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APPENDIX A

Proof of Theorems 2.3 and 3.2. We begin by splitting the MSE (averaging only with respect
to the joint distribution of {At : t ∈ [Tk]}) into two terms, ETk

[
∥µ − µ̂(Tk)∥2

]
= E1 + E2, where

E1 = ETk

[
∥µ − µ̂(Tk)∥2

]
− 2

(
ETK

[
∥y − µ̂(Tk)∥2n

]
− ∥y − µ∥2n

)
− α(n, k) − β(n)

E2 = 2
(
ETk

[
∥y − µ̂(Tk)∥2n

]
− ∥y − µ∥2n

)
+ α(n, k) + β(n),

and where α(n, k) and β(n) are positive sequences that will be specified later.

To bound E[E1], we split our analysis into two cases based on the observed data yi. Accordingly,
we have

(A.1) E[E1] = E[E11(∀i : |yi| ≤ B)] + E[E11(∃i : |yi| > B)], B ≥ 0.

Bounded term. We start by looking at the first term on the right hand side of (A.1).

Proceeding, we introduce a few useful concepts and definitions for studying data-dependent
partitions, due to Nobel [3]. Let

Λn,k =
{
P({(ỹ1, x̃T

1 ), . . . , (ỹn, x̃T
n )}) : (ỹi, x̃T

i ) ∈ R1+p}
be the family of all achievable partitions P by growing a depth k oblique decision tree on n
data points with split boundaries of the form xTa = b, where ∥a∥ℓ0 ≤ d. In particular, note that
Λn,k contains all data-dependent partitions. We also define

M(Λn,k) =max{ |P| :P ∈Λn,k}

to be the maximum number of terminal nodes among all partitions in Λn,k. Note that M(Λn,k) ≤
2k (this statement does not rely on the specific algorithm used to grow a depth k oblique tree, as
long as the tree generates a partition of X at each level). Given a set zn = {z1, z2, . . . , zn} ⊂ R

p,
define Γ(zn,Λn,k) to be the number of distinct partitions of zn induced by elements of Λn,k, that
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is, the number of different partitions {zn ∩ A : A ∈ P}, for P ∈Λn,k. The partitioning number
Γn,k(Λn,k) is defined by

Γn,k(Λn,k) =max{Γ(zn,Λn,k) : z1, z2, . . . , zn ∈ R
p},

i.e., the maximum number of different partitions of any n point set that can be induced by
members of Λn,k. Finally, let Fn,k(R) denote the collection of all functions (bounded by R) that
output an element of span(H) on each region from a partition P ∈Λn,k.

We can deduce that the partitioning number is bounded by

Γn,k(Λn,k) ≤
((

p
d

)
nd

)2k

≤

((
ep
d

)d

nd
)2k

=

(
enp
d

)d2k

.

The bound on Γn,k follows from the maximum number of ways in which n data points can
be split by a hyperplane in d dimensions. The

(
p
d

)
factor accounts for the number of ways in

which a d-dimensional hyperplane can be constructed in a p-dimensional space. Note that this
bound is not derived from the specific algorithm used to select the splitting hyperplanes; it is
purely combinatorial.

Then, by slightly modifying the calculations in Györfi et al. [1, p. 240] and combining them
with Györfi et al. [1, Lemma 13.1, Theorem 9.4], we have the following bound for the covering
number N(r,Fn,k(R),L1(Pxn)) of Fn,k(R) by balls of radius r > 0 in L1(Pxn) with respect to
the empirical discrete measure Pxn on xn = {x1,x2, . . . ,xn} ⊂ R

p:

(A.2)

N

(
β(n)
40R
,Fn,k(R),L1(Pxn)

)
≤ Γn,k(Λn,k)

(
3
(
6eR
β(n)
40R

)2VC(H))2k

≤

((
enp
d

)d)2k(
3
(
240eR2

β(n)

)2VC(H))2k

=

(
3
(
enp
d

)d)2k(
240eR2

β(n)

)VC(H)2k+1

,

where we use VC(H) to denote the VC dimension of span(H). According to (2.6), we know
that the regression function is uniformly bounded, ∥µ∥∞ ≤ M′. Let R = QB. We assume,
without loss of generality, that R ≥ M′ so that ∥µ∥∞ ≤ R and ||̂µ(Tk)∥∞ ≤ R almost surely, if
max1≤i≤n |yi| ≤ B. By Györfi et al. [1, Theorem 11.4], with ε = 1/2 (in their notation),

P
(
∃ f ∈ Fn,k(R) : ∥µ − f ∥2 ≥ 2(∥y − f∥2n − ∥y − µ∥

2
n) + α(n, k) + β(n), ∀i : |yi| ≤ B

)
≤ 14 sup

xn
N

(
β(n)
40R
,Fn,k(R),L1(Pxn)

)
exp

(
−
α(n, k)n
2568R4

)
.

