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We begin by introducing a class of conditional density estimators based on local polynomial techniques. The
estimators are boundary adaptive and easy to implement. We then study the (pointwise and) uniform statistical
properties of the estimators, offering characterizations of both probability concentration and distributional ap-
proximation. In particular, we establish uniform convergence rates in probability and valid Gaussian distributional
approximations for the Studentized 𝑡-statistic process. We also discuss implementation issues such as consistent
estimation of the covariance function for the Gaussian approximation, optimal integrated mean squared error
bandwidth selection, and valid robust bias-corrected inference. We illustrate the applicability of our results by
constructing valid confidence bands and hypothesis tests for both parametric specification and shape constraints,
explicitly characterizing their approximation errors. A companion R software package implementing our main re-
sults is provided.
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1. Introduction

Suppose that (𝑦1,x
⊺
1 ), (𝑦2,x

⊺
2 ), . . . , (𝑦𝑛,x

⊺
𝑛) is a random sample from a distribution supported on Y ×

X, where Y ⊂ R and X ⊂ R𝑑 are compact. Letting 𝐹 (𝑦 |x) be the conditional cumulative distribution
function (CDF) of 𝑦𝑖 given x𝑖 , important parameters of interest in statistics, econometrics, and many
other data science disciplines, are the conditional probability density function (PDF) and derivatives
thereof:

𝑓 (𝜗) (𝑦 |x) = 𝜕1+𝜗

𝜕𝑦1+𝜗 𝐹 (𝑦 |x), 𝜗 ∈ {0,1,2, . . . },

where, in particular, 𝑓 (𝑦 |x) = 𝑓 (0) (𝑦 |x) is the conditional density function of 𝑦𝑖 given x𝑖 .
Estimation and inference methodology for (conditional) PDFs has a long tradition in statistics [e.g.,

26,27,29,30, and references therein]. Unfortunately, without specific modifications, smoothing meth-
ods employing kernel, series, or other local approximation techniques are invalid at or near boundary
points of Y ×X. To address this challenge, we introduce a boundary adaptive nonparametric estimator
of 𝑓 (𝜗) (𝑦 |x) based on local polynomial techniques [14] and provide an array of distributional approxi-
mation results that are valid (pointwise and) uniformly over Y×X. In particular, we obtain a uniformly
valid stochastic linear representation for the estimator and develop uniform inference methods based on
strong approximation techniques leading to, for example, asymptotically valid confidence bands with
careful characterization of their associated approximation errors.
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To motivate our proposed estimation approach, suppose we start from an estimator of the condi-
tional CDF, 𝐹 (·|x). Then, for 𝑦 ∈ R, a natural estimator of 𝑓 (𝜗) (𝑦 |x) is obtained via local polynomial
regression:

�̂� (𝜗) (𝑦 |x) = e⊺1+𝜗 �̂�(𝑦 |x), �̂�(𝑦 |x) = argmin
u∈R𝔭+1

𝑛∑︁
𝑖=1

(
𝐹 (𝑦𝑖 |x) − p(𝑦𝑖 − 𝑦)⊺u

)2
𝐾ℎ (𝑦𝑖; 𝑦), (1)

where 𝔭 ≥ 1 + 𝜗 is the order of the polynomial basis p(𝑦) = (1, 𝑦/1!, 𝑦2/2!, . . . , 𝑦𝔭/𝔭!)⊺, e𝑙 is the
conformable (1 + 𝑙)-th unit vector, and 𝐾ℎ (𝑦𝑖; 𝑦) = 𝐾 ((𝑦𝑖 − 𝑦)/ℎ)/ℎ for some kernel function 𝐾 and
some positive bandwidth ℎ. Since 𝐹 (𝑦 |x𝑖) = E[1(𝑦𝑖 ≤ 𝑦) |x𝑖], we employ a 𝔮-th order local polynomial
regression of the indicator function, 1(𝑦𝑖 ≤ 𝑦), to form the conditional CDF estimator that will be
plugged into (1):

𝐹 (𝑦 |x) = e⊺0 �̂�(𝑦 |x), �̂�(𝑦 |x) = argmin
v∈R𝔮𝑑+1

𝑛∑︁
𝑖=1

(1(𝑦𝑖 ≤ 𝑦) − q(x𝑖 − x)⊺v)2
𝐿𝑏 (x𝑖; x).

Here, using standard multi-index notation, q(x) denotes the (𝔮𝑑 + 1)-dimensional vector collecting the
polynomial expansions xm/m! for 0 ≤ |m| ≤ 𝔮, where xm = 𝑥

𝑚1
1 𝑥

𝑚2
2 · · · 𝑥𝑚𝑑

𝑑
, |m| =𝑚1 +𝑚2 + · · · +𝑚𝑑 ,

and 𝔮𝑑 = (𝑑 + 𝔮)!/(𝔮!𝑑!) − 1. We also let 𝐿𝑏 (x𝑖; x) = 𝐿 ((x𝑖 − x)/𝑏)/𝑏𝑑 be some (multivariate) kernel
function 𝐿 and positive bandwidth 𝑏. Our proposed estimator can also be written in closed-form as

�̂� (𝜗) (𝑦 |x) = e⊺1+𝜗 Ŝ−1
𝑦 R̂𝑦,xŜ−1

x e0, (2)

where the matrices are

Ŝ𝑦 =
1
𝑛

𝑛∑︁
𝑖=1

p
( 𝑦𝑖 − 𝑦

ℎ

) 1
ℎ

P
( 𝑦𝑖 − 𝑦

ℎ

)⊺
, Ŝx =

1
𝑛

𝑛∑︁
𝑖=1

q
(x𝑖 − x

𝑏

) 1
𝑏𝑑

Q
(x𝑖 − x

𝑏

)⊺
,

R̂𝑦,x =
1

𝑛2ℎ1+𝜗

𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=1

1
ℎ

P
( 𝑦 𝑗 − 𝑦

ℎ

) 1
𝑏𝑑

Q
(x𝑖 − x

𝑏

)⊺
1(𝑦𝑖 ≤ 𝑦 𝑗 ),

with the definitions P(𝑦) = p(𝑦)𝐾 (𝑦) and Q(x) = q(x)𝐿 (x), which absorb the kernel function into the
basis. See Appendix A.1 for derivation.

By virtue of being based on a local polynomial smoothing approach, the estimator �̂� (𝜗) (𝑦 |x) is
not only intuitive, but also boundary adaptive. Furthermore, �̂� (𝜗) (𝑦 |x) admits a simple closed-form
representation as we have shown in (2), making it easy to implement. These features follow directly
from its construction: unlike classical kernel-based conditional density (derivative) estimators, which
seek to approximate the conditional PDF indirectly (e.g., by constructing a ratio of two unconditional
kernel-based density estimators), our proposed estimator applies local polynomial techniques directly
to the conditional CDF estimator 𝐹 (𝑦 |x). In addition, our approach offers an easy way to construct
higher-order kernels to reduce misspecification (or smoothing) bias via the choice of polynomial orders
𝔭 and 𝔮.

We present two main uniform results for our proposed estimator. First, we provide precise uni-
form probability concentration bounds associated with a stochastic linear representation of �̂� (𝜗) (𝑦 |x)
(Lemma 1 and Theorem 1). In addition to being useful for the purposes of characterizing the distribu-
tional properties of the conditional density estimator itself, the first main result can be used to analyze
multi-step estimation and inference procedures whenever �̂� (𝜗) (𝑦 |x) enters as a preliminary step. As a
by-product of the development of the first main result, we obtain a related class of conditional density
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estimators based on local smoothing. This new approach will require the knowledge of the support Y.
On the other hand, it is immune to “low” density regions of 𝑦𝑖 . For details, see Appendix A.2.

Our second main result employs the stochastic linear representation of �̂� (𝜗) (𝑦 |x) to establish a valid
strong approximation for the standardized 𝑡-statistic stochastic process based on �̂� (𝜗) (𝑦 |x) and indexed
over Y × X (Theorem 2). This result is established using a powerful result due to Rio [25], which in
turn builds on the celebrated Hungarian construction [24]. The 𝑡-statistic stochastic processes based
on kernel-based nonparametric estimators are not asymptotically tight and, as a consequence, do not
converge weakly as a process indexed over Y ×X [18,28]. Nevertheless, using strong approximations
to such processes, it is possible to deduce distributional approximations for functionals thereof by em-
ploying anti-concentration [7]. Combining these ideas, we obtain valid distributional approximations
for the suprema of the 𝑡-statistic stochastic process (Theorem 3) based on �̂� (𝜗) (𝑦 |x) with approxima-
tion rates that are faster than those currently available in the literature for the case of 𝑑 = 1 (e.g., Remark
3.1(ii) in [8]).

In addition to our two main uniform estimation and distributional results, we discuss several im-
plementation results that are useful for practice. First, we present a covariance function estimator for
the Gaussian approximation and prove its uniform consistency (Lemma 2). This result enables us to
estimate the statistical uncertainty underlying the Gaussian approximation for a feasible version of the
𝑡-statistic process. Second, in Section 3 we discuss optimal bandwidth selection based on an asymptotic
approximation to the integrated mean squared error (IMSE) of the estimator �̂� (𝜗) (𝑦 |x). This result al-
lows us to implement our proposed estimator using point estimation optimal data-driven bandwidth
selection rules. Finally, we employ robust bias correction [1,2] to develop valid inference methods
based on the Gaussian approximation when using the estimated covariance function and IMSE-optimal
bandwidth rule.

We illustrate our theoretical and methodological results with three substantive applications in Sec-
tion 3. To be specific, we construct valid confidence bands for the unknown conditional density function
(and derivatives thereof) and we develop valid hypothesis testing procedures for parametric specifica-
tion and shape constraints of 𝑓 (𝜗) (𝑦 |x), respectively. All these methods are data-driven and, in some
cases, optimal in terms of probability and/or distributional concentration, possibly up to log(𝑛) factors.
Furthermore, thanks to the precise probability approximation errors we obtain via strong approxima-
tion and other exponential concentration methods, we are able to characterize precise coverage error
and rejection probability error rates for all the feasible inference procedures considered.

Another advantage of our proposed estimation procedure (1) is that it allows for incorporating ad-
ditional constraints easily. For example, setting 𝜗 = 0 (PDF), it may be desirable to require that the
estimator is non-negative and integrates to 1. In Section 4, we proposed a modified conditional PDF
estimator which satisfies these two properties. To be precise, non-negativity can be imposed by solving
a constrained version of (1), as the feature is local to the evaluation point. On the other hand, ensuring
the estimator integrates to 1 requires imposing a global constraint, which we implement by minimiz-
ing the Kullback-Leibler divergence to ensure that the final estimator is a valid conditional density in
finite samples. Interestingly, this modified conditional PDF estimator requires introducing a normaliza-
tion factor that affects the strong approximation in nontrivial ways, leading to a different distributional
Gaussian process approximation (Theorem 8).

Proofs of the main results are given in the Appendix. In the supplementary material [5], we consider a
more general setup and offer additional technical and methodological results of potential independent
interest, including: (i) boundary adaptive estimators for the CDF and its derivatives with respect to
the conditioning variable x; (ii) theoretical properties of the local smoothing based conditional PDF
and derivatives estimators; (iii) additional details on bandwidth selection; (iv) alternative covariance
function estimators. Last but not least, we provide a general purpose R software package (lpcde)
implementing the main results in this paper.
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1.1. Related literature

Our paper contributes to the literature on kernel-based conditional density estimation and inference. See
Hall, Wolff and Yao [22], De Gooijer and Zerom [10] and Hall, Racine and Li [21] for earlier reviews,
and Wand and Jones [29], Wasserman [30], Simonoff [27] and Scott [26] for textbook introductions.
Traditional methods for conditional density estimation typically employ ratios of unconditional kernel
density estimators, nonlinear kernel-based derivative of distribution function estimators, or local poly-
nomial estimators based on some preliminary density-like approximation. In the leading special case
of 𝜗 = 0, the closest antecedent to our proposed conditional density estimator is the local polynomial
conditional density estimator introduced by Fan, Yao and Tong [15], which is formed by a local poly-
nomial regression of 𝐾ℎ (𝑦𝑖; 𝑦) on x𝑖 . Their estimator is valid at the boundary of X, but is generally
inconsistent at the boundary of Y. See Appendix A.1 for more discussion.

More generally, classical methods for conditional density estimation are not boundary adaptive with-
out specific modifications, and in some cases do not have a closed-form representation. Boundary adap-
tivity could be achieved by employing boundary-corrected kernels in some cases, but such conditional
density estimation methods do not appear to have been considered in the literature before. Our first
contribution is to introduce a novel boundary adaptive, closed-form conditional density (derivative) es-
timator. Our proposed construction does not rely on boundary-corrected kernels explicitly, but it rather
builds on the idea that automatic boundary-adaptive density estimators can be constructed using local
polynomial methods to smooth out the (discontinuous) distribution function [3].

We also consider estimation of conditional CDF, as the intercept in Equation (1) is an estimator of
𝐹 (𝑦 |x), that is, e⊺0 �̂�(𝑦 |x). In addition to being boundary adaptive, this CDF estimator is also continuous
in 𝑦 and x. We discuss properties of this estimator (probability concentration, strong approximation,
etc.) in the supplementary material. To compare, the conditional CDF estimator 𝐹 (𝑦 |x), which is con-
structed via a local polynomial regression of the indicators 1(𝑦𝑖 ≤ 𝑦) on x𝑖 , is generally discontinuous
in 𝑦. Properties of 𝐹 (𝑦 |x), such as the uniform convergence rate, have been studied in the literature
[12,16].

1.2. Notation and assumptions

To simplify the presentation, in the remainder of this paper we set 𝐿 to be the product kernel based on
𝐾: 𝐿 (x) = 𝐾 (𝑥1)𝐾 (𝑥2) · · ·𝐾 (𝑥𝑑) for a vector x = (𝑥1, . . . , 𝑥𝑑)⊺. We also employ the same bandwidth,
𝑏 = ℎ, in the construction of our proposed estimator, and assume 𝔮 = 𝔭 − 𝜗 − 1 ≥ 0 throughout.

For two numbers 𝑎 and 𝑏, let 𝑎 ∨ 𝑏 = max{𝑎, 𝑏}. Limits are taken with respect to the sample size
tending to infinity (i.e., 𝑛→∞). For two positive sequences 𝑎𝑛 and 𝑏𝑛, 𝑎𝑛 ≾ 𝑏𝑛 means that 𝑎𝑛/𝑏𝑛 is
bounded and 𝑎𝑛 ≾P 𝑏𝑛 means that 𝑎𝑛/𝑏𝑛 is bounded in probability. Constants that do not depend on
the sample size or the bandwidth will be denoted by 𝔠, 𝔠1, 𝔠2, etc.

