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rdrobust: An R Package for Robust
Nonparametric Inference in
Regression-Discontinuity Designs
by Sebastian Calonico, Matias D. Cattaneo and Rocío Titiunik

Abstract This article describes the R package rdrobust, which provides data-driven graphical and in-
ference procedures for RD designs. The package includes three main functions: rdrobust, rdbwselect
and rdplot. The first function (rdrobust) implements conventional local-polynomial RD treatment
effect point estimators and confidence intervals, as well as robust bias-corrected confidence intervals,
for average treatment effects at the cutoff. This function covers sharp RD, sharp kink RD, fuzzy RD
and fuzzy kink RD designs, among other possibilities. The second function (rdbwselect) implements
several bandwidth selectors proposed in the RD literature. The third function (rdplot) provides
data-driven optimal choices of evenly-spaced and quantile-spaced partition sizes, which are used to
implement several data-driven RD plots.

Introduction

The regression-discontinuity (RD) design is a widely employed quasi-experimental research design
in social, behavioral and related sciences; for reviews see Imbens and Lemieux (2008) and Lee and
Lemieux (2010). In this design, units are assigned to treatment based on whether their value of an
observed covariate is above or below a known cutoff, and the probability of receiving treatment
conditional on this covariate jumps discontinuously at the cutoff. This jump induces “variation” in
treatment assignment that may be regarded, under appropriate assumptions, as being unrelated to
potential confounders. Thus, inference in RD designs is typically conducted using only observations
near the cutoff or threshold, where the discontinuous change in the probability of treatment assignment
occurs. Due to its local nature, RD average treatment effects estimators are usually constructed
using local-polynomial nonparametric regression, and statistical inference is based on large-sample
approximations.

This article gives an introduction to the R package rdrobust (Calonico et al., 2015b), which offers
an array of data-driven local-polynomial and partitioning-based inference procedures for RD designs.
We introduce three main functions implementing several data-driven nonparametric point and con-
fidence intervals estimators, bandwidth selectors, and plotting procedures useful for RD empirical
applications:

• rdrobust(). This function implements the bias-corrected robust (to “large” bandwidth choices)
inference procedure proposed by Calonico, Cattaneo, and Titiunik (2014a, CCT hereafter), as well
as many other RD inference procedures employing local-polynomial regression. The function
rdrobust offers bias-corrected robust confidence intervals for average treatment effects at the
cutoff for sharp RD, sharp kink RD, fuzzy RD and fuzzy kink RD designs.

• rdbwselect(). This function implements several data-driven bandwidth selectors for RD designs
based on the recent work of Imbens and Kalyanaraman (2012, IK hereafter) and CCT. Although this
command may be used as a stand-alone bandwidth selector in RD applications, its main purpose
is to provide fully data-driven bandwidth choices to be used by our main function rdrobust().

• rdplot(). This function implements several data-driven optimal choices of evenly-spaced and
quantile-spaced bins, which are useful to produce RD plots that either approximate the regression
function by local sample averages or represent the overall variability of the data in a disciplined way.
These optimal choices are based on an integrated mean squared error expansion of appropriately
constructed partitioning estimators, as discussed in Calonico, Cattaneo, and Titiunik (in press); see
also Cattaneo and Farrell (2013) for related results. These binned sample means and partition size
chosen are used to construct the popular RD plots commonly found in RD applications in a fully
automatic way.

We first provide a brief review of all the methods implemented in rdrobust, and then discuss
an empirical illustration using some of the features of our functions rdrobust(), rdbwselect() and
rdplot(). A full description of the capabilities of the package rdrobust is available in its manual and
help files. A companion Stata (StataCorp., 2013) package is described in Calonico, Cattaneo, and
Titiunik (2014b).
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Review of methods

We now present the basic RD framework, describe the population parameters of interest, introduce
the local-polynomial based estimators, review different inference procedures, and briefly summarize
the popular RD plots. Regularity conditions and other technical aspects underlying the estimands and
estimators may be found in the references given throughout. Recent results and further details on RD
designs are discussed in IK and CCT (see also the supplemental appendix), and references therein.

Setup and notation

We adopt the potential outcomes framework commonly employed in the treatment effects literature
(e.g., Heckman and Vytlacil 2007 and Imbens and Wooldridge 2009). Let {(Yi(0), Yi(1), Ti(0), Ti(1),
Xi)
′ : i = 1, 2, . . . , n} be a random sample from (Y(0), Y(1), T(0), T(1), X)′, where Y(1) and Y(0)

denote the potential outcomes with and without treatment, respectively, T(0) and T(1) denote potential
treatment status, and the scalar regressor Xi ∈ R is the so-called “running variable” or “score”
determining treatment assignment based on whether it exceeds a known cutoff. In particular, unit i is
assigned treatment if Xi > x̄ and not assigned treatment if Xi < x̄, for some known fixed value x̄ ∈ R.
f (x) denotes the continuous (Lebesgue) density of Xi.