Then, we have the following probability concentration

P
(
ETK

[
∥µ − µ̂(Tk)∥

]
≥ 2(ETK

[
∥y − µ̂(Tk)∥2n

]
− ∥y − µ∥2n) + α(n, k) + β(n), ∀i : |yi| ≤ B

)
≤ 14 sup

xn
N

(
β(n)
40R
,Fn,k(R),L1(Pxn)

)
exp

(
−
α(n, k)n
2568R4

)
.(A.3)

This inequality follows from the fact that, on the event {∀i : |yi| ≤ B}, if

ETK

[
∥µ − µ̂(Tk)∥2 − 2∥y − µ̂(Tk)∥2n

]
≥ −2∥y − µ∥2n + α(n, k) + β(n)
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holds, then there exists a realization µ̂(T ′k) ∈ Fn,k(R) such that

∥µ − µ̂(T ′k)∥2 − 2∥y − µ̂(T ′k)∥2n ≥ −2∥y − µ∥2n + α(n, k) + β(n),

and hence

P
(
ETK

[
∥µ − µ̂(Tk)∥

]
≥ 2(ETK

[
∥y − µ̂(Tk)∥2n

]
− ∥y − µ∥2n) + α(n, k) + β(n), ∀i : |yi| ≤ B

)
≤ P

(
∃ f ∈ Fn,k(R) : ∥µ − f ∥2 ≥ 2(∥y − f∥2n − ∥y − µ∥

2
n) + α(n, k) + β(n), ∀i : |yi| ≤ B

)
.

We can now plug in the result of (A.2) into (A.3) to obtain

(A.4) P(E1 ≥ 0, ∀i : |yi| ≤ B) ≤ 14
(
3
(
enp
d

)d)2k(
240eR2

β(n)

)VC(H)2k+1

exp
(
−
α(n, k)n
2568R4

)
.

We choose

α(n, k) =
2568R4

(
2kd log(enp/d) + 2k log(3) +VC(H)2k+1 log( 240eR2

β(n) ) + log(14n2)
)

n

β(n) =
240eR2

n2

so that P(E1 ≥ 0, ∀i : |yi| ≤ B) ≤ 1/n2. Thus,

E11(∀i : |yi| ≤ B) ≤
(
ETK

[
∥µ − µ̂(Tk)∥2

]
+ 2∥y − µ∥2n

)
1(∀i : |yi| ≤ B) ≤ 12R2,

and so we have

(A.5) E
[
E11(∀i : |yi| ≤ B)

]
≤ 12R2P(E1 ≥ 0, ∀i : |yi| ≤ B) ≤

12R2

n2 =
12Q2B2

n2 .

Unbounded term. We now look at the second term on the right hand side of (A.1). Because

we have ∥̂µ(Tk)∥∞ ≤ Q ·
√

max1≤i≤n
1
i
∑i
ℓ=1 y2

ℓ
almost surely, we can bound

E
[
∥µ − µ̂(Tk)∥21(∃i : |yi| > B)

]
≤ (Q + 1)2E

[
max
1≤i≤n

max
{
y2, y2

i
}
1(∃i : |yi| > B)

]
.

Using the fact that the sum of non-negative variables upper bounds their maximum, and the
exponential concentration of the conditional distribution of y given x (Assumption 2) together
with a union bound, we can then apply Cauchy-Schwarz to obtain

E
[
∥µ − µ̂(Tk)∥21(∃i : |yi| > B)

]
≤ (Q + 1)2

√
(n + 1)E[y4]

√
nc1 exp(−c2(B−M)γ).

Setting B = Bn = M +
(
(6/c2) log(n + 1)

)1/γ
≥ M′, we have that

(A.6) E
[
∥µ − µ̂(Tk)∥21(∃i : |yi| > B)

]
≤

(Q + 1)2
√

c1E
[
y4]

n2 .

