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Abstract

This paper discusses the R package lpcde, which stands for local polynomial conditional den-
sity estimation. It implements the kernel-based local polynomial smoothing methods introduced
in Cattaneo et al. (2024a) for statistical estimation and inference of conditional distributions,
densities, and derivatives thereof. The package offers mean square error optimal bandwidth
selection and associated point estimators, as well as uncertainty quantification based on robust
bias correction both pointwise (e.g., confidence intervals) and uniformly (e.g., confidence bands)
over evaluation points. The methods implemented are boundary adaptive whenever the data is
compactly supported. The package also implements regularized conditional density estimation
methods, ensuring the resulting density estimate is non-negative and integrates to one. We
contrast the functionalities of lpcde with existing open-source packages for conditional density
estimation, and showcase its main features using simulated and real datasets. An abbreviated
version of this article is published in Cattaneo et al. (2025).

1 Introduction

Conditional cumulative distribution functions (CDFs), conditional probability density functions
(PDFs), and derivatives thereof, are important parameters of interest in statistics, econometrics, and
other data science disciplines. This article discusses the main methodological features of the R pack-
age lpcde for estimation of and inference on conditional CDFs, conditional PDFs, and derivatives
thereof, employing the kernel-based local polynomial smoothing approach introduced in Cattaneo
et al. (2024a, CCJM hereafter).

Wand and Jones (1995), Fan and Gijbels (1996), Simonoff (2012), and Scott (2015) give textbook
introductions to kernel-based density and local polynomial estimation and inference methods. The
core idea underlying the estimator introduced in CCJM is to use kernel-based local polynomial
smoothing methods to construct an automatically boundary adaptive estimator for CDFs, PDFs,
and derivatives thereof. The estimation approach consists of two steps. The first step estimates
the conditional distribution function using standard local polynomial regression methods, and the
second step applies local polynomial smoothing to the (non-smooth) local polynomial conditional
CDF estimate from the first step to obtain a smooth estimate of the CDF, PDF, and derivatives
thereof.
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For the case of PDF estimation, classical estimation approaches typically employ ratios of un-
conditional kernel density estimators, the derivative of kernel-based non-linear distribution function
regression estimators, or local polynomial estimators based on some preliminary density-like ap-
proximation. See, for example, Fan et al. (1996), Hall et al. (1999), De Gooijer and Zerom (2003),
Hall et al. (2004), and references therein. These approaches are not boundary adaptive unless
specific modifications (e.g., boundary corrected kernels) are introduced. CCJM’s estimator is con-
ceptually different and is boundary adaptive for a possibly unknown compact support of the data.
Furthermore, the estimator has a simple closed form representation, which leads to easy and fast im-
plementation. Unlike some other boundary adaptive procedures, it does not require pre-processing
of data, and thus avoids the challenges of hyper-parameter tuning: only one bandwidth parameter
needs to be selected for implementation.

Building on the theoretical and methodological work reported in CCJM, the package lpcde
offers data-driven (pointwise and uniform) estimation and inference methods for conditional CDFs,
conditional PDFs, and derivatives thereof, which are automatically valid at interior, near-boundary,
and boundary points on the support of both the variable of interest and the conditioning variables.
For point estimation, the package offers mean squared error optimal bandwidth selection and asso-
ciated point estimators. For inference, the package offers valid confidence intervals and confidence
bands based on robust bias-correction techniques (Calonico et al., 2018, 2022). Finally, these statis-
tical procedures can be easily used for visualization and graphical presentation of smooth empirical
CDFs, conditional PDFs, and derivative thereof. We give an overview of the main methods imple-
mented in the package below, along with a discussion of more specific implementation issues. We
also showcase the performance of the package with simulated data.

The package lpcde includes two main functions.

• lpcde(): This function implements the estimator of interest over a grid of evaluation points on
the support of the variable of interest and at a pre-specified conditioning value. The function
takes three main inputs: data, a bandwidth, and polynomial orders. When the bandwidth
is not specified by the user, the function employs the companion function lpbwcde() for
automatic, data-driven bandwidth selection. When the polynomial orders are not specified by
the user, the function employs the next polynomial order relative to the parameter of interest.
For example, for CDF estimation, the polynomial orders are set to p = q = 1, while for PDF
estimation they are set to p = 2 and q = 1, where p denotes the polynomial order for the
variable of interest, and q denotes the polynomial order for the conditioning variables. The
Epanechnikov kernel is used by default. However, there are alternative kernel options that
can be provided by the user, if desired. This function implements pointwise and uniform
inference via robust bias-correction methods, employing the same grid of points used for point
estimation.

• lpbwcde(): This function implements pointwise and integrated mean square error (IMSE)
optimal bandwidth selection for the kernel-based local polynomial smoothing methods intro-
duced in CCJM. The resulting bandwidth selection procedure leads to an IMSE-rate optimal
point estimator whenever the difference of polynomial order and derivative order of inter-
est is odd (see below for further details). This bandwidth choice is also valid, and in some
cases optimal from a distributional approximation perspective, when coupled with robust
bias-correction methods for statistical inference.