This setup allows for imperfect compliance, which in the RD literature is known as the fuzzy RD
design. The case of perfect treatment compliance is usually called the sharp RD design. In either case,
the observed outcome and treatment status are, respectively,

Yi =

{
Yi(0) if Xi < x̄
Yi(1) if Xi ≥ x̄ and Ti =

{
Ti(0) if Xi < x̄
Ti(1) if Xi ≥ x̄ .

The observed data is {(Yi, Ti, Xi)
′ : i = 1, 2, . . . , n}, a random sample from a large population.

In sharp RD designs, Ti = 1(Xi ≥ x̄) with 1(·) denoting the indicator function, which leads to
P[Ti = 0|Xi < x̄] = 1 = P[Ti = 1|Xi ≥ x̄]. More generally, in fuzzy RD designs, treatment assignment
and treatment status may differ (imperfect compliance). Therefore, for each unit i, the scalar random
variable Yi ∈ R denotes the outcome of interest, and Ti ∈ {0, 1} denotes actual treatment take-up
(Ti = 1 treatment taken, Ti = 0 treatment not taken).

We introduce some additional notation. For ν ∈ Z+ = {0, 1, 2, . . .}, define

µ
(ν)
Y+(x̄) = lim

x→x̄+

∂ν

∂xν
µY+(x), µ

(ν)
Y−(x̄) = lim

x→x̄−
∂ν

∂xν
µY−(x),

with µY+(x) = E[Y(1)|X = x] and µY−(x) = E[Y(0)|X = x], and

µ
(ν)
T+(x̄) = lim

x→x̄+

∂ν

∂xν
µT+(x), µ

(ν)
T−(x̄) = lim

x→x̄−
∂ν

∂xν
µT−(x),

with µT+(x) = E[T(1)|X = x] and µT−(x) = E[T(0)|X = x]. Whenever there is no ambiguity, we
drop the subindex denoting the dependent variable or the point of evaluation in the conditional
expectations and other functions.

Population parameters of interest

We focus on average treatment effects at the cutoff in the sharp RD, fuzzy RD, sharp kink RD and fuzzy
kink RD designs, although the results cover other possibilities. For further details on the interpretation
of these estimands and regularity conditions see, among others, Hahn et al. (2001), Porter (2003), Lee
(2008), IK, CCT, Card et al. (2014), and references therein.

• Sharp RD designs. Two popular parameters of interest are the sharp RD average treatment effect
at the threshold, denoted by τ0, and the sharp kink RD average treatment effect at the threshold,
denoted by τ1/κ, with κ a known scale constant, and using the generic notation:

τν := τY,ν(x̄) =
∂ν

∂xν
E[Yi(1)−Yi(0)|Xi = x]

∣∣∣∣
x=x̄

= µ
(ν)
Y+ − µ

(ν)
Y−, ν ∈ Z+,

where the definition drops the subindex denoting the dependent random variable and evaluation
point for notational simplicity. The last equality is a nonparametric identification result that holds
under mild continuity conditions: the parameter τν can be written as a function of observed data

because µ
(ν)
Y+ = µ

(ν)
Y+(x̄) and µ

(ν)
Y− = µ

(ν)
Y−(x̄) are estimable from the observed data; τν = τY,ν is a

difference of two (one-sided) nonparametric regression functions at x̄.
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• Fuzzy RD designs. The parameters of interest take the form

ςν := ςν(x̄) =
∂ν

∂xν E[Yi(1)−Yi(0)|Xi = x]
∣∣∣
x=x̄

∂ν

∂xν E[Ti(1)− Ti(0)|Xi = x]
∣∣∣
x=x̄

=
τY,ν

τT,ν
=

µ
(ν)
Y+ − µ

(ν)
Y−

µ
(ν)
T+ − µ

(ν)
T−

, ν ∈ Z+,

where the last two equalities represent a nonparametric identification result that holds under

mild continuity conditions. Note that µ
(ν)
Y+ = µ

(ν)
Y+(x̄), µ

(ν)
Y− = µ

(ν)
Y−(x̄), µ

(ν)
T+ = µ

(ν)
T+(x̄) and

µ
(ν)
T− = µ

(ν)
T−(x̄) are all estimable from the observed data, since τY,ν and τT,ν are each a difference of

two (one-sided) regression functions at x̄, and ςν is just their ratio. In the RD literature, the two
main parameters of interest are ς0, the fuzzy RD average treatment effect at the cutoff, and ς1, the
fuzzy kink RD average treatment effect at the cutoff.

