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Optimal Data-Driven Regression Discontinuity Plots
Sebastian CALONICO, Matias D. CATTANEO, and Rocı́o TITIUNIK

Exploratory data analysis plays a central role in applied statistics and econometrics. In the popular regression-discontinuity (RD) design, the
use of graphical analysis has been strongly advocated because it provides both easy presentation and transparent validation of the design. RD
plots are nowadays widely used in applications, despite its formal properties being unknown: these plots are typically presented employing
ad hoc choices of tuning parameters, which makes these procedures less automatic and more subjective. In this article, we formally study
the most common RD plot based on an evenly spaced binning of the data, and propose several (optimal) data-driven choices for the number
of bins depending on the goal of the researcher. These RD plots are constructed either to approximate the underlying unknown regression
functions without imposing smoothness in the estimator, or to approximate the underlying variability of the raw data while smoothing out
the otherwise uninformative scatterplot of the data. In addition, we introduce an alternative RD plot based on quantile spaced binning, study
its formal properties, and propose similar (optimal) data-driven choices for the number of bins. The main proposed data-driven selectors
employ spacings estimators, which are simple and easy to implement in applications because they do not require additional choices of tuning
parameters. Altogether, our results offer an array of alternative RD plots that are objective and automatic when implemented, providing a
reliable benchmark for graphical analysis in RD designs. We illustrate the performance of our automatic RD plots using several empirical
examples and a Monte Carlo study. All results are readily available in R and STATA using the software packages described in Calonico,
Cattaneo, and Titiunik. Supplementary materials for this article are available online.
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1. INTRODUCTION

The regression discontinuity (RD) design, originally intro-
duced by Thistlethwaite and Campbell (1960), is among the
most popular quasi-experimental empirical strategies to estimate
(local) causal treatment effects in economics, political science,
and many other social, behavioral, and natural sciences. In this
research design, for each unit i = 1, 2, . . . , n, researchers ob-
serve an outcome variable Yi and a continuous covariate Xi , and
units are assigned to treatment or control depending on whether
their observed covariate exceeds a known cutoff. Provided the
units of analysis cannot systematically sort around the cutoff,
the RD design employs observations just below and just above
the cutoff as control and treatment groups to conduct inference
on the (local) causal effect of the treatment. The underlying
idea, and crucial assumption, is that units around the cutoff do
not systematically differ in their unobservable characteristics,
thereby offering valid counterfactual comparisons between con-
trol and treatment groups. For recent reviews on the RD design,
including references to a large number of empirical applications
employing RD designs, see, for example, Cook (2008), Imbens
and Lemieux (2008), and Lee and Lemieux (2010).

A key feature of the RD design is its simplicity and trans-
parency. The empirical analysis relies on simple and easy-to-
interpret identifying assumptions to study the effect of a policy
or intervention for units near the threshold, involving only a
univariate outcome Yi and a univariate continuous covariate
Xi (which determines treatment assignment). Estimation and
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inference of RD treatment effects is usually conducted using lo-
cal polynomial estimators, and great attention has been devoted
to these estimators in the recent methodological RD literature
(see Hahn, Todd, and van der Klaauw 2001; Porter 2003; Im-
bens and Kalyanaraman 2012; Calonico, Cattaneo, and Titiunik
2014b, and references therein). Other approaches are also possi-
ble, such as those employing randomization inference methods
(Cattaneo, Frandsen, and Titiunik 2015).

No matter the inference approach employed, graphical ex-
ploratory analysis and graphical falsification tests are essen-
tial when employing RD designs. These methods have been
strongly advocated in the literature because they play an impor-
tant role in both the presentation and validation of RD research
designs—see, for example, Imbens and Lemieux (2008, sec.
3) and Lee and Lemieux (2010, sec. 4.1). The most common
graphical representation of RD designs is a plot that contains
two main ingredients. The first shows two smooth polynomial
approximations of the underlying conditional expectations of
the outcome variable Yi given the observed covariate Xi , for
control and treatment units separately. The second ingredient
is a collection of local sample means of the outcome variable
constructed by partitioning the support of the covariate Xi into
disjoint bins for control and treatment units separately, and com-
puting sample averages of the outcome variable Yi for each bin
using only observations whose value of the covariate Xi falls
within that bin.

Figure 1 gives three examples of these RD plots using the data
of Lee (2008), who studied the vote share advantage enjoyed
by the incumbent party in U.S. House of Representatives elec-
toral races. This figure also includes the scatterplot of the raw
data for comparison. In this empirical example, the identifica-
tion strategy is based on the discontinuity generated by the rule
that assigns electoral victory to the party that obtains the most
votes. The forcing variable (Xi) is the Democratic margin of

© 2015 American Statistical Association
Journal of the American Statistical Association

December 2015, Vol. 110, No. 512, Theory and Methods
DOI: 10.1080/01621459.2015.1017578

1753

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n]

 a
t 0

8:
31

 1
5 

Ja
nu

ar
y 

20
16

 

http://www.tandfonline.com/r/JASA
mailto:scalonico@bus.miami.edu
mailto:cattaneo@umich.edu
mailto:titiunik@umich.edu
http://www.tandfonline.com/r/jasa
http://www.amstat.org
http://pubs.amstat.org/loi/jasa
http://dx.doi.org/10.1080/01621459.2015.1017578


1754 Journal of the American Statistical Association, December 2015

Figure 1. Scatterplot and ad hoc RD plots for U.S. House elections data. (a) Scatterplot of raw data N− = 2740; N+ = 3818 (b) ad hoc RD
plot 250 disjoint bins on each side (c) ad hoc RD plot 100 disjoint bins on each side (d) ad hoc RD plot 20 disjoint bins on each side. Notes:
(i) sample size is n = 6558; (ii) N− and N+ denote the sample sizes for control and treatment units, respectively; (iii) solid blue lines depict
fourth-order polynomial fits using control and treated units separately.

victory in a given election—the difference in vote share between
the Democratic candidate and her strongest opponent—and the
normalized threshold is x̄ = 0, since the party wins the election
when its margin of victory is positive and loses otherwise. The
outcome variable (Yi) is the Democratic vote share in the fol-
lowing U.S. House election. (We further discuss this empirical
application in Section 6.) Each plot in Figure 1 includes fourth-
order polynomial fits for control and treatment units separately,
and the gray dots in Figure 1(a) represent a raw observation
while the black dots in Figure 1(b)–1(d) represent the sample
average for each disjoint bin.

The two ingredients of the RD plots serve different goals. The
polynomial fits seek to represent the behavior of the underlying
conditional expectations in a smooth fashion and from a global
perspective. On the other hand, the local sample means have
the general goal of providing a visual representation of the
design without relying on parametric assumptions regarding the
underlying regression functions, while also capturing the local
behavior of the data. In particular, local means may serve two
purposes:

1. Detection of discontinuities. Local means can provide im-
portant information regarding the validity of the key iden-
tifying assumption of the design—the continuity of the
conditional expectations at the cutoff x̄. By providing a
plot of the underlying regression function that is by con-
struction discontinuous, the local means can highlight the
presence of potential discontinuities in the conditional ex-
pectations away from the cutoff, which would cast doubt
on the key identifying assumption of the design. From
this perspective, the binning structure of the RD plot is
fundamental: while the global polynomial fits will typi-
cally hide the presence of such discontinuities, the local
sample means will not. In other words, constructing two
distinct estimators of the underlying regression functions,
one smooth (the global polynomial fit) and the other dis-
continuous (the local means), is particularly useful when
the goal is to identify the presence of potential disconti-
nuities.

2. Representation of variability. A second, equally impor-
tant, goal of the local sample means is to provide a
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disciplined representation of the overall variability of the
data. As shown in Figure 1, a scatterplot of the raw data
is uninformative and not particularly revealing of the fea-
tures of the RD design. In this case, the local sample
means play a different role: they are used to construct a
somewhat smoothed, yet variable scatterplot of the data
by averaging the observations within each of the disjoint
bins. From this perspective, the goal is not to “trace out”
the underlying regression functions but rather to construct
an undersmoothed estimate that highlights visually the
overall variability of the data.