The methods coef(), confint(), vcov(), print(), plot() and summary() are supported
for objects returned by the lpcde function, while the methods coef(), print() and summary()
are supported for objects returned by the lpbwcde function. The plot() function builds on the
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ggplot2 (Wickham, 2016) package in R and can be used for illustrations of conditional CDFs, condi-
tional PDFs or higher order derivatives and their pointwise or uniform confidence bands for a given
value of the conditioning variable(s).

The package lpcde contributes to a rather small set of open source software packages for esti-
mation and inference about conditional CDF, PDF, and derivatives thereof. More specifically, we
identified two R packages, hdrcde (Hyndman et al., 2021), haldensify (Hejazi et al., 2022), and
np (Hayfield and Racine, 2008), and one Python package, cde (Rothfuss et al., 2019), which provide
related methodology. There are no open source Stata packages that implement conditional CDF,
PDF, and derivative thereof estimation. Table 1 summarizes some of the main differences between
those packages and lpcde. As is noted in the Table 1, lpcde is the only package available across
multiple programming languages that provides both pointwise and uniform confidence interval con-
struction that is asymptotically valid, in addition to producing mean square and uniform optimal
boundary adaptive point estimates, with the option of ensuring proper conditional density estimates
that are non-negative and integrate to one. These features are unique contributions of the package
to the R toolkit and, more broadly, the open source statistical software community.

Table 1: Comparison of open source software packages for conditional density estimation.

Package Programming
language

CDF / Derivative
estimation

Regularized
density

Valid at
boundary

Standard
error

Valid
inference

Confidence
bands

Bandwidth
selection

hdrcde R × × × × × × ✓
np R × × × ✓ × × ✓
haldensify R × × × ✓ × × ✓
cde Python × × × × × × ✓

lpcde R ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: (i) all packages provide conditional PDF point estimation; (ii) bandwidth selection is done via
cross-validation in hdrcde and np, and using plug-in mean squared error approximations in lpcde.

In addition, Cattaneo et al. (2020, 2022, 2024b) develop complementary methods for local poly-
nomial kernel based regression estimation and inference for unconditional densities and higher-order
derivatives. These methods and companion statistical software (lpdensity) cannot be used to con-
duct estimation and inference for conditional distributions, densities, and derivative thereof.

The remainder of this article is organized as follows. Section 2 describes the derivation of our
estimator along with details on how the bandwidth, covariance matrix and confidence intervals can
be constructed. This section also highlights some key computational considerations when imple-
menting the estimator. Section 3 discusses how the various functions and features of the package
can be implemented in practice through examples of code snippets with a toy dataset. Section 4 il-
lustrates the performance of the estimator through Monte Carlo simulation excercises and compares
the performance of lpcde against the alternative packages identified in Table 1 on a real dataset.
Finally, we conclude in Section 5. An abbreviated version of this article is published in Cattaneo
et al. (2025), and additional information about the R package lpcde, including replication files and
datasets, can be found at https://nppackages.github.io/lpcde/.

2 Methodology

We give an overview of the methodology implemented in lpcde; technical details in full generality
can be found in CCJM. We start by considering a random sample (Y1,X

⊤
1 ), . . . , (Yn,X

⊤
n ) from the

continuously distributed random vector (Y,X⊤) ∈ Y × X . We assume Y ⊆ R is a 1-dimensional
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and X ⊆ Rd is a d-dimensional possibly, but not necessarily, compactly supported set. The goal is
to estimate and conduct inference on the conditional CDF, PDF, and derivatives thereof, of Y |X.
Prior to setting up our estimator, the following section establishes all necessary notation.

2.1 Notation

Notation introduced in this section will be used through the remainder of the text. Our parameter
of interest is

F (µ,ν)(y|x) = ∂µ+|ν|

∂yµ∂xν
F (y|x), F (y|x) = P[Y ≤ y|X = x],

where µ ∈ N0 denotes the derivative order with respect to the variable of interest Y and, employing
multi-index notation, ν ∈ Nd

0 denotes the multi-index for the corresponding derivatives of interest
with respect to the conditioning variables X. For example,

• F (y|x) = F (0,0)(y|x) is the conditional CDF of Y |X;

• f(y|x) = F (1,0)(y|x) is the conditional PDF of Y |X;

• f (1,0)(y|x) = F (2,0)(y|x) is the derivative (with respect to y) of conditional PDF of Y |X.

To simplify the exposition, we abstract from derivative estimation with respect to the conditioning
variables in X, and therefore set ν = 0 for the rest of this article. Consequently, we denote

F (µ)(y|x) = F (µ,0)(y|x) for µ ∈ N0.

See CCJM for theoretical and methodological results concerning |ν| > 0, all of which are also
implemented in the R package lpcde, thereby allowing for estimation of derivatives with respect to
X of the conditional CDF of Y |X.

The following notation is used in constructing and analysing our estimator:

• eℓ is the conformable (ℓ+ 1)-th unit vector.

• |A| denotes the cardinality of a set A.

• q(u): q-th order polynomial expansion for some q ∈ N. It is a (qd + 1)-dimensional vector
collecting the ordered elements uν/ν! for 0 ≤ |ν| ≤ q, where, employing multi-index notation,
uν = uν11 uν22 · · ·uνdd , ν! = ν1!ν2! · · ·νd!, |ν| = ν1 + ν2 + · · ·+ νd, and qd = (d+ q)!/(q!d!)− 1.