Local polynomial estimators

Statistical inference in the RD design reduces to nonparametric regression inference at the induced
boundary point x̄, employing observations at either side of the threshold separately. Local-polynomial
estimators have become the preferred choice of nonparametric estimator in the RD literature because
of their excellent boundary properties (Fan and Gijbels, 1996). The package rdrobust implements local
polynomial estimators of various orders for the two variables Yi and Ti depending on the RD design
considered, and also includes different bandwidths selectors and alternative confidence intervals
estimators. All these features are briefly reviewed in the following subsections, but first we introduce
the local polynomial RD estimators of order p in general. To reduce repetition, we describe the
estimators using a generic outcome variable Z which either takes the value Y or T, depending on the
outcome variable under consideration. For Z ∈ {Y, T} and ν, p ∈ Z+ with ν ≤ p,

τ̂Z,ν,p(x; hn) = µ̂
(ν)
Z+,p(x; hn)− µ̂

(ν)
Z−,p(x; hn),

µ̂
(ν)
Z+,p(x; hn) = e′ν β̂Z+,p(x; hn) and µ̂

(ν)
Z−,p(x; hn) = e′ν β̂Z−,p(x; hn),

β̂Z+,p(x; hn) = arg min
β∈Rp+1

n

∑
i=1

1(Xi ≥ x)(Zi − rp(Xi − x)′β)2Khn (Xi − x),

β̂Z−,p(x; hn) = arg min
β∈Rp+1

n

∑
i=1

1(Xi < x)(Zi − rp(Xi − x)′β)2Khn (Xi − x),

where here rp(x) = (1, x, . . . , xp)′, eν is the conformable (ν + 1)-th unit vector (e.g., e1 = (0, 1, 0)′ if
p = 2), Kh(u) = K(u/h)/h with K(·) a kernel function and hn is a positive bandwidth sequence.

Using the generic notation above, the sharp RD estimators are:

τ̂ν,p(hn) := τ̂Y,ν,p(x̄; hn), ν ≤ p.

Similarly, for the fuzzy RD designs we have the RD estimators:

ς̂ν,p(hn) :=
τ̂Y,ν,p(hn)

τ̂T,ν,p(hn)
, τ̂Y,ν,p(hn) := τ̂Y,ν,p(x̄; hn), τ̂T,ν,p(hn) := τ̂T,ν,p(x̄; hn), ν ≤ p.

Assuming the bandwidth hn → 0 and other regularity conditions hold, consistency of these
estimators follows easily from well-known properties of local polynomial estimators. In applications,
the most common choices are p = 1 for τ0 (local-linear sharp RD estimator), p = 2 for τ1 (local-
quadratic sharp kink RD estimator), p = 1 for ς0 (local-linear fuzzy RD estimator), and p = 2 for ς1
(local-quadratic fuzzy kink RD estimator).

The function rdrobust() implements the above RD point estimators with options c to set x̄, deriv
to set ν, p to set p, kernel to set K(·), and h to set hn, among others.

Bandwidth selectors

The main obstacle in the practical implementation of RD local polynomial estimators is bandwidth
selection. The package rdrobust implements the main two approaches for bandwidth selection
available in the literature: (i) plug-in rules based on mean squared error (MSE) expansions, and (ii)
cross validation. IK provide a comprehensive review of these approaches.

• Direct plug-in rules. Direct plug-in (DPI) approaches to bandwidth selection are based on a mean
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squared error (MSE) expansion of the sharp RD estimators, leading to the MSE-optimal choice

hMSE,ν,p = CMSE,ν,p n−
1

2p+3 , CMSE,ν,p =

(
(1 + 2ν)Vν,p

2(p + 1− ν)B2
ν,p

) 1
2p+3

,

where Bν,p and Vν,p are the leading asymptotic bias and variance of the RD estimator, respectively.
The package rdrobust implements two data-driven versions of this MSE-optimal bandwidth, one
proposed by IK (available for ν = 0 only) and the other proposed by CCT (valid for all choices
of ν). Both implementations include regularization as originally discussed in IK, although the
option scalereg allows users to remove it. The IK implementation, denoted by ĥIK,0,p, may be
viewed as a nonparametric first-generation plug-in rule (e.g., Wand and Jones, 1995), sometimes
called a DPI-1 (direct plug-in of order 1) selector. The CCT implementation, denoted by ĥCCT,ν,p,
may be viewed as a second-generation plug-in bandwidth selection approach. Further details
on implementation of the bandwidth selectors may be found in IK, CCT and their supplemental
materials.

• Cross validation. This bandwidth choice is implemented as follows:

ĥCV,p = arg min
h>0

CVδ(h), CVδ(h) =
n

∑
i=1

1(X−,[δ] ≤ Xi ≤ X+,[δ])
(
Yi − µ̂p (Xi; h)

)2 ,

where

µ̂p(x; h) =

{
e′0 β̂Y+,p(x, h) if x > x̄
e′0 β̂Y−,p(x, h) if x < x̄

,

and, for δ ∈ (0, 1), X−,[δ] and X+,[δ] denote the δ-th quantile of {Xi : Xi < x̄} and {Xi : Xi > x̄},
respectively. See IK for further discussion on this alternative approach, which is valid only for
sharp RD designs (ν = 0).