We introduce the notation ≾TC, which not only provides an asymptotic order in probability, but also
controls the tail probability (TC): 𝑎𝑛 ≾TC 𝑏𝑛 implies that for any 𝔠1 > 0, there exists some 𝔠2 such that

lim sup
𝑛→∞

𝑛𝔠1 P
[
𝑎𝑛 ≥ 𝔠2𝑏𝑛

]
<∞.

Finally, let X = (x⊺1 , . . . ,x
⊺
𝑛)⊺ and Y = (𝑦1, . . . , 𝑦𝑛)⊺ be the data matrices. We make the following

assumptions on the joint distribution and the kernel function.

Assumption 1 (DGP). (i) (𝑦1,x
⊺
1 ), . . . , (𝑦𝑛,x

⊺
𝑛) is a random sample from an absolutely continuous

distribution supported on Y ×X = [0,1]1+𝑑 , and the joint Lebesgue density, 𝑓 (𝑦,x), is continuous and
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bounded away from zero on Y×X. (ii) 𝑓 (𝔭) (𝑦 |x) exists and is continuous. (iii) 𝜕𝝂 𝑓 (𝜗) (𝑦 |x)/𝜕x𝝂 exists
and is continuous for all |𝝂 | = 𝔭 − 𝜗.

Assumption 2 (Kernel). 𝐾 is a symmetric, Lipschitz continuous PDF supported on [−1,1].

Setting Y ×X = [0,1]1+𝑑 is a normalization without loss of generality: all our results generalize to
the case that Y × X is a Cartesian product of closed intervals. Since our method is local in nature,
all the pointwise properties (discussed in the supplementary material) continue to hold if the support
Y ×X is unbounded. Statements of uniform properties will also remain valid for compact subsets.

We also follow the literature to classify evaluation points as interior or (near) boundary (for example,
Section 2.1.2 of [6]). To be precise, let Cubeℎ (𝑦,x) = [𝑦− ℎ, 𝑦+ ℎ] × [𝑥1 − ℎ, 𝑥1 + ℎ] × · · · × [𝑥𝑑 − ℎ, 𝑥𝑑 +
ℎ] be the cube of length 2ℎ centered at (𝑦,x). Then (𝑦,x) is interior if Cubeℎ (𝑦,x) ⊆ Y×X. Otherwise
it is called (near) boundary. This classification stems from properties of our estimator: as discussed in
Appendix A.4, the equivalent kernel is compactly supported, meaning that the estimator only employs
observations in an ℎ-neighborhood of the evaluation point.

2. Main results

This section presents four main theoretical results. First, we provide a stochastic linearization of our
estimator (Lemma 1). Based on this representation, we obtain a uniform probability concentration result
for �̂� (𝜗) (𝑦 |x) (Theorem 1). Next, we obtain valid strong approximation results for the standardized 𝑡-
process based on �̂� (𝜗) (𝑦 |x) (Theorem 2). Finally, we develop a feasible distributional approximation
for the suprema of the Studentized 𝑡-process (Theorem 3). We obtain a uniform consistency result for
an estimator of the covariance function (Lemma 2) to establish Theorem 3.

2.1. Stochastic linearization and uniform probability concentration

We first define the large-sample limits of the matrices Ŝ𝑦 and Ŝx:

S𝑦 =

∫
Y

p
(𝑢 − 𝑦
ℎ

) 1
ℎ

P
(𝑢 − 𝑦
ℎ

)⊺
d𝐹𝑦 (𝑢) and Sx =

∫
X

q
(v − x
ℎ

) 1
ℎ𝑑

Q
(v − x
ℎ

)⊺
d𝐹x (v),

with 𝐹𝑦 and 𝐹x denoting the CDFs of 𝑦𝑖 and x𝑖 , respectively. The following uniform stochastic linear
representation holds for �̂� (𝜗) (𝑦 |x).

Lemma 1 (Stochastic linearization). Suppose Assumptions 1 and 2 hold. If 𝑛ℎ1+𝑑/log(𝑛) →∞ and
ℎ→ 0, then

sup
𝑦∈Y,x∈X

��� �̂� (𝜗) (𝑦 |x) − 𝑓 (𝜗) (𝑦 |x) − 𝑓 (𝜗) (𝑦 |x)
��� ≾TC rSL, rSL = ℎ

𝔭−𝜗 + log(𝑛)
√
𝑛2ℎ1+2𝜗+𝑑+(2∨𝑑)

,

where 𝑓 (𝜗) (𝑦 |x) = 𝑛−1 ∑𝑛
𝑖=1 K ◦

𝜗,ℎ

(
𝑦𝑖 ,x𝑖; 𝑦,x

)
, and

K ◦
𝜗,ℎ (𝑎,b; 𝑦,x) = 1

ℎ1+𝜗 e⊺1+𝜗S−1
𝑦

∫
Y

(
1(𝑎 ≤ 𝑢) − 𝐹 (𝑢 |b)

) 1
ℎ

P
(𝑢 − 𝑦
ℎ

)
d𝐹𝑦 (𝑢)

1
ℎ𝑑

Q
(

b − x
ℎ

)⊺
S−1

x e0.
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The proof, given in Appendix A.3, involves showing that the matrices Ŝ𝑦 , Ŝx and R̂𝑦,x concentrate.
Ŝ𝑦 and Ŝx concentrate in probability (and TC sense), uniformly in 𝑦 and x respectively, around S𝑦 and
Sx. Characterizing the large-sample behavior of the matrix R̂𝑦,x in (2) requires a little more care, but
the end result can be combined with the results for Ŝ𝑦 and Ŝx to obtain the uniform stochastic linear
representation for �̂� (𝜗) (𝑦 |x).

Lemma 1 implies that the properties of �̂� (𝜗) (𝑦 |x) are thus governed by the properties of the stochas-
tic linear representation. In Appendix A.4, we first characterize the leading variance of 𝑓 (𝜗) (𝑦 |x)
(Lemma 4). Define V𝜗 (𝑦,x) :=V[ 𝑓 (𝜗) (𝑦 |x)], then

V𝜗 (𝑦,x) =
1

𝑛ℎ1+𝑑+2𝜗 𝑓 (𝑦 |x)
(
e⊺1+𝜗S−1

𝑦 T𝑦S−1
𝑦 e1+𝜗

) (
e⊺0 S−1

x TxS−1
x e0

)
+𝑂

(
1

𝑛ℎ𝑑+2𝜗

)
,

where T𝑦 =

∬
Y×Y

min(𝑢1, 𝑢2) − 𝑦
ℎ

1
ℎ2 P

(𝑢1 − 𝑦
ℎ

)
P
(𝑢2 − 𝑦

ℎ

)⊺
d𝐹𝑦 (𝑢1)d𝐹𝑦 (𝑢2),

Tx =

∫
X

1
ℎ𝑑

Q
(v − x
ℎ

)
Q

(v − x
ℎ

)⊺
d𝐹x (v). (3)

Based on the stochastic linearization result in Lemma 1 and the above leading variance characteriza-
tion, we can obtain a pointwise (in 𝑦 and x) convergence rate of our estimator: ℎ𝔭−𝜗 +1/

√
𝑛ℎ1+𝑑+2𝜗 . In

Theorem 1 below we will establish a uniform convergence rate and a probability concentration result.
Appendix A.4 establishes additional important features of K ◦

𝜗,ℎ
, such as boundedness and Lipschitz

continuity which will play a crucial role in our strong approximation results. We also bound the uniform
covering number for the class of functions formed by varying the evaluation point. This uniform cover-
ing number result takes into account the fact that the shape of K ◦

𝜗,ℎ
changes across different evaluation

points. To this end, we provide in Appendix A.10 a generic result on covering number calculation for
function classes formed by kernels, which may be of independent interest. This result allows the kernel
functions to take different shapes as well as to depend on a range of bandwidths — the latter feature can
be useful for establishing consistency and distributional approximation that are uniform in bandwidth
(for example, [13]). However, we do not further pursue along this uniform-in-bandwidth direction to
avoid obscuring the main message of the paper.

The following theorem gives a uniform probability concentration result for our conditional density
and derivative estimator. The proof is in Appendix A.5.

Theorem 1 (Probability concentration). Suppose Assumptions 1 and 2 hold. If ℎ → 0 and if
𝑛ℎ1+𝑑/log(𝑛) →∞, then

sup
𝑦∈Y,x∈X

��� �̂� (𝜗) (𝑦 |x) − 𝑓 (𝜗) (𝑦 |x)
��� ≾TC rPC, rPC = ℎ

𝔭−𝜗 +
√︂

log(𝑛)
𝑛ℎ1+𝑑+2𝜗 .

The ℎ𝔭−𝜗 in Theorem 1 stems from a bias term whose magnitude coincides with that of the pointwise
bias at interior evaluation points. As a consequence, the theorem implies that the estimator is boundary
adaptive. The other term represents “noise,” whose magnitude is larger than its counterpart in Lemma
1, reflecting the fact that the estimation error �̂� (𝜗) (𝑦 |x) − 𝑓 (𝜗) (𝑦 |x) can be characterized by the bias

and the randomness in 𝑓 (𝜗) (𝑦 |x). By setting ℎ = (log(𝑛)/𝑛)
1

1+𝑑+2𝔭 , it follows from the theorem that the

estimator achieves the minimax optimal uniform convergence rate [23], namely (log(𝑛)/𝑛)
𝔭−𝜗

1+𝑑+2𝔭 .
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2.2. Strong approximation

We study the distributional properties of the standardized process Ŝ𝜗 (𝑦,x):

Ŝ𝜗 (𝑦,x) =
�̂� (𝜗) (𝑦 |x) − 𝑓 (𝜗) (𝑦 |x)√︁

V𝜗 (𝑦,x)
. (4)

Using elementary tools, Theorem 2.1 in the supplementary material obtains a pointwise Gaussian ap-
proximation to Ŝ𝜗 (𝑦,x). However, the process Ŝ𝜗 is not asymptotically tight and hence it does not con-
verge weakly to a Gaussian process in ℓ∞ (Y ×X), the set of uniformly bounded real-valued functions
on Y ×X equipped with the uniform norm [18,28]. To obtain a uniform distributional approximation,
we use the result of Rio [25] and establish a strong approximation result for (Ŝ𝜗 (𝑦,x) : 𝑦 ∈ Y,x ∈ X).
To state the result, define the correlation function

𝜌𝜗 (𝑦,x, 𝑦′,x′) = C𝜗 (𝑦,x, 𝑦′,x′)
/√︁

V𝜗 (𝑦,x)V𝜗 (𝑦′,x′),

where C𝜗 (𝑦,x, 𝑦′,x′) = 𝑛−1E[K ◦
𝜗,ℎ

(𝑦𝑖 ,x𝑖; 𝑦,x)K ◦
𝜗,ℎ

(𝑦𝑖 ,x𝑖; 𝑦′,x′)].

Theorem 2 (Strong approximation). Suppose Assumptions 1 and 2 hold. If 𝑛ℎ1+𝑑+2𝔭 → 0 and if
𝑛ℎ1+𝑑/log(𝑛) →∞, then there exist two stochastic processes, Ŝ′

𝜗
and G𝜗 , in a possibly enlarged prob-

ability space, such that:

(i) Ŝ𝜗 and Ŝ′
𝜗

have the same distribution,
(ii) G𝜗 is a centered Gaussian process with unit variance and correlation 𝜌𝜗;

(iii) the following holds:

sup
𝑦∈Y,x∈X

���̂S′𝜗 (𝑦,x) −G𝜗 (𝑦,x)
��� ≾TC rSA, rSA =

√︁
𝑛ℎ1+𝑑+2𝔭 +

( log1+𝑑 (𝑛)
𝑛ℎ1+𝑑

) 1
2+2𝑑

.

The theorem provides a Gaussian approximation for the entire stochastic process Ŝ𝜗 rather than for
a particular functional thereof. Later we will employ this result to approximate the distribution of the
suprema of the process, based on which uniform confidence bands can be constructed.

2.3. Variance-covariance estimation and suprema approximation

Because both the process Ŝ𝜗 and the correlation function 𝜌𝜗 depend on unknown features of the under-
lying data generating process (namely, the covariance function C𝜗), Theorem 2 in isolation cannot be
used for inference. In this subsection we first propose an estimator of the covariance function, and then
demonstrate how to obtain a feasible distributional approximation for the suprema of the Studentized
𝑡-process.

The covariance function C𝜗 can be expressed as a functional of two unknowns: the conditional CDF
of 𝑦𝑖 given x𝑖 and the marginal CDF of 𝑦𝑖 . Replacing 𝐹 (𝑦 |x) and 𝐹𝑦 (𝑦) with 𝐹 (𝑦 |x) and 𝐹𝑦 (𝑦) =
𝑛−1 ∑𝑛

𝑖=1 1(𝑦𝑖 ≤ 𝑦), respectively, we obtain the following plug-in covariance function estimator:

Ĉ𝜗 (𝑦,x, 𝑦′,x′) =
1
𝑛2

𝑛∑︁
𝑖=1

K̂ ◦
𝜗,ℎ

(
𝑦𝑖 ,x𝑖; 𝑦,x

)
K̂ ◦

𝜗,ℎ

(
𝑦𝑖 ,x𝑖; 𝑦′,x′

)
,
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where

K̂ ◦
𝜗,ℎ

(
𝑎,b; 𝑦,x

)
=

1
ℎ1+𝜗 e⊺1+𝜗 Ŝ−1

𝑦

[
1
𝑛

𝑛∑︁
𝑗=1

(
1(𝑎 ≤ 𝑦 𝑗 ) − 𝐹 (𝑦 𝑗 |b)

) 1
ℎ

P
( 𝑦 𝑗 − 𝑦

ℎ

)] 1
ℎ𝑑

Q
(

b − x
ℎ

)⊺
Ŝ−1

x e0.

The corresponding estimators of V𝜗 and 𝜌𝜗 are given by V̂𝜗 (𝑦,x) = Ĉ𝜗 (𝑦,x, 𝑦,x) and

�̂�𝜗 (𝑦,x, 𝑦′,x′) = Ĉ𝜗 (𝑦,x, 𝑦′,x′)
/√︃

V̂𝜗 (𝑦,x)V̂𝜗 (𝑦′,x′).

Lemma 2 establishes a uniform probability concentration result for V̂𝜗 and �̂�𝜗 . We relegate the proof
to the supplementary material as it is quite involved.

