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Abstract

This paper discusses the R package lpcde, which stands for local polynomial conditional den-
sity estimation. It implements the kernel-based local polynomial smoothing methods introduced
in Cattaneo et al. (2024) for statistical estimation and inference of conditional distributions,
densities, and derivatives thereof. The package offers mean square error optimal bandwidth
selection and associated point estimators, as well as uncertainty quantification based on robust
bias correction both pointwise (e.g., confidence intervals) and uniformly (e.g., confidence bands)
over evaluation points. The methods implemented are boundary adaptive whenever the data is
compactly supported. The package also implements regularized conditional density estimation
methods, ensuring the resulting density estimate is non-negative and integrates to one. We con-
trast the functionalities of lpcde with existing R packages for conditional density estimation,
and showcase its main features using simulated data.

1 Introduction

Conditional cumulative distribution functions (CDFs), probability density functions (PDFs), and
derivatives thereof, are important parameters of interest in statistics, econometrics, and other data
science disciplines. In this article, we discuss the main methodological features of the R (R Core
Team, 2021) package lpcde for estimation of and inference on conditional CDFs, PDFs, and deriva-
tives thereof, employing the kernel-based local polynomial smoothing approach introduced in Cat-
taneo et al. (2024, CCJM hereafter).

Wand and Jones (1995), Fan and Gijbels (1996), Simonoff (2012), and Scott (2015) give textbook
introductions to kernel-based density and local polynomial estimation and inference methods. The
core idea underlying the estimator introduced in CCJM is to use kernel-based local polynomial
smoothing methods to construct an automatically boundary adaptive estimator for CDFs, PDFs,
and derivatives thereof. The estimation approach consists of two steps. The first step estimates
the conditional distribution function using standard local polynomial regression methods, and the
second step applies local polynomial smoothing to the (non-smooth) local polynomial conditional
CDF estimate from the first step to obtain a smooth estimate of the CDF, PDF, and derivatives
thereof.

For the case of PDF estimation, classical estimation approaches typically employ ratios of un-
conditional kernel density estimators, the derivative of kernel-based non-linear distribution function
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regression estimators, or local polynomial estimators based on some preliminary density-like ap-
proximation. See, for example, Fan et al. (1996), Hall et al. (1999), De Gooijer and Zerom (2003),
Hall et al. (2004), and references therein. These approaches are not boundary adaptive unless
specific modifications (e.g., boundary corrected kernels) are introduced. CCJM’s estimator is con-
ceptually different and is boundary adaptive for a possibly unknown compact support of the data.
Furthermore, the estimator has a simple closed form representation, which leads to easy and fast im-
plementation. Unlike some other boundary adaptive procedures, it does not require pre-processing
of data, and thus avoids the challenges of hyper-parameter tuning: only one bandwidth parameter
needs to be selected for implementation.

Building on the theoretical and methodological work reported in CCJM, the package lpcde offers
data-driven (pointwise and uniform) estimation and inference methods for conditional CDFs, PDFs,
and derivatives thereof, which are automatically valid at interior, near-boundary, and boundary
points on the support of both the variable of interest and the conditioning variables. For point
estimation, the package offers mean squared error optimal bandwidth selection and associated point
estimators. For inference, the package offers valid confidence intervals and confidence bands based on
robust bias-correction techniques (Calonico et al., 2018, 2022). Finally, these statistical procedures
can be easily used for visualization and graphical presentation of smooth empirical CDFs, PDFs,
and derivative thereof. We give an overview of the main methods implemented in the package below,
along with a discussion of more specific implementation issues. We also showcase the performance
of the package with simulated data.

The package lpcde includes two main functions.

• lpcde(): This function implements the estimator of interest over a grid of evaluation points on
the support of the variable of interest and at a pre-specified conditioning value. The function
takes three main inputs: data, a bandwidth, and polynomial orders. When the bandwidth
is not specified by the user, the function employs the companion function lpbwcde() for
automatic, data-driven bandwidth selection. When the polynomial orders are not specified
by the user, the function employs the next odd polynomial order relative to the parameter of
interest. For example, for CDF estimation, the polynomial orders are set to p = q = 1, while
for PDF estimation they are set to p = 2 and q = 1, where p denotes the polynomial order
for the variable of interest, and q denotes the polynomial order for the conditioning variables.
The Epanechnikov kernel is used by default. However, there are alternative kernel options
that can be provided by the user, if desired. This function implements pointwise and uniform
inference via robust bias-correction methods, employing the same grid of points used for point
estimation.

• lpbwcde(): This function implements pointwise and integrated mean square error (IMSE)
optimal bandwidth selection for the kernel-based local polynomial smoothing methods intro-
duced in CCJM. The resulting bandwidth selection procedure leads to a IMSE-rate optimal
point estimator whenever the difference of polynomial orders and derivatives order of inter-
est is odd (see below for further details). This bandwidth choice is also valid, and in some
cases optimal from a distributional approximation perspective, when coupled with robust
bias-correction methods for statistical inference.