The function rdbwselect() implements the above bandwidth selectors.

Asymptotic properties and confidence intervals

We briefly review the main asymptotic properties of the local polynomial RD estimators, with particular
emphasis on the properties of the associated confidence interval estimators. Specifically, we discuss
three types of confidence intervals (CI) based on Gaussian approximations: (i) conventional CI
(assuming “small” bias), (ii) bias-corrected CI (not necessarily requiring undersmoothing), and (iii)
robust bias-corrected CI (not necessarily requiring undersmoothing).

• Optimal point estimators. The package rdrobust implements the following data-driven RD
treatment effect point estimators.

Sharp RD: τ̂ν,p(ĥCCT,ν,p), τ̂0,p(ĥIK,0,p), τ̂0,p(ĥCV,p), ν ≤ p.

Fuzzy RD: ς̂ν,p(ĥCCT,ν,p), ς̂0,p(ĥIK,0,p), ς̂0,p(ĥCV,p), ν ≤ p.

These estimators are constructed employing MSE-optimal bandwidth choices for the sharp RD
case, which means that τ̂ν,p(ĥCCT,ν,p), τ̂0,p(ĥIK,0,p) and τ̂0,p(ĥCV,p) may be interpreted as consistent
and (asymptotically) MSE-optimal point estimators of τν. For the fuzzy RD cases, the bandwidth
choices employed are technically optimal only for the numerator of the estimators, but since the
rate of the MSE-optimal bandwidth choice does not differ from the sharp RD case, the estimators
ς̂ν,p(ĥCCT,ν,p), ς̂0,p(ĥIK,ν,p) and ς̂0,p(ĥCV,p) may also be viewed as consistent and (asymptotically)
MSE-optimal point estimators of ςν.

• Sharp RD confidence intervals. Confidence intervals accompanying the point estimators dis-
cussed above rely on the following distributional approximation:√

nh1+2ν
n

(
τ̂ν,p(hn)− τν − hp+1−ν

n Bν,p

)
→d N (0,Vν,p), ν ≤ p, (1)

where Bν,p and Vν,p denote, respectively, the asymptotic bias and variance of the RD estimator.

Conventional confidence intervals. An asymptotic 100(1− α)-percent confidence interval for τν is

CI1−α(hn) =

[
τ̂ν,p(hn)±Φ−1

1−α/2

√
Vν,p

nh1+2ν
n

]
,
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where Φ−1
a denotes the appropriate quantile of the Gaussian distribution (e.g., 1.96 for a = .975).

This approach is valid only if the leading bias in (1) is “small”. This smoothing bias is ignored
by relying on an “undersmoothing” argument, that is, by assuming the bandwidth chosen is
“small” enough so that the bias is negligible. In practice, however, this procedure may be difficult
to implement because most bandwidth selectors, such as hMSE,ν,p, will not satisfy the conditions
required for undersmoothing. This fact implies that most empirical bandwidth selectors could in
principle lead to a non-negligible leading bias in the distributional approximation, which in turn
will bias the associated confidence intervals.

Bias-corrected confidence intervals. As an alternative to undersmoothing, we can directly bias-
correct the estimator by constructing an estimator of Bν,p, which is then subtracted from the
RD point estimate in an attempt to eliminate the leading bias in (1). The resulting asymptotic
100(1− α)-percent confidence interval for τν is

CIbc1−α(hn, bn) =

[(
τ̂ν,p(hn)− hp+1−ν

n B̂ν,p,q

)
±Φ−1

1−α/2

√
Vν,p

nh1+2ν
n

]
,

where B̂ν,p,q denotes the bias estimate, which is constructed using a possibly different bandwidth
bn. To implement this approach, CCT propose a MSE-optimal bandwidth choice of bn for the bias

estimator B̂ν,p,q taking the form bMSE,ν,p,q = C
1/(2q+3)
ν,p,q n−1/(2q+3), where Cν,p,q denotes a constant

depending on the data generating process. CCT also discuss an implementation procedure of
bMSE,ν,p,q, leading to the data-driven estimator denoted by b̂CCT,ν,p,q.