Lemma 2 (Covariance estimation). Suppose Assumptions 1 and 2 hold. If ℎ→ 0 and if
𝑛ℎ1+𝑑/log(𝑛) →∞, then

sup
𝑦∈Y,x∈X

����� V̂𝜗 (𝑦,x) − V𝜗 (𝑦,x)
V𝜗 (𝑦,x)

����� ≾TC rVE, sup
𝑦,𝑦′∈Y,x,x′∈X

����̂�𝜗 (𝑦,x, 𝑦′,x′) − 𝜌𝜗 (𝑦,x, 𝑦′,x′)��� ≾TC rVE,

where rVE = ℎ𝔭−𝜗− 1
2 +

√︂
log(𝑛)
𝑛ℎ1+𝑑 .

With a valid covariance (and variance) estimator, we replacing V𝜗 (𝑦,x) with V̂𝜗 (𝑦,x) in (4) to
obtain the Studentized 𝑡-process,

T̂𝜗 (𝑦,x) =
�̂� (𝜗) (𝑦 |x) − 𝑓 (𝜗) (𝑦 |x)√︃

V̂𝜗 (𝑦,x)
.

By Theorem 2 and Lemma 2, the law of (T̂𝜗 (𝑦,x) : 𝑦 ∈ Y,x ∈ X) can be approximated by that of a
centered Gaussian process with unit variance and correlation function 𝜌𝜗 , where the latter is estimated
by �̂�𝜗 . As a consequence, functionals of T̂𝜗 admit feasible distributional approximations. To illustrate
this general phenomenon, the following theorem gives a result for the supremum of

��T̂𝜗 ��. We define
Ĝ𝜗 as a process whose law, conditional on the data, is a centered Gaussian with unit variance and
correlation function �̂�𝜗 .

Theorem 3 (Kolmogorov-Smirnov distance: suprema). Suppose Assumptions 1 and 2 hold. If
𝑛 log(𝑛)ℎ1+𝑑+2𝔭 → 0 and if 𝑛ℎ1+𝑑/log(𝑛) →∞, then

sup
𝑢∈R

�����P[ sup
𝑦∈Y,x∈X

��T̂𝜗 (𝑦,x)�� ≤ 𝑢] − P[ sup
𝑦∈Y,x∈X

��Ĝ𝜗 (𝑦,x)
�� ≤ 𝑢���X,Y] �����≾P rKS

where rKS =
√︃
𝑛 log(𝑛)ℎ1+𝑑+2𝔭 +

(
log2+2𝑑 (𝑛)
𝑛ℎ1+𝑑

) 1
2+2𝑑

+
(

log5 (𝑛)
𝑛ℎ1+𝑑

) 1
4

.

To compare the rate of distributional approximation with existing results, we follow the literature
and ignore the first (smoothing bias) term. Then, the rate matches what Chernozhukov, Chetverikov
and Kato [8] obtained when 𝑑 = 2 (see their Remark 3.1(ii)), but it is strictly faster when 𝑑 = 1.
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3. Applications
This section illustrates our theoretical and methodological results by means of three applications. Be-
fore turning to these applications, we discuss bandwidth selection, a necessary step for implementation.
It is customary to select the bandwidth by minimizing an approximation to the IMSE of �̂� (𝜗) (𝑦 |x).
Employing Lemma 1 and assuming that 𝔭 − 𝜗 is even (as outlined in the local polynomial regression
literature [14]), we propose to select the bandwidth by minimizing a feasible analogue of the integrated
mean squared error (IMSE)

ℎ★𝔭 = argmin
ℎ>0

∬
Y×X

(
ℎ2𝔭−2𝜗𝐵𝜗 (𝑦,x)2 + 1

𝑛ℎ1+2𝜗+𝑑𝑉𝜗 (𝑦,x)
)

d𝑦dx,

where 𝐵𝜗 (𝑦,x) and 𝑉𝜗 (𝑦,x) are the constants in the leading bias and variance, respectively, defined as

𝐵𝜗 (𝑦,x) = 𝑓 (𝔭) (𝑦 |x)e⊺1+𝜗S−1
𝑦 c𝑦,𝔭+1 +

∑︁
|𝝂 |=𝔭−𝜗

𝜕𝝂

𝜕x𝝂
𝑓 (𝜗) (𝑦 |x)e⊺0 S−1

x cx,𝝂 ,

𝑉𝜗 (𝑦,x) = 𝑓 (𝑦 |x)
(
e⊺1+𝜗S−1

𝑦 T𝑦S−1
𝑦 e1+𝜗

) (
e⊺0 S−1

x TxS−1
x e0

)
,

with

c𝑦,𝔭+1 =

∫
Y

1
(𝔭 + 1)!

(𝑢 − 𝑦
ℎ

)𝔭+1 1
ℎ

P
(𝑢 − 𝑦
ℎ

)
d𝐹𝑦 (𝑢), cx,𝝂 =

∫
X

1
𝝂!

(v − x
ℎ

)𝝂 1
ℎ𝑑

Q
(v − x
ℎ

)
d𝐹x (v).

Both 𝐵𝜗 (𝑦 |x) and𝑉𝜗 (𝑦 |x) involve the conditional PDF and its derivatives, which can be estimated with
our proposed method. Other unknown quantities in the IMSE expression have the sample analogues:

ĉ𝑦,𝔭+1 =
1
𝑛ℎ

𝑛∑︁
𝑖=1

1
(𝔭 + 1)!

( 𝑦𝑖 − 𝑦
ℎ

)𝔭+1
P

( 𝑦𝑖 − 𝑦
ℎ

)⊺
, ĉx,𝝂 =

1
𝑛ℎ𝑑

𝑛∑︁
𝑖=1

1
𝝂!

(x𝑖 − x
ℎ

)𝝂
Q

(x𝑖 − x
ℎ

)
,

T̂𝑦 =
1

𝑛2ℎ3

𝑛∑︁
𝑖, 𝑗=1

(
min(𝑦𝑖 , 𝑦 𝑗 ) − 𝑦

)
P
( 𝑦𝑖 − 𝑦

ℎ

)
P
( 𝑦 𝑗 − 𝑦

ℎ

)⊺
, T̂x =

1
𝑛ℎ𝑑

𝑛∑︁
𝑖=1

Q
(x𝑖 − x

ℎ

)
Q

(x𝑖 − x
ℎ

)⊺
.

The bandwidth that minimizes the approximate IMSE, ℎ★𝔭 , is proportional to 𝑛−
1

1+𝑑+2𝔭 . Although
this bandwidth delivers estimates that are approximately IMSE-optimal, a non-vanishing bias will be
present in their asymptotic distribution, complicating statistical inference. To address this well-known
problem, our construction of confidence bands and test statistics for parametric or shape restrictions
employs robust bias correction [1,2]: one first constructs an IMSE-optimal point estimator, and then
bias corrects the estimator and adjust the covariance function estimator accordingly to obtain a valid
distributional approximation. More precisely, given an IMSE-optimal point estimator �̂� (𝜗) (𝑦 |x), robust
bias correction relies on a test statistic of the form

�̂� (𝜗) (𝑦 |x) − B̂ias
[
�̂� (𝜗) (𝑦 |x)

]√︂
V̂ar

[
�̂� (𝜗) (𝑦 |x) − B̂ias

[
�̂� (𝜗) (𝑦 |x)

] ] ,
where B̂ias[ �̂� (𝜗) (𝑦 |x)] denotes a bias correction estimate of the IMSE-optimal point estimator
�̂� (𝜗) (𝑦 |x), and V̂ar

[
�̂� (𝜗) (𝑦 |x) − B̂ias[ �̂� (𝜗) (𝑦 |x)]

]
denotes an estimator of the variance of the bias-

corrected estimate. The key idea underlying robust bias correction is to Studentize by the variance of the
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bias corrected estimate as opposed to by the variance of the original point estimator, an approach that
leads to better distributional approximations [1,2]. Similarly, uniform robust bias correction constructs
an estimator of the correlation function 𝜌𝜗 (𝑦,x, 𝑦′,x′) taking into account the additional variability
introduced by the bias correction.

A simple and intuitive way of operationalizing robust bias correction in local polynomial settings
is by increasing the polynomial order 𝔭 (recall that we set 𝔮 = 𝔭 − 𝜗 − 1). That is, we first compute
the bandwidth ℎ★𝔭 , and then form the final estimator with a local polynomial order of 𝔭 + 1. To make
the procedure precise, we augment the notation so that it reflects the local polynomial order and the
bandwidth used as needed. For example, the conditional density estimator using polynomial order 𝔭
and employing the bandwidth ℎ is written as �̂� (𝜗)

𝔭 (𝑦 |x; ℎ).

3.1. Confidence bands

Confidence bands can be constructed using the process (T̂CB
𝜗,𝔭+1 (𝑦,x) : 𝑦 ∈ Y,x ∈ X), where

T̂CB
𝜗,𝔭+1 (𝑦,x) =

�̂�
(𝜗)
𝔭+1 (𝑦 |x; ℎ★𝔭 ) − 𝑓 (𝜗) (𝑦 |x)√︃

V̂𝜗,𝔭+1 (𝑦,x; ℎ★𝔭 )
,

By Theorem 3, the distribution of sup𝑦∈Y,x∈X |T̂CB
𝜗,𝔭+1 (𝑦,x) | is approximated by the conditional (on

the data) distribution of sup𝑦∈Y,x∈X |Ĝ𝜗,𝔭+1 (𝑦,x) |, with Ĝ𝜗,𝔭+1 being a centered Gaussian process
whose law, conditionally on the data, is Gaussian with unit variance and correlation �̂�𝜗,𝔭+1 (·; ℎ★𝔭 ).
Accordingly, let

CB𝜗,𝔭+1 (1 − 𝛼) =
[
�̂�
(𝜗)
𝔭+1 (𝑦 |x; ℎ★𝔭 ) ± cvCB

𝜗,𝔭+1 (𝛼)
√︃

V̂𝜗,𝔭+1 (𝑦,x; ℎ★𝔭 ) : 𝑦 ∈ Y,x ∈ X
]
,

where

cvCB
𝜗,𝔭+1 (𝛼) = inf

{
𝑢 ∈ R+ : P

[
sup

𝑦∈Y,x∈X

��Ĝ𝜗,𝔭+1 (𝑦,x)
�� ≤ 𝑢 ��� X,Y

]
≥ 1 − 𝛼

}
.

As the notation suggests, CB𝜗,𝔭+1 (1−𝛼) is a 100(1−𝛼)% confidence band. To be specific, we have
the following theorem.

Theorem 4 (Confidence bands). Suppose Assumptions 1 and 2 hold, 𝑓 (𝔭+1) (𝑦 |x) exists and is con-
tinuous, and 𝜕𝝂 𝑓 (𝜗) (𝑦 |x)/𝜕x𝝂 exists and is continuous for all |𝝂 | = 𝔭 + 1 − 𝜗. Then���P [

𝑓 (𝜗) ∈ CB𝜗,𝔭+1 (1 − 𝛼)
]
− (1 − 𝛼)

���≾ log
5
4 (𝑛)rCB,

where rCB = 𝑛
− 1

1+𝑑+2𝔭 + 𝑛−
2𝔭−2𝜗+1

4(1+𝑑+2𝔭) + 𝑛−
𝔭

(1+𝑑+2𝔭) (1+𝑑) .

The confidence band CB𝜗,𝔭+1 (1 − 𝛼) is easy to construct because, by discretizing the index set
of the Gaussian process, the critical value cv𝜗,𝔭+1 (1 − 𝛼) can be computed by simulation from a
conditionally (on the data) multivariate Gaussian distribution. We illustrate the performance of our
proposed confidence bands using simulated and real data in Section 5.

Theorem 4 provides a formal, theoretical justification for employing strong approximation meth-
ods to construct confidence bands instead of relying on extreme value theory for approximating the
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distribution of the suprema of the process T̂CB
𝜗,𝔭+1. More specifically, the coverage error rate rCB is

polynomial in 𝑛 for the former inference approach, while the latter inference approach would have a
logarithmic in 𝑛 convergence rate [see, e.g., 19,20, and references therein]. The same remark applies to
the upcoming Theorems 5 and 6, which characterize the error in rejection probability of two different
classes of hypothesis testing procedures.

3.2. Parametric specification testing

Suppose the researcher postulates that the conditional density (derivative) belongs to the parametric
class { 𝑓 (𝜗) (𝑦 |x;𝜸) : 𝜸 ∈ Γ𝜗}, where Γ𝜗 is some parameter space. Abstracting away from the specifics
of the estimation technique, we assume that the researcher also picks some estimator �̂� (e.g., maximum
likelihood or minimum distance), which is assumed to converge in probability to some �̄� ∈ Γ𝜗 . A
natural statistic for the problem of testing

HPS
0 : 𝑓 (𝜗) (𝑦 |x; �̄�) = 𝑓 (𝜗) (𝑦 |x) for all (𝑦,x) ∈ Y ×X

is

sup
𝑦∈Y,x∈X

��T̂PS
𝜗,𝔭+1 (𝑦,x)

��, T̂PS
𝜗,𝔭+1 (𝑦,x) =

�̂�
(𝜗)
𝔭+1 (𝑦 |x; ℎ★𝔭 ) − 𝑓 (𝜗) (𝑦 |x; �̂�)√︃

V̂𝜗,𝔭+1 (𝑦,x; ℎ★𝔭 )
.

Assuming the estimation error of �̂� is asymptotically negligible, a valid 100𝛼% critical value is given
by cvCB

𝜗,𝔭+1 (𝛼). To be specific, we have:

Theorem 5 (Parametric specification testing). Suppose Assumptions 1 and 2 hold, 𝑓 (𝔭+1) (𝑦 |x) exists
and is continuous, and 𝜕𝝂 𝑓 (𝜗) (𝑦 |x)/𝜕x𝝂 exists and is continuous for all |𝝂 | = 𝔭 + 1 − 𝜗. If

𝑛
𝔭−𝜗

1+𝑑+2𝔭 sup
𝑦∈Y,x∈X

��� 𝑓 (𝜗) (𝑦 |x; �̂�) − 𝑓 (𝜗) (𝑦 |x; �̄�)
��� ≾TC rCB,

then, under HPS
0 , ���P[ sup

𝑦∈Y,x∈X
|T̂PS

𝜗,𝔭+1 (𝑦,x) | > cv
CB
𝜗,𝔭+1 (𝛼)

]
− 𝛼

���≾ log
5
4 (𝑛)rCB,

where rCB is defined in Theorem 4.

3.3. Testing shape restrictions

As a third application, suppose the researcher wants to test shape restrictions on 𝑓 (𝜗) . Letting 𝑐𝜗 be a
pre-specified function, consider the problem of testing

HSR
0 : 𝑓 (𝜗) (𝑦 |x) ≤ 𝑐𝜗 (𝑦 |x) for all (𝑦,x) ∈ Y ×X.