The methods coef(), confint(), vcov(), print(), plot() and summary() are supported
for objects returned by the lpcde function, while the methods coef(), print() and summary()
are supported for objects returned by the lpbwcde function. The plot() function builds on the
ggplot2 (Wickham et al., 2021) package in R and can be used for illustrations of conditional CDFs,
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PDFs or higher order derivatives and their pointwise or uniform confidence bands for a given value
of the conditioning variable(s).

The package lpcde contributes to a rather small set of R packages on CRAN for estimation and
inference about conditional CDF, PDF, and derivatives thereof. More specifically, we identified two
other packages that provide related methodology: hdrcde (Hyndman et al., 2021) and np (Hayfield
and Racine, 2008). Table 1 summarizes some of the main differences between those packages and
lpcde. As is noted in the table, lpcde is the only package available in R that currently provides
both pointwise and uniform confidence interval construction that is asymptotically valid, in addition
to producing boundary adaptive estimates, and proper conditional density estimates that are non-
negative and integrate to one. These features are unique contributions of the package to the overall
R toolkit.

Package
Function

CDF / Derivative
Estimation

Regularized
Density

Valid at
Boundary

Standard
Error

Valid
Inference

Confidence
Bands

Bandwidth
Selection

hdrcde
cde × × × × × × X

np
npcdens × × × X × × X

lpcde
lpcde X X X X X X X

Table 1: Comparison of R packages for conditional PDF estimation
Notes: (i) all three packages provide conditional PDF point estimation; (ii) bandwidth selection is done via
cross-validation in hdrcde and np, and using plug-in mean squared error approximations in lpcde.

The remainder of this article is organized as follows. Section 2 describes the derivation of our
estimator along with details on how the bandwidth, covariance matrix and confidence intervals can
be constructed. This section also highlights some key computational considerations when imple-
menting the estimator. Section 3 discusses how the various functions and features of the package
can be implemented in practice through examples of code snippets with a toy dataset. Section 4
illustrates the performance of the estimator through a simulation excercise. Finally, we conclude
in Section 5. Additional information about the R package lpcde, including replication files and
datasets, can be found at https://nppackages.github.io/lpcde/.

2 Methodology

In this section, we give an overview of the methodology implemented in lpcde; technical details in
full generality can be found in CCJM.We start by considering a random sample (Y1,XT

1 ), . . . , (Yn,X
T
n )

from the continuously distributed random vector (Y,XT) ∈ Y × X . We assume Y ⊆ R is a 1-
dimensional and X ⊆ Rd is a d-dimensional possibly, but not necessarily, compactly supported set.
The goal is to estimate and conduct inference on the conditional CDF, PDF, and derivatives thereof,
of Y |X. Prior to setting up our estimator, the following section establishes all necessary notation.
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2.1 Notation

Notation introduced in this section will be used through the remainder of the text. Our parameter
of interest is

F (µ,ν)(y|x) = ∂µ+|ν|

∂yµ∂xν
F (y|x), F (y|x) = P[Y ≤ y|X = x],

where µ ∈ N0 denotes the derivative order with respect to the variable of interest Y and, employing
multi-index notation, ν ∈ Nd0 denotes the multi-index for the corresponding derivatives of interest
with respect to the conditioning variables X. For example,

• F (y|x) = F (0,0)(y|x): conditional CDF of Y |X

• f(y|x) = F (1,0)(y|x): conditional PDF of Y |X,

• f (1,0)(y|x) = F (2,0)(y|x): derivative (with respect to y) of conditional PDF of Y |X.

To simplify the exposition, we abstract from derivative estimation with respect to the conditioning
variables in X, and therefore set ν = 0 for the rest of this article. Consequently,

F (µ)(y|x) = F (µ,0)(y|x) for µ ∈ N0.

See CCJM for theoretical and methodological results concerning |ν| > 0, all of which are also
implemented in the R package lpcde, thereby allowing for estimation of derivatives with respect to
X of the conditional CDF of Y |X.

The following notation is used in constructing and analysing our estimator:

• e` is the conformable (`+ 1)-th unit vector

• |A| denotes the cardinality of a set A.

• q(u): q-th order polynomial expansion for some q ∈ N. It is a (qd + 1)-dimensional vector
collecting the ordered elements uν/ν! for 0 ≤ |ν| ≤ q, where, employing multi-index notation,
uν = uν11 u

ν2
2 · · ·u

νd
d , ν! = ν1!ν2! · · ·νd!, |ν| = ν1 + ν2 + · · ·+ νd, and qd = (d+ q)!/(q!d!)− 1.

• p(u): p-th order polynomial expansion for some p ∈ N. It is a (p + 1)-dimensional vector
collecting the ordered elements uµ/µ! for 0 ≤ µ ≤ p.

• Kh(x;u) = K((x− u)/h)/h, where K(·) is a kernel function and h is a bandwidth.

• Lh(x;u) = Kh(x1 − u1)Kh(x2 − u2) · · ·Kh(xd − ud).