Robust bias-corrected confidence intervals. The confidence intervals discussed so far have some
unappealing properties that may affect their performance in applications. On the one hand, the
confidence intervals CI1−α(hn) require undersmoothing (or, alternatively, a “small” bias), which
may lead to coverage distortions in cases where the bias is important. On the other hand, the
bias-corrected confidence intervals CIbc1−α(hn, bn), while theoretically justified for a larger range of
bandwidths, are usually regarded as having poor performance in empirical settings, also leading
to potentially large coverage distortions in applications.
CCT propose an alternative, more robust confidence interval formula based on the bias-corrected
RD treatment effect estimators, but employing a different variance for studentization purposes.
Intuitively, the bias-corrected RD estimator does not perform well in finite-samples because the
bias estimate introduces additional variability in the statistic, which is not accounted for when
forming the associated confidence intervals CIbc1−α(hn, bn). Thus, CCT propose the asymptotic
100(1− α)-percent confidence interval for τν given by

CIrbc1−α(hn, bn) =

[(
τ̂ν,p(hn)− hp+1−ν

n B̂ν,p,q

)
±Φ−1

1−α/2

√
Vbc

n,ν,p,q

]
,

which includes the alternative variance formula Vbc
n,ν,p,q(hn, bn) accounting for the additional

variability introduced by the bias estimate. See CCT and Calonico, Cattaneo, and Farrell (2015a)
for further details.

• Sharp RD variance estimation. To construct fully feasible confidence intervals the unknown
asymptotic variance is replaced by a consistent estimator thereof. The asymptotic variance formulas
introduced above have a “sandwich” structure coming from the weighted least-squares structure of
local polynomials. The package rdrobust offers two distinct valid variance estimators, employing
either “plug-in estimated residuals” or “fixed-matches estimated residuals”.

Plug-in estimated residuals. In this approach, the unknown residuals are estimated directly using
the RD local polynomial estimator. Usually the same bandwidth hn is employed, although his
choice may not be optimal and could lead to poor finite-sample performance of the variance
estimator. V̌n,ν,p and V̌bc

n,ν,p,q denote the resulting estimators of Vn,ν,p and Vbc
n,ν,p,q, respectively.

Fixed-matches estimated residuals. CCT propose an alternative variance estimator employing
a different construction for the residuals, motivated by the work of Abadie and Imbens (2006).
This estimator is constructed using a simple nearest-neighbor (or fixed-matches) estimator for the
residuals. V̂n,ν,p and V̂bc

n,ν,p,q denote the resulting estimators of Vn,ν,p and Vbc
n,ν,p,q, respectively.

• Extensions to Fuzzy RD confidence intervals. All the ideas and results presented above extend
to the case of fuzzy RD designs, which we omit here to conserve space. See IK and CCT for further
details. The package rdrobust also implements fuzzy RD estimators and confidence intervals.

The function rdrobust() may be used to conduct inference in all RD settings; by default, this
function employs the function rdbwselect() for bandwidth selection. Specifically, assuming y is the
output variable, t is the treatment status variable, x is the running variable and the cutoff is c = 0, we
have the following generic cases (with default options and bandwidth selection procedure):
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• Sharp RD:
rdrobust(y = y,x = x)

• Sharp Kink RD:
rdrobust(y = y,x = x,deriv = 1)

• Fuzzy RD:
rdrobust(y = y,x = x,fuzzy = t)

• Fuzzy Kink RD:
rdrobust(y = y,x = x,fuzzy = t,deriv = 1)

RD plots

Because of the simplicity of the RD design, it is customary (and advisable) to summarize the main
features of the RD design in a graphical way. The package rdrobust also implements the results
in Calonico, Cattaneo, and Titiunik (in press), which offer several optimal data-driven choices of
tuning parameters useful to produce several versions of the popular RD plots. These plots present
global and local estimates of the regression functions, µY−(x) and µY+(x), in an attempt to describe
their shapes for control (Xi < x̄) and treated (Xi ≥ x̄) units. The plot typically includes two smooth
“global” polynomial regression curve estimates, for control and treatment units separately, as well as
binned sample means of the outcome, which are included either to capture the local behavior of the
underlying regression functions or to represent the overall variability of the raw data in a disciplined
way. These binned sample means are used to either (i) investigate whether other discontinuities are
present, and (ii) depict an informative “cloud of points” around the smooth global polynomial fits.

The first ingredient of the RD plot (two regression curves estimated for Xi < x̄ and Xi ≥ x̄
separately) is easy to construct because it requires only estimating a polynomial regression on the
data; typical choices are 4-th and 5-th order global polynomials. The second ingredient of the RD
plot requires computing sample means over non-overlapping regions of the support of the running
variable Xi for control and treatment units, separately. For implementation the researcher needs to
choose the number of bins to be used, denoted by J−,n (control) and J+,n (treatment), and the length of
each bin; evenly-spaced bins is the most common partitioning scheme used. Calonico, Cattaneo, and
Titiunik (in press) study the problem of selecting an optimal number of bins J−,n and J+,n under two
partitioning schemes, evenly-spaced (ES) and quantile-spaced (QS), and propose several consistent
nonparametric selectors using spacings and polynomial regression estimators. In particular, they
propose two approaches to select the number of bins: (i) IMSE-optimal (tailored to approximate
the underlying regression functions), and (ii) Mimicking Variance (tailored to represent the overall
variability of the data in a disciplined way). These two proposed choices take the form, respectively,

IMSE-optimal : J∗−,n =
⌈
C− n1/3

⌉
and J∗+,n =

⌈
C+ n1/3

⌉
,

and

Mimicking Variance : J∗−,n =

⌈
C−

n
log(n)2

⌉
and J∗+,n =

⌈
C+

n
log(n)2

⌉
,

where d·e denotes the ceiling function, and the unknown constants take different values depending
on the targeted method and partitioning scheme used. Once the partitioning scheme is selected, the
optimal choices J∗−,n and J∗+,n can be estimated using preliminary plug-in estimators of C− and C+.