• p(u): p-th order polynomial expansion for some p ∈ N. It is a (p + 1)-dimensional vector
collecting the ordered elements uµ/µ! for 0 ≤ µ ≤ p.

• Kh(x;u) = K((x− u)/h)/h, where K(·) is a kernel function and h is a bandwidth.

• Lh(x;u) = Kh(x1 − u1)Kh(x2 − u2) · · ·Kh(xd − ud).

• Ŝy = 1
n

∑n
i=1Kh(yi; y)p

(
yi−y
h

)
p
(
yi−y
h

)⊤
.

• Ŝx = 1
n

∑n
i=1 Lh(xi;x)q

(
xi−x
h

)
q
(
xi−x
h

)⊤
.

• R̂y,x = 1
n2h

∑n
j=1

∑n
i=1Kh(yj ; y)p

(
yj−y
h

)
Lh(xi;x)q

(
xi−x
h

)⊤
1(yi ≤ yj).
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2.2 General estimation idea

The construction of the conditional CDF, PDF and derivatives thereof involves two steps. First,
the conditional distribution function F (y|x) is estimated by standard local polynomial methods:

F̂q(y|x) = e⊤0 γ̂q(y|x), γ̂q(y|x) = argmin
c∈Rqd

n∑
i=1

(
1(yi ≤ y)− q(xi − x)⊤c

)2
Lh(xi − x), (1)

Note here that the estimator F̂q(y|x) of F (y|x) is not smooth as a function of y and therefore cannot
be used to construct an estimator of the conditional PDF and higher-order derivatives with respect
to y.

Therefore, in a second step, a smoothed (with respect to y) estimator of the CDF and its
derivatives is constructed also using local polynomial methods: for any 0 ≤ µ ≤ p,

F̂
(µ)
p,q (y|x) = e⊤µ β̂p,q(y|x),

β̂p,q(y|x) = argmin
b∈B

n∑
i=1

(
F̂q(yi|x)− p(yi − y)⊤b

)2
Kh(yi − y), (2)

where B is some general constraint set. There are different forms of search space that may be
of interest to researchers based on the application for which the estimator is being used. For
example, it may be necessary that the first element of b, corresponding to the conditional PDF
estimator, be nonnegative. In this setting, the set over which b is minimized can be defined as
B = {b ∈ Rp+1 : e⊤1 b ≥ 0}. This case is studied further in Section 2.5. On the other hand, if
B = Rp+1, no constraints are imposed on b. This is the case that we focus on in the following
sections.

2.3 Point estimation

Solving Equations 1 and 2 (with B = Rp+1) gives a simple closed form for the general estimator:

F̂
(µ)
p,q (y|x) = e⊤µ Ŝ

−1
y R̂y,xŜ

−1
x e0, (3)

A complete derivation of this closed-form solution is provided in the supplemental material of CCJM.
In the R package, for a choice of derivative µ with respect to y (and a choice of of derivative ν

with respect of x, a choice of polynomial orders (p, q), a choice of bandwidth h and kernel function
K(·)), the function lpcde() implements the estimator F̂

(µ)
p,q (y|x) over a grid of points on Y for a

given conditioning evaluation point x. By default, the function sets (µ,ν) = (1, 0) (conditional
PDF), q = 1 (local linear nonsmooth conditional CDF estimation), p = 2 (local quadratic smooth
conditional CDF estimation), and K(·) is to chosen to be the Epanechnikov kernel. Generally
speaking, it is recommended to choose the local polynomial order such that p − µ and q − |ν| are
both odd. Although the second-order Epanechnikov kernel is implemented by default, the function
lpcde() can also be implemented with second-order uniform and triangular kernels by setting the
variable kernel_type appropriately. The choice of the kernel does not affect the orders of the bias
and the variance. Last but not least, the choice of bandwidth h is important: by default, whenever
h is not supplied by the user, the function lpcde() relies on the companion function lpbwcde(),
which implements data-driven bandwidth selection based on the minimization of the (approximate)
mean squared error of the estimator F̂

(µ)
p,q (y|x).

In the remainder of this section we review some of the main statistical properties and infer-
ence techniques developed in CCJM and the computational considerations in implementing these
methods in the package lpcde.
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2.4 Bandwidth selection

Once we have the closed form of the point estimator, we can derive the leading bias and variance of
the estimator. The leading bias and variance for odd values of p− µ and q− |ν| take the following
form:

Bias
[
F̂ (µ)(y|x)

]
= hq+1

∑
|m|=q+1

F (µ,m)(y|x)B(i)
m (x) + hp+1−µF (p+1)B

(ii)
p+1(y), (4)

Var
[
F̂ (µ)(y|x)

]
=

1

nhd+2µ+1
F (1)(y|x)V (µ)

p,q (y,x). (5)

The quantities on the right hand side above implicitly depend on the kernel function. It is straight-
forward to show that both the bias and variance terms converge in probability to non-random,
well-defined limits. Exact expressions and technical details for other cases can be found in the
supplemental appendix of CCJM.

Equations 4 and 5 are valid for all evaluation points on the support of the data. As a result,
the pointwise mean squared error (MSE) optimal bandwidth can be approximated as

hMSE
p,q (y,x) = argmin

h>0

[
Var

[
F̂

(µ)
p,q (y|x)

]
+ Bias

[
F̂

(µ)
p,q (y|x)

]2]
.