• Ŝy =
1
n

∑n
i=1Kh(yi; y)p

(
yi−y
h

)
p
(
yi−y
h

)T
• Ŝx = 1

n

∑n
i=1 Lh(xi;x)q

(
xi−x
h

)
q
(
xi−x
h

)T
• R̂y,x = 1

n2h

∑n
j=1

∑n
i=1Kh(yj ; y)p

(
yj−y
h

)
Lh(xi;x)q

(
xi−x
h

)T
1(yi ≤ yj),
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2.2 General estimation idea

The construction of the conditional CDF, PDF and derivatives thereof involves two steps. First,
the conditional distribution function F (y|x) is estimated by standard local polynomial methods:

F̂q(y|x) = eT0 γ̂q(y|x), γ̂q(y|x) = argmin
c∈Rqd

n∑
i=1

(
1(yi ≤ y)− q(xi − x)Tc

)2
Lh(xi − x), (1)

Note here that the estimator F̂q(y|x) of F (y|x) is not smooth as a function of y and therefore cannot
be used to construct an estimator of the conditional PDF and higher-order derivatives with respect
to y.

Therefore, in a second step, a smoothed (with respect to y) estimator of the CDF and its
derivatives is constructed also using local polynomial methods: for any 0 ≤ µ ≤ p,

F̂
(µ)
p,q (y|x) = eTµ β̂p,q(y|x), β̂p,q(y|x) = argmin

b∈B

n∑
i=1

(
F̂q(yi|x)− p(yi − y)Tb

)2
Kh(yi − y), (2)

where B is some general constraint set. There are different forms of search space that may be
of interest to researchers based on the application for which the estimator is being used. For
example, it may be necessary that the first element of b, corresponding to the conditional PDF
estimator, be nonnegative. In this setting, the set over which b is minimized can be defined as
B = {b ∈ Rp+1 : eT1 b ≥ 0}. This case is studied further in Section 2.5. On the other hand, if
B = Rp+1, no constraints are imposed on b. This is the case that we focus on in the following
sections.

2.3 Point estimation

Solving (1) and (2) (with B = Rp+1) gives a simple closed form for the general estimator:

F̂
(µ)
p,q (y|x) = eTµ Ŝ

−1
y R̂y,xŜ

−1
x e0, (3)

A complete derivation is provided in the supplemental material of CCJM.
In the R package, for a choice of derivative µ with respect to y (and a choice of of derivative ν

with respect of x, a choice of polynomial orders (p, q), a choice of bandwidth h and kernel function
K(·), the function lpcde() implements the estimator F̂ (µ)

p,q (y|x) over a grid of points on Y for a
given conditioning evaluation point x. By default, the function sets (µ,ν) = (1, 0) (conditional
PDF), q = 1 (local linear nonsmooth conditional CDF estimation), p = 2 (local quadratic smooth
conditional CDF estimation), and K(·) is to chosen to be the Epanechnikov kernel. Generally
speaking, it is recommended to choose the local polynomial order such that p − µ and q − |ν| are
both odd. Although the second-order Epanechnikov kernel is implemented by default, the function
lpcde() can also be implemented with second-order uniform and triangular kernels by setting the
variable kernel_type appropriately. The choice of the kernel does not affect the orders of the bias
and the variance. Last but not least, the choice of bandwidth h is important: by default, whenever
h is not supplied by the user, the function lpcde() relies on the companion function lpbwcde(),
which implements data-driven bandwidth selection based on the minimization of the (approximate)
mean squared error of the estimator F̂ (µ)

p,q (y|x).
In the remainder of this section we review some of the main statistical properties and infer-

ence techniques developed in CCJM and the computational considerations in implementing these
methods in the package lpcde.
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2.4 Bandwidth selection

Once we have the closed form of the point estimator, we can derive the leading bias and variance of
the estimator. The leading bias and variance for odd values of p− µ and q− |ν| take the following
form:

Bias
[
F̂

(µ)
p,q (y|x)

]
= hq+1

∑
|m|=q+1

F
(µ,m)
p,q+1 (y|x)B

(i)
m (x) + hp+1−µF

(p+1)
p+1,qB

(ii)
p+1(y), (4)

Var
[
F̂

(µ)
p,q (y|x)

]
=

1

nhd+2µ+1
F

(1)
p,q (y|x)V

(µ)
p,q (y,x). (5)

The quantities on the right hand side above implicitly depend on the kernel function. It is straight-
forward to show that both the bias and variance terms converge in probability to non-random,
well-defined limits. Exact expressions and technical details for other cases can be found in the
supplemental appendix of CCJM.

Equations (4) and (5) are valid for all evaluation points on the support of the data. As a result,
the pointwise mean squared error (MSE) optimal bandwidth can be approximated as

hMSE
p,q (y,x) = argmin

h>0

[
Var

[
F̂

(µ)
p,q (y|x)

]
+ Bias

[
F̂

(µ)
p,q (y|x)

]2]
.