Thus combining (A.5) and (A.6), we have

(A.7)

E[E1] = E[E11(∀i : |yi| ≤ B)] + E[E11(∃i : |yi| > B)]

≤
12Q2B2

n2 +
(Q + 1)2

√
c1E

[
y4]

n2 =O
(
log2/γ(n)

n2

)
.

Next, we turn our attention to E[E2]. Since

E
[
∥y − µ̂(Tk)∥2n − ∥y − µ∥

2
n
]
= ∥µ − g∥2 + E

[
∥y − µ̂(Tk)∥2n − ∥y − g∥2n

]
,
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it follows that

(A.8) E[E2] = 2∥µ − g∥2 + 2E
[
∥y − µ̂(Tk)∥2n − ∥y − g∥2n

]
+ α(n, k) + β(n).

Finally, combining the bounds (A.7) and (A.8) and simplifying α(n, k) and β(n),
(A.9)
E
[
∥µ − µ̂(TK)∥2

]
≤ 2∥µ − g∥2 + 2E

[
∥y − µ̂(TK)∥2n − ∥y − g∥2n

]
+C

2K(d +VC(H)) log(np/d) log4/γ(n)
n

,

for some positive constant C =C(c1, c2, γ,M,Q).

Pruned tree. We now consider the pruned tree, Topt. Let ETopt

[
∥µ − µ̂(Topt)∥2

]
= E′1 + E′2,

where

E′1 = ETopt

[
∥µ − µ̂(Topt)∥2

]
− 2(ETopt

[
∥y − µ̂(Topt)∥2n

]
− ∥y − µ∥2n) − 2λ|Topt|

E′2 = 2(ETopt

[
∥y − µ̂(Topt)∥2n

]
− ∥y − µ∥2n) + 2λ|Topt|.

Note that, for each k = 1,2, . . . ,n − 1,

∥y − µ̂(Topt)∥2n + λ|Topt| ≤ ∥y − µ̂(Tk)∥2n + λ2
k,

and hence, for each k ≥ 1,

(A.10) E[E′2] ≤ 2∥µ − g∥2 + 2E
[
∥y − µ̂(Tk)∥2n − ∥y − g∥2n

]
+ λ2k+1.

Choose λ = λn such that α(n, k)+ β(n) ≤ λn2k+1. This implies that λn ≳
(d+VC(H)) log(np/d) log4/γ(n)

n .
For each realization of Topt, there exists k such that |Topt| ≥ 2k. By a union bound and the result
established in (A.4), we have

P(E′1 ≥ 0) ≤ P(ETopt

[
∥µ − µ̂(Topt)∥2

]
≥ 2(ETopt

[
∥y − µ̂(Topt)∥2n

]
− ∥y − µ∥2n) + 2λn|Topt|)

≤
∑

1≤k≤n−1

P(∃ f ∈ Fn,k(R) : ∥µ − f ∥2 ≥ 2(∥y − f∥2n − ∥y − µ∥
2
n) + λn2k+1)

≤
∑

1≤k≤n−1

P(∃ f ∈ Fn,k(R) : ∥µ − f ∥2 ≥ 2(∥y − f∥2n − ∥y − µ∥
2
n) + α(n, k) + β(n))

≤
∑

1≤k≤n−1

n−2 ≤ 1/n.

Once again, we split the expectation, E[E′1] into two cases, as in (A.1), and bound each case
separately. The argument is identical to that for the un-pruned tree so we omit details here.
Combining this bound on E[E′1] with (A.10) gives as an analogous result to (A.9), namely, for
all K ≥ 1,

(A.11)
E
[
∥µ − µ̂(Topt)∥2

]
≤ 2∥µ − g∥2 + 2E

[
∥y − µ̂(TK)∥2n − ∥y − g∥2n

]
+C

2K(p +VC(H)) log1+4/γ(n)
n

,

for some positive constant C =C(c1, c2, γ,M,Q).

The next part of the proof entails bounding E
[
∥y − µ̂(TK)∥2n − ∥y − g∥2n

]
, depending on the

assumptions we make. Note that for the constant output ŷt(x) ≡ yt, we have Q = 1 and
VC(H) = 1.