For example, if 𝜗 = 0 and if 𝑐𝜗 (𝑦 |x) is some (positive) constant value 𝑐, the testing problem refers to
whether the conditional density exceeds 𝑐 somewhere on its support. As another example, if 𝜗 = 1 and
if 𝑐𝜗 (𝑦 |x) = 0, then the testing problem refers to whether the conditional density is non-increasing in
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𝑦 for all values of x. More generally, the testing problem above can be used to test for monotonicity,
convexity, and other shape features of the conditional density, possibly relative to the function 𝑐𝜗 (𝑦 |x).

A natural testing procedure rejects HSR
0 whenever the test statistic

sup
𝑦∈Y,x∈X

TSR
𝜗,𝔭+1 (𝑦,x), TSR

𝜗,𝔭+1 (𝑦,x) =
�̂�
(𝜗)
𝔭+1 (𝑦 |x; ℎ★𝔭 ) − 𝑐𝜗 (𝑦 |x)√︃

V̂𝜗,𝔭+1 (𝑦,x; ℎ★𝔭 )

exceeds a critical value of the form

cvSR
𝜗,𝔭+1 (𝛼) = inf

{
𝑢 ∈ R+ : P

[
sup

𝑦∈Y,x∈X
Ĝ𝜗,𝔭+1 (𝑦,x) ≤ 𝑢

��� X,Y
]
≥ 1 − 𝛼

}
.

Theorem 6 (Testing shape restriction). Suppose Assumptions 1 and 2 hold, 𝑓 (𝔭+1) (𝑦 |x) exists and is
continuous, and 𝜕𝝂 𝑓 (𝜗) (𝑦 |x)/𝜕x𝝂 exists and is continuous for all |𝝂 | = 𝔭 + 1 − 𝜗. Then, under HSR

0 ,���P[ sup
𝑦∈Y,x∈X

T̂SR
𝜗,𝔭+1 (𝑦,x) > cv

SR
𝜗,𝔭+1 (𝛼)

]
− 𝛼

���≾ log
5
4 (𝑛)rCB,

where rCB is defined in Theorem 4.

4. Imposing additional constraints for density estimation

Specific applications may require additional constraints on the estimates. For example, setting 𝜗 = 0
(PDF), it may be desirable to require that the estimator is non-negative and integrates to one. The
nonnegativity constraint can be directly incorporated into the local polynomial regression (1):

�̂�N (𝑦 |x) = e⊺1 �̂�N (𝑦 |x), �̂�N (𝑦 |x) = argmin
u∈R𝔭+1: e⊺1 u≥0

𝑛∑︁
𝑖=1

(
𝐹 (𝑦𝑖 |x) − p(𝑦𝑖 − 𝑦)⊺u

)2
𝐾ℎ (𝑦𝑖; 𝑦),

where the subscript “N” stands for “non-negative.” While �̂�N (𝑦 |x) is non-negative by construction, it
does not necessarily integrate to one. This follows from the fact that the estimator only exploits local
features of the data and not global constraints. To address the second constraint, we propose and study
the following enhanced estimator based on minimizing Kullback-Leibler divergence (the subscript “I”
stands for “integrating to one”):

�̂�I (𝑦 |x) = argmin
𝑔∈G

KL
(
𝑔
 �̂�N (·|x)) , where KL(𝑔

 𝑓 ) = ∫
Y
𝑔(𝑦) log

( 𝑔(𝑦)
𝑓 (𝑦)

)
d𝑦,

and G = {𝑔 ≥ 0 :
∫
Y 𝑔(𝑦)d𝑦 = 1, 𝑔(𝑦) = 0 for 𝑦 ∉ Y}. It follows that our proposed conditional PDF

estimator, �̂�I (𝑦 |x), is non-negative and integrates to one. Furthermore, both �̂�N (𝑦 |x) and �̂�I (𝑦 |x) can
be written in closed form (see Appendix A.8):

�̂�I (𝑦 |x) =
�̂�N (𝑦 |x)∫

Y �̂�N (𝑢 |x)d𝑢
and �̂�N (𝑦 |x) = max

{
�̂� (𝑦 |x) , 0

}
. (5)

In practice, the support Y might be unknown, and in this case one can naturally replace it by the
empirical support: Ŷ = [𝑦 (1) , 𝑦 (𝑛) ], defined by the smallest (𝑦 (1) ) and largest (𝑦 (𝑛) ) order statistics of
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the observed 𝑦1, 𝑦2, . . . , 𝑦𝑛. Since Ŷ ⊆ Y, all the theoretical results discussed below remain valid on
the empirical support Ŷ.

We first establish stochastic linearization for both, �̂�N (𝑦 |x) and �̂�I (𝑦 |x).

Lemma 3 (Stochastic linearization). Suppose Assumptions 1 and 2 hold. If 𝑛ℎ1+𝑑/log(𝑛) →∞ and
ℎ→ 0, then

sup
𝑦∈Y,x∈X

��� �̂�N (𝑦 |x) − 𝑓 (𝑦 |x) − 𝑓 (0) (𝑦 |x)
��� ≾TC rSL,

and sup
𝑦∈Y,x∈X

��� �̂�I (𝑦 |x) − 𝑓 (𝑦 |x) −
(
𝑓 (0) (𝑦 |x) − 𝑓 (𝑦 |x)

∫
Y
𝑓 (0) (𝑢 |x)d𝑢

)��� ≾TC rSL,

where 𝑓 (0) (𝑦 |x) and rSL are defined in Lemma 1 by setting 𝜗 = 0.

The lemma provides a more refined stochastic linearization for �̂�I (𝑦 |x). We will show that the nor-
malization in �̂�I (𝑦 |x) does not affect the uniform rate of convergence of the estimator. For distributional
approximation, however, it is crucial to employ different Gaussian processes for the two estimators. In
particular, we show that failing to capture the asymptotic contribution of the normalization in �̂�I (𝑦 |x)
may lead to a slower rate for strong approximation.

Theorem 7 (Probability concentration). Suppose Assumptions 1 and 2 hold. If ℎ → 0 and if
𝑛ℎ1+𝑑/log(𝑛) →∞, then

sup
𝑦∈Y,x∈X

��� �̂�N (𝑦 |x) − 𝑓 (𝑦 |x)
��� ≾TC rPC, sup

𝑦∈Y,x∈X

��� �̂�I (𝑦 |x) − 𝑓 (𝑦 |x)
��� ≾TC rPC,

where rPC is defined in Theorem 1 (with 𝜗 = 0).

Finally, to state a strong approximation result, we define the following standardized processes

ŜN (𝑦,x) =
�̂�N (𝑦 |x) − 𝑓 (𝑦 |x)√︁

V0 (𝑦,x)
, ŜI (𝑦,x) =

�̂�I (𝑦 |x) − 𝑓 (𝑦 |x)√︁
V0 (𝑦,x)

.

Theorem 8 (Strong approximation). Suppose Assumptions 1 and 2 hold. If 𝑛ℎ1+𝑑+2𝔭 → 0 and if
𝑛ℎ1+𝑑/log(𝑛) →∞, then there exist three stochastic processes, Ŝ′N, Ŝ′I, and G, in a possibly enlarged
probability space, such that:

(i) ŜN and Ŝ′N have the same distribution; ŜI and Ŝ′I have the same distribution
(ii) G is a centered Gaussian process with unit variance and correlation 𝜌0;

(iii) the following holds:

sup
𝑦∈Y,x∈X

���̂S′N (𝑦,x) −G(𝑦,x)��� ≾TC rSA,

and sup
𝑦∈Y,x∈X

�����̂S′I (𝑦,x) − (
G(𝑦,x) − 𝑓 (𝑦 |x)

∫
Y

√︄
V0 (𝑢,x)
V0 (𝑦,x)

G(𝑢,x)d𝑢
)�����≾TC rSA,

where rSA is defined in Theorem 2.
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The different Gaussian processes needed for distributional approximation to ŜN and ŜI in Theorem 8
is due to the normalization in ŜI. Of course, it is possible to couple Ŝ′I with G directly, but a slower
rate may arise, particularly sup𝑦∈Y,x∈X |Ŝ′I −G(𝑦,x) | ≾TC rSA +

√︁
log(𝑛)ℎ.

Constructing analogues of Lemma 2 and Theorem 3 from Section 2.3 for the constrained estimators
�̂�N (𝑦 |x) and �̂�I (𝑦 |x) now follows directly. Additionally, confidence bands and hypothesis testing proce-
dures as in Section 3 can also be easily developed when employing the constrained density estimators.
We omit details to avoid repetition.

5. Numerical Evidence

We illustrate the effectiveness of our proposed methods with two Monte Carlo experiments, where we
set 𝑑 = 1 and simulate x and 𝑦 from a joint normal distribution with variance 2 and covariance −0.1,
truncated on [−1,1]2. We employ 1000 Monte Carlo repetitions, each with the sample size 𝑛 = 5000.
Replication files, additional simulation results, and details of the companion R package, lpcde, can
be found at https://nppackages.github.io/lpcde/ and in our companion software article [4].

In the first simulation experiment, we estimate the conditional PDF for 20 equally spaced points on
[−1,1] for 𝑦. Table 1 presents the simulation results at three different conditioning values: (a) interior
(x = 0), (b) near-boundary (x = 0.8), and (c) at-boundary (x = 1). See the discussion at the end of
Section 1 for a classification of interior and (near) boundary evaluation points.

Table 1 reports average estimated bandwidth in column “ℎ̂”, and average bias and standard error in
the “bias” and “se” columns, respectively. We consider bands formed by pointwise confidence intervals
(columns “pointwise”), which are not uniformly valid and hence should exhibit considerable under cov-
erage, as well as the uniform confidence bands discussed in Section 3 (columns “uniform”). We report
their empirical uniform coverage probabilities (column “Coverage”) and the average width (column
“Width”). For the non-bias corrected rows (“NBC”), the polynomial orders for bandwidth selection,
point estimation and statistical inference are 𝔭 = 2 and 𝔮 = 1, while those for robust bias-corrected
statistical inference rows (“RBC”) are 𝔭 = 3 and 𝔮 = 2.

Table 1. Empirical uniform coverage probabilities.

Coverage Width
ℎ̂ bias se pointwise uniform pointwise uniform

x = 0
NBC 0.32 0.09 0.03 62.6 74.8 0.01 0.02
RBC 0.32 0.09 0.09 83.4 93.9 0.05 0.05

x = 0.8
NBC 0.30 0.10 0.04 72.8 89.4 0.02 0.03
RBC 0.30 0.10 0.18 86.9 94.3 0.13 0.19

x = 1.0
NBC 0.32 0.10 0.06 74.9 91.3 0.02 0.05
RBC 0.32 0.10 0.20 88.1 93.2 0.11 0.23

The simulation results in Table 1 support our main theoretical findings. First, robust bias correction
leads to uniformly better performance of the inference procedures, both pointwise and uniformly over
Y. Second, our uniform distributional approximation leads to feasible confidence bands with good
finite sample performance, when coupled with robust bias correction methods.

https://nppackages.github.io/lpcde/
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Table 2. Comparison between FYT and our method for conditional PDF estimation.

FYT This paper: �̂� (𝑦 |x)

× ℎMSE ℎ bias se rmse ℎ bias se rmse NBC CI RBC CI

(𝑦 = 0 ,x = 0) 0.8 0.32 0.08 0.13 0.15 0.23 0.07 0.07 0.11 0.87 0.99
0.9 0.36 0.09 0.12 0.15 0.26 0.07 0.05 0.09 0.74 0.98

1 0.39 0.09 0.12 0.15 0.29 0.07 0.04 0.08 0.56 0.96
1.1 0.43 0.09 0.12 0.15 0.32 0.06 0.03 0.07 0.39 0.89
1.2 0.46 0.10 0.11 0.15 0.35 0.07 0.02 0.07 0.25 0.81

(𝑦 = 0.8,x = 0) 0.8 0.29 0.14 0.10 0.18 0.26 0.03 0.02 0.04 0.90 0.99
0.9 0.33 0.14 0.10 0.17 0.30 0.03 0.01 0.03 0.83 0.98

1 0.36 0.14 0.09 0.17 0.33 0.03 0.01 0.03 0.75 0.93
1.1 0.39 0.14 0.09 0.17 0.36 0.03 0.01 0.04 0.70 0.87
1.2 0.43 0.14 0.08 0.16 0.40 0.03 0.01 0.04 0.64 0.80

(𝑦 = 1 ,x = 0) 0.8 0.27 0.18 0.07 0.20 0.40 0.04 0.04 0.06 0.93 1.00
0.9 0.30 0.18 0.07 0.19 0.45 0.04 0.03 0.05 0.73 0.99

1 0.33 0.20 0.06 0.20 0.50 0.04 0.02 0.04 0.51 0.96
1.1 0.36 0.21 0.06 0.21 0.55 0.04 0.01 0.04 0.36 0.89
1.2 0.39 0.23 0.05 0.24 0.60 0.04 0.01 0.04 0.22 0.80

For example, for x = 0, the averaged (across simulations) estimated approximate IMSE-optimal band-
width choice is ℎ̂ = 0.32, with 𝔭 = 2 and 𝔮 = 𝔭 − 1. Bands constructed with pointwise confidence in-
tervals have empirical uniform coverage of 62.6% without bias correction, and 83.4% with robust bias
correction, both are substantially below the 95% nominal level because they are not uniformly valid
over the range of 𝑦. The feasible confidence bands are designed to address that issue: our proposed
confidence bands have empirical coverage of 93.9% when robust bias correction is employed. It also
highlights the importance of addressing the misspecification (smoothing) bias for statistical inference.
Without bias correction, the uniform confidence bands only cover the true conditional PDF with prob-
ability 74.8%.

The second simulation study compares our estimator (lpcde) to the estimator proposed by Fan,
Yao and Tong [15] (FYT, see Appendix A.1 for details). Table 2 presents the simulation results for
the conditional PDF at three distinct evaluation points. For a fair comparison, we first compute the
MSE optimal bandwidth (ℎMSE) for the two estimators at each evaluation point. We then investigate
the performance of the two estimators over a grid of bandwidths, ranging from 0.8 × ℎMSE (under
smoothing) to 1.2 × ℎMSE (over-smoothing).

For each of the two estimators we report the average bandwidth, bias, standard error, and root mean
squared error. Additionally, for our estimator we report the pointwise empirical coverage probabilities,
both with and without bias correction. Since FYT do not provide theory for statistical inference, we
do not report confidence interval information for the estimator. Results in Table 2 suggest that our
local polynomial conditional PDF estimator perform well across all three evaluation points, and the
confidence intervals constructed thereof exhibits satisfactory empirical coverage property. In particular,
at the boundary evaluation point (𝑦 = 1,x = 0), our estimator has accurate coverage while FYT suffers
from boundary bias.