Under standard regularity conditions, hMSE(y,x) is MSE-optimal if p − µ and q − |ν| are odd.
Precise closed-form expressions for the MSE-optimal bandwidth can be found in the supplemental
appendix of CCJM. In practice, the MSE-optimal bandwidth is estimated by plugging-in estimates
of the unknown quantities in Equations (4) and (5), given some initial bandwidth choice and then
direcetly solving for the optimal bandwidth.

The IMSE-optimal bandwidth is estimated similarly, with the main difference being that a set of
grid points on the support of Y is used to approximate the integral. Detailed expressions are given
in the supplemental material of CCJM. Bandwidth selection is implemented through the lpbwcde()
function.

The number of grid points or specific locations of grid points (default is 19 equally-spaced
points over the implied support) can be specified by the user as an input to both the lpbwcde()
and lpcde() functions. For generating quantile-spaced grid points, the flag grid_spacing should
be set to ‘quantile’. Users should be aware of possible issues with using equally-spaced grid
points at low-density regions or near boundary points. If a small banwidth is coupled with grid
points that have few data points that can be used for estimation, the resulting point estimates as
well as standard error approximations may have numerical inaccuracies that cause instability in the
output. We recommend either prior checking of effective sample sizes for the choice of bandwidth
or choosing quantile-spaced grid points.

2.5 Constrained density estimation

As mentioned in Section 2.2, some applications may require that the conditional density estimate
satisfy additional constraints. For example, it may be desirable to ensure that the PDF estimate
be non-negative on the support and integrates to one. Fortunately, our two-step formulation of the
estimator allows for the non-negativity constraint to be incorporated directly into the second step
given in (2):

f̂N(y|x) = eT1 β̂N(y|x), β̂N(y|x) = argmin
b∈Rp+1: eT1 u≥0

n∑
i=1

(
F̂ (yi|x)− p(yi − y)Tb

)2
Kh(yi; y),
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where we use the subscript “N” to denote the non-negative estimator. The solution to this modified
optimization problem leads to a simple closed form solution that can be written in terms of the
unconstrained estimator f̂(y|x):

f̂N(y|x) = max
{
f̂(y|x) , 0

}
.

In order to incorporate the constraint the the estimator also integrate to one, a global constraint
must be imposed on the estimator. In CCJM, we propose and study a modification of the f̂N based
on the Kullback-Leibler divergence,

f̂I(y|x) = argmin
g∈G

KL
(
g
∥∥ f̂N(·|x)), where KL(g

∥∥ f) = ∫
Y
g(y) log

(
g(y)

f(y)

)
dy,

where the subscript “I” stands for “integrating to one” and G = {g ≥ 0 :
∫
Y g(y)dy = 1, g(y) =

0 for y 6∈ Y}.
Fortunately, f̂I can be written in closed form as

f̂I(y|x) =
f̂N(y|x)∫
Y f̂N(u|x)du

Uniform rates of convergence as well as distributional convergence of both constrained estimators can
be established with slight modifications from the theory that was established for the unconstrained
estimator. Crucially, this means we can construct robust bias-correct uniform confidence bands
for the constrained estimators as well. Further details regarding the convergence guarantees of the
constrained estimators are provided in Section 4 of CCJM.

2.6 Distribution theory and robust bias-corrected inference

In order to conduct inference, we first construct a Wald-type test statistic that has the following
distributional convergence

Tp,q(y,x) =
F̂

(µ)
p,q (y|x)− F

(µ)
p,q (y|x)√

Var
[
F̂

(µ)
p,q (y|x)

]  N (B, 1),

where denotes weak convergence as h→ 0 and n→∞, N denotes the Gaussian distribution, and
B denotes the standardized asymptotic bias emerging whenever a too “large” bandwidth is employed
(e.g., when the MSE-optimal or IMSE-optimal bandwidth is used). See CCJM for details.

As a result, standard confidence intervals with nominal (1− α) coverage takes the form:

CI(y,x) =

[
F̂

(µ)
p,q (y|x)± z1−α/2

√
V̂ar

[
F̂

(µ)
p,q (y|x)

]]
,

where zα is the α-th quantile of the standard normal distribution. However, for “large” bandwidths,
this confidence interval would be invalid due to the asymptotic bias, B. In practice, undersmoothing
is often used to address the asymptotic bias present. However, Calonico et al. (2018, 2022) show
that undersmoothing is sub-optimal under the standard assumptions of the model. Instead, they
propose a robust bias-correction (RBC) technique that has better higher-order approximations and
asymptotically correct coverage probabilities. RBC requires bias-correction of the point estimator
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and then adjusting the variance estimate appropriately to construct a bias-corrected Wald-type
statistic.

