2 Lemma A.12

To begin with, 1
n

∑n
i=1

zi(a|R)−E[zi(a|R)]
σ̂(a|R) takes the form

1

n

n∑

i=1

zi(a|R)− E[zi(a|R)]

σ(a|R)
+

(
1

n

n∑

i=1

zi(a|R)− E[zi(a|R)]

σ(a|R)

)(
σ(a|R)

σ̂(a|R)
− 1

)
,
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which means

max
R⊇S,R∈D

∣∣∣∣∣
1

n

n∑

i=1

zi(a|R)− E[zi(a|R)]

σ̂(a|R)
− 1

n

n∑

i=1

zi(a|R)− E[zi(a|R)]

σ(a|R)

∣∣∣∣∣

≤ max
R⊇S,R∈D

∣∣∣∣∣
1

n

n∑

i=1

zi(a|R)− E[zi(a|R)]

σ(a|R)

∣∣∣∣∣ · max
R⊇S,R∈D

∣∣∣∣
σ(a|R)

σ̂(a|R)
− 1

∣∣∣∣ .

We will control the two terms on the right-hand side separately.

Let ξ1 be some generic constant which can depend on the sample size. Then by Lemma A.11,

P

[
max

R⊇S,R∈D

∣∣∣∣∣
1

n

n∑

i=1

zi(a|R)− E[zi(a|R)]

σ(a|R)

∣∣∣∣∣ ≥ ξ1

]
≤ cξ−1

1

√
log c1 + c

(
log5(nc1)

c22

) 1
4

.

Next consider the standard error estimator:
∣∣σ̂2(a|R)− σ2(a|R)

∣∣ ≤ 1
NR

|π̂(a|R)− π(a|R)|. Us-

ing Bernstein’s inequality, one has

P
[

1

NRσ(a|R)2
|π̂(a|R)− π(a|R)| ≥ ξ2

]
≤ 2 exp

{
−1

4
N2

Rσ(a|R)2ξ22

}
≤ 2 exp

{
−1

4
c22ξ

2
2

}
,

provided that ξ2 → 0. Using the union bound, we deduce that

P

[
max

R⊇S,R∈D

∣∣σ̂(a|R)2 − σ(a|R)2
∣∣

σ(a|R)2
≥ ξ2

]
≤ 4 exp

{
− 1

16
c22ξ

2
2 + log c1

}
, provided that ξ2 → 0.

This closes the proof.
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Table 2: Empirical Rejection Probabilities.

Choice Problem Size |S|
2, . . . , 6 3, . . . , 6 4, 5, 6 5, 6 2, 3, 4, 6 2, 3, 6 2, 6

# restrictions 664 439 159 24 370 115 15

a1 ≻ a2 ≻ a3 ≻ a4 ≻ a5 ≻ a6

# violations 0 0 0 0 0 0 0

max inequality −0.024 −0.024 −0.024 −0.024 −0.050 −0.083 −0.190

rej prob NS = 50 0.014 0.016 0.033 0.030 0.012 0.004 0.000

NS = 100 0.006 0.008 0.018 0.024 0.005 0.002 0.000

NS = 200 0.004 0.003 0.010 0.020 0.002 0.000 0.000

rej prob (size adj) NS = 50 0.074 0.069 0.064 0.054 0.060 0.062 0.062

NS = 100 0.051 0.063 0.052 0.054 0.048 0.058 0.056

NS = 200 0.056 0.054 0.048 0.050 0.049 0.045 0.068

a2 ≻ a3 ≻ a4 ≻ a5 ≻ a6 ≻ a1

# violations 90 64 25 4 51 15 1

max inequality 0.071 0.030 0.013 0.005 0.071 0.071 0.071

rej prob NS = 50 0.159 0.103 0.088 0.054 0.162 0.142 0.180

NS = 100 0.260 0.120 0.088 0.077 0.267 0.253 0.322

NS = 200 0.468 0.168 0.092 0.065 0.464 0.457 0.512

rej prob (size adj) NS = 50 0.182 0.116 0.084 0.058 0.190 0.202 0.240

NS = 100 0.280 0.124 0.080 0.076 0.292 0.306 0.366

NS = 200 0.478 0.170 0.085 0.064 0.486 0.490 0.545

a1 ≻ a2 ≻ a6 ≻ a5 ≻ a4 ≻ a3

# violations 6 1 0 0 6 4 0

max inequality 0.058 0.021 −0.008 −0.024 0.058 0.042 −0.140

rej prob NS = 50 0.038 0.014 0.032 0.030 0.036 0.052 0.000

NS = 100 0.064 0.010 0.016 0.024 0.081 0.089 0.000

NS = 200 0.136 0.020 0.009 0.020 0.168 0.214 0.000

rej prob (size adj) NS = 50 0.113 0.068 0.063 0.054 0.116 0.160 0.051

NS = 100 0.186 0.076 0.050 0.054 0.228 0.241 0.052

NS = 200 0.350 0.116 0.046 0.050 0.409 0.381 0.062

a1 ≻ a6 ≻ a5 ≻ a4 ≻ a3 ≻ a2

# violations 23 7 1 0 20 10 0

max inequality 0.067 0.033 0.008 −0.003 0.058 0.042 −0.083

rej prob NS = 50 0.080 0.017 0.025 0.025 0.083 0.106 0.001

NS = 100 0.139 0.038 0.014 0.020 0.156 0.168 0.000

NS = 200 0.344 0.091 0.016 0.017 0.377 0.366 0.000

rej prob (size adj) NS = 50 0.164 0.054 0.049 0.052 0.161 0.200 0.059

NS = 100 0.271 0.124 0.040 0.050 0.305 0.268 0.053

NS = 200 0.548 0.248 0.066 0.043 0.578 0.453 0.053

Note. Shown in the table are the empirical rejection probabilities of our test for four preference orderings and

different sets of inequality constraints. The results are based on 2,000 Monte Carlo simulations with nominal size

0.05. The effective sample size for each choice problem is 50, 100, or 200. Across the columns, we vary the set of

choice problems available. For example, Column 1 contains simulations results for the complete data scenario

(|S| = 2, 3, . . . , 6), while Column 7 only employs the grand set and binary comparisons (|S| = 2, 6).
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Figure 1: Theoretical and empirical preference distribution.

Note. Shown in the figure are theoretical preference distributions (θkj , red dots), their theoretical lower bounds

suggested by Proposition 3 (red crosses), and the empirically constructed lower bounds (blue diamonds). In each

simulation repetition, we set the effective sample size to 50, 100, and 200. We also set α = 0.05 for simulating the

critical values. Across the panels (a)–(g), we change what choice problems are available in the data. For example,

panel (a) represents a complete data scenario, in which choice problems of all sizes (|S| = 2, 3, . . . , 6) are available.

In panel (c), our simulated data only contains choice problems of sizes |S| = 4, 5, 6.
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