Despite general agreement around the purpose of RD plots
and their widespread use, their formal properties remain un-
known. In particular, these plots are constructed using an ad hoc
choice of the partitions’ size (i.e., the number of bins used to
construct the local sample means), making the procedure less
automatic and more subjective than is ideal for a tool whose
main role is to provide objective evidence about the plausibility
of the research design’s main assumptions. Given the absence
of concrete guidance on these choices, practitioners typically
experiment and select an arbitrary number of bins, which may
misrepresent the actual behavior of the data. Figure 1 illustrates
some of the potential problems underlying ad hoc RD plots.
First, Figure 1(a) shows that the scatterplot of the raw data is
highly uninformative: despite the highly significant nonzero RD
treatment effect at the cutoff, no discontinuities are noticeable
when looking only at the cloud of points—a problem that is
exacerbated for binary outcomes. Second, Figures 1(b) through
1(d) show that by choosing the number of bins in an ad hoc
way, the type of information conveyed by RD plots can vary
widely, which implies that different ad hoc RD plots may give
very different representations of the underlying data and, by
implication, the validity of the design.

We address these concerns in the construction of RD plots by
proposing automatic, data-driven procedures to select the num-
ber of bins in RD plots specifically tailored to each of the two
goals mentioned above: detection of discontinuities and repre-
sentation of variability. To provide a plot that is well suited to
detecting potential discontinuities in the underlying regression
functions, we optimize the number of bins used to compute the
local sample means so that the integrated mean square error
(IMSE) of the resulting (discontinuous, binned) estimator of the
underlying regression functions is minimized. To provide a plot
that is appropriate to represent the underlying variability in the
data, we develop a bin selector that employs more bins than the
optimal number selected by the IMSE-minimization strategy.
We formalize this second approach in two distinct ways. First,
we propose a different optimal choice of the number of bins
based on a weighted integrated mean square error (WIMSE),
which gives a formal justification for undersmoothing (i.e., se-
lecting a larger number of bins than the IMSE-optimal choice).
Second, we propose another choice of the number of bins, which
generates local sample means with an asymptotic variability
mimicking the overall variability of the data. Both of these
choices lead to undersmoothed tuning parameter selectors rel-
ative to the IMSE-optimal choices, thereby generating more
variability in the local sample means depicted in the RD plots.

We derive all these optimal choices of the number of bins for
two distinct types of RD plots. First, we study the properties
of the most common RD plot used in the literature, one that
employs an evenly spaced (ES) binning of the data. Second, we
introduce an alternative RD plot based on quantile spaced (QS)
binning. The latter approach forces each bin to have approx-
imately the same number of observations, a feature that may
be appealing when the data are sparse: this partitioning scheme
may be interpreted as covariate design adaptive. For each type of
RD plot, we derive formally the optimal number of bins selec-
tors mentioned above, and develop data-driven nonparametric
consistent implementations thereof. Our main implementations
employ spacings estimation techniques to construct the data-
driven optimal partition size choices because these estimators
do not require additional tuning parameter choices, and thus
may be seen as more robust in applications. However, this tech-
nique requires continuity of the outcome variable, and hence
is not applicable in all possible empirical settings (e.g., binary
outcomes). To handle noncontinuous outcomes, we also pro-
pose and formally analyze partition size data-driven selectors
employing nonparametric polynomial estimators. For this case,
the underlying tuning parameter for implementation (i.e., the
polynomial power) may be chosen using cross-validation or re-
lated methods; see, for example, Ruppert, Wand, and Carroll
(2009) for further discussion.

Finally, we also analyze the performance of our automatic
RD plots visually and numerically. First, we apply our results
to the incumbency advantage example already introduced, and
find that our optimal data-driven RD plots perform well when
using real data. We also offer a similar analysis of three other
empirical applications in the supplemental appendix. Second,
we study the finite-sample properties of our results in a Monte
Carlo experiment employing several data-generating processes,
and find that our RD plots tuning parameter selectors perform
extremely well. Third, we compare numerically the two RD
plotting alternatives analyzed in this article: ES versus QS. Our
results highlight the fact that neither approach dominates the
other in general, because features of the underlying (unknown)
data-generating process (i.e., distribution of Xi and shapes of
the conditional expectation and conditional heteroscedasticity)
ultimately determine which RD plot may be preferred.

The rest of the article is organized as follows. Section 2 in-
troduces the RD design, reviews basic results and concepts,
and presents a formal description of RD plots. Section 3 in-
troduces the popular ES RD plot, derives formal asymptotic
expansions for the variance and bias of the underlying estima-
tor, and employs these results to develop several number of bins
selectors depending on the researcher’s goal. Section 4 proceeds
analogously but for the alternative RD plot based on QS bins.
Section 5 presents data-driven, fully automatic implementations
of our tuning parameter selectors for RD plots and establishes
their consistency properties. Section 6 showcases how our data-
driven RD plots perform visually and numerically using both
real and simulated data, and briefly compares the quantile and ES
approaches. Section 7 discusses two simple extensions, and Sec-
tion 8 concludes. The supplemental appendix contains the proofs
of our main theorems, additional methodological and technical
results, detailed simulation evidence, and further empirical illus-
trations not included here to conserve space. Companion R and
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STATA software packages are described in Calonico, Cattaneo,
and Titiunik (2014a, 2015).

2. SETUP

In the regression discontinuity design, the observed data are
a random sample (Yi,Xi)′, i = 1, 2, . . . , n, from a large popu-
lation, with Xi a continuous random variable with (possibly re-
stricted) support [xl, xu] and continuous density f (x). All units
with a value of the observed “score” or “forcing” variable Xi

greater than a known threshold x̄ are assigned to the treatment
group (Ti = 1), while all units with Xi < x̄ are assigned to the
control group (Ti = 0). Thus, under perfect compliance, treat-
ment received is defined as Ti = 1(Xi ≥ x̄) with 1(·) denoting
the indicator function. As is common in the program evalua-
tion literature (e.g., Imbens and Wooldridge 2009), we employ
potential outcomes notation to characterize the two underlying
counterfactual states (control or treatment). Letting Yi(1) and
Yi(0) denote the potential outcome with and without treatment,
respectively, the observed outcome is

Yi = Yi(0) · (1 − Ti) + Yi(1) · Ti =
{

Yi(0) if Ti = 0
Yi(1) if Ti = 1

.

The most popular parameter of interest is the average
treatment effect at the threshold, given by τSRD = E[Yi(1) −
Yi(0)|Xi = x̄]. This parameter is nonparametrically identifiable
under a mild continuity condition (Hahn, Todd, and van der
Klaauw 2001), and RD estimators employing local polynomial
techniques have become the default choice in the literature (see
Porter 2003; Imbens and Kalyanaraman 2012; Calonico, Catta-
neo, and Titiunik 2014b, and references therein). In the so-called
sharp RD design, Ti is a deterministic function of treatment as-
signment (perfect compliance), while in the so-called fuzzy RD
design treatment take-up and treatment assignment may differ.
This distinction, however, is mostly irrelevant for our purposes
because we do not focus on estimation and inference for RD
treatment effects, but rather on the RD plots commonly encoun-
tered in empirical work. These plots may be used for presen-
tation and falsification of both sharp and fuzzy RD research
designs. See Section 7 for a brief discussion of how our results
may be applied to fuzzy RD designs or extended to allow for
other covariates entering the analysis.

We set

μ−(x) = E[Yi(0)|Xi = x], μ
(1)
− (x) = ∂

∂x
μ−(x),

σ 2
−(x) = V [Yi(0)|Xi = x],

μ+(x) = E[Yi(1)|Xi = x], μ
(1)
+ (x) = ∂

∂x
μ+(x),

σ 2
+(x) = V [Yi(1)|Xi = x],

and impose the following assumption through the article.