For our estimator, we first correct for the first-order bias by using a point estimator that is
generated by increasing the polynomial order for both variables, y and x. To be specific, we use
F̂

(µ)
p+1,q+1(y|x;hMSE

p,q ) in place of F̂ (µ)
p,q (y|x;hMSE

p,q ). The bandwidth used is optimal for the point
estimate with the lower order polynomials. The asymptotically valid confidence intervals now take
the form

CIRBC(y,x) =

[
F̂

(µ)
RBC(y|x)± z1−α/2

√
V̂ar

[
F̂

(µ)
RBC(y|x)

]]
,

where F̂ (µ)
RBC(y|x) ≡ F̂

(µ)
p+1,q+1(y|x) = F̂

(µ)
p,q (y|x)− B̂ias

[
F̂

(µ)
p,q (y|x)

]
.

Additionally, uniform confidence bands can be constructed as

CBRBC(M) =

{[
F̂

(µ)
RBC(y|x)± zM,1−α/2

√
V̂ar

[
F̂

(µ)
RBC(y|x)

]]
, y ∈M

}
,

whereM is a collection of evaluation points on the support Y and zM,α is the α-quantile over the
collection of evaluation points for a normal distribution centered at 0 and with the same variance-
covariance matrix as the estimator. The critical value zM,1−α/2, is defined by the upper α quantile
of the supremum of the simulated Gaussian process on the gridM:

zM,α = inf

{
u ≥ 0 : P

[
sup
y∈M

|Ẑ(µ)(y|x)| ≤ u

∣∣∣∣∣Data

]
≥ 1− α

}
,

where Ẑ(µ)(y|x) a∼ N
(
0, Ĉov

[
F̂

(µ)
RBC(y|x)

])
. The confidence band depends on the entire collection

of evaluation points. In lpcde, zM,1−α/2, is estimated by using the maximum over the grid points
as an approximation for the supremum over M. See CCJM (and its supplemental) for technical
details and regularity conditions.

The RBC method leads to confidence intervals/bands that are not centered at the density point
estimates since different order polynomials are used for the point estimates and for inference. Thus,
it may happen that the point estimates lies outside of the RBC confidence intervals/bands if the
underlying distribution has high curvature at some evaluation point(s). One solution in this case is
to increase the polynomial orders p and q, or to use a smaller-than-optimal bandwidth.

2.7 Implementation of the covariance estimator

Implementing the variance estimator for both estimating the MSE-optimal bandwidth and con-
structing confidence intervals, requires careful consideration. It is particularly crucial to consider
the computational cost of estimating the variance when employing uniform confidence bands, which
requires the construction of the full |M|×|M| covariance matrix in order to approximate the critical
value zM,1−α/2. The discussion in this section focuses only on the covariance matrix estimation for
the conditional PDF, f̂(y|x), purely for simplicity of presentation.

The standard plug-in estimator (constructed by estimating the unknown quantities in (5)) that
is proposed and studied in CCJM has a computational complexity of O(|M|2n4). For large datasets
and a fine grid of evaluation points, this is prohibitively slow to run in practice. As a result the
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default covariance estimator used in lpcde implements a significantly faster jackknife covariance
estimatior. The construction of the jackknife estimator relies on the fact that the closed-form of the
estimator f̂ can be written as a V-statistic to which the Hoeffding decomposition (van der Vaart,
2000, Chapter 11) can be applied. The covariance expression then decomposes to a sum of two
independent functions that depend on the evaluation points and a small subset of the data in the
neighborhood of the evaluation points, thus reducing the computational cost to only O(|M|2(nh)2).

Here we provide a sketch of how this estimator is constructed. The interested reader can find a
complete derivation in Section 6 of the Supplementary Material of CCJM.

We start by first observing that the estimator f̂(y|x) is a V-statistic:

f̂(y|x) = 1

n2h

∑
i,j

1(yi ≤ yj)eT1 Ŝ−1y p

(
yj − y
h

)
Kh (yj ; y)q

T

(
xi − x

h

)
Lh (xi;x) Ŝ

−1
x e0

=
1

n2

n∑
i=1

a(yi, y)b(xi,x) +
1

n2

∑
1≤i 6=j≤n

1(yi ≤ yj)a(yj , y)b(xi,x), (6)

where

a(yi, y) = h−2eT1 Ŝ
−1
y p

(
yi − y
h

)
K

(
yi − y
h

)
,

b(xi,x) = h−deT0 Ŝ
−1
x Q

(
xi − x

h

)
L

(
xi − x

h

)
.

The scalar functions a(·) and b(·) are are non-zero only for data points that are within h distance
of the evaluation point, a feature that the package lpcde leverages explicitly to improve numerical
performance in applications. The second term in (6) can now be symmetrized and treated as a U-
statistic. Then, the Hoeffding decomposition can be applied and plugged back into (6). This leads
to a natural alternative jackknife covariance estimator, which is simple to write and computationally
efficient:

Ĉ(y,x, y′,x′) =
1

n

n∑
i=1

L̂(i)(y,x)L̂(i)(y
′,x′).

where

L̂(i)(y,x) =
2

n− 1

∑
j 6=i

(
ui,j − f̂(y|x)

)
.

and ui,j = 1
2(1(yi ≤ yj)a(yj , y)b(xi,x) + 1(yj ≤ yi)a(yi, y)b(xi,x))/2. In particular, if the two

evaluation points are equivalent, then we return the (approximately jackknife) variance estimator

V̂(y,x) ≡ Ĉ(y,x, y,x) =
1

n− 1

n∑
i=1

L̂2
(i)(y,x).