Finally, we illustrate the performance of our estimator in Figure 1 with real data. The data we employ
is from Capital Bikeshare (available at https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset).
The outcome variable 𝑦𝑖 is the total number of bike rentals, and the covariate x𝑖 is the “feels-like”

https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
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temperature in Celsius. Panel (a) shows the estimated conditional PDFs for three temperature levels,
x𝑖 = 0, 25, and 35 ◦𝐶. From the conditional density plots, more bike rental activities happen in warmer
days (i.e., the conditional distribution moves toward right). It is worth mentioning that the outcome
variable has a lower boundary at 0, and using a standard kernel density estimator for conditional PDF
estimation will lead to a severe under-estimation bias for 𝑓 (𝑦 |x) whenever the evaluation point 𝑦 is
close to zero. To avoid overcrowding the figure, we illustrate the confidence band with robust bias
correction in panel (b).
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(a) Estimated conditional PDFs.
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(b) Illustration of confidence band.

Figure 1: Estimated relationship (conditional PDF) between bike rental counts and temperature.

6. Conclusion
We introduced a new boundary adaptive estimator of the conditional density and derivatives thereof.
This estimator is conceptually distinct from prior proposals in the literature, as it relies on two (nested)
local polynomial estimators. Our proposed estimation approach has several appealing features, most
notably automatic boundary adaptivity. We provided an array of uniform estimation and distributional
results, including a valid uniform equivalent kernel representation and uniform distributional approxi-
mations. Our methods are applicable in data science settings either where the conditional density or its
derivatives are the main object of interest, or where they are preliminary estimands entering a multi-
step statistical procedure.

Appendix

A.1. Derivation of (2) and an alternative expression

To start, the conditional CDF estimation step is a weighted least squares problem, and has the solution

𝐹 (𝑦 𝑗 |x) = e⊺0
( 𝑛∑︁
𝑖=1

q(x𝑖 − x)q(x𝑖 − x)⊺𝐿𝑏 (x𝑖; x)
)−1 ( 𝑛∑︁

𝑖=1

q(x𝑖 − x)𝐿𝑏 (x𝑖; x)1(𝑦𝑖 ≤ 𝑦 𝑗 )
)
.



Local polynomial conditional density estimators 17

The second local polynomial regression takes 𝐹 (𝑦 𝑗 |x) as the “dependent variable,” and therefore the
final estimator takes the form

�̂� (𝜗) (𝑦 |x) = e⊺1+𝜗
( 𝑛∑︁
𝑗=1

p(𝑦 𝑗 − 𝑦)p(𝑦 𝑗 − 𝑦)⊺𝐾ℎ (𝑦 𝑗 ; 𝑦)
)−1 ( 𝑛∑︁

𝑗=1

p(𝑦 𝑗 − 𝑦)𝐾ℎ (𝑦 𝑗 ; 𝑦)𝐹 (𝑦 𝑗 |x)
)
.

The final expression in (2) then follows from re-normalizing x𝑖−x to (x𝑖−x)/𝑏 and 𝑦 𝑗 − 𝑦 to (𝑦 𝑗 − 𝑦)/ℎ,
leading to the multiplicative factor ℎ−1−𝜗 . By changing the order of summation in R̂𝑦,x, we can also
write �̂� (𝜗) (𝑦 |x) as

�̂� (𝜗) (𝑦 |x) = e⊺0
( 𝑛∑︁
𝑖=1

q(x𝑖 − x)q(x𝑖 − x)⊺𝐿𝑏 (x𝑖; x)
)−1 ( 𝑛∑︁

𝑖=1

q(x𝑖 − x)𝐿𝑏 (x𝑖; x)𝐾ℎ (𝑦𝑖 , 𝑦)
)
,

where

𝐾ℎ (𝑦𝑖 , 𝑦) = e⊺1+𝜗
( 𝑛∑︁
𝑗=1

p(𝑦 𝑗 − 𝑦)p(𝑦 𝑗 − 𝑦)⊺𝐾ℎ (𝑦 𝑗 ; 𝑦)
)−1 ( 𝑛∑︁

𝑗=1

p(𝑦 𝑗 − 𝑦)𝐾ℎ (𝑦 𝑗 ; 𝑦)1(𝑦𝑖 ≤ 𝑦 𝑗 )
)
.

The above alternative expression shows that our proposed estimator can be understood as first forming
𝐾ℎ (𝑦𝑖 , 𝑦), which is a data-driven kernel re-weighting of 𝑦𝑖 and then conducting local polynomial re-
gression on x𝑖 . To compare, the density estimator (𝜗 = 0) introduced by Fan, Yao and Tong [15] takes
the form

�̂�FYT (𝑦 |x) = e⊺0
( 𝑛∑︁
𝑖=1

q(x𝑖 − x)q(x𝑖 − x)⊺𝐿𝑏 (x𝑖; x)
)−1 ( 𝑛∑︁

𝑖=1

q(x𝑖 − x)𝐿𝑏 (x𝑖; x)𝐾ℎ (𝑦𝑖 , 𝑦)
)
,

where 𝐾ℎ (𝑦𝑖 , 𝑦) = 𝐾 ((𝑦𝑖 − 𝑦)/ℎ)/ℎ for some (second-order) kernel function 𝐾 . The estimator,
�̂�FYT (𝑦 |x), is consistent at the boundary of X (due to the local polynomial regression step on x𝑖), but is
generally inconsistent at the boundary of Y. Unlike their proposal, our estimator remains consistent at
the boundaries of both X and Y.

A.2. A local smoothing based estimator

In this appendix we introduce a local smoothing based estimator for the conditional PDF and its deriva-
tives. Recall from Section 1 that 𝐹 (𝑦 |x) is the estimated conditional CDF formed by a 𝔮-th order local
polynomial regression. Now let 𝐺 be some nonnegative measure such that the Radon-Nikodym deriva-
tive with respect to the Lebesgue measure is continuous. Then instead of employing a local polynomial
regression as in (1), we form a conditional PDF (and derivatives) estimator by local smoothing:

𝑓 (𝜗) (𝑦 |x) = e⊺1+𝜗 �̌�(𝑦 |x), �̌�(𝑦 |x) = argmin
v∈R𝔭+1

∫
Y

(
𝐹 (𝑢 |x) − p(𝑢 − 𝑦)⊺v

)2
𝐾ℎ (𝑢; 𝑦)d𝐺 (𝑢),

which has the closed-form expression: 𝑓 (𝜗) (𝑦 |x) = e⊺1+𝜗S−1
𝑦 R̄𝑦,xŜ−1

x e0. Here we define

S𝑦 =

∫
Y

p
(𝑢 − 𝑦
ℎ

) 1
ℎ

P
(𝑢 − 𝑦
ℎ

)⊺
d𝐺 (𝑢),

R̄𝑦,x =
1

𝑛ℎ1+𝜗

𝑛∑︁
𝑖=1

(∫
Y
1(𝑦𝑖 ≤ 𝑢)

1
ℎ

P
(𝑢 − 𝑦
ℎ

)
d𝐺 (𝑢)

)
1
𝑏𝑑

Q
(x𝑖 − x

𝑏

)⊺
.
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Compared to �̂� (𝜗) (𝑦 |x), the above local smoothing based estimator requires knowledge of the support
Y. On the other hand, 𝑓 (𝜗) (𝑦 |x) has the advantage that it is immune to low density regions of 𝑦𝑖;
that is, the new estimator remains valid even when the density of 𝑦𝑖 is close to zero. Intuitively, this is
because 𝑓 (𝜗) (𝑦 |x) employs a nonrandom local smoothing in the second step, while �̂� (𝜗) (𝑦 |x) is based
on two local polynomial regressions.

Due to space limitations, we investigate the theoretical properties of this estimator in the supplemen-
tary material [5].

A.3. Proof of Lemma 1

Define

𝑢𝑖, 𝑗 =

((
1(𝑦𝑖 ≤ 𝑦 𝑗 ) − 𝐹 (𝑦 𝑗 |x𝑖)

)
P
( 𝑦 𝑗 − 𝑦

ℎ

)
−

∫
Y

[
1(𝑦𝑖 ≤ 𝑢) − 𝐹 (𝑢 |x𝑖)

]
P
( 𝑢 − 𝑦
ℎ

)
d𝐹𝑦 (𝑢)

)
Q

( x𝑖 − x
ℎ

)⊺
.

We write

�̂� (𝜗) (𝑦 |x) = 1
𝑛ℎ2+𝑑+𝜗 e⊺1+𝜗 Ŝ−1

𝑦

( 𝑛∑︁
𝑖=1

∫
Y

(
1(𝑦𝑖 ≤ 𝑢) − 𝐹 (𝑢 |x𝑖)

)
P
( 𝑢 − 𝑦
ℎ

)
d𝐹𝑦 (𝑢)Q

( x𝑖 − x
ℎ

)⊺ )
Ŝ−1

x e0 (I)

+ 1
𝑛2ℎ2+𝑑+𝜗 e⊺1+𝜗 Ŝ−1

𝑦

( 𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝐹 (𝑦 𝑗 |x𝑖)P
( 𝑦 𝑗 − 𝑦

ℎ

)
Q

( x𝑖 − x
ℎ

)⊺)
Ŝ−1

x e0 (II)

+ 1
𝑛2ℎ2+𝑑+𝜗 e⊺1+𝜗 Ŝ−1

𝑦

( 𝑛∑︁
𝑖=1

𝑢𝑖,𝑖

)
Ŝ−1

x e0 + 1
𝑛2ℎ2+𝑑+𝜗 e⊺1+𝜗 Ŝ−1

𝑦

( 𝑛∑︁
𝑖, 𝑗=1,𝑖≠ 𝑗

𝑢𝑖, 𝑗

)
Ŝ−1

x e0. (III + IV)

We first provide probability concentration results for the matrices Ŝx and Ŝ𝑦 . We will then show
that term (II) encompasses the target parameter 𝑓 (𝜗) (𝑦 |x) and the smoothing bias. Next, we establish
probabilistic orders for (III) and (IV). We analyze term (I) as the last step, which will close the proof.

Convergence of Ŝx and Ŝ𝑦 . To start, note that X is compact, then for any [𝑛 > 0, one can find {xℓ : 1 ≤
ℓ ≤ 𝑀𝑛}, such that X ⊆ ∪1≤ℓ≤𝑀𝑛

𝐵ℓ , where 𝐵ℓ := 𝐵(xℓ , [𝑛) is the Euclidean ball centered at xℓ with
radius [𝑛. Define r =

√︁
log(𝑛)/(𝑛ℎ𝑑). Then,

sup
x∈X

��̂Sx − Sx
�� ≤ max

1≤ℓ≤𝑀𝑛

��̂Sxℓ − Sxℓ
�� + sup

1≤ℓ≤𝑀𝑛

sup
x∈𝐵ℓ

��̂Sx − Ŝxℓ
�� + sup

1≤ℓ≤𝑀𝑛

sup
x∈𝐵ℓ

��Sx − Sxℓ
��.

Consider the last term on the RHS. It is straightforward to show that Sx is continuous with Lipschitz
constant of order ℎ−1, which implies that sup1≤ℓ≤𝑀𝑛

supx∈𝐵ℓ
|Sx − Sxℓ | ≾ [𝑛/ℎ. Similar technique

applies to the second term on the RHS: the matrix Ŝx is the average of continuous functions with
Lipschitz constant of order ℎ−1−𝑑 , which means sup1≤ℓ≤𝑀𝑛

supx∈𝐵ℓ
|Ŝx − Ŝxℓ | ≾ [𝑛/ℎ1+𝑑 .

Now consider the first term. By employing the union bound, we have that, for any constant 𝔠1 > 0,

P
[

max
1≤ℓ≤𝑀𝑛

��̂Sxℓ − Sxℓ
�� > 𝔠1r

]
≤ 𝑀𝑛 max

1≤ℓ≤𝑀𝑛

P
[��̂Sxℓ − Sxℓ

�� > 𝔠1r
]
.

To proceed, we recall the formula of Ŝx, and it follows that the summands satisfy

V
[ 1
ℎ𝑑

q
(x𝑖 − x

ℎ

)
Q

(x𝑖 − x
ℎ

)⊺ ]
≤ 𝐶′ℎ−𝑑 ,

��� 1
ℎ𝑑

q
(x𝑖 − x

ℎ

)
Q

(x𝑖 − x
ℎ

)⊺ ��� ≤ 𝐶′ℎ−𝑑 ,
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where 𝐶′ is a constant that does not depend on 𝑛, ℎ or the evaluation point x. Applying Bernstein’s
inequality,

𝑀𝑛 max
1≤ℓ≤𝑀𝑛

P
[��̂Sxℓ − Sxℓ

�� > 𝔠1r
]
≤ 2 exp

{
− 1

2

𝔠2
1 log(𝑛)

𝐶′ + 1
3 𝔠1𝐶′r

+ log(𝑀𝑛)
}
.

To complete the proof, we note that 𝑀𝑛 is at most polynomial in 𝑛 as long as [𝑛 is also polynomial in
𝑛. Therefore, one can choose [𝑛 sufficiently small so that [𝑛/ℎ1+𝑑 become negligible, and hence for
some constants 𝔠1, 𝔠2, and 𝔠3,

P
[

sup
x∈X

��̂Sx − Sx
�� > 𝔠1r

]
≤ 𝔠2𝑛

−𝔠3 ,

and 𝔠3 can be made arbitrarily large with appropriate choices of 𝔠1. In other words, we have shown that
supx∈X |Ŝx − Sx | ≾TC

√︁
log(𝑛)/(𝑛ℎ𝑑). Analogously, we can show the probability concentration result

sup𝑦∈Y |Ŝ𝑦 − S𝑦 | ≾TC

√︁
log(𝑛)/(𝑛ℎ).

Term (II), and the smoothing bias calculation. We start with a Taylor expansion of the conditional
CDF up to some order 𝑠:

𝐹 (𝑦 𝑗 |x𝑖) =
∑︁

ℓ+|m | ≤𝑠

𝜕ℓ

𝜕𝑦ℓ

𝜕m

𝜕xm 𝐹 (𝑦 |x)
1

ℓ!m!
(𝑦 𝑗 − 𝑦)ℓ (x𝑖 − x)m + 𝑜

( ∑︁
ℓ+|m |=𝑠

|𝑦 𝑗 − 𝑦 |ℓ |x𝑖 − x|m
)
.

Then,

1
𝑛2ℎ2+𝑑+𝜗

𝑛∑︁
𝑖, 𝑗=1

e⊺1+𝜗 Ŝ−1
𝑦 𝐹 (𝑦 𝑗 |x𝑖)P

( 𝑦 𝑗 − 𝑦
ℎ

)
Q

( x𝑖 − x
ℎ

)⊺
Ŝ−1

x e0

=
1

𝑛2ℎ2+𝑑+𝜗

𝑛∑︁
𝑖, 𝑗=1

e⊺1+𝜗 Ŝ−1
𝑦

∑︁
ℓ+|m | ≤𝑠

𝜕ℓ

𝜕𝑦ℓ

𝜕m

𝜕xm 𝐹 (𝑦 |x) 1
ℓ!m!