Assumption 1. For xl, xu ∈ R with xl < x̄ < xu, and all x ∈
[xl, xu]:

a. E[Y 4
i |Xi] is bounded, and f (x) is continuous and bounded

away from zero.
b. μ−(x) and μ+(x) are S times continuously differentiable

(S ≥ 1).

c. σ 2
−(x) and σ 2

+(x) are continuous and bounded away from
zero.

Part (a) in Assumption 1 imposes existence of moments and
requires that the running variable Xi be continuously distributed.
Part (b) imposes smoothness on the underlying regression func-
tions, while part (c) requires that the conditional variance be
continuous; all these functions may be different at either side of
the threshold. Notice that μ−(x) = E[Yi |Xi = x] for all x < x̄

and μ+(x) = E[Yi |Xi = x] for all x ≥ x̄, enabling (consistent)
estimation of these conditional expectations for control and
treatment units, respectively.

2.1 RD Plots

The main features of an RD design are easily summarized
employing RD plots. As mentioned previously, these plots in-
clude two main ingredients: (i) smooth polynomial estimation,
and (ii) disjoint local sample means estimation. We now formal-
ize the underlying estimation approaches used to construct the
RD plots, which provides the basis for our analysis. Our main
focus is on tuning parameter selection for the construction of the
collection of local sample means under two distinct partitioning
schemes: ES and QS partitions of [xl, x̄) and [x̄, xu], that is, of
the observations to the left and right of the cutoff.

2.1.1 Global Polynomial Estimation. In the RD plots, the
unknown functions μ−(x) = E[Yi(0)|Xi = x] and μ+(x) =
E[Yi(1)|Xi = x] are estimated using global polynomials for
control and treatment observations separately. To formalize this
approach, let k ∈ Z+ and rk(x) = (1, x, x2, . . . , xk)′, and define

μ̂−,k(x) = rk(x)′β̂−,k,

β̂−,k = arg min
β∈Rk+1

n∑
i=1

1(Xi < x̄)(Yi − rk(x)′β)2,

μ̂+,k(x) = rk(x)′β̂+,k,

β̂+,k = arg min
β∈Rk+1

n∑
i=1

1(Xi ≥ x̄)(Yi − rk(x)′β)2.

In words, μ̂−,k(x) and μ̂+,k(x) are kth-order polynomial fits of Yi

on Xi employing only control and treatment units, respectively.
These polynomial regressions may be viewed as a nonpara-

metric approach, usually called series or (linear) sieve estima-
tion, for the approximation of the underlying population con-
ditional expectations when k = kn → ∞ as n → ∞ (see, e.g.,
Newey 1997; Chen 2007; Ruppert, Wand, and Carroll 2009;
Belloni et al. 2015 for reviews). Below we will exploit this in-
terpretation explicitly to construct consistent plug-in rules for
the optimal tuning parameter choices. Employing results from
the nonparametrics literature, it is possible to select kn using
some data-driven approach such as (plug-in) IMSE minimiza-
tion or cross-validation. In practice, however, k = 4 or k = 5
are almost always the preferred choices. Either way, we do not
discuss further the choice of k for RD plots because this is a
well-understood problem. Instead, our main focus is on choos-
ing the partition size for the local means, a result that is not
currently available in the literature.

Global polynomial approximations may not perform well in
RD applications and, more generally, in approximating regres-
sion functions locally. These polynomial approximations for
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regression functions tend to (i) generate counterintuitive weight-
ing schemes (Gelman and Imbens 2014), (ii) have erratic be-
havior near the boundaries of the support (usually known as the
Runge’s phenomenon in approximation theory), and (iii) over-
smooth (by construction) potential discontinuities in the interior
of the support. Thus, the other crucial ingredient of RD plots is
a collection of disjoint local sample means, which we describe
formally next.

2.1.2 Local Sample Mean Estimation. The second ingre-
dient in the RD plot is a collection of local sample means of
the outcome variable computed over a disjoint partition of the
support of the running variable, for control and treatment units
separately. To describe this construction formally, we employ
ideas from the nonparametric literature on partitioning estima-
tors (for further details, see Cattaneo and Farrell 2013, and
references therein).

We define P−,n = {P−,j : j = 1, 2, . . . , J−,n} and P+,n =
{P+,j : j = 1, 2, . . . , J+,n}, two generic disjoint partitions of
the support of the running variable Xi to the left and right of the
cutoff, which vary with the sample size n. More precisely,

[xl, x̄) =
J−,n⋃
j=1

P−,j ,

P−,j =
⎧⎨
⎩

[xl, p−,1) j = 1
[p−,j−1, p−,j ) j = 2, . . . , J−,n − 1
[p−,J−,n−1, x̄) j = J−,n

and

[x̄, xu] =
J+,n⋃
j=1

P+,j ,

P+,j =
⎧⎨
⎩

[x̄, p+,1) j = 1
[p+,j−1, p+,j ) j = 2, . . . , J+,n − 1
[p+,J+,n−1, xu] j = J+,n

with J−,n, J+,n ∈ Z++ denoting the partition sizes for con-
trol and treatment groups, respectively. As an example, in
the incumbency advantage illustration we introduced above
xu = 100, x̄ = 0, and xl = −100, so a partition to the right of
the cutoff in 20-percentage-point increments would be [x̄, xu] =
[0, 20) ∪ [20, 40) ∪ [40, 60) ∪ [60, 80) ∪ [80, 100].

We set 1A(x) = 1(x ∈ A) to save notation. The partitioning
estimators (of order 1), sometimes called binning estimators or
local constant regression estimators, are formally described as
follows:

μ̂−(x; J−,n) =
J−,n∑
j=1

1P−,j
(x)Ȳ−,j ,

Ȳ−,j = 1(N−,j > 0)

N−,j

n∑
i=1

1P−,j
(Xi)Yi

μ̂+(x; J+,n) =
J+,n∑
j=1

1P+,j
(x)Ȳ+,j ,

Ȳ+,j = 1(N+,j > 0)

N+,j

n∑
i=1

1P+,j
(Xi)Yi

with

N−,j =
n∑

i=1

1P−,j
(Xi), N− =

J−,n∑
j=1

N−,j ,

N+,j =
n∑

i=1

1P+,j
(Xi), N+ =

J+,n∑
j=1

N+,j .

The estimators μ̂−(x; J−,n) and μ̂+(x; J+,n) collect the sam-
ple means of the outcomes Yi for observations with covari-
ate Xi taking values within each bin in the partitions P−,n

and P+,n, and may be interpreted as nonparametric estima-
tors of μ−(x) and μ+(x), respectively. Like other nonparamet-
ric procedures, these binning-type estimators involve a choice
of tuning and smoothing parameters. In this case, (J−,n, J+,n)
may be regarded as the tuning parameters (e.g., similar to a
bandwidth for conventional kernel estimators) and (P−,n,P+,n)
may be viewed as the smoothing parameters (e.g., similar
to the shape of kernel function for conventional kernel esti-
mators). Under Assumption 1, and provided a well-behaved
partitioning scheme is used, it is not difficult to show that
μ̂−(x; J−,n) →P μ−(x) and μ̂+(x; J+,n) →P μ+(x), provided
that J−,n → ∞ and J+,n → ∞ as n → ∞ and some regularity
conditions hold. Throughout the article all limits are taken as
n → ∞ unless otherwise stated.