The function rdplot() offers eight distinct automatic implementations for RD plots depending on
(i) the choice of partitioning (ES or QS), (ii) the goal of the plot (IMSE-optimal or Mimicking Variance),
and (iii) the estimation approach used (spacings or polynomial regression). Specifically, the function
rdplot() covers the following.

• Population quantities:
JES-µ,·,n = IMSE-optimal choice with evenly-spaced (ES) bins.
JES-ϑ,·,n = Mimicking Variance choice with evenly-spaced (ES) bins.
JQS-µ,·,n = IMSE-optimal choice with quantile-spaced (QS) bins.
JQS-ϑ,·,n = Mimicking Variance choice with quantile-spaced (QS) bins.

• Estimators:
ĴES-µ,·,n and ĴQS-µ,·,n = spacings implementations of JES-µ,·,n and JQS-µ,·,n, respectively.
J̌ES-µ,·,n and J̌QS-µ,·,n = polynomial regression implementations of JES-µ,·,n and JQS-µ,·,n, respectively.
ĴES-ϑ,·,n and ĴQS-ϑ,·,n = spacings implementations of JES-ϑ,·,n and JQS-ϑ,·,n, respectively.
J̌ES-ϑ,·,n and J̌QS-ϑ,·,n = polynomial regression implementations of JES-ϑ,·,n and JQS-ϑ,·,n, respectively.
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Further details on implementation and syntax are given in the help file of the function rdplot().
For other technical and methodological details see Calonico, Cattaneo, and Titiunik (in press).

The rdrobust package: Empirical illustration

We employ an extract of the dataset constructed by Cattaneo, Frandsen, and Titiunik (2015) to illustrate
some of the features of our R package rdrobust. This dataset contains information on elections for the
U.S. Senate during the period 1914–2010. We focus on the RD effect of the Democratic party winning a
U.S. Senate seat on the vote share obtained in the following election for that same seat, mimicking
the analysis conducted in Lee (2008) for the U.S. House. The dataset rdrobust_RDsenate contains two
variables: vote and margin. The variable vote records the state-level vote share of the Democratic party
in a given statewide election for a Senate seat, while the variable margin records the margin of victory
of the Democratic party in the previous election for the same Senate seat (i.e., six years prior).

First, we load the database and present basic summary statistics. The functions included in the R
package rdrobust allow for missing values, which are automatically excluded for estimation purposes.

> library(rdrobust)
> data(rdrobust_RDsenate)
> vote <- rdrobust_RDsenate$vote
> margin <- rdrobust_RDsenate$margin
> summary(vote)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 42.67 50.55 52.67 61.35 100.00 93

> summary(margin)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-100.000 -12.210 2.166 7.171 22.770 100.000

This data set has a total of 1, 297 complete observations. The variable margin ranges from −100 to
100, and records the margin of victory in a given election for a given U.S. Senate seat, defined as the
vote share of the Democratic party minus the vote share of the strongest opponent. When margin is
above zero, the Democratic party wins the election for that seat, otherwise it loses. The variable vote
ranges from 0 to 100 because it records the outcome of the (two-periods ahead) election for that given
seat. Thus, observations for years 2008 and 2010 have missing vote. As it is usual in the literature, we
exploit the discontinuity in incumbency status that occurs at 0 on margin to employ an RD design.

We use rdplot() to construct an automatic plot of the RD design.

> (rdplot(y = vote, x = margin, title = "RD Plot - Senate Elections Data",
+ y.label = "Vote Share in Election at time t+1",
+ x.label = "Vote Share in Election at time t"))
Call:
rdplot(y = vote, x = margin, title = "RD Plot - Senate Elections Data",

x.label = "Vote Share in Election at time t",
y.label = "Vote Share in Election at time t+1")

Method: mimicking variance evenly-spaced method using spacings estimators

Left Right
Number of Obs. 595 702
Polynomial Order 4 4
Scale 1 1

Selected Bins 15 35
Bin Length 6.6614 2.8561

IMSE-optimal bins 8 9
Mimicking Variance bins 15 35

Relative to IMSE-optimal:
Implied scale 1.8750 3.8889
WIMSE variance weight 0.1317 0.0167
WIMSE bias weight 0.8683 0.9833

Figure 1 is constructed using the default options in the command rdplot, which produce an
RD plot with evenly-spaced bins selected to mimic the underlying variability of the data and is
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Figure 1: Automatic RD plot with evenly spaced bins (Mimicking Variance).

implemented using spacings estimators. Using the notation introduced above, the number of optimal
bins for control and treatment units are Ĵ−,n = 15 and Ĵ+,n = 35, respectively, implying bin lengths
of 6.661 and 2.856 percentage points, respectively. The global polynomial is constructed using a 4th
degree polynomial (p = 4 for µ̂−.p,1(x) and µ̂+.p,1(x)).