Under standard regularity conditions, hMSE(y,x) is MSE-optimal if p − µ and q − |ν| are odd.
Precise closed-form expressions for the MSE-optimal bandwidth can be found in the supplemental
appendix of CCJM. In practice, the MSE-optimal bandwidth is estimated by plugging-in estimates
of the unknown quantities in Equations 4 and 5, given some initial bandwidth choice and then
direcetly solving for the optimal bandwidth.

The IMSE-optimal bandwidth is estimated similarly, with the main difference being that a set of
grid points on the support of Y is used to approximate the integral. Detailed expressions are given
in the supplemental material of CCJM. Bandwidth selection is implemented through the lpbwcde()
function.

The number of grid points or specific locations of grid points (default is 19 equally-spaced
points over the implied support) can be specified by the user as an input to both the lpbwcde()
and lpcde() functions. For generating quantile-spaced grid points, the flag grid_spacing should
be set to ‘quantile’. Users should be aware of possible issues with using equally-spaced grid
points at low-density regions or near boundary points. If a small banwidth is coupled with grid
points that have few data points that can be used for estimation, the resulting point estimates as
well as standard error approximations may have numerical inaccuracies that cause instability in the
output. We recommend either prior checking of effective sample sizes for the choice of bandwidth
or choosing quantile-spaced grid points.

2.5 Constrained density estimation

As mentioned in Section 2.2, some applications may require that the conditional density estimate
satisfy additional constraints. For example, it may be desirable to ensure that the PDF estimate
be non-negative on the support and integrates to one. Fortunately, our two-step formulation of the
estimator allows for the non-negativity constraint to be incorporated directly into the second step
given in Equation 2:

f̂N(y|x) = e⊤1 β̂N(y|x), β̂N(y|x) = argmin
b∈Rp+1: e⊤1 u≥0

n∑
i=1

(
F̂ (yi|x)− p(yi − y)⊤b

)2
Kh(yi; y),
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where we use the subscript “N” to denote the non-negative estimator. The solution to this modified
optimization problem leads to a simple closed form solution that can be written in terms of the
unconstrained estimator f̂(y|x):

f̂N(y|x) = max
{
f̂(y|x) , 0

}
.

In order to incorporate the constraint that the conditional density estimator also integrates to one, a
global constraint must be imposed on the estimator. In CCJM, we propose and study a modification
of the f̂N based on the Kullback-Leibler divergence,

f̂I(y|x) = argmin
g∈G

KL
(
g
∥∥ f̂N(·|x)

)
, where KL(g

∥∥ f) =

∫
Y
g(y) log

(
g(y)

f(y)

)
dy,

where the subscript “I” stands for “integrating to one” and G = {g ≥ 0 :
∫
Y g(y)dy = 1, g(y) =

0 for y ̸∈ Y}.
Fortunately, f̂I can be written in closed form as

f̂I(y|x) =
f̂N(y|x)∫

Y f̂N(u|x)du

Uniform rates of convergence as well as distributional convergence of both constrained estimators can
be established with slight modifications from the theory that was established for the unconstrained
estimator. Crucially, this means we can construct robust bias-corrected uniform confidence bands
for the constrained estimators as well. Further details regarding the convergence guarantees of the
constrained estimators are provided in Section 4 of CCJM.

2.6 Distribution theory and robust bias-corrected inference

In order to conduct inference, we first construct a Wald-type test statistic that has the following
distributional convergence

Tp,q(y,x) =
F̂

(µ)
p,q (y|x)− F (µ)(y|x)√

Var
[
F̂

(µ)
p,q (y|x)

] ⇝ N (B, 1),

where ⇝ denotes weak (distributional) convergence as h → 0 and n → ∞, N denotes the Gaussian
distribution, and B denotes the standardized asymptotic bias emerging whenever a too “large”
bandwidth is employed (e.g., when the MSE-optimal or IMSE-optimal bandwidth is used). See
CCJM for details.

As a result, standard confidence intervals with nominal (1− α) coverage takes the form:

CI(y,x) =

[
F̂

(µ)
p,q (y|x)± z1−α/2

√
V̂ar

[
F̂

(µ)
p,q (y|x)

]]
,

where zα is the α-th quantile of the standard normal distribution. However, for “large” bandwidths,
this confidence interval would be invalid due to the asymptotic bias, B. In practice, undersmoothing
is often used to address the asymptotic bias present. However, Calonico et al. (2018, 2022) show
that undersmoothing is sub-optimal under the standard assumptions of the model. Instead, they
propose a robust bias-correction (RBC) technique that has better higher-order approximations and
asymptotically correct coverage probabilities. RBC requires bias-correction of the point estimator
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and then adjusting the variance estimate appropriately to construct a bias-corrected Wald-type
statistic.