The behavior of these estimators is dependent on how the
partitions are constructed and, as mentioned above, this article
considers two approaches for choosing the partitions: ES par-
titions and QS partitions. Given a chosen partitioning scheme,
the parameters J−,n and J+,n control the rate of approximation
of the partitioning estimators, capturing the usual variance and
bias trade-off: larger (J−,n, J+,n) imply more variance but less
bias (more, smaller bins), while smaller (J−,n, J+,n) imply less
variance but more bias (fewer, larger bins). The main contribu-
tion of this article is to formalize these ideas for each of the
two partitioning schemes, to derive several (optimal) choices
of (J−,n, J+,n) explicitly capturing the specific objective of the
RD plot (i.e., tracing out the regression function or capturing
the underlying variability of the data), and to develop consistent
data-driven implementations thereof.

3. EVENLY SPACED RD PLOTS

In this section, we consider ES bins for the construction of
the partitioning scheme underlying the RD plots. Thus, we set

p−,j = xl + j · x̄ − xl

J−,n

and p+,j = x̄ + j · xu − x̄

J+,n

,

leading to the ES partitioning estimators denoted by
μ̂ES,−(x; J−,n) and μ̂ES,+(x; J+,n), with nonrandom partition-
ing schemes denoted by PES,−,n and PES,+,n, respectively.

The use of ES bins is the most common strategy in the ad
hoc construction of RD plots. For example, the original incum-
bency advantage plots in Lee (2008) present local means in
fixed-length bins that are 0.5 percentage points wide. Using the
notation just introduced, this translates into J−,n = J+,n = 200,
since there are 200 bins of length 0.5 on either side of the cutoff
between xl = −100 and xu = 100, and the two bins closest to

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n]

 a
t 0

8:
31

 1
5 

Ja
nu

ar
y 

20
16

 



1758 Journal of the American Statistical Association, December 2015

the cutoff on either side of it are

p−,199 = −100 + 199 · 100

200
= −0.5

and

p+,1 = 0 + 1 · 100

200
= 0.5.

3.1 Variance and Bias Properties

To study formally the properties of the ES RD plots, we begin
by developing formal asymptotic expansions for the integrated
variance and bias of the underlying partitioning estimators. Let
w(x) denote a weighting function, formally introduced in The-
orem 1, and set Xn = (X1, X2, . . . , Xn)′ to save notation. The
integrated variance of the estimators, for control and treatment
groups, μ̂ES,−(x; J−,n) and μ̂ES,+(x; J+,n), are

varES,−(J−,n) =
∫ x̄

xl

V
[
μ̂ES,−(x; J−,n)

∣∣Xn

]
w(x)dx

varES,+(J+,n) =
∫ xu

x̄

V
[
μ̂ES,+(x; J+,n)

∣∣Xn

]
w(x)dx.

Similarly, the integrated squared bias for these estimators is

BiasES,−(J−,n)

=
∫ x̄

xl

(E
[
μ̂ES,−(x; J−,n)

∣∣Xn

]− μ−(x))2w(x)dx

BiasES,+(J+,n)

=
∫ xu

x̄

(E
[
μ̂ES,+(x; J+,n)

∣∣Xn

]− μ+(x))2w(x)dx.

Since variability plays a crucial role in the construction of the
RD plots, all of our selectors will use the variance quantities
varES,−(J−,n) and varES,+(J+,n). In some cases, we will also
employ the bias quantities BiasES,−(J−,n) and BiasES,+(J+,n) to
construct choices of number of bins J−,n and J+,n. The next
result gives a formal first-order nonparametric approximation to
the integrated variance and squared bias of the estimators.

Theorem 1. Suppose Assumption 1 holds with S ≥ 2, and
w : [xl, xu] �→ R+ is continuous.

(−) If J−,n log(J−,n)/n → 0 and J−,n → ∞, then

varES,−(J−,n) = J−,n

n
VES,−{1 + oP (1)},

VES,− = 1

x̄ − xl

∫ x̄

xl

σ 2
−(x)

f (x)
w(x)dx,

BiasES,−(J−,n) = 1

J 2−,n

BES,−{1 + oP (1)},

BES,− = (x̄ − xl)2

12

∫ x̄

xl

(
μ

(1)
− (x)

)2
w(x)dx.

(+) If J+,n log(J+,n)/n → 0 and J+,n → ∞, then

varES,+(J+,n) = J+,n

n
VES,+{1 + oP (1)},

VES,+ = 1

xu − x̄

∫ xu

x̄

σ 2
+(x)

f (x)
w(x)dx,

BiasES,+(J+,n) = 1

J 2+,n

BES,+{1 + oP (1)},

BES,+ = (xu − x̄)2

12

∫ xu

x̄

(
μ

(1)
+ (x)

)2
w(x)dx.

All the results presented in this article remain valid if w(x) =
w+(x)1(x ≥ x̄) + w−(x)1(x < x̄), thus allowing for w(x) to be
discontinuous at x̄. Theorem 1 captures formally the natural
trade-off between variability and bias in approximating the un-
derlying regression function using local sample means com-
puted using disjoint ES partitions of size J ∈ {J−,n, J+,n}: the
larger the J, the smaller the bias because each bin is smaller and
hence the sample mean approximates the underlying function
better, while the larger the J, the larger the variance because
each bin is small and hence has only a few observations. In
what follows, we use this intuition explicitly to develop differ-
ent tuning parameter selectors depending on the explicit goal in
mind.

3.2 Approximating the Underlying Regression Functions

As a first goal, we consider optimal choices of the number of
bins J−,n and J+,n with the explicit goal of approximating the
underlying regression function in an IMSE sense. As discussed
previously, the resulting selectors are important and useful for
empirical work because they validate the otherwise possibly
oversmoothed polynomial approximations to the underlying re-
gression functions. Thus, we recommend these selectors to con-
struct RD plots to visually check for potential discontinuities
in the regression functions. Once potential discontinuities have
been identified, formal hypothesis tests (“placebo” tests) may
be conducted using robust inference procedures from the RD
literature (e.g., Calonico, Cattaneo, and Titiunik 2014b).

Under the conditions of Theorem 1, the IMSE loss function
of the estimators underlying the ES RD plots satisfies

IMSEES,−(J−,n)

=
∫ x̄

xl

E[(μ̂ES,−(x; J−,n) − μ−(x))2|Xn]w(x)dx

= J−,n

n
VES,−{1 + oP (1)} + 1

J 2−,n

BES,−{1 + oP (1)}

and

IMSEES,+(J+,n)

=
∫ xu

x̄

E
[

(μ̂ES,+(x; J+,n) − μ+(x))2
∣∣Xn

]
w(x)dx

= J+,n

n
VES,+{1 + oP (1)} + 1

J 2+,n

BES,+{1 + oP (1)}.

These results give an approximation to a family of IMSE loss
functions, depending on the choice of weight function w(x). In
general, assuming that BES,− 	= 0 and BES,+ 	= 0, the expan-
sions of IMSEES,−(Jn,−) and IMSEES,+(Jn,+) give the optimal
choices of number of bins:

JES-μ,−,n =
⌈(

2BES,−
VES,−

)1/3

n1/3

⌉

and

JES-μ,+,n =
⌈(

2BES,+
VES,+

)1/3

n1/3

⌉
(1)

with y = 
x� ∈ N, x ∈ R++, denoting the smallest integer y
such that x ≤ y.
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3.3 Approximating the Underlying Variability of the Data

In addition to developing optimal choices of tuning parame-
ters for approximating the underlying regression functions using
local sample means, we propose two distinct approaches specif-
ically developed to represent the overall variability of the data.
As discussed in Section 5, the resulting implementations are ob-
jective, fully automatic, and easy-to-implement, yet disciplined,
thus providing useful benchmarks for smoothing out the scat-
terplot of the raw data in empirical applications.

The first approach employs a natural loss function and leads
to a formal justification for “manual” increases in the variability
of the ES RD plots (i.e., undersmoothing by increasing the
number of bins employed), which is commonly done in practice.
The second approach is fully automatic but is not loss function
based—it is rather specifically tailored to mimic the underlying
variability of the data while employing binned sample means.
Naturally, as we discuss in more detail below, given a fixed
sample size, the resulting choices from the second approach
(or any other approach) can always be rationalized as emerging
from the first approach under a particular weighting scheme,
and hence could be regarded as “optimal.” In this sense, the first
approach is useful at the very least insofar as it gives a formal,
intuitive justification for any specific choice of number of bins
in terms of trading off variance and bias of the underlying local
means estimators entering the construction of the ES RD plot.