Next, we construct an alternative RD plot using evenly-spaced bins selected to trace out the
underlying regression function (i.e., using the IMSE-optimal selector), also implemented using spacings
estimators. The resulting plot is given in Figure 2.

> (rdplot(y = vote, x = margin, binselect = "es",
+ title = "RD Plot - Senate Elections Data",
+ y.label = "Vote Share in Election at time t+1",
+ x.label = "Vote Share in Election at time t"))
Call:
rdplot(y = vote, x = margin, binselect = "es", x

title = "RD Plot - Senate Elections Data",
x.label = "Vote Share in Election at time t",
y.label = "Vote Share in Election at time t+1")

Method: IMSE-optimal evenly-spaced method using spacings estimators

Left Right
Number of Obs. 595 702
Polynomial Order 4 4
Scale 1 1

Selected Bins 8 9
Bin Length 12.4901 11.1071

IMSE-optimal bins 8 9
Mimicking Variance bins 15 35

Relative to IMSE-optimal:
Implied scale 1.0000 1.0000
WIMSE variance weight 0.5000 0.5000
WIMSE bias weight 0.5000 0.5000

While providing a good approximation to the underlying regression function (taking the global
polynomial fit as benchmark), the IMSE-optimal number of bins will usually be too small in applica-
tions. This happens because the optimal formulas seek to balance squared bias and variance in order
to approximate the underlying regression function globally. To obtain a visual “cloud of points” we
need to increase the number of bins, that is, undersmooth the estimator. In other words, in order to
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Figure 2: Automatic RD plot with evenly spaced bins (IMSE-optimal).

increase the overall variability of the plotted points, we may reduce the bin-length – which is done by
increasing the total number of bins used. This may be easily done using the option scale as follows:

> (rdplot(y = vote, x = margin, binselect = "es", scale = 5,
+ title = "RD Plot - Senate Elections Data",
+ y.label = "Vote Share in Election at time t+1",
+ x.label = "Vote Share in Election at time t"))
Call:
rdplot(y = vote, x = margin, binselect = "es", scale = 5,

title = "RD Plot - Senate Elections Data",
x.label = "Vote Share in Election at time t",
y.label = "Vote Share in Election at time t+1")

Method: IMSE-optimal evenly-spaced method using spacings estimators

Left Right
Number of Obs. 595 702
Polynomial Order 4 4
Scale 5 5

Selected Bins 40 45
Bin Length 2.4980 2.2214

IMSE-optimal bins 8 9
Mimicking Variance bins 15 35

Relative to IMSE-optimal:
Implied scale 5.0000 5.0000
WIMSE variance weight 0.0079 0.0079
WIMSE bias weight 0.9921 0.9921

Figure 3 shows the resulting (undersmoothed) RD plot, where now the number of bins used is
five times larger than the optimal choice in an integrated mean squared error sense. The resulting
estimator is naturally more variable than before.

Next, we conduct fully data-driven RD treatment effect estimation and inference. The function
rdrobust() using its default options leads to the following output:

> rdrobust(y = vote, x = margin)

Call:
rdrobust(y = vote, x = margin)
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Figure 3: Automatic RD plot with evenly spaced bins and scaled down bin length (IMSE-optimal).

Summary:

Number of Obs 1297
NN Matches 3
BW Type CCT
Kernel Type Triangular

Left Right
Number of Obs 343 310
Order Loc Poly (p) 1 1
Order Bias (q) 2 2
BW Loc Poly (h) 16.7936 16.7936
BW Bias (b) 27.4372 27.4372
rho (h/b) 0.6121 0.6121

Estimates:
Coef Std. Err. z P>|z| CI Lower CI Upper

Conventional 7.4253 1.4954 4.9656 0.0000 4.4944 10.3562
Robust 0.0000 4.0697 10.9833

These results contain a variety of information, which is organized in three panels. The first two
contain a summary of the main choices selected to construct the RD treatment effect estimators, while
the lower panel includes the main estimation results. Specifically, using the notation introduced above,
this table shows:

1. The total number of observations is 1, 297, with effective 343 control and 310 treated units (given
the bandwidth hn chosen; see below). The estimation is conducted using a local-linear (p = 1)
estimator with a local-quadratic (q = 2) bias-correction estimate, with a triangular kernel. The
standard error estimators are the ones proposed by CCT, computed using 3 nearest-neighbors.