For Theorem 2.3: We bound E
[
∥y− µ̂(TK)∥2n − ∥y− g∥2n

]
using Lemma 2.2. The inequality (9)

follows directly from (A.9) and the inequality (10) follows directly from (A.11).
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For Theorem 3.2: Taking g = µ ∈ G and d = p, we bound E
[
∥y − µ̂(TK)∥2n − ∥y − g∥2n

]
using

Lemma 3.1. The inequality (3.2) follows directly from (A.9). To show (13), we use (3.2) and

inf
K≥1

{
2AV2

4(K−1)/q +C
2K+1 p log4/γ+1(n)

n

}

= 2(2 + q)
(

AV2

q

)q/(2+q)(Cp log4/γ+1(n)
n

)2/(2+q)

.

This completes the proof of both Theorem 2.3 and Theorem 3.2. ■

Proof of Corollary 2.4. Because our risk bounds allow for model misspecification, one can
easily establish consistency of µ̂(TK), even when µ ∈ F \ G. Recall that F = cl(G), that is,

F =

{
f (x) =

M∑
k=1

fk(aT
k x), ak ∈ R

p, fk : R 7→ R
}
.

Importantly, F includes functions whose L1 norm may be infinite. Consider such a function
µ that belongs to F but not to G. Furthermore, grant Assumptions 1 and 2, which entail
µ ∈L∞(Rp). Let G′ ⊂ G denote the set of all single-hidden layer feed-forward neural networks
with activation function that is non-constant and of bounded variation (and hence bounded).
Then by Hornik [2, Theorem 1], G′ is dense in L∞(Rp) ⊂L2(Px). Therefore, we can choose
a sequence {gn} ⊂ G

′, where each component function gnk is bounded, non-constant, and of
bounded variation, such that limn→∞ ∥µ − gn∥ = 0 and ∥gn∥L1 <∞ for each n. Define a subse-
quence {gan} by an =max

{
m ≤ n : ∥gm∥L1 ≤ D

√
Kn/ log(n + 1)

}
, where D is a positive constant

large enough so that ∥g1∥L1 ≤ D
√

Kn/ log(n + 1) for all n. Then, by construction, we have
∥µ − gan∥ → 0 and ∥gan∥L1 = o(

√
Kn) as n→∞. Finally, according to (9) (and similarly (10)),

since {gan} ⊂ F , we have limn→∞ E
[
∥µ − µ̂(TK)∥2

]
= 0.

An analogous argument holds for the pruned tree Topt. ■

Proof of Corollary 2.5. The proof follows directly from the assumptions and Theorem 2.3.
■

Proof of Theorem 4.1. Since we assume the subsample selection is independent of the split-
ting direction subset selection at each node, we have the following decomposition of the law
of the process that governs each tree in the forest:

ΠΘ = ΠK ×ΠI,

where I ⊂ {1, . . . ,n} is the set of indices of the subsampled data set of size N.

Part 1: Training error bound. By Jensen’s inequality,

EΠΘ
[
∥µ − µ̂(Θ)∥2

]
≤ EΠΘ

[
∥µ − µ̂(TK(Θ))∥2

]
.

Additionally, by the law of total expectation,

EΠΘ
[
∥µ − µ̂(TK(Θ))∥2

]
= EI

[
EΠK

[
∥µ − µ̂(TK(Θ))∥2 | I

]]
.
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We can prove a training error bound analogous to that of Lemma 3.1 by considering the modi-
fied definitions of excess training error. Define excess training error at each node conditional
on the subsampled data as

RIK(t) = ∥y − yt∥
2
t,I − ∥y − g∥2t ,

and the excess training error of the tree as

RIK = ∥y − y∥2I − ∥y − g∥2
I
.

Since we do the subset selection independently at each node, any terminal node t of TK−1 is
independent of ΠK , conditional on ΠK−1. We can then apply the law of iterated expectation to
the conditional training error, just as in the proof of Lemma 2.2 and the bound follows directly.

Part 2: Oracle inequality. The second part of this proof is analogous to the proof Theorem 2.3
where the averaging over the data set is replaced by averaging over the subsampled data.

This completes the proof. ■

A.1. Sedrakyan’s Inequality. For completeness, we reproduce Sedrakyan’s inequality [4]
in its generalized form below.

LemmaA.1 (Sedrakyan’s inequality [4]). Let U and V be two non-negative random variables
with V > 0 almost surely. Then

E

[
U
V

]
≥

(
E
[√

U
])2

E[V]
.

Proof of Lemma A.1. By the Cauchy-Schwarz inequality,

E
[√

U
]
= E

[√
U
V

√
V
]
≤

√
E

[
U
V

] √
E[V].

Rearranging the above inequality gives the desired result. ■
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