(𝑦 𝑗 − 𝑦)ℓ (x𝑖 − x)mP
( 𝑦 𝑗 − 𝑦

ℎ

)
Q

( x𝑖 − x
ℎ

)⊺
Ŝ−1

x e0

+ 𝑜
(

1
𝑛2ℎ2+𝑑+𝜗 e⊺1+𝜗 Ŝ−1

𝑦

𝑛∑︁
𝑖, 𝑗=1

∑︁
ℓ+|m |=𝑠

|𝑦 𝑗 − 𝑦 |ℓ |x𝑖 − x|m
���P ( 𝑦 𝑗 − 𝑦

ℎ

)��� ���Q ( x𝑖 − x
ℎ

)��� Ŝ−1
x e0

)
= 𝑓 (𝜗) (𝑦 |x) +𝑂P (ℎ𝔮+1 + ℎ𝔭−𝜗).

To understand the stochastic order, we notice that the first nonzero term in the summation corresponds
to ℓ = 1+𝜗 and m = 0, which gives rise to the target parameter 𝑓 (𝜗) (𝑦 |x). The next nonzero terms in the
summation will be the leading smoothing bias, and correspond to ℓ = 1+𝜗 and |m| = 𝔮 + 1, or ℓ = 𝔭 + 1
and m = 0. The leading bias terms will involve random vectors and matrices that are sample averages,
whose probabilistic orders can be established using the earlier method of combining discretization,
union bound, and Bernstein’s inequality.

Term (III), the leave-in bias. This term arises because the same observation is used twice: 𝑦𝑖 is used
to construct the conditional CDF estimator 𝐹 (𝑦 |x), and later as an evaluation point in the second step
local polynomial regression. Term (III) takes the form of a sample average, and using the earlier method
of combining discretization, union bound, and Bernstein’s inequality, it is straightforward to show that
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it has the order

sup
𝑦∈Y,x∈X

|(III)| ≾TC
1

𝑛ℎ1+𝜗

(
1 +

√︂
log(𝑛)
𝑛ℎ1+𝑑

)
.

Term (IV). Term (IV) is a degenerate U-statistic. Take 𝐶 and 𝐶′ to be some large constant, and we set

𝐴 =𝐶′, 𝐵2 =𝐶′𝑛ℎ, 𝐷2 =𝐶′𝑛2ℎ𝑑+1, 𝑡 =𝐶 (log(𝑛))
√︁
𝑛2ℎ𝑑+1.

We apply Lemmas 8 and 9, which give (the value of 𝐶′ may change for each line)

P
[

sup
𝑦∈Y,x∈X

��� 𝑛∑︁
𝑖, 𝑗=1,𝑖≠ 𝑗

𝑢𝑖, 𝑗

��� > 𝑡] ≤ 𝐶′ exp
{
− 1
𝐶′ min

[
𝑡

√
𝑛2ℎ𝑑+1

,
𝑡2/3

(𝑛ℎ)1/3
, 𝑡1/2

]
+ log(𝑛)

}
=𝐶′ exp

{
−
√
𝐶

𝐶′ min
[

log(𝑛),
(
log2 (𝑛)𝑛ℎ𝑑

) 1
3
,

(
log2 (𝑛)𝑛2ℎ1+𝑑

) 1
4
]
+ log(𝑛)

}
.

As a result,

sup
𝑦∈Y,x∈X

��(IV)
��≾TC

log(𝑛)
√
𝑛2ℎ3+𝑑+2𝜗

.

Term (I). To close the proof, we write (I) − 𝑓 (𝜗) (𝑦 |x) = (I.1) + (I.2), where

(I.1) =
1

𝑛ℎ2+𝑑+𝜗 e⊺1+𝜗 (Ŝ
−1
𝑦 − S−1

𝑦 )
( 𝑛∑︁
𝑖=1

∫
Y

(
1(𝑦𝑖 ≤ 𝑢) − 𝐹 (𝑢 |x𝑖)

)
P
( 𝑢 − 𝑦
ℎ

)
d𝐹𝑦 (𝑢)Q

( x𝑖 − x
ℎ

)⊺ )
Ŝ−1

x e0,

(I.2) =
1

𝑛ℎ2+𝑑+𝜗 e⊺1+𝜗S−1
𝑦

( 𝑛∑︁
𝑖=1

∫
Y

(
1(𝑦𝑖 ≤ 𝑢) − 𝐹 (𝑢 |x𝑖)

)
P
( 𝑢 − 𝑦
ℎ

)
d𝐹𝑦 (𝑢)Q

( x𝑖 − x
ℎ

)⊺ )
(Ŝ−1

x − S−1
x )e0.

To analyze term (I.1), we have shown that sup𝑦∈Y |Ŝ𝑦 −S𝑦 | ≾TC

√︁
log(𝑛)/(𝑛ℎ) and supx∈X |Ŝx | ≾TC

1 +
√︁

log(𝑛)/(𝑛ℎ𝑑). Notice that both S𝑦 and Sx are invertible, which means the same rates apply after
inverting the matrices. The middle matrix in (I.1) is a sample average that is mean zero and has vari-
ance of order 𝑛ℎ2+𝑑 . We can therefore apply the earlier technique of discretization, union bound, and
Bernstein’s inequality to show that the middle matrix has the order

√︁
log(𝑛)𝑛ℎ2+𝑑 . Therefore,

(I.1) ≾TC
1

𝑛ℎ2+𝑑+𝜗

√︂
log(𝑛)
𝑛ℎ

√︃
log(𝑛)𝑛ℎ2+𝑑

(
1 +

√︂
log(𝑛)
𝑛ℎ𝑑

)
≾

log(𝑛)
√
𝑛2ℎ3+𝑑+2𝜗

.

To analyze term (I.2), we us the fact that supx∈X |Ŝx − Sx | ≾TC

√︁
log(𝑛)/(𝑛ℎ𝑑) and the rest of the

term is mean zero conditional on x𝑖 . It remains to compute the variance.

V
[
e⊺1+𝜗S−1

𝑦

∫
Y

(
1(𝑦𝑖 ≤ 𝑢) − 𝐹 (𝑢 |x𝑖)

)
P
(𝑢 − 𝑦
ℎ

)
d𝐹𝑦 (𝑢)Q

(x𝑖 − x
ℎ

)⊺ ]
= ℎ2E

[∬
(Y−𝑦)/ℎ

(
𝐹 (𝑦 + ℎ(𝑢1 ∧ 𝑢2) |x𝑖) − 𝐹 (𝑦 + ℎ𝑢1 |x𝑖)𝐹 (𝑦 + ℎ𝑢2 |x𝑖)

)
𝑓𝑦 (𝑦 + ℎ𝑢1) 𝑓𝑦 (𝑦 + ℎ𝑢2)

e⊺1+𝜗S−1
𝑦 P(𝑢1)P(𝑢2)⊺S−1

𝑦 e1+𝜗d𝑢1d𝑢2Q
(x𝑖 − x

ℎ

)
Q

(x𝑖 − x
ℎ

)⊺ ]
,
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where 𝑓𝑦 represents the marginal PDF of 𝑦𝑖 . By a standard Taylor expansion (in ℎ) exercise, one can
show that the leading term is zero, which means the variance has the order ℎ3+𝑑 . We can therefore
apply the earlier technique (discretization, union bound, and Bernstein’s inequality) to show that

sup
𝑦∈Y,x∈X

���e⊺1+𝜗S−1
𝑦

( 𝑛∑︁
𝑖=1

∫
Y

(
1(𝑦𝑖 ≤ 𝑢) − 𝐹 (𝑢 |x𝑖)

)
P
(𝑢 − 𝑦
ℎ

)
d𝐹𝑦 (𝑢)Q

(x𝑖 − x
ℎ

)⊺ )���≾TC

√︃
log(𝑛)𝑛ℎ3+𝑑 .

As a result,

(I.2) ≾TC
1

𝑛ℎ3+𝑑+𝜗

√︃
log(𝑛)𝑛ℎ3+𝑑

√︄
log(𝑛)
(𝑛ℎ𝑑)

=
log(𝑛)

√
𝑛2ℎ1+2𝑑+2𝜗

.

A.4. Properties of the equivalent kernel

In this appendix we prove some useful properties of the equivalent kernel function K ◦
𝜗,ℎ

, which will
be employed to establish the strong approximation result in Theorem 2.

Lemma 4 (Leading variance). Suppose Assumptions 1 and 2 hold. If ℎ→ 0 and if 𝑛ℎ1+𝑑/log(𝑛) →
∞, then (3) holds.

Proof of Lemma 4. To save notation, let c1 = S−1
𝑦 e1+𝜗 and c2 = S−1

x e0. Then

V

[∫
Y

(
1(𝑦𝑖 ≤ 𝑢) − 𝐹 (𝑢 |x𝑖)

)
c⊺1

1
ℎ

P
(𝑢 − 𝑦
ℎ

)
𝑓𝑦 (𝑢)d𝑢

1
ℎ𝑑

Q
(x𝑖 − x

ℎ

)⊺
c2

]
= E

[∬
Y−𝑦
ℎ

(
𝐹 (𝑦 + ℎ(𝑢1 ∧ 𝑢2) |x𝑖) − 𝐹 (𝑦 + ℎ𝑢1 |x𝑖)𝐹 (𝑦 + ℎ𝑢2 |x𝑖)

)
𝑓𝑦 (𝑦 + ℎ𝑢1) 𝑓𝑦 (𝑦 + ℎ𝑢2)

c⊺1 P (𝑢1) c⊺1 P (𝑢2) d𝑢1d𝑢2

(
c⊺2

1
ℎ𝑑

Q
(x𝑖 − x

ℎ

) )2]
. (I)

We make a further expansion:

𝐹 (𝑦 + ℎ(𝑢1 ∧ 𝑢2) |x𝑖) − 𝐹 (𝑦 + ℎ𝑢1 |x𝑖)𝐹 (𝑦 + ℎ𝑢2 |x𝑖)

= 𝐹 (𝑦 |x𝑖) (1 − 𝐹 (𝑦 |x𝑖)) + ℎ(𝑢1 ∧ 𝑢2) 𝑓 (𝑦 |x𝑖) − ℎ(𝑢1 + 𝑢2) 𝑓 (𝑦 |x𝑖)𝐹 (𝑦 |x𝑖) +𝑂 (ℎ2).

Note that the remainder term, 𝑂 (ℎ2), holds uniformly for 𝑦 ∈ Y and x𝑖 ∈ X since the conditional
distribution function is assumed to have bounded second derivatives. In addition, it is straightforward
to verify that with the above Taylor expansion, the first term in (I) is zero, meaning that the leading
variance term is

(I) = ℎ
(
e⊺1+𝜗S−1

𝑦 T𝑦S−1
𝑦 e1+𝜗

)
E
[
𝑓 (𝑦 |x𝑖)

(
c⊺2

1
ℎ𝑑

Q
(x𝑖 − x

ℎ

) )2]
+𝑂

( 1
ℎ𝑑−2

)
.

To conclude the proof, we compute the expectation,

(I) =
1

ℎ𝑑−1 𝑓 (𝑦 |x)
(
e⊺1+𝜗S−1

𝑦 T𝑦S−1
𝑦 e1+𝜗

) (
e⊺0 S−1

x TxS−1
x e0

)
+𝑂

(
1

ℎ𝑑−2

)
.

Therefore, (3) holds. ■
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Lemma 5 (Properties of K ◦
𝜗,ℎ

). Let Assumptions 1 and 2 hold. Then
(i) K ◦

𝜗,ℎ
(𝑎,b; 𝑦,x) is bounded: sup𝑎,b,𝑦,x |K ◦

𝜗,ℎ
(𝑎,b; 𝑦,x) | ≾ ℎ−1−𝑑−𝜗 .

(ii) K ◦
𝜗,ℎ

(𝑎,b; 𝑦,x) is Lipschitz continuous:

sup
|𝑎−𝑎′ |+|b−b′ |>0,𝑦,x

���K ◦
𝜗,ℎ

(𝑎,b; 𝑦,x) −K ◦
𝜗,ℎ

(𝑎′,b′; 𝑦,x)
���

|𝑎 − 𝑎′ | + |b − b′ | =𝑂

(
ℎ−2−𝑑−𝜗

)
,

sup
𝑎,b, |𝑦−𝑦′ |+|x−x′ |>0

���K ◦
𝜗,ℎ

(𝑎,b; 𝑦,x) −K ◦
𝜗,ℎ

(𝑎,b; 𝑦′,x′)
���

|𝑦 − 𝑦′ | + |x − x′ | =𝑂

(
ℎ−2−𝑑−𝜗

)
.

Proof of Lemma 5. Part (i). We first rewrite the kernel using change-of-variable. Then, ℎ1+𝑑+𝜗K ◦
𝜗,ℎ

takes the form

e⊺1+𝜗S−1
𝑦

[ ∫
Y−𝑦
ℎ

(
1(𝑎 ≤ 𝑦 + ℎ𝑣) − 𝐹 (𝑦 + ℎ𝑣 |b)

)
P (𝑣) 𝑓𝑦 (𝑦 + ℎ𝑣)d𝑣

]
Q

(
b − x
ℎ

)⊺
S−1

x e0.

It should be clear that the above is bounded.
Part (ii). From the expression in part (i), it is clear that ℎ1+𝑑+𝜗K ◦

𝜗,ℎ
is Lipschitz continuous in b

with a Lipschitz constant of order ℎ−1. Next consider the directions 𝑎. We have

sup
b,𝑦,x

ℎ1+𝑑+𝜗 |K ◦
𝜗,ℎ (𝑎,b; 𝑦,x) −K ◦

𝜗,ℎ (𝑎
′,b; 𝑦,x) |

≾ sup
𝑦

��� ∫
Y−𝑦
ℎ

(
1(𝑎 ≤ 𝑦 + ℎ𝑣) − 1(𝑎′ ≤ 𝑦 + ℎ𝑣)

)
P (𝑣) 𝑓𝑦 (𝑦 + ℎ𝑣)d𝑣

���
≾ sup

𝑦

��� ∫
Y−𝑦
ℎ

∩[−1,1]∩
[
𝑎−𝑦
ℎ

,
𝑎′−𝑦
ℎ

] P (𝑣) 𝑓𝑦 (𝑦 + ℎ𝑣)d𝑣
���.