It can be easily verified that this jackknife covariance estimator is asymptotically equivalent to the
theoretical variance expression in (5).

3 Implementation

In this section we illustrate some of the main features of the package with a simulated dataset. We
consider a bi-variate jointly normal data generating process with mean 0 and variance 1.
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Figures 1, 2 and 3 illustrate the performance of the package on a dataset generated from bi-variate
jointly standard normal random variables for generating point estimates produced by lpcde() for
the conditional (i) CDF (see Figures 1a and 1b), (ii) PDF (see Figures 2a and 2b), and (iii) first
derivative (see Figures 3a and 3b) with both standard and robust bias-corrected confidence bands
generated by the function lpcde(). The true functions are plotted in red for comparison.
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(b) RBC CDF estimate.

Figure 1: Point estimates for the CDF Left: 95% standard confidence interval/bands. Right: 95%
robust bias-corrected confidence intervals/bands.
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(a) standard PDF estimate.
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(b) RBC PDF estimate.

Figure 2: Point estimates for the PDF. Left: 95% standard confidence interval/bands. Right: 95%
robust bias-corrected confidence intervals/bands.
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(a) standard first derivative estimate.
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(b) RBC first derivative estimate.

Figure 3: Point estimates for the first derivative. Left: 95% standard confidence interval/bands.
Right: 95% robust bias-corrected confidence intervals/bands.

In the remainder of this section we discuss how each of the functions provided in lpcde can be
used with the aid of code snippets.

3.1 Density estimation

The function lpcde() provides information on point estimates, standard errors and confidence
interval or bands for a given value of x over a range of grid points for y. If the grid points are
not provided by the user, the function chooses nineteen equally-spaced grid points over the implied
support of the data and, if no bandwidth is provided, computes the rule-of-thumb MSE bandwidth
at each point.

The following example estimates the conditional density at x = 0, with a fixed bandwidth of 1,
using the default local polynomial approximation p = 2, q = 1. RBC confidence intervals over the
grid are also computed, in this case using the default polynomial orders p = 3, q = 2.

R> set.seed(42)
R> n = 1000
R> x_data = as.matrix(stats::rnorm(n, mean = 0, sd = 1))
R> y_data = as.matrix(stats::rnorm(n, mean = x_data, sd = 1))
R> y_grid = seq(from=-2, to=2, length.out=10)
R> model1 = lpcde(y_data=y_data, x_data=x_data, y_grid=y_grid, x=0, bw = 1)
R> summary(model1)

The function returns an object of type lpcde. Standard R methods, coef(), confint(), vcov(),
print(), plot() and summary(), can be used on objects of type lpcde to understand the output.

Below we reproduce the output of running the summary command on model1. The first part of
the summary output provides basic information about some of the options specified to the function.
The second part provides relevant information for each point estimate generated in a table with
7 columns, (i) grid evaluation points, (ii) bandwidth used at each point, (iii) effective number of
data points used to generate the point estimate, (iv) point estimate, (v) standard error, (vi) lower
(1− α)-confidence interval, and, (vii) upper (1− α)-confidence interval.
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Call: lpcde

Sample size 1000
Polynomial order for Y point estimation (p=) 2
Polynomial order for X point estimation (q=) 1
Density function estimated (mu=) 1
Order of derivative estimated for covariates (nu=) 0
Kernel function epanechnikov
Bandwidth method

=============================================================================
Point Std. Robust B.C.

Index Grid B.W. Eff.n Est. Error [ 95% C.I. ]
=============================================================================
1 -2.0000 1.0000 73 0.0073 0.0236 -0.0401 , 0.0349
2 -1.5556 1.0000 159 0.0745 0.0086 -0.0103 , 0.0605
3 -1.1111 1.0000 292 0.1873 0.0064 0.1454 , 0.1961
4 -0.6667 1.0000 433 0.3473 0.0041 0.3760 , 0.4178
5 -0.2222 1.0000 532 0.4584 0.0031 0.5046 , 0.5374
-----------------------------------------------------------------------------
6 0.2222 1.0000 528 0.4715 0.0027 0.5007 , 0.5323
7 0.6667 1.0000 444 0.3624 0.0031 0.4037 , 0.4386
8 1.1111 1.0000 304 0.1882 0.0056 0.1609 , 0.2071
9 1.5556 1.0000 166 0.0752 0.0076 0.0060 , 0.0735
10 2.0000 1.0000 67 0.0206 0.0171 -0.0468 , 0.0300
=============================================================================

By default, the function provides estimates according to the original formulation of the estimator
f̂(y|x). If a constrained density estimate that is non-negative and integrates to one (f̂I as defined
in Section 2.5) is desired, the flags nonneg and normalize can be turned on.