For our estimator, we first correct for the first-order bias by using a point estimator that is
generated by increasing the polynomial order for both variables, y and x. To be specific, we use
F̂

(µ)
p+1,q+1(y|x;hMSE

p,q ) in place of F̂
(µ)
p,q (y|x;hMSE

p,q ). The bandwidth used is optimal for the point
estimate with the lower order polynomials. The asymptotically valid confidence intervals now take
the form

CIRBC(y,x) =

[
F̂

(µ)
RBC(y|x)± z1−α/2

√
V̂ar

[
F̂

(µ)
RBC(y|x)

]]
,

where F̂
(µ)
RBC(y|x) ≡ F̂

(µ)
p+1,q+1(y|x) = F̂

(µ)
p,q (y|x)− B̂ias

[
F̂

(µ)
p,q (y|x)

]
.

Additionally, uniform confidence bands can be constructed as

CBRBC(M) =

{[
F̂

(µ)
RBC(y|x)± zM,1−α/2

√
V̂ar

[
F̂

(µ)
RBC(y|x)

]]
, y ∈ M

}
,

where M is a collection of evaluation points on the support Y and zM,α is the α-quantile over the
collection of evaluation points for a normal distribution centered at 0 and with the same variance-
covariance matrix as the estimator. The critical value zM,1−α/2, is defined by the upper α quantile
of the supremum of the simulated Gaussian process on the grid M:

zM,α = inf

{
u ≥ 0 : P

[
sup
y∈M

|Ẑ(µ)(y|x)| ≤ u

∣∣∣∣∣Data

]
≥ 1− α

}
,

where Ẑ(µ)(y|x) a∼ N
(
0, Ĉov

[
F̂

(µ)
RBC(y|x)

])
. The confidence band depends on the entire collection

of evaluation points. In lpcde, zM,1−α/2, is estimated by using the maximum over the grid points
as an approximation for the supremum over M. See CCJM (and its supplemental) for technical
details and regularity conditions.

The RBC method leads to confidence intervals/bands that are not centered at the density point
estimates since different order polynomials are used for the point estimates and for inference. Thus,
it may happen that the point estimates lies outside of the RBC confidence intervals/bands if the
underlying distribution has high curvature at some evaluation point(s). One solution in this case is
to increase the polynomial orders p and q, or to use a smaller-than-optimal bandwidth.

2.7 Implementation of the covariance estimator

Implementing the variance estimator for both estimating the MSE-optimal bandwidth and con-
structing confidence intervals, requires careful consideration. It is particularly crucial to consider
the computational cost of estimating the variance when employing uniform confidence bands, which
requires the construction of the full |M|×|M| covariance matrix in order to approximate the critical
value zM,1−α/2. The discussion in this section focuses only on the covariance matrix estimation for
the conditional PDF, f̂(y|x), purely for simplicity of presentation.

The standard plug-in estimator (constructed by estimating the unknown quantities in Equa-
tion 5) that is proposed and studied in CCJM has a computational complexity of O(|M|2n4). For
large datasets and a fine grid of evaluation points, this is prohibitively slow to run in practice. As
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a result the default covariance estimator used in lpcde implements a significantly faster jackknife
covariance estimatior. The construction of the jackknife estimator relies on the fact that the closed-
form of the estimator f̂ can be written as a V-statistic to which the Hoeffding decomposition can
be applied. The covariance expression then decomposes to a sum of two independent functions
that depend on the evaluation points and a small subset of the data in the neighborhood of the
evaluation points, thus reducing the computational cost to only O(|M|2(nh)2).

Here we provide a sketch of how this estimator is constructed. The interested reader can find a
complete derivation in Section 6 of the Supplementary Material of CCJM.

We start by first observing that the estimator f̂(y|x) is a V-statistic:

f̂(y|x) = 1

n2h

∑
i,j

1(yi ≤ yj)e
⊤
1 Ŝ

−1
y p

(
yj − y

h

)
Kh (yj ; y)q

⊤
(
xi − x

h

)
Lh (xi;x) Ŝ

−1
x e0

=
1

n2

n∑
i=1

a(yi, y)b(xi,x) +
1

n2

∑
1≤i ̸=j≤n

1(yi ≤ yj)a(yj , y)b(xi,x), (6)

where

a(yi, y) = h−2e⊤1 Ŝ
−1
y p

(
yi − y

h

)
K

(
yi − y

h

)
,

b(xi,x) = h−de⊤0 Ŝ
−1
x Q

(
xi − x

h

)
L

(
xi − x

h

)
.

The scalar functions a(·) and b(·) are are non-zero only for data points that are within h distance
of the evaluation point, a feature that the package lpcde leverages explicitly to improve numerical
performance in applications. The second term in Equation 6 can now be symmetrized and treated as
a U-statistic. Then, the Hoeffding decomposition can be applied and plugged back into Equation 6.
This leads to a natural alternative jackknife covariance estimator, which is simple to write and
computationally efficient:

Ĉ(y,x, y′,x′) =
1

n

n∑
i=1

L̂(i)(y,x)L̂(i)(y
′,x′).

where

L̂(i)(y,x) =
2

n− 1

∑
j ̸=i

(
ui,j − f̂(y|x)

)
.

and ui,j = 1
2(1(yi ≤ yj)a(yj , y)b(xi,x) + 1(yj ≤ yi)a(yi, y)b(xi,x))/2. In particular, if the two

evaluation points are equivalent, then we return the (approximately jackknife) variance estimator

V̂(y,x) ≡ Ĉ(y,x, y,x) =
1

n− 1

n∑
i=1

L̂2
(i)(y,x).