Therefore, the kernel is also Lipschitz-ℎ−1 continuous with respect to 𝑎.
To conclude the proof, it is straightforward to show that Sx and S𝑦 are Lipschitz continuous with

respect to x and 𝑦, with the Lipschitz constant of order 1/ℎ. The same holds for their inverses. ■

Lemma 6 (Covering number). Define K = {ℎ1+𝑑+𝜗K ◦
𝜗,ℎ

(·, ·; 𝑦,x) : 𝑦 ∈ Y, x ∈ X}. Let Assumptions
1 and 2 hold. Then

sup
𝑃

𝑁

(
Y, K, 𝐿1 (𝑃)

)
≤ 𝔠

1
Y𝑑+2 + 1,

where the supremum is taken over all probability measures on [0,1]𝑑+1, and the constant 𝔠 does not
depend on the bandwidth ℎ.

Proof of Lemma 6. To show this result, it suffices to consider the uncentered kernel function,

ℎ1+𝑑+𝜗K𝜗,ℎ (𝑎,b; 𝑦,x) = e⊺1+𝜗S−1
𝑦

∫
Y
1(𝑎 ≤ 𝑢) 1

ℎ
P
(𝑢 − 𝑦
ℎ

)
d𝐹𝑦 (𝑢)Q

(
b − x
ℎ

)⊺
S−1

x e0

= e⊺1+𝜗S−1
𝑦

[ ∫
Y−𝑦
ℎ

1(𝑎 ≤ 𝑦 + ℎ𝑣)P (𝑣) 𝑓𝑦 (𝑦 + ℎ𝑣)d𝑣
]
Q

(
b − x
ℎ

)⊺
S−1

x e0.
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We will first show that it has compact support. Consider two cases. If (𝑎 − 𝑦)/ℎ > 1, then the integrand
1(𝑎 ≤ 𝑦 + ℎ𝑣)P (𝑣) will be zero because P(𝑣) is zero for 𝑣 ≥ 1. Therefore, the kernel defined above will
be zero as well. For the case that (𝑎 − 𝑦)/ℎ ≤ −1, we can simply drop the indicator, as again P(𝑣) will
be zero for 𝑣 ≤ −1. Then the kernel becomes

ℎ1+𝑑+𝜗K𝜗,ℎ (𝑎,b; 𝑦,x) = e⊺1+𝜗S−1
𝑦

[ ∫
Y−𝑦
ℎ

P (𝑣) 𝑓𝑦 (𝑦 + ℎ𝑣)d𝑣
]
Q

(
b − x
ℎ

)⊺
S−1

x e0, 𝑎 ≤ −1.

Note that the matrix, S𝑦 , can be written as S𝑦 =
∫
Y−𝑦
ℎ

P(𝑣)p(𝑣)⊺ 𝑓𝑦 (𝑦+ ℎ𝑣)d𝑣, which means its first col-

umn is
∫
Y−𝑦
ℎ

P (𝑣) 𝑓𝑦 (𝑦+ ℎ𝑣)d𝑣, showing that the expression above is zero. As for the second argument,

b, we note that Q((b − x)/ℎ) is zero if b lies outside of an ℎ-cube around x.
With the above result, we can simply apply Lemmas 5 and 7 to conclude the covering number

result for the class {ℎ1+𝑑+𝜗K𝜗,ℎ (·, ·; 𝑦,x) : 𝑦 ∈ Y, x ∈ X} (note that the boundedness and Lipschitz
continuity results in Lemma 5 also apply to K𝜗,ℎ). The same covering number then holds for K, as
the two classes differ only by a centering. ■

A.5. Proof of Theorem 1

Given Lemma 1, we will only need to provide a probability concentration for 𝑓 (𝜗) (𝑦 |x). We have
established in Lemma 4 that

V[K ◦
𝜗,ℎ (𝑎,b; 𝑦,x)] ≤ 𝐶′ 1

ℎ1+𝑑+2𝜗 , |K ◦
𝜗,ℎ (𝑎,b; 𝑦,x) | ≤ 𝐶′ 1

ℎ1+𝑑+𝜗 .

Then we apply the technique used in the proof of Lemma 1 (discretization, union bound, and Bern-
stein’s inequality), which leads to sup𝑦∈Y,x∈X | 𝑓 (𝜗) (𝑦 |x) | ≾TC

√︁
log(𝑛)/(𝑛ℎ1+𝑑+2𝜗). To conclude the

proof, we notice that the second component in rSL satisfies

log(𝑛)
√
𝑛2ℎ1+2𝜗+𝑑+(2∨𝑑)

=

√︂
log(𝑛)
𝑛ℎ1+𝑑+2𝜗

√︂
log(𝑛)
𝑛ℎ2∨𝑑 = 𝑜

(√︂
log(𝑛)
𝑛ℎ1+𝑑+2𝜗

)
.

A.6. Proof of Theorem 2

It suffices to consider the process S̃𝜗 (𝑦,x) =
∑𝑛

𝑖=1 ℎ
1+𝑑+𝜗K ◦

𝜗,ℎ
(𝑦𝑖 ,x𝑖; 𝑦,x) /

√
𝑛, which is the empirical

process indexed by the function class K (defined in Lemma 6 above). From Lemma 5, the functions
in the above class are uniformly bounded. Lemma 6 shows that the function class above is of VC type,
and the covering number does not depend on the bandwidth. The measurability condition required in
Lemma 10 also holds, as our function class is indexed by (𝑦,x) ∈ [0,1]𝑑+1, and the functions in K are
continuous in 𝑦 and x.

Now the only missing ingredient is the total variation of the functions in K. First, note that the
function ℎ1+𝑑+𝜗K ◦

𝜗,ℎ
(·, ·; 𝑦,x) is Lipschitz continuous with respect to the arguments, and the Lipschitz

constant is of order ℎ−1. Therefore, its total variation is bounded by

TV(𝑦,x) = TV
(
ℎ1+𝑑+𝜗K ◦

𝜗,ℎ (·, ·; 𝑦,x)
)
≾

1
ℎ

vol
(
supp

(
K𝜗,ℎ (·, ·; 𝑦,x)

))
,
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where vol (supp (·)) denotes the Euclidean volume of the support, and K𝜗,ℎ is defined in the proof
of Lemma 6. We also showed in the proof of Lemma 6 that K𝜗,ℎ has compact support, leading to
TVK = sup𝑦∈Y,x∈X TV(𝑦,x) ≾ ℎ𝑑 .

Putting all pieces together, we conclude that there exists a centered Gaussian process, G̃𝜗 which has
the same covariance kernel as S̃𝜗 , such that

P
[

sup
𝑦∈Y,x∈X

��S̃′𝜗 (𝑦,x) − G̃𝜗 (𝑦,x)
�� ≥ 𝔠1

(√︄ ℎ𝑑 log𝑛

𝑛
1

𝑑+1

+

√︄
log3 𝑛

𝑛

)]
≤ 𝔠2𝑛

−𝔠3 ,

where S̃′
𝜗
(𝑦,x) is a copy of S̃𝜗 (𝑦,x).

A.7. Proof of Theorem 3

First consider T̂𝜗 (𝑦,x). The difference between T̂𝜗 (𝑦,x) and Ŝ𝜗 (𝑦,x) is

T̂𝜗 (𝑦,x) − Ŝ𝜗 (𝑦,x) =
(√︄

V𝜗 (𝑦,x)
V̂𝜗 (𝑦,x)

− 1
)
Ŝ𝜗 (𝑦,x).

With Theorem 1, Lemma 2 and the variance bound in (3) (also see Lemma 4 in Appendix A.4), we
have

sup
𝑦∈Y,x∈X

���T̂𝜗 (𝑦,x) − Ŝ𝜗 (𝑦,x)���≾TC rVE
(
ℎ𝔭−𝜗 +

√︂
log(𝑛)
𝑛ℎ1+𝑑+2𝜗

)√︁
𝑛ℎ1+𝑑+2𝜗 ≾

√︁
log(𝑛)rVE.

Next, we establish a Gaussian comparison result. Consider an Y discretization of Y × X, which is
denoted by AY = {(𝑦ℓ ,x⊺ℓ ) : 1 ≤ ℓ ≤ 𝐿}. Then one can define two Gaussian vectors, z, ẑ ∈ R𝐿 , such
that

Cov[𝑧ℓ , 𝑧ℓ′ ] = 𝜌𝜗 (𝑦ℓ ,xℓ , 𝑦ℓ′ ,xℓ′ ), Cov[�̂�ℓ , �̂�ℓ′ |X,Y] = �̂�𝜗 (𝑦ℓ ,xℓ , 𝑦ℓ′ ,xℓ′ ).

Then we apply the Gaussian comparison result in Lemma 11 and the correlation estimation error rate
in Lemma 2, which lead to

sup
𝑢∈R

���P[ sup
1≤ℓ≤𝐿

|Ĝ𝜗 (𝑦ℓ ,xℓ ) | ≤ 𝑢
���Y,X]

− P
[

sup
1≤ℓ≤𝐿

|G𝜗 (𝑦ℓ ,xℓ ) | ≤ 𝑢
] ���≾P √rVE log

( 1
Y

)
.

Since Y only enters the above error bound logarithmically, one can choose Y = 𝑛−𝔠 for some 𝔠 large
enough, so that the error that arises from discretization becomes negligible. In other words, we have

sup
𝑢∈R

���P[ sup
𝑦∈Y,x∈X

|Ĝ𝜗 (𝑦,x) | ≤ 𝑢
���Y,X]

− P
[

sup
𝑦∈Y,x∈X

|G𝜗 (𝑦,x) | ≤ 𝑢
] ���≾P log(𝑛)√rVE.

Now consider T̂𝜗 (𝑦,x) again. Given the bound on the difference, sup𝑦∈Y,x∈X |T̂𝜗 (𝑦,x) − Ŝ𝜗 (𝑦,x) |,
and the strong approximation in Theorem 2, we clearly have

P

[
sup

𝑦∈Y,x∈X
|G𝜗 (𝑦,x) | ≤ 𝑢 − 𝔠1 (

√︁
log(𝑛)rVE + rSA)

]
− 𝔠2𝑛

−𝔠3 ≤ P
[

sup
𝑦∈Y,x∈X

|T̂𝜗 (𝑦,x) | ≤ 𝑢
]

≤ P
[

sup
𝑦∈Y,x∈X

|G𝜗 (𝑦,x) | ≤ 𝑢 + 𝔠1 (
√︁

log(𝑛)rVE + rSA)
]
+ 𝔠2𝑛

−𝔠3 .
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Finally, we apply the Gaussian comparison result, which implies that

sup
𝑢∈R

���P[ sup
𝑦∈Y,x∈X

|T̂𝜗 (𝑦,x) | ≤ 𝑢
]
− P

[
sup

𝑦∈Y,x∈X
|Ĝ𝜗 (𝑦,x) | ≤ 𝑢

���Y,X] ���
≾P 𝔠2𝑛

−𝔠3 + log(𝑛)√rVE + sup
𝑢∈R
P
[

sup
𝑦∈Y,x∈X

|G𝜗 (𝑦,x) | ∈ [𝑢, 𝑢 + 𝔠1 (
√︁

log(𝑛)rVE + rSA)]
]
.

Finally, due to Lemma 12, we have

sup
𝑢∈R
P
[

sup
𝑦∈Y,x∈X

|G𝜗 (𝑦,x) | ∈ [𝑢, 𝑢 + 𝔠1 (
√︁

log(𝑛)rVE + rSA)]
]
≾

√︁
log(𝑛) (

√︁
log(𝑛)rVE + rSA).

A.8. Derivation of (5)

First consider �̂�N (𝑦 |x). If the unconstrained estimator, �̂� (𝑦 |x), is already nonnegative, then the con-
straint in the least squares problem is not binding, which means in this case �̂�N (𝑦 |x) = �̂� (𝑦 |x). Now
assume �̂� (𝑦 |x) < 0. Since the least squares objective function is strictly convex, the solution will be on
the boundary of the set {u ∈ R𝔭+1 : e⊺1 u ≥ 0}, leading to �̂�N (𝑦 |x) = 0. Therefore, we have the expression
�̂�N (𝑦 |x) = max{0, �̂� (𝑦 |x)} in (5).

The expression of �̂�I (𝑦 |x) in (5) follows from Jensen’s inequality, which is binding if and only if
𝑔(𝑦)/ �̂�N (𝑦 |x) is constant (in 𝑦).

A.9. Proof of Lemma 3, Theorems 7 and 8

We write �̂�N (𝑦 |x) = �̂� (𝑦 |x) −1( �̂� (𝑦 |x) < 0) · �̂� (𝑦 |x). We first study the indicator function. Take r to be
any sequence shrinking to 0, and 𝔠1 some positive constant. Then

P
[

sup
𝑦∈Y,x∈X

1

(
�̂� (𝑦 |x) < 0

)
> r𝔠1

]
≤ P

[
sup

𝑦∈Y,x∈X

��� �̂� (𝑦 |x) − 𝑓 (𝑦 |x)
��� > inf

𝑦∈Y,x∈X
𝑓 (𝑦 |x)

]
.

Then by the probability concentration in Theorem 1, it should be obvious that the the above probability
vanishes faster than any polynomials of 𝑛 (recall that we assume the conditional density is uniformly
bounded away from zero); that is, sup𝑦∈Y,x∈X 1( �̂� (𝑦 |x) < 0) ≾TC r for any vanishing sequence r. This
shows that sup𝑦∈Y,x∈X | �̂�N (𝑦 |x) − �̂� (𝑦 |x) | ≾TC r. By letting r shrinking to 0 fast enough, we have the
stochastic linearization for �̂�N (𝑦 |x).

Next, For �̂�I (𝑦 |x), we employ the following decomposition:

�̂�I (𝑦 |x) = �̂�N (𝑦 |x) −
�̂�N (𝑦 |x)∫

Y �̂�N (𝑢 |x)d𝑢

∫
Y

(
�̂�N (𝑢 |x) − 𝑓 (𝑢 |x)

)
d𝑢.

Then we can write

sup
𝑦∈Y,x∈X

��� �̂�I (𝑦 |x) − 𝑓 (𝑦 |x) −
(
𝑓 (0) (𝑦 |x) − 𝑓 (𝑦 |x)

∫
Y
𝑓 (0) (𝑢 |x)d𝑢

)���
≤ sup

𝑦∈Y,x∈X

��� �̂�N (𝑦 |x) − 𝑓 (𝑦 |x) − 𝑓 (0) (𝑦 |x)
��� + sup

𝑦∈Y,x∈X

��� �̂�N (𝑦 |x)∫
Y �̂�N (𝑢 |x)d𝑢

− 𝑓 (𝑦 |x)
��� · ��� ∫

Y
𝑓 (0) (𝑢 |x)d𝑢

���
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+ sup
𝑦∈Y,x∈X

��� �̂�N (𝑦 |x)∫
Y �̂�N (𝑢 |x)d𝑢

��� · ��� ∫
Y

(
�̂�N (𝑢 |x) − 𝑓 (𝑢 |x) − 𝑓 (0) (𝑢 |x)

)
d𝑢

���
≾TC rSL +

(
ℎ𝔭 +

√︂
log(𝑛)
𝑛ℎ1+𝑑

) (√︂ log(𝑛)
𝑛ℎ𝑑

)
≾ rSL.