R> model1 = lpcde(y_data=y_data, x_data=x_data, y_grid=y_grid, x=0,
+ bw = 1, nonneg=TRUE, normalize=TRUE)

Figure 4 shows how the estimates differ when the additional constraints are imposed:
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Figure 4: Comparing standard density estimate with normalized estimate.

3.2 Plotting

The plot() function uses the ggplot2 package (Wickham et al., 2021) with objects of type lpcde
to produce illustrations of point estimates and confidence intervals and/or bands. A simple plot of
the conditional PDF with 95% confidence intervals can be generated by running the following code.

R> plot(model1) + theme(legend.position = "none")

This code snippet produces an image of the type shown in Figure 5.
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Figure 5: A simple density plot with robust 95% confidence intervals
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By default the plot() function plots pointwise confidence intervals at 95% level with the point
estimates. Additional options for confidence levels, bands and RBC inference are detailed in the
package manual. Editing other visual aspects of the plots can be done by providing standard inputs
to ggplot2 functions.

3.3 Bandwidth selection

lpbwcde() implements the rule-of-thumb MSE- and IMSE- bandwidth selection by implementing
the formulae provided in Section 2.3.

By default lpbwcde() computes the rule-of-thumb MSE optimal bandwidth for the conditional
PDF with locally quadratic polynomial in y and locally linear polynomial in x and Epanechnikov
kernel on nineteen equally-spaced grid points on the implied support of Y determined by the observed
data. The output of this function is similar to that of lpcde() and provides basic information for
the data and options specified. The summary of objects returned by this function additionally
provides a table with three columns: (i) y_grid: values of the grid points for which the bandwidth
is estimated, (ii) B.W.: the estimated bandwidth corresponding to each grid point, and (iii) Eff.n.:
the number of effective data points at each evaluation point given the estimated bandwidth. An
example of standard bandwidth selection is provided in the following output.

R> model2 = lpbwcde(y_data=y_data, x_data=x_data, x=0,
+ y_grid = y_grid, bw_type = "mse-rot")
R> summary(model2)

Call: lpbwcde

Sample size 1000
Polynomial order for Y point estimation (p=) 2
Polynomial order for X point estimation (q=) 1
Density function estimated (mu=) 1
Order of derivative estimated for covariates (nu=) 0
Kernel function epanechnikov
Bandwidth method mse-rot

==================================
Index y_grid B.W. Eff.n
==================================
1 -1.8168 1.0651 117
2 -1.1740 1.7510 687
3 -0.7777 1.4587 681
4 -0.3617 1.1117 594
5 -0.0185 1.0589 577
----------------------------------
6 0.3476 1.1253 586
7 0.7088 1.4232 673
8 1.1133 1.8398 729
9 1.7728 1.0793 125
==================================
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The estimated bandwidth from this function can be used as bandwidth input to lpcde() directly
by using the option of bwselect to specify bandwidth selection type instead of running lpbwcde()
first.

4 Simulations

In this section we illustrate the effectiveness of our estimator with a Monte Carlo study. For the
sake of simplicity, we set d = 1 and assume that x and y are simulated by a joint normal distribution
with variance 2 and covariance −0.1, truncated on [−1, 1]2. We simulate 1000 data sets of 5000
independent samples each. The results of this study are presented in Table 2. The point estimates
are generated on 20 evenly spaced grid points on [0, 1] for y.

We look at the performance of the estimator at three different derivative orders for the predictor
variable, y, (i) the CDF, corresponding to µ = 0, (ii) the PDF, corresponding to µ = 1, and
(iii) the first derivative of the conditional PDF with respect to y, corresponding to µ = 2, and
three different conditional values of the covariate, x: (a) interior, (b) near-boundary and (c) at-
boundary. For each conditional value, we present the average bandwidth, average bias, standard
deviation, pointwise and uniform 95% coverage, and width of the confidence intervals/bands across
the simulated datasets. We present these results for both the standard estimate (rows “WBC”)
which is generated with a quadratic polynomial (p = 2) with respect to the variable y, and linear
polynomial (q = 1) with respect to the variable x, as well as the robust bias-corrected estimates
(rows “RBC”) which uses cubic polynomial (p = 3) for y and quadratic polynomial (q = 2) for x.
Notice that robust bias-correction provides more accurate coverage, both pointwise and uniformly
over the support across all derivative orders. We recommend, for accurate coverage probabilities,
using uniform confidence bands with robust bias-corrected estimates.

We can also analyze the pointwise-in-y performance of our estimator and inference methods.
Table 3 presents the average pointwise results of 5000 simulated data sets. We consider three
different evaluation points on the support of y for the conditional PDF and three different values
of the conditioning variable x. The first four columns of the table present average pointwise MSE-
optimal bandwidth used in estimation, effective sample size at each evaluation point, bias, and
standard error. The last four columns are the average pointwise confidence interval coverage and
width of the confidence interval for the standard estimate and inference method (“WBC”) and robust
bias-corrected estimate and inference (“RBC”). Robust bias-corrected inference produces accurate
empirical coverage across all pointwise combinations.