It can be easily verified that this jackknife covariance estimator is asymptotically equivalent to the
theoretical variance expression in Equation 5.

3 Implementation

In this section we discuss how each of the functions provided in lpcde can be used with the aid
of code snippets on a simulated dataset. We consider a bi-variate jointly normal data generating
process with mean 0 and variance 1.
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3.1 Density estimation

The function lpcde() provides information on point estimates, standard errors and confidence
interval or bands for a given value of x over a range of grid points for y. If the grid points are
not provided by the user, the function chooses nineteen equally-spaced grid points over the implied
support of the data and, if no bandwidth is provided, computes the rule-of-thumb MSE bandwidth
at each point.

The following example estimates the conditional density at x = 0, with a fixed bandwidth of 1,
using the default local polynomial approximation p = 2, q = 1. RBC confidence intervals over the
grid are also computed, in this case using the default polynomial orders p = 3, q = 2.

R> set.seed(42)
R> n = 1000
R> x_data = as.matrix(stats::rnorm(n, mean = 0, sd = 1))
R> y_data = as.matrix(stats::rnorm(n, mean = x_data, sd = 1))
R> y_grid = seq(from = -2, to = 2, length.out = 10)
R> model1 = lpcde(y_data = y_data, x_data = x_data, y_grid = y_grid, x = 0,
+ bw = 1, rbc = TRUE)
R> summary(model1)

The function returns an object of type lpcde. Standard R methods, coef(), confint(), vcov(),
print(), plot() and summary(), can be used on objects of type lpcde to understand the output.

Below we reproduce the output of running the summary command on model1. The first part of
the summary output provides basic information about some of the options specified to the function.
The second part provides relevant information for each point estimate generated in a table with
7 columns, (i) grid evaluation points, (ii) bandwidth used at each point, (iii) effective number of
data points used to generate the point estimate, (iv) point estimate, (v) standard error, (vi) lower
(1− α)-confidence interval, and, (vii) upper (1− α)-confidence interval.

Call: lpcde

Sample size 1000
Polynomial order for Y point estimation (p=) 2
Polynomial order for X point estimation (q=) 1
Density function estimated (mu=) 1
Order of derivative estimated for covariates (nu=) 0
Kernel function epanechnikov
Bandwidth method

============================================================================
Point Std. Robust B.C.

Index Grid B.W. Eff.n Est. Error [ 95\% C.I. ]
============================================================================
1 -2.0000 1.0000 132 0.0768 0.0126 0.0043 , 0.1108
2 -1.5556 1.0000 211 0.1446 0.0089 0.0834 , 0.1693
3 -1.1111 1.0000 304 0.2255 0.0064 0.2135 , 0.2829
4 -0.6667 1.0000 370 0.2982 0.0051 0.2964 , 0.3584
5 -0.2222 1.0000 411 0.3407 0.0047 0.3410 , 0.3981
----------------------------------------------------------------------------

10



6 0.2222 1.0000 409 0.3397 0.0044 0.3576 , 0.4113
7 0.6667 1.0000 359 0.2958 0.0050 0.2874 , 0.3447
8 1.1111 1.0000 279 0.2229 0.0064 0.1916 , 0.2574
9 1.5556 1.0000 186 0.1390 0.0082 0.0818 , 0.1656
10 2.0000 1.0000 117 0.0663 0.0112 -0.0291 , 0.0886
----------------------------------------------------------------------------
============================================================================

By default, the function provides estimates according to the original formulation of the estimator
f̂(y|x). If a constrained density estimate that is non-negative and integrates to one (f̂I as defined
in Section 2.5) is desired, the flags nonneg and normalize can be turned on.

R> model_reg = lpcde(y_data = y_data, x_data = x_data, y_grid = y_grid,
+ x = 0, bw = 1, nonneg = TRUE, normalize = TRUE)

Figure 1 shows how the estimates differ when the additional constraints are imposed:
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Figure 1: Comparing standard density estimate with normalized estimate.

3.2 Out-of-sample prediction

The lpcde function can be directly used for prediction on a new dataset. Below is a simple illus-
tration of how a researcher may want to implement this.

Suppose we want to use some data to train the estimator and then we would like to test it on
an unseen dataset. In this case, a common method is to randomly subset the data into training and
testing. We assume the same simulation set up as in the previous section. The data is split with
95% for training and 5% for testing

R> sample = sample(c(TRUE, FALSE), nrow(y_data), replace=TRUE, prob=c(0.95,0.05))
R> y_train = y_data[sample, ]
R> x_train = x_data[sample, ]
R> y_test = y_data[!sample, ]

Now the y_test sample can be used directly as the grid of evaluation points for lpcde:

R> prediction_model = lpcde::lpcde(x_data=x_train, y_data=y_train,
+ y_grid=y_test, x=0.5, bw=0.5, cov_flag="off")

11



3.3 Covariance estimation

As noted in Section 2.7, estimating the full covariance matrix can be computationally intensive. In
order to allow full flexibility in application of this functionality, an optional input cov_flag to the
lpcde function can be used. This input can take on three different values:

(a) "full": the function will compute the entire covariance matrix (and therefore allow confidence
interval and band construction),

(b) "diag": this will only compute the diagonal entries of the covariance matrix (i.e. the standard
errors, only pointwise confidence intervals can be computed), and

(c) "off": no entries of the covariance matrix are estimated. Inference tools will be unavailable.