3.3.1 Weighted IMSE. This approach is based on a family of
loss functions constructed by trading off variance and bias of the
partitioning estimators. Specifically, to capture the variability of
the underlying raw data, a natural approach is to undersmooth
the binned sample means estimators (i.e., select a larger number
of bins J−,n and J+,n). This can be accomplished by trading off
variance and bias differently: let ωV ,−, ωB,−, ωV ,+, ωB,+ >

0 be fixed weights satisfying ωV ,− + ωB,− = 1 and ωV ,+ +
ωB,+ = 1, then consider the family of weighted IMSE loss
functions given by

WIMSEES,−(J−,n)

= ωV ,−varES,−(J−,n) + ωB,−BiasES,−(J−,n)

=ωV ,−
J−,n

n
VES,−{1+oP (1)}+ωB,−

1

J 2−,n

BES,−{1 + oP (1)}

and

WIMSEES,+(J+,n)

= ωV ,+varES,+(J+,n) + ωB,+BiasES,+(J+,n)

=ωV ,+
J+,n

n
VES,+{1+oP (1)} + ωB,+

1

J 2+,n

BES,+{1+oP (1)},

where these expansions are formally justified under the condi-
tions given in Theorem 1. It follows that the optimal choices
based on the above loss functions are

JES-ω,−,n =
⌈

ω−

(
2BES,−
VES,−

)1/3

n1/3

⌉

and

JES-ω,+,n =
⌈

ω+

(
2BES,+
VES,+

)1/3

n1/3

⌉
(2)

with ω− = (ωB,−/ωV ,−)1/3 and ω+ = (ωB,+/ωV ,+)1/3. The
WIMSE objective functions are meant to offer more flexibility
on the relative importance of variance and bias when searching
for an optimal number bins, and hence the associated weights
could be interpreted as capturing researchers’ prior beliefs on
the relative importance of variance and bias.

The result in (2) is a generalization of the choices given
in (1) because JES-ω,−,n = 
ω−JES-μ,−,n� and JES-ω,+,n =

ω+JES-μ,+,n�, and when variance and bias are weighted equally
(i.e., ωV ,− = ωB,− and ωV ,+ = ωB,+), then JES-μ,−,n =
JES-ω,−,n and JES-μ,+,n = JES-ω,+,n. More generally, the larger
the ωB,−, ωB,+ ∈ (0, 1), the larger the choice of number of
bins JES-ω,−,n and JES-ω,+,n because the loss function puts more
weight on bias and less on variance, allowing for more vari-
ability in the underlying local sample mean estimates. While
it is not obvious how to choose a particular weighting scheme
in empirical practice, this approach is very useful in justifying
“manual” undersmoothing after selecting the number of bins
using the IMSE-optimal choices. Specifically, for each choice
of rescaling constants ω−, ω+ > 0, there exists a unique com-
patible weighting scheme:

(ωV ,−, ωB,−) =
(

1

1 + ω3−
,

ω3
−

1 + ω3−

)
and

(ωV ,+, ωB,+) =
(

1

1 + ω3+
,

ω3
+

1 + ω3+

)
,

which rationalizes the resulting choices of number of bins as
optimal in the sense of minimizing the WIMSE loss function.
This result may be of interest for practitioners because it helps
explain how variability and bias are traded off when choosing
a scaling factor to modify the IMSE-optimal choices for the
number of bins, which can always be used as a starting point in
the empirical investigation. In the supplemental appendix, we
provide a table with the weights implied by different scaling
factors ω− and ω+. Furthermore, for any initial ad hoc choice
of number of bins used to construct the ES RD plot, the above
logic can be used to find an IMSE-optimal choice and a scaling
factor that is consistent with the ad hoc choice, thereby offering
an objective interpretation of the ad hoc choice in terms of
variance and bias trade-off.

3.3.2 Mimicking Variability. The weighted IMSE approach
is useful to give a natural interpretation to “manual” under-
smoothing and, more generally, to other ad hoc choices of num-
ber of bins used to construct ES RD plots approximating the
underlying variability of the data. However, this approach is
not fully automatic in general: while clearly objective and in-
terpretable, its main drawback is that it requires the choice of
a weighting scheme, and it is difficult to justify a scheme that
works generally for all applications. For this reason, we also
propose a second approach specifically targeted to capture the
variability of the data while employing local sample means,
which is fully automatic and can be easily implemented.

In this second approach, we choose the number of bins so
that the binned sample means have an asymptotic (integrated)
variability approximately equal to the amount of variability of
the raw data. To describe the approach formally, let V− and
V+ denote, respectively, the sample variance of the outcome
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variables for control and treatment units, that is, the sample
variance of the subsamples {Yi : Xi < x̄} and {Yi : Xi ≥ x̄}.
Then, we select J−,n and J+,n so that

varES,−(J−,n) = V−
and

varES,+(J+,n) = V+

leading, respectively, to the “optimal” choices V−
VES,−

n and V+
VES,+

n.
The main intuition behind these choices is that we set the number
of bins used so that the overall variability of the sample means, as
measured by the asymptotic approximation obtained in Theorem
1, mimics the overall variability of the unrestricted scatterplot
of the data.

This idea, while very intuitive, has a minor technical draw-
back: it leads to tuning parameter choices that do not satisfy
the rate conditions of the results in Theorem 1. Thus, to make
the end result theoretically coherent, we modify it slightly as
follows:

JES-ϑ,−,n =
⌈ V−

VES,−

n

log(n)2

⌉
and

JES-ϑ,+,n =
⌈ V+

VES,+

n

log(n)2

⌉
. (3)

To summarize, the choice emerging for the number of bins
in (3) mimics the overall variability of the data, up to a log(n)
factor, and is fully consistent with the theoretical results given
in Theorem 1. Importantly, the resulting number of bins will
be in general larger than the one obtained in (1), which is con-
sistent with the underlying distinct goals justifying these rules:
(JES-μ,−,n, JES-μ,+,n) are developed explicitly to approximate the
underlying regression function and hence they optimally trade-
off variance and bias, while (JES-ϑ,−,n, JES-ϑ,+,n) are developed
explicitly to approximate the variability of the data and hence the
resulting underlying estimators lead to undersmoothing relative
to the IMSE-optimal choices.

4. QUANTILE SPACED RD PLOTS

In addition to the popular ES RD plot, we also introduce and
study an alternative plotting approach based on QS bins. This
approach takes into account the sparsity of the data, forcing
each bin to have approximately the same number of observa-
tions. This feature may be appealing because with QS bins the
variability of the local sample means will change across bins
only due to nonconstant conditional variances (i.e., due to the
presence of heteroscedasticity), but not due to different sample
sizes in each bin (as it occurs with an ES partition).

This section parallels the previous discussion for ES RD plots
in Section 3, but now focusing on QS RD plots. In this case, we
construct the partitioning scheme as follows:

p−,j = F̂−1
−

(
j

J−,n

)
and p+,j = F̂−1

+

(
j

J+,n

)
,

with

F̂−1
− (y) = inf{x : F̂−(x) ≥ y},

F̂−(x) = 1

N−

n∑
i=1

1(Xi < x̄)1(Xi ≤ x),

F̂−1
+ (y) = inf{x : F̂+(x) ≥ y},

F̂+(x) = 1

N+

n∑
i=1

1(Xi ≥ x̄)1(Xi ≤ x).