Finally, we test the rule-of-thumb MSE bandwidth selection by simulating point estimation and
coverage at varying bandwidth values. We choose the range of bandwidth values to be between 0.5
and 1.3 times the average ROT bandwidth chosen by the lpbwcde() function. Table 4 presents the
average bias, standard error, root mean-squared error, pointwise coverage rate and average width
of confidence intervals for 5000 simulations at the interior point y = 0, x = 0.

5 Conclusion

This article introduced the software package lpcde, which implements local polynomial kernel based
regression estimation and inference for conditional densities and higher-order derivatives. Additional
information and replication files can be found at https://nppackages.github.io/lpcde/.
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Coverage Average Width
ĥROT bias se Pointwise Uniform Pointwise Uniform

CDF (µ = 0)

x = 0
WBC 0.33 0.15 0.11 73.2 83.9 0.42 0.60
RBC 0.33 0.15 0.13 85.8 93.5 0.51 0.73

x = 0.8
WBC 0.18 0.18 0.05 21.7 34.7 0.19 0.28
RBC 0.18 0.18 0.14 70.8 91.7 0.54 0.82

x = 1.0
WBC 0.20 0.19 0.05 18.4 30.5 0.18 0.27
RBC 0.20 0.19 0.14 68.1 90.8 0.53 0.80

PDF (µ = 1)

x = 0
WBC 0.38 0.09 0.03 60.4 78.9 0.11 0.23
RBC 0.38 0.09 0.09 87.9 93.3 0.37 0.68

x = 0.8
WBC 0.35 0.10 0.04 73.0 84.6 0.22 0.40
RBC 0.35 0.10 0.18 91.6 95.9 0.65 0.81

x = 1.0
WBC 0.38 0.10 0.06 55.8 77.0 0.24 0.45
RBC 0.38 0.10 0.20 81.2 91.1 0.67 0.81

PDF Derivative (µ = 2)

x = 0
WBC 0.76 0.07 0.03 30.9 55.2 0.10 0.18
RBC 0.76 0.07 0.12 67.1 92.2 0.48 0.87

x = 0.8
WBC 0.75 0.09 0.04 35.3 62.0 0.14 0.24
RBC 0.75 0.09 0.16 74.9 91.4 0.64 1.17

x = 1.0
WBC 0.77 0.09 0.04 38.5 66.9 0.15 0.27
RBC 0.77 0.09 0.18 78.8 92.9 0.69 1.25

Table 2: Table of average coverage for jointly normal data at three different conditional values.
x = 0 is an interior point, x = 0.8 is a near-boundary point, x = 1 is at-boundary.

WBC: without bias-correction, RBC: robust bias-corrected.

Coverage AW
Eval. point ĥROT eff.n bias se WBC RBC WBC RBC

x = 0

y = 0 0.29 249 0.07 0.04 56.4 96.0 0.14 0.49
y = 0.8 0.33 374 0.00 0.02 71.4 91.0 0.07 0.22
y = 1.0 0.34 284 0.12 0.05 24.8 96.3 0.18 0.40

x = 0.8

y = 0 0.24 140 0.07 0.07 77.4 98.6 0.20 0.68
y = 0.8 0.30 297 0.00 0.02 78.0 94.1 0.07 0.24
y = 1.0 0.36 256 0.13 0.05 54.0 91.6 0.18 0.37

x = 1.0

y = 0 0.27 131 0.07 0.08 72.4 96.8 0.31 1.04
y = 0.8 0.41 345 0.00 0.02 73.2 91.3 0.07 0.19
y = 1.0 0.40 221 0.14 0.08 61.1 95.4 0.31 0.49

Table 3: Pointwise results
WBC: without bias-correction, RBC: robust bias-corrected.
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×ĥMSE ĥ bias se rmse WBC CR RBC CR WBC AW RBC AW
0.5 0.15 0.07 0.31 0.34 100.0 100.0 1.23 4.14
0.6 0.18 0.07 0.18 0.20 99.7 100.0 0.69 2.37
0.7 0.20 0.07 0.11 0.14 97.7 100.0 0.43 1.46
0.8 0.23 0.07 0.07 0.11 87.8 99.5 0.28 0.96
0.9 0.26 0.07 0.05 0.09 74.8 98.6 0.20 0.67
1 0.29 0.07 0.04 0.08 56.4 96.0 0.14 0.49
1.1 0.32 0.06 0.03 0.07 39.6 89.8 0.11 0.37
1.2 0.35 0.07 0.02 0.07 25.5 81.4 0.08 0.28
1.3 0.38 0.06 0.02 0.07 16.0 72.6 0.06 0.22

Table 4: Bandwidth selection at interior point (y = 0,x = 0).
WBC: without bias-correction, RBC: robust bias-corrected.
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