3.4 Plotting

The plot() function uses the ggplot2 package with objects of type lpcde to produce illustrations
of point estimates and confidence intervals and/or bands. A simple plot of the conditional PDF
with 95% confidence intervals can be generated by running the following code.

R> plot(model1, CIuniform = TRUE, rbc = TRUE, xlabel = "y")

This code snippet produces an image of the type shown in Figure 2.
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Figure 2: A simple density plot with robust 95% confidence bands.

By default the plot() function plots pointwise confidence intervals at 95% level with the point
estimates. Additional options for confidence levels, bands and RBC inference are detailed in the
package manual. Editing other visual aspects of the plots can be done by providing standard inputs
to ggplot2 functions.

3.5 Bandwidth selection

lpbwcde() implements the rule-of-thumb MSE- and IMSE- bandwidth selection by implementing
the formulae provided in Section 2.3.

By default lpbwcde() computes the rule-of-thumb MSE optimal bandwidth for the conditional
PDF with locally quadratic polynomial in y and locally linear polynomial in x and Epanechnikov
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kernel on nineteen equally-spaced grid points on the implied support of Y determined by the observed
data. The output of this function is similar to that of lpcde() and provides basic information for
the data and options specified. The summary of objects returned by this function additionally
provides a table with three columns: (i) y_grid: values of the grid points for which the bandwidth
is estimated, (ii) B.W.: the estimated bandwidth corresponding to each grid point, and (iii) Eff.n.:
the number of effective data points at each evaluation point given the estimated bandwidth. An
example of standard bandwidth selection is provided in the following output.

R> model2 = lpbwcde(y_data = y_data, x_data = x_data, x = 0,
+ y_grid = y_grid)
R> summary(model2)

Call: lpbwcde

Sample size 1000
Polynomial order for Y point estimation (p=) 2
Polynomial order for X point estimation (q=) 1
Density function estimated (mu=) 1
Order of derivative estimated for covariates (nu=) 0
Kernel function epanechnikov
Bandwidth method mse-rot

==================================
Index y_grid B.W. Eff.n
==================================
1 -2.0000 1.0250 76
2 -1.5556 1.1594 238
3 -1.1111 2.0298 808
4 -0.6667 1.2968 615
5 -0.2222 1.0609 560
----------------------------------
6 0.2222 1.0634 558
7 0.6667 1.3103 607
8 1.1111 1.9603 774
9 1.5556 1.1566 219
10 2.0000 1.0274 71
----------------------------------
==================================

The estimated bandwidth from this function can be used as bandwidth input to lpcde() directly
by using the option of bwselect to specify bandwidth selection type instead of running lpbwcde()
first.

4 Computational performance

In this section we demonstrate the performance of the lpcde package. We start with a simulated
dataset analysis to showcase each of the inference features. Then, we compare the performance of
our package with the existing conditional density estimators in R (as identified in Table 1) on the
Iris dataset.
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4.1 Simulations

In this section we illustrate the effectiveness of our estimator with a Monte Carlo study. For the
sake of simplicity, we set d = 1 and assume that x and y are simulated by a joint normal distribution
truncated on [−1.5, 1.5]2. We simulate 100 data sets of 2000 independent samples each. The point
estimates are generated at three distinct values that are characterized by their location (a) interior
(0), (b) near-boundary (0.8), and (c) at-boundary (1.5) relative to the implied boundary of the
data.

For each conditional value, we present the average bandwidth, average bias, standard deviation,
95% coverage, and width of the confidence intervals across the simulated datasets. We present
these results for both the standard estimate (rows “WBC”) which is generated with a quadratic
polynomial (p = 2) with respect to the variable y, and linear polynomial (q = 1) with respect to the
variable x, as well as the robust bias-corrected estimates (rows “RBC”) which uses cubic polynomial
(p = 3) for y and quadratic polynomial (q = 2) for x.

Table 2 presents the results of this simulated study. The first four columns of the table present
average pointwise MSE-optimal bandwidth used in estimation (ĥMSE), bias, standard error (SE)
and root mean squared-error (RMSE). The last four columns are the average pointwise confidence
interval coverage and width (AW) of the confidence interval for the standard estimate and inference
method (“WBC”) and robust bias-corrected estimate and inference (“RBC”).

Coverage AW
Eval. point ĥMSE Bias SE RMSE WBC RBC WBC RBC

x = 0

y = 0 0.48 0.01 0.02 0.03 70 92 0.07 0.22
y = 0.8 0.55 0.01 0.01 0.02 79 94 0.05 0.17
y = 1.5 0.78 0.01 0.01 0.02 56 95 0.03 0.08

x = 0.8

y = 0 0.65 0.01 0.01 0.02 78 94 0.05 0.16
y = 0.8 0.60 0.02 0.01 0.03 53 96 0.06 0.19
y = 1.5 0.68 0.01 0.01 0.02 75 94 0.05 0.15

x = 1.5

y = 0 1.00 0.02 0.01 0.02 49 92 0.04 0.12
y = 0.8 0.90 0.01 0.01 0.03 73 93 0.05 0.15
y = 1.5 0.90 0.04 0.02 0.05 29 95 0.06 0.17

Table 2: Pointwise results
WBC: without bias-correction, RBC: robust bias-corrected.