In words, the QS RD plot sets p−,j and p+,j to be the approx-
imately 100(j/J−,n)th quantiles of the subsample {Xi : Xi <

x̄} and the approximately 100(j/J+,n)th quantile of the sub-
sample {Xi : Xi ≥ x̄}, respectively. This construction leads to
the QS partitioning estimators denoted by μ̂QS,−(x; J−,n) and
μ̂QS,+(x; J+,n), which are estimators now employing the ran-
dom partitioning schemes denoted by PQS,−,n and PQS,+,n, re-
spectively.

4.1 Variance and Bias Properties

We study first the integrated variance and squared bias of the
estimators μ̂QS,−(x; J−,n) and μ̂QS,+(x; J+,n), which are given
by

varQS,−(J−,n) =
∫ x̄

xl

V
[
μ̂QS,−(x; J−,n)

∣∣Xn

]
w(x)dx,

varQS,+(J+,n) =
∫ xu

x̄

V
[
μ̂QS,+(x; J+,n)

∣∣Xn

]
w(x)dx,

and

BiasQS,−(J−,n) =
∫ x̄

xl

(E
[
μ̂QS,−(x; J−,n)

∣∣Xn

]− μ−(x))2w(x)dx,

BiasQS,+(J+,n) =
∫ xu

x̄

(E
[
μ̂QS,+(x; J+,n)

∣∣Xn

]− μ+(x))2w(x)dx.

As in the case of ES RD plots, we propose several (optimal, data-
driven) choices of the number of bins J−,n and J+,n by either
trading off variance and bias of the underlying estimators, or by
mimicking the overall variability of the raw data. The following
result gives the formal expansions for the variance and bias of
the underlying partitioning estimators.

Theorem 2. Suppose Assumption 1 holds with S ≥ 2, and
w : [xl, xu] �→ R+ is continuous.

(−) If J−,n log(J−,n)/n → 0 and J−,n/ log(n) → ∞, then

varQS,−(J−,n) = J−,n

n
VQS,−{1 + oP (1)},

VQS,− = 1

P−

∫ x̄

xl

σ 2
−(x)w(x)dx,

BiasQS,−(J−,n) = 1

J 2−,n

BQS,−{1 + oP (1)},

BQS,− = P 2
−

12

∫ x̄

xl

(
μ

(1)
− (x)

f (x)

)2

w(x)dx,

where P− = P [Xi < x̄].

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n]

 a
t 0

8:
31

 1
5 

Ja
nu

ar
y 

20
16

 



Calonico, Cattaneo, and Titiunik: Optimal Data-Driven RD Plots 1761

(+) If J+,n log(J+,n)/n → 0 and J+,n/ log(n) → ∞, then

varQS,+(J+,n) = J+,n

n
VQS,+{1 + oP (1)},

VQS,+ = 1

P+

∫ xu

x̄

σ 2
+(x)w(x)dx,

BiasQS,+(J+,n) = 1

J 2+,n

BQS,+{1 + oP (1)},

BQS,+ = P 2
+

12

∫ xu

x̄

(
μ

(1)
+ (x)

f (x)

)2

w(x)dx,

where P+ = P [Xi ≥ x̄].

The conclusion in this theorem is similar to that of The-
orem 1, but its proof is different because the estimators are
constructed using a random partitioning scheme. The partition-
ing scheme used in the ES RD plots (PES,−,n and PES,+,n) re-
quires J−,n → ∞ and J+,n → ∞ but could lead to empty bins
in finite samples (this possibility disappears asymptotically; see
Lemma SA1 in the supplemental appendix). In contrast, the
partitioning scheme underlying the QS RD plots (PQS,−,n and
PQS,+,n) guarantees roughly the same number of observations
(≈ N−/J−,n and ≈ N+/J+,n) in each bin. The slightly stronger
rate conditions J−,n/ log(n) → ∞ and J+,n/ log(n) → ∞ are
imposed to ensure consistency of the sample quantiles functions
at the appropriate rate; see Lemma SA2 in the supplemental ap-
pendix.

The main difference between the conclusions in Theorems
1 and 2 is that the fixed, leading constants in the variance and
bias approximations are different. Importantly, the rates derived
are the same in both theorems. The fixed constants are different
because the partitioning schemes used are different in each case,
but nonetheless all the ideas previously discussed for ES RD
plots also apply directly to QS RD plots. Thus, in the remainder
of this section, we only briefly summarize the main results for
completeness.

4.2 Approximating the Underlying Regression Functions

Using the results above, and under the assumptions of Theo-
rem 2, we obtain an asymptotic expansion of the IMSE for QS
RD plots given by

IMSEQS,−(J−,n)

=
∫ x̄

xl

E
[

(μ̂QS,−(x; J−,n) − μ−(x))2
∣∣Xn

]
w(x)dx

= J−,n

n
VQS,−{1 + oP (1)} + 1

J 2−,n

BQS,−{1 + oP (1)}
and

IMSEQS,+(J+,n)

=
∫ xu

x̄

E
[

(μ̂QS,+(x; J+,n) − μ+(x))2
∣∣Xn

]
w(x)dx

= J+,n

n
VQS,+{1 + oP (1)} + 1

J 2+,n

BQS,+{1 + oP (1)},

which imply the following IMSE-optimal choices of QS parti-
tion sizes (i.e., number of bins constructed using ES quantiles

of the running variable):

JQS-μ,−,n =
⌈(

2BQS,−
VQS,−

)1/3

n1/3

⌉

and

JQS-μ,+,n =
⌈(

2BQS,+
VQS,+

)1/3

n1/3

⌉
. (4)

4.3 Approximating the Underlying Variability of the Data

4.3.1 Weighted IMSE. Employing the same notation
for weights introduced above for ES RD plots, we can
construct analogous weighted IMSE objective functions for
QS RD plots: WIMSEQS,−(J−,n) = ωV ,−varQS,−(J−,n) +
ωB,−BiasQS,−(J−,n) and WIMSEQS,+(J+,n) =
ωV ,+varQS,+(J+,n) + ωB,+BiasQS,+(J+,n). Employing the
approximations derived in Theorem 2 and optimizing we obtain

JQS-ω,−,n =
⌈

ω−

(
2BQS,−
VQS,−

)1/3

n1/3

⌉

and

JQS-ω,+,n =
⌈

ω+

(
2BQS,+
VQS,+

)1/3

n1/3

⌉
(5)

with ω− = (ωB,−/ωV ,−)1/3 and ω+ = (ωB,+/ωV ,+)1/3. The
discussion given above for ES RD plots applies here as well,
replacing the subindex ES with QS as appropriate in the different
expressions given previously.

4.3.2 Mimicking Variability. We employ the same logic
outlined for the case of ES RD plots, but now using QS bin-
ning. That is, letting V− and V+ denote a population measure
of variability of the outcome variables for control and treatment
units, respectively, we select the number of bins for each group
so that the asymptotic variability of the QS-based local sam-
ple means is approximately equal to the overall variability of
the data. Thus, we propose the following “optimal” choice of
number of bins:

JQS-ϑ,−,n =
⌈ V−

VQS,−

n

log(n)2

⌉
and

JQS-ϑ,+,n =
⌈ V+

VQS,+

n

log(n)2

⌉
, (6)

which has the same structure as given in (3) but with the subindex
ES replaced by QS.

5. DATA-DRIVEN IMPLEMENTATIONS

Employing some reference model, we could easily con-
struct rule-of-thumb estimates of the unknown constants
(VES,−,BES,−,VES,+,BES,+) and (VQS,−,BQS,−,VQS,+,BQS,+)
featuring in the different optimal choices of number of bins for
ES and QS RD plots. Such implementations would require a
given choice of weighting function w(x) in practice, but would
otherwise be straightforward to derive and easy to implement
in practice; for further discussion see, for example, Wand and
Jones (1995) for kernel estimation and Ruppert, Wand, and Car-
roll (2009) for series and penalized estimation.
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A potential drawback of rule-of-thumb estimates is that they
are inconsistent whenever the reference model used is incorrect.
Thus, we propose instead easy-to-implement consistent non-
parametric estimators for the unknown constants entering the
optimal choices of number of bins in Equations (1) through (6).
In the supplemental appendix, we outline a general approach
allowing for any user-chosen known weighting function w(x),
which needs to be set in advance. Here, we discuss in detail our
recommended choice, w(x) = f (x), which removes a density
from the denominators of the unknown constants and leads to
particularly simple and intuitive data-driven rules. As we discuss
further below, all of our approaches are not only theoretically
justified, but also simple, easy-to-interpret and often more robust
than the usual nonparametric alternatives.