2. The bandwidth selection procedure is the one proposed by CCT, leading to ĥCCT,ν,p = 16.7936
with p = 1, and b̂CCT,ν,p,q = 27.4372 with q = 2. Recall ĥCCT,ν,p and b̂CCT,ν,p,q are the estimated
bandwidths used to construct the RD point estimator and the RD bias-correction, respectively,
and ν = 0 in this illustration.

3. The RD point estimator is τ̂p(ĥCCT,ν,p) = 7.4253 and the RD robust confidence intervals is

ĈI
rbc
1−α(ĥCCT,ν,p, b̂CCT,ν,p,q) = [ 4.0697 , 10.9833 ], with a default choice of α = 0.05.

The function rdrobust() also offers a more detailed output, which includes all the point estimators,
standard errors and confidence intervals discussed previously. These results are retrieved using the
all = TRUE option. The corresponding output is as follows:
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> rdrobust(y = vote, x = margin, all = TRUE)

Call:
rdrobust(y = vote, x = margin, all = TRUE)

Summary:

Number of Obs 1297
NN Matches 3
BW Type CCT
Kernel Type Triangular

Left Right
Number of Obs 343 310
Order Loc Poly (p) 1 1
Order Bias (q) 2 2
BW Loc Poly (h) 16.7936 16.7936
BW Bias (b) 27.4372 27.4372
rho (h/b) 0.6121 0.6121

Estimates:
Coef Std. Err. z P>|z| CI Lower CI Upper

Conventional 7.4253 1.4954 4.9656 0.0000 4.4944 10.3562
Bias-Corrected 7.5265 1.4954 5.0333 0.0000 4.5957 10.4574
Robust 7.5265 1.7637 4.2675 0.0000 4.0697 10.9833

Finally, we illustrate all the bandwidth selection procedures contained in our package. To this end,
we employ our companion function rdbwselect() to compare the CCT bandwidth selectors with the
IK and CV approaches. We have:

> rdbwselect(y = vote, x = margin, all = TRUE)

Call:
rdbwselect(y = vote, x = margin, all = TRUE)

BW Selector All
Number of Obs 1297
NN Matches 3
Kernel Type Triangular

Left Right
Number of Obs 595 702
Order Loc Poly (p) 1 1
Order Bias (q) 2 2

h b
CCT 16.79357 27.43722
IK 15.66761 16.48524
CV 35.42113 NA

In this case we employed the option all = TRUE, which computes the three bandwidth selectors
briefly discussed above. Notice that the option CV is currently not available for derivative estimation.
To further understand the performance of the CV approach, we include a graph of the CV objective
function over the grid being considered. This is done using the option cvplot as shown next (in
this example we also changed the grid features to obtain a better plot, and to show this additional
functionality in action as well).

> rdbwselect(y = vote, x = margin, bwselect = "CV",
+ cvgrid_min = 10, cvgrid_max = 80, cvplot = TRUE)

Call:
rdbwselect(y = vote, x = margin, bwselect = "CV", cvgrid_min = 10,

cvgrid_max = 80, cvplot = TRUE)

BW Selector CV
Number of Obs 1297
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Figure 4: Values of the CV function over the selected grid.

NN Matches 3
Kernel Type Triangular

Left Right
Number of Obs 595 702
Order Loc Poly (p) 1 1
Order Bias (q) 2 2

h b
34.5 34.5

Figure 4 shows the CV objective function as a function of a grid of bandwidth. In this example, the
cross validation approach delivers a minimum at ĥCV,p = 34.5.

Our functions contained in the R package rdrobust have many other options. For instance, for
the main function rdrobust() we have the following additional examples (output is not provided to
conserve space).

• Estimation using uniform kernel:
rdrobust(y = vote,x = margin,kernel = "uniform")

• Estimation using the IK bandwidth selector:
rdrobust(y = vote,x = margin,bwselect = "IK")

• Estimation using the CV bandwidth selector:
rdrobust(y = vote,x = margin,bwselect = "CV")

• Estimation using hn = 15 and ρ = hn/bn = 0.8:
rdrobust(y = vote,x = margin,h = 15,rho = 0.8)

• Estimation using p = 2 and q = 4:
rdrobust(y = vote,x = margin,p = 2,q = 4)

• Estimation using plug-in residuals estimates:
rdrobust(y = vote,x = margin,vce = "resid")

Conclusions

We introduced the main features of the R package rdrobust, which includes the functions rdrobust(),
rdbwselect(), and rdplot() designed to conduct data-driven nonparametric robust inference in RD
designs. This implementation covers average RD treatment effects at the cutoff in the sharp RD, sharp
kink RD, fuzzy RD and fuzzy kink RD designs. A full description of this package may be found in
its manual and help files. A companion Stata package offering the same structure and capabilities is
described in Calonico, Cattaneo, and Titiunik (2014b).
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