Note that robust bias-corrected inference produces accurate empirical coverage across all point-
wise combinations. As such, we recommend users employ robust bias-corrected estimates for im-
proved reliability of results.

Next, we test the bandwidth selection by simulating point estimation and coverage at varying
bandwidth values. We choose the range of bandwidth values to be between 0.5 and 1.3 times the
average MSE-optimal bandwidth (ĥMSE). Table 3 presents the average bias, standard error (SE),
root mean-squared error (RMSE), pointwise coverage rate (CR) and average width of confidence
intervals (AW) for 100 simulations at the point y = 0, x = 0.
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×ĥMSE ĥ Bias SE RMSE WBC CR RBC CR WBC AW RBC AW
0.5 0.24 0.00 0.13 0.15 100.00 100.00 0.53 1.76
0.6 0.29 0.01 0.08 0.09 100.00 100.00 0.30 1.01
0.7 0.34 0.01 0.05 0.06 97.00 100.00 0.19 0.64
0.8 0.38 0.01 0.03 0.05 89.00 100.00 0.13 0.43
0.9 0.43 0.01 0.02 0.04 80.00 98.00 0.09 0.30
1 0.48 0.01 0.02 0.03 70.00 92.00 0.07 0.22

1.1 0.53 0.02 0.01 0.03 57.00 85.00 0.05 0.17
1.2 0.58 0.02 0.01 0.03 40.00 76.00 0.04 0.13
1.3 0.62 0.02 0.01 0.03 28.00 72.00 0.03 0.10
1.4 0.67 0.03 0.01 0.03 17.00 68.00 0.03 0.08
1.5 0.72 0.03 0.01 0.03 7.00 64.00 0.02 0.07

Table 3: Bandwidth selection at interior point (y = 0,x = 0).
WBC: without bias-correction, RBC: robust bias-corrected.

4.2 Comparative analysis

We now turn to comparing the performance of lpcde against the other open source R packages
available at the time of writing this article. To compare the performance of these packages, we
consider the Iris dataset which is available as a default dataset in R. For this study, we estimate the
distribution of the Sepal length feature conditional on the Petal length feature. The conditioning
values are chosen based on the 25-th (1.6), 50-th (4.35) and 75-th (5.1) quantiles of the Petal length.
Figure 3 shows a scatter plot of the data with vertical lines denoting the conditional values at which
the Sepal length density will be estimated.

1 2 3 4 5 6 7

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

Petal length

S
ep

al
 le

ng
th

Figure 3: Scatter plot with conditioning values.
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Figure 4: Conditional density estimates from each implementation conditioning at Petal length
= 1.6.

From Figure 3, it is clear that the conditional expectation of the Sepal length shifts across the
three evaluation points. Furthermore, at the conditional value of 1.6, there are very few data points
in a reasonable neighbourhood that can be used to construct the estimates. We expect this to affect
the standard error and resulting confidence intervals.

We now plot the conditional distributions of each of the three estimators. Since lpcde is the
only package that provides confidence interval construction, we additionally plot the lpcde estimate
with the pointwise confidence intervals. Note that the confidence intervals are only constructed for
estimates that are generated with more that 15 data points as we believe standard errors on estimates
generated with fewer data points will be unreliable. Figures 4, 5 and 6 show the estimated densities
for condtioning at 1.6, 4.35 and 5.1, respectively. Figures 4a, 5a, 6a compare directly the estimates
generated by the default implementations from each of the three packages (hdrcde, np and lpcde).
Figures 4b, 5b, 6b illustrate the lpcde estimate with confidence intervals using the default plotting
implementation provided in the package (pointwise, non bias-corrected confidence intervals).
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Figure 5: Conditional density estimates from each implementation conditioning at Petal length
= 4.35.
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(a) Conditional density estimates.
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(b) lpcde estimate with uniform confidence bands.

Figure 6: Conditional density estimates from each implementation conditioning at Petal length
= 5.1.

From the plots in Figures 4a, 5a, 6a, the three estimators largely present the same expected
trends of the density function. One observation that may be of interest is the that np estimate
for x = 4.35 and x = 5.1 is slightly bi-modal, which is not reflected in the other two estimators
and arguably is not present in the raw data (see Figure 3). Furthermore, the np estimator does not
produce a valid density estimate in that the estimator does not integrate to 1 for any of conditioning
values. On the other hand, hdrcde produces valid density estimates and is very similar to the
estimates of lpcde. Given that hdrcde does not provide inference tools, we cannot compare the
two packages further.
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5 Conclusion

This article introduced the software package lpcde, which implements local polynomial kernel based
regression estimation and inference for conditional densities and higher-order derivatives. This
package is currently the only open source estimator that provides adaptive conditional density esti-
mation with robust bias-correction and pointwise confidence interval and uniform confidence band
construction, providing users with tools to better understand the reliability of their analysis. See
Cattaneo et al. (2025) for an abbreviated published version of this article. Additional information
and replication files can be found at https://nppackages.github.io/lpcde/.
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