We estimate the unknown constants using ideas related to
spacings estimators (see, e.g., Ghosh and Jammalamadaka 2001;
Lewbel and Schennach 2007; Baryshnikov, Penrose, and Yurich
2009, and references therein) and series estimators (see, e.g.,
Newey 1997; Chen 2007; Ruppert, Wand, and Carroll 2009;
Belloni et al. 2015 for reviews). Spacings estimators are closely
related to nearest neighbor estimators with fixed neighbors
(e.g., Abadie and Imbens 2006, 2010), and may be more ro-
bust than other nonparametric estimators such as kernel-based
estimators because they do not require additional tuning pa-
rameter choices in their implementation. To describe these
estimators, we need to introduce notation for order statistics
and concomitants; see David and Nagaraja (1998, 2003) for
more details. For a collection of continuous random variables
{(Zi,Wi) : i = 1, 2, . . . , n}, we let W(i) be the ith-order statis-
tic of Wi and Z[i] its corresponding concomitant. That is,
W(1) < W(2) < · · · < W(n) and Z[i] denotes the Z-value asso-
ciated with W(i) for all i = 1, 2, . . . , n.

Spacings estimators are useful because they exploit proper-
ties of order statistics and concomitants to approximate the un-
known density and moments of the random variables nonpara-
metrically. To see this, heuristically, recall that Ui = FW (Wi)
with {Ui : 1 ≤ i ≤ n} uniform [0, 1] random variables, FW (·)
the c.d.f. of Wi and fW (·) the p.d.f. of Wi . Then, for some
ŭi ∈ [U(i−1), U(i)] a Taylor series expansion gives

W(i) − W(i−1) = F−1
W (U(i)) − F−1

W (U(i−1))

= U(i) − U(i−1)

fW (F−1
W (ŭi))

≈ 1

nfW (F−1
W (Ū(i)))

,

where Ū(i) = (U(i−1) + U(i))/2, and because |U(i) − U(i−1) −
1/n| ≈ 0. Thus, heuristically, an average of a smooth func-
tion of the spacings statistic, W(i) − W(i−1), will converge
to the expectation of this function inversely weighted by
the unknown density fW (·), up to a scaling factor and
some additional (technical) constants that may arise in the
derivation. Similar arguments using concomitants and order
statistics give E[(Z[i] − Z[i−1])2|W(1), . . . ,W(n)] ≈ σ 2(W(i)) +
σ 2(W(i−1)) with σ 2(Wi) = V [Zi |Wi]. Lemma SA3 in the sup-
plemental appendix formalizes these results, which we use in the
sequel to construct simple, nonparametric estimators of the un-
known constants entering the number of bins selectors proposed
in this article.

We also employ series (polynomial) nonparametric approxi-
mations to estimate μ

(1)
− (x) and μ

(1)
+ (x), and σ 2

−(x) and σ 2
+(x) in

some cases, trying to mimic as closely as possible current em-
pirical practices—these polynomial approximations are already
available as part of the RD plots.

5.1 ES RD Plots

Taking w(x) = f (x), with f (x) unknown, leads to the fol-
lowing simplified constants in Theorem 1:

VES,− = 1

x̄ − xl

∫ x̄

xl

σ 2
−(x)dx,

BES,− = (x̄ − xl)2

12
E[1(Xi < x̄)(μ(1)

− (Xi))
2],

VES,+ = 1

xu − x̄

∫ xu

x̄

σ 2
+(x)dx

BES,+ = (xu − x̄)2

12
E[1(Xi ≥ x̄)(μ(1)

+ (Xi))
2],

which feature in the number of bins selectors discussed above
for the ES RD plots.

Letting {(Y−,i , X−,i) : i = 1, 2, . . . , N−} and {(Y+,i , X+,i) :
i = 1, 2, . . . , N+} be the subsamples of control (Xi < x̄) and
treatment (Xi ≥ x̄) units, respectively, we propose the following
estimators:

V̂ES,− = 1

x̄ − xl

1

2

N−∑
i=2

(X−,(i) − X−,(i−1))(Y−,[i] − Y−,[i−1])
2

(7)

B̂ES,− = (x̄ − xl)2

12n

n∑
i=1

1(Xi < x̄)
(
μ̂

(1)
−,k(Xi)

)2
, (8)

and

V̂ES,+ = 1

xu − x̄

1

2

N+∑
i=2

(X+,(i) − X+,(i−1))(Y+,[i] − Y+,[i−1])
2

(9)

B̂ES,+ = (xu − x̄)2

12n

n∑
i=1

1(Xi ≥ x̄)
(
μ̂

(1)
+,k(Xi)

)2
, (10)

with

X̄−,(i) = X−,(i) + X−,(i−1)

2
, i = 2, 3, . . . , N−,

μ̂
(1)
−,k(x) = r(1)

k (x)′β̂−,k,

X̄+,(i) = X+,(i) + X+,(i−1)

2
, i = 2, 3, . . . , N+,

μ̂
(1)
+,k(x) = r(1)

k (x)′β̂+,k,

and r(1)
k (x) = ∂rk(x)/∂x = (0, 1, 2x, 3x2, . . . , kxk−1)′. These

estimators are particularly well suited for our purposes because
they (i) avoid explicit estimation of the density f (x) appearing
in the denominators and (ii) do not require specific choices of
tuning parameters (e.g., bandwidths in kernel-based estimation).
For these reasons, and given their simple implementation, we
recommend employing these spacings-based estimators when-
ever possible.
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Thus, our proposed data-driven selectors for ES RD plots take
the form

ĴES-μ,−,n =
⎡
⎢⎢⎢
(

2B̂ES,−
V̂ES,−

)1/3

n1/3

⎤
⎥⎥⎥

and

ĴES-μ,+,n =
⎡
⎢⎢⎢
(

2B̂ES,+
V̂ES,+

)1/3

n1/3

⎤
⎥⎥⎥ , (11)

ĴES-ω,−,n =
⎡
⎢⎢⎢ω−

(
2B̂ES,−
V̂ES,−

)1/3

n1/3

⎤
⎥⎥⎥

and (12)

ĴES-ω,+,n =
⎡
⎢⎢⎢ω+

(
2B̂ES,+
V̂ES,+

)1/3

n1/3

⎤
⎥⎥⎥ , (13)

ĴES-ϑ,−,n =
⌈

V̂−
V̂ES,−

n

log(n)2

⌉

and

ĴES-ϑ,+,n =
⌈

V̂+
V̂ES,+

n

log(n)2

⌉
, (14)

using the estimators in (7)–(10), and where V̂− and V̂+ are
consistent estimators of their population counterparts V− and
V+. The following theorem shows that, when the polynomial fits
are viewed as nonparametric approximations with k = kn →
∞, the different number of bins selectors are nonparametric
consistent.

Theorem 3. Suppose Assumption 1 holds with S ≥ 5, and
Yi(0) and Yi(1) are continuously distributed. If k7

n/n → 0 and
kn → ∞, then

ĴES-ω,−,n

JES-ω,−,n

→P 1,
ĴES-ϑ,−,n

JES-ϑ,−,n

→P 1,
ĴES-ω,+,n

JES-ω,+,n

→P 1,

ĴES-ϑ,+,n

JES-ϑ,+,n

→P 1,

provided that V̂− →P V− and V̂+ →P V+.