In the above, we have used the result that supx∈X V[
∫
Y 𝑓 (0) (𝑢 |x)d𝑢] ≾ (𝑛ℎ𝑑)−1, which shows that∫

Y 𝑓 (0) (𝑢 |x)d𝑢 has a smaller asymptotic order compared to 𝑓 (0) (𝑦 |x).
To prove Theorem 7, we combine the results in Lemma 3 and Theorem 1. The strong approximation

for ŜN in Theorem 8 follows from Lemma 3 and Theorem 2. The strong approximation for ŜI also
follows from Lemma 3, as the stochastic linearization of �̂�I is a linear functional of 𝑓 (0) .

A.10. A result on covering number

In this appendix, we prove a general result on the uniform covering number for function classes con-
sisting of kernels. Importantly, we allow the kernels in the function class to take different shapes and
to depend on a range of bandwidths.

Lemma 7 (Covering number). Let ℎ > 0, and 𝔠 > 0 be a (large) generic constant which does not
depend on ℎ. Define the class of functions

G =

{
𝑔z

( · − z
𝑎ℎ

)
: z ∈ [0,1]𝑑 , 1 ≤ 𝑎 ≤ 𝔠

}
.

Assume (i) boundedness: supz,z′ |𝑔z (z′) | ≤ 𝔠. (ii) 𝑔z (·) is supported in [−1,1]𝑑 for all z. (iii) Lipschitz
continuity: supz |𝑔z (z′) − 𝑔z (z′′) | ≤ 𝔠 |z′ − z′′ | and supz |𝑔z′ (z) − 𝑔z′′ (z) | ≤ 𝔠ℎ−1 |z′ − z′′ |. Then, for any
probability measure 𝑃, the 𝐿1 (𝑃)-covering number of the class G satisfies

𝑁
(
(2𝔠 + 1)𝑑+1Y, G, 𝐿1 (𝑃)

)
≤ 𝔠′

1
Y𝑑+2 + 1,

where 𝔠′ is some constant that depends only on 𝔠 and 𝑑.

This rate, Y−𝑑−2, is clearly suboptimal for very small Y. The reason is that when we fix ℎ and
consider how the covering number changes as Y ↓ 0, the optimal rate is Y−𝑑−1, as in this case the class
of functions is fixed (c.f. Theorem 2.7.11 in [28]). Such suboptimality is introduced because we prefer a
covering number that depends only on Y (but not ℎ). The result we derived performs better for moderate
and large Y (relative to ℎ).

Now consider how the above (a sharper result for moderate and large Y) manifests itself in our proof
below. Take a fixed Y. As the bandwidth shrinks to 0, we will be employing finer partitions of [0,1]𝑑 .
However, not all of the sets in the partition matter for bounding the covering number, because there are
at most Y−1 sets carrying a probability mass larger than Y. Given that the functions we consider have
compact support, most of them become irrelevant in our calculation of the covering number. Indeed, a
function only makes a nontrivial contribution if its support intersects with some set in the (very fine)
partition whose 𝑃-measure exceeds Y. Therefore, instead of considering all ℎ−𝑑 partitions, we only
need to focus on Y−1 of them, which is why an extra Y−1 term is introduced.

Finally, from the definition of G, it is clear that the covering number obtained above allows for a
range of bandwidths (captured by 𝑎ℎ with 1 ≤ 𝑎 ≤ 𝔠). If we instead consider the restricted function
class, {𝑔z ((· − z)/ℎ) : z ∈ [0,1]𝑑}, then a sharper bound will apply: 𝔠′Y−𝑑−1 + 1.
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Proof of Lemma 7. This proof strategy is motivated by Lemma 4.1 in [25]. Take ℓ = ⌊1/ℎ⌋, and parti-
tion each coordinate [0,1] into ℓ intervals of equal length. This will lead to a partition A = {𝐴 𝑗 : 1 ≤
𝑗 ≤ ℓ𝑑} of [0,1]𝑑 . Next, consider sets whose 𝑃-measure exceeds Y,

A𝑃,Y = {𝐴 ∈ A : 𝑃[𝐴] > Y},

and their 𝔠ℎ-enlargements

A𝔠ℎ
𝑃,Y = {𝐴 + [−𝔠ℎ, 𝔠ℎ]𝑑 : 𝐴 ∈ A𝑃,Y}.

Case 1: z does not belong to any set in A𝔠ℎ
𝑃,Y

. This implies that the support of the function 𝑔z
( ·−z
𝑎ℎ

)
will not intersect with any set in A𝑃,Y . We also notice that∫ ���𝑔z

( · − z
𝑎ℎ

)���d𝑃 ≤ 𝔠𝑃
[
𝑎ℎ · supp(𝑔z (·)) + z

]
≤ 𝔠𝑃

[
𝔠ℎ · supp(𝑔z (·)) + z

]
.

Define the complement of A𝑃,Y as A⊥
𝑃,Y

= {𝐴 ∈ A : 𝑃[𝐴] ≤ Y}, then the set 𝔠ℎ · supp(𝑔z (·)) + z will
be completely covered by sets in A⊥

𝑃,Y
. To determine the maximum number of intersections between

𝔠ℎ · supp(𝑔z (·)) + z and sets in A⊥
𝑃,Y

, it suffices to consider the Euclidean volume of the enlarged set
𝔠ℎ · supp(𝑔z (·)) + z + [−ℓ−1, ℓ−1]𝑑 , which is (2𝔠ℎ + ℓ−1)𝑑 . The Euclidean volume of each set in A⊥

𝑃,Y

is ℓ−𝑑 . Therefore, the set 𝔠ℎ · supp(𝑔z (·)) + z can intersect with at most

(2𝔠ℎ + ℓ−1)𝑑

ℓ−𝑑
= (2𝔠ℎℓ + 1)𝑑 ≤ (2𝔠 + 1)𝑑

sets in A⊥
𝑃,Y

. As a result, we conclude that
∫
|𝑔z

( ·−z
𝑎ℎ

)
|d𝑃 ≤ 𝔠 (2𝔠 + 1)𝑑 Y. This leads to our first result.

Let 𝐴𝔠ℎ
𝑃,Y

= ∪A𝔠ℎ
𝑃,Y

be the union of sets in A𝔠ℎ
𝑃,Y

, then

𝑁

(
(2𝔠 + 1)𝑑+1Y, G1, 𝐿

1 (𝑃)
)
= 1, where G1 =

{
𝑔z

( · − z
𝑎ℎ

)
: z ∉ 𝐴𝔠ℎ𝑃,Y , 1 ≤ 𝑎 ≤ 𝔠

}
.

As remark, we note that the function class G1 changes with respect to ℎ, Y, as well as the probability
measure 𝑃.

Case 2: z belongs to some set in A𝔠ℎ
𝑃,Y

. Each set in A𝔠ℎ
𝑃,Y

is a cube with edge length ℓ−1 + 2𝔠ℎ ≤
2(𝔠 + 1)ℎ, because ℎℓ ≥ 0.5. Then the covering number of 𝐴𝔠ℎ

𝑃,Y
(under the Euclidean distance) is

𝑁

(
ℎY, 𝐴𝔠ℎ𝑃,Y , | · |

)
≤

∑︁
𝐴∈A𝔠ℎ

𝑃,Y

𝑁 (ℎY, 𝐴, | · |) ≤ card(A𝔠ℎ
𝑃,Y) · 𝔠

′ 1
Y𝑑

≤ 𝔠′
1

Y𝑑+1 .

Here, 𝔠′ is some fixed number that only depends on 𝔠 and 𝑑. Using the Lipschitz property, we have∫ ���𝑔z

( · − z
𝑎ℎ

)
− 𝑔z′

(
· − z′

𝑎′ℎ

) ���d𝑃 ≤ 2𝔠ℎ−1 |z − z′ | + 𝔠2 |𝑎 − 𝑎′ |.

Now define G2 = G\G1 = {𝑔z ((· − z)/(𝑎ℎ)) : z ∈ 𝐴𝔠ℎ
𝑃,Y

, 1 ≤ 𝑎 ≤ 𝔠}, then

𝑁

(
(2𝔠 + 1)𝑑+1Y, G2, 𝐿

1 (𝑃)
)
≤ 𝑁

( (2𝔠 + 1)𝑑+1

4𝔠
ℎY, 𝐴𝔠ℎ𝑃,Y , | · |

)
𝑁

( (2𝔠 + 1)𝑑+1

2𝔠2 Y, [1, 𝔠], | · |
)
≤ 𝔠′

Y𝑑+2 .

This closes the proof. ■
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A.11. Technical lemmas

Lemma 8 (Equation (3.5) in [17]). Let {𝑧𝑖 ,1 ≤ 𝑖 ≤ 𝑛} be independent random variables, and {𝑧𝑖 ,1 ≤
𝑖 ≤ 𝑛} be an independent copy of {𝑧𝑖 ,1 ≤ 𝑖 ≤ 𝑛}. For a degenerate and decoupled second order U-
statistic,

∑𝑛
𝑖, 𝑗=1,𝑖≠ 𝑗

𝑢𝑖 𝑗 (𝑧𝑖 , 𝑧 𝑗 ), the following holds:

P
[��� 𝑛∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

𝑢𝑖 𝑗 (𝑧𝑖 , 𝑧 𝑗 )
��� > 𝑡] ≤ 𝔠 exp

{
− 1
𝔠

min
[ 𝑡
𝐴
,

( 𝑡
𝐵

) 2
3
,

( 𝑡
𝐶

) 1
2
]}
,

where 𝔠 is some absolute constant, and 𝐴, 𝐵 and 𝐶 are any constants satisfying

𝐴2 ≥
𝑛∑︁

𝑖, 𝑗=1,𝑖≠ 𝑗

E[𝑢𝑖 𝑗 (𝑧𝑖 , 𝑧 𝑗 )2], 𝐵2 ≥ max
1≤𝑖, 𝑗≤𝑛

[
sup
𝑤

��� 𝑛∑︁
𝑖=1

E[𝑢𝑖 𝑗 (𝑧𝑖 , 𝑤)2]
���, sup

𝑣

��� 𝑛∑︁
𝑗=1

E[𝑢𝑖 𝑗 (𝑣, 𝑧 𝑗 )2]
���] ,

𝐶 ≥ max
1≤𝑖, 𝑗≤𝑛

sup
𝑣,𝑤

|𝑢𝑖 𝑗 (𝑣, 𝑤) |.

To apply the above lemma, an additional decoupling step is usually needed. Fortunately, the decou-
pling step only introduces an extra constant, but will not affect the order of the tail probability bound.
Formally,

Lemma 9 ([11]). Consider the setting of Lemma 8. Then

P
[��� 𝑛∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

𝑢𝑖 𝑗 (𝑧𝑖 , 𝑧 𝑗 )
��� > 𝑡] ≤ 𝔠 · P

[
𝔠

��� 𝑛∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

𝑢𝑖 𝑗 (𝑧𝑖 , 𝑧 𝑗 )
��� > 𝑡] ,

where 𝔠 is an absolute constant.

As a result, we will apply Lemma 8 without explicitly mentioning the decoupling step or the extra
constant it introduces.

Lemma 10 (Theorem 1.1 in [25]). Let z1, z2, . . . , z𝑛 be iid random vectors with continuous and strictly
positive density on [0,1]𝑑 , and 𝑑 ≥ 2. Let G be a class of functions from [0,1]𝑑 to [−1,1], satisfying
sup𝑃 𝑁 (Y, G, 𝐿1 (𝑃)) ≤ 𝔠1Y

−𝔠2 , where the supremum is taken over all probability measures on [0,1]𝑑 ,
and 𝔠1 and 𝔠2 are constants that can depend on G. In addition, assume the following measurability
condition holds: there exists a Suslin space S and a mapping F : S → G, such that (𝑠, z) ↦→ F(𝑠, z) is
measurable. Let

TVG = sup
𝑔∈G

sup
𝜙∈C∞

1 ( [0,1]𝑑 )

∫
[0,1]𝑑

𝑔(z)div𝜙(z)dz,

where div is the divergence operator, and C∞
1 ( [0,1]𝑑) is the collection of infinitely differentiable func-

tions with values in R𝑑 , support included in [0,1]𝑑 , and supremum norm bounded by 1. Then on a
possibly enlarged probability space, there exists a centered Gaussian process, G, indexed by G, such
that (i) Cov[G(𝑔),G(𝑔′)] = Cov[𝑔(z𝑖), 𝑔′ (z𝑖)], and (ii) for any 𝑡 ≥ 𝔠3 log𝑛,

P
[√
𝑛 sup
𝑔∈G

|B(𝑔) −G(𝑔) | ≥ 𝔠3

√︃
𝑛

𝑑−1
𝑑 𝑡 TVG + 𝔠3𝑡

√︁
log(𝑛)

]
≤ 𝑒−𝑡 .
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In the above, B =
∑𝑛

𝑖=1 (𝑔(z𝑖) − E[𝑔(z𝑖)])/
√
𝑛 is the empirical process indexed by G, and 𝔠3 is some

constant that only depends on 𝑑, 𝔠1, and 𝔠2.

Lemma 11 (Corollary 5.1 in Chernozhukov et al. [9]). Let z1, z2 ∈ Rℓ𝑛 be two mean-zero Gaussian
random vectors with covariance matrices 𝛀1 and 𝛀2, respectively. Further assume that the diagonal
elements in 𝛀1 are all one. Then

sup
𝐴 rectangular

|P [z1 ∈ 𝐴] − P [z2 ∈ 𝐴] | ≤ 𝔠
√︁
∥𝛀1 −𝛀2∥∞ log(ℓ𝑛),

where ∥ · ∥∞ denotes the supremum norm, and 𝔠 is an absolute constant.

Lemma 12 (Theorem 2.1 in [8]). Let G be a centered and separable Gaussian process indexed by
𝑔 ∈ G such that V[G(𝑔)] = 1 for all 𝑔 ∈ G. Assume sup𝑔∈G G(𝑔) < ∞ almost surely. Define 𝐶G =

E[sup𝑔∈G G(𝑔)]. Then for all Y > 0,

sup
𝑢∈R
P
[��� sup
𝑔∈G
G(𝑔) − 𝑢

��� ≤ Y] ≤ 4Y(𝐶G + 1).
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