This theorem gives formal justification for employing any of
the data-driven selectors for the number of bins introduced in
this article. (Recall that ĴES-μ,−,n = ĴES-ω,−,n and ĴES-μ,+,n =
ĴES-ω,+,n when equal weights are used in the WIMSE.) In the
supplemental appendix, we also discuss the case where a given
weighting scheme w(x) is provided in advance, and show con-
sistency of the associated number of bins selectors; those results
cover the case w(x) = 1, for example.

Remark 1 (Discontinuous Outcomes). When Yi(0) and Yi(1)
are not continuously distributed, the concomitant-based estima-
tion method becomes invalid. In this case, we need to employ
other more standard nonparametric techniques. For example, as-
suming that E[Yi(t)2|Xi = x], t = 0, 1, are twice continuously
differentiable, we can use the following estimators: for k ∈ Z+

and p ∈ Z++,

V̌ES,− = 1

x̄ − xl

N−∑
i=2

(X−,(i) − X−,(i−1))σ̂
2
−,k(X̄−,(i)),

σ̂ 2
−,k(x) = μ̂−,k,2(x) − (μ̂−,k,1(x))2,

V̌ES,+ = 1

xu − x̄

N+∑
i=2

(X+,(i) − X+,(i−1))σ̂
2
+,k(X̄+,(i)),

σ̂ 2
+,k(x) = μ̂+,k,2(x) − (μ̂+,k,1(x))2,

where

μ̂−,k,p(x) = rk(x)′β̂−,k,p,

β̂−,k,p = arg min
β∈Rk+1

n∑
i=1

1(Xi < x̄)(Yp

i − rk(Xi)
′β)2,

μ̂+,k,p(x) = rk(x)′β̂+,k,p,

β̂+,k,p = arg min
β∈Rk+1

n∑
i=1

1(Xi ≥ x̄)(Yp

i − rk(Xi)
′β)2,

μ̂−,k(x) = μ̂−,k,1(x) and μ̂+,k(x) = μ̂+,k,1(x) with our notation.
We show in the appendix that the resulting partition-size selec-
tors using the above estimators,

J̌ES-μ,−,n =
⎡
⎢⎢⎢
(

2B̂ES,−
V̌ES,−

)1/3

n1/3

⎤
⎥⎥⎥

and

J̌ES-μ,+,n =
⎡
⎢⎢⎢
(

2B̂ES,+
V̌ES,+

)1/3

n1/3

⎤
⎥⎥⎥ , (14)

J̌ES-ω,−,n =
⎡
⎢⎢⎢ω−

(
2B̂ES,−
V̌ES,−

)1/3

n1/3

⎤
⎥⎥⎥

and

J̌ES-ω,+,n =
⎡
⎢⎢⎢ω+

(
2B̂ES,+
V̌ES,+

)1/3

n1/3

⎤
⎥⎥⎥ , (15)

J̌ES-ϑ,−,n =
⌈

V̂−
V̌ES,−

n

log(n)2

⌉

and

J̌ES-ϑ,+,n =
⌈

V̂+
V̌ES,+

n

log(n)2

⌉
, (16)

are also consistent in the sense of Theorem 3, under the condi-
tions imposed in that theorem.

5.2 QS RD Plots

Paralleling the discussion above for ES RD plots, we propose
consistent estimators for JQS-μ,−,n, JQS-μ,+,n, JQS-ω,−,n, JQS-ω,+,n,
JQS-ϑ,−,n, and JQS-ϑ,+,n, when w(x) = f (x) with f (x) unknown.
In this case, the target constants take the form

VQS,− = 1

P−
E[1(Xi < x̄)σ 2

−(Xi)],

BQS,− = P 2
−

12

∫ x̄

xl

1

f (x)

(
μ

(1)
− (x)

)2
dx,
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VQS,+ = 1

P+
E[1(Xi ≥ x̄)σ 2

+(Xi)],

BQS,+ = P 2
+

12

∫ xu

x̄

1

f (x)

(
μ

(1)
+ (x)

)2
dx.

Our preferred selectors employ spacings estimators, which
are simple and easy-to-implement but require continuous out-
comes. See Remark 2 for the case of noncontinuous outcomes.
The estimators of the optimal selectors for QS partition size are
based on the following estimators:

V̂QS,− = 1

2N−

N−∑
i=2

(Y−,[i] − Y−,[i−1])
2 (17)

B̂QS,− = N2
−

24n

N−∑
i=2

(X−,(i) − X−,(i−1))
2
(
μ̂

(1)
−,k(X̄−,(i))

)2
,(18)

and

V̂QS,+ = 1

2N+

N+∑
i=2

(Y+,[i] − Y+,[i−1])
2 (19)

B̂QS,+ = N2
+

24n

N+∑
i=2

(X+,(i) − X+,(i−1))
2
(
μ̂

(1)
+,k(X̄+,(i))

)2
, (20)

using the notation introduced above.
Therefore, in the QS partitions case, our data-driven selectors

take the form

ĴQS-μ,−,n =
⎡
⎢⎢⎢
(

2B̂QS,−
V̂QS,−

)1/3

n1/3

⎤
⎥⎥⎥

and

ĴQS-μ,+,n =
⎡
⎢⎢⎢
(

2B̂QS,+
V̂QS,+

)1/3

n1/3

⎤
⎥⎥⎥ , (21)

ĴQS-ω,−,n =
⎡
⎢⎢⎢ω−

(
2B̂QS,−
V̂QS,−

)1/3

n1/3

⎤
⎥⎥⎥

and

ĴQS-ω,+,n =
⎡
⎢⎢⎢ω+

(
2B̂QS,+
V̂QS,+

)1/3

n1/3

⎤
⎥⎥⎥ , (22)

ĴQS-ϑ,−,n =
⌈

V̂−
V̂QS,−

n

log(n)2

⌉

and

ĴQS-ϑ,+,n =
⌈

V̂+
V̂QS,+

n

log(n)2

⌉
, (23)

using the estimators in (17)–(20), and appropriate consistent
estimators V̂− and V̂+. As in the case of Theorem 3 for ES
RD plots, the following theorem shows that these automatic
partition-size selectors are nonparametric consistent if the poly-
nomial fits are viewed as nonparametric approximations with
k = kn → ∞.

Theorem 4. Suppose Assumption 1 holds with S ≥ 5, and
Yi(0) and Yi(1) are continuously distributed. If k7

n/n → 0 and

kn → ∞, then

ĴQS-ω,−,n

JQS-ω,−,n

→P 1,
ĴQS-ϑ,−,n

JQS-ϑ,−,n

→P 1,
ĴQS-ω,+,n

JQS-ω,+,n

→P 1,

ĴQS-ϑ,+,n

JQS-ϑ,+,n

→P 1,

provided that V̂− →P V− and V̂+ →P V+.

In the supplemental appendix, we also propose consistent es-
timators for a generic, known weighting scheme w(x). These
estimators are more flexible but also more complicated in
general.

Remark 2 (Noncontinuous Outcomes). As mentioned in Re-
mark 1, the concomitant-based estimation approach cannot be
used when Yi(0) and Yi(1) are not continuously distributed. For
the latter cases, alternatively, we can use the series polyno-
mial estimation approach already introduced above. Assuming
that E[Yi(t)2|Xi = x], t = 0, 1, are twice continuously differ-
entiable, we may use the following estimators:

V̌QS,− = 1

N−

n∑
i=1

1(Xi < x̄)σ̂ 2
−,k(Xi)

and

V̌QS,+ = 1

N+

n∑
i=1

1(Xi ≥ x̄)σ̂ 2
+,k(Xi),

where σ̂ 2
−,k(x) and σ̂ 2

+,k(x) are the polynomial approximations
discussed in Remark 1. The corresponding data-driven partition-
size selectors in this case are

J̌QS-μ,−,n =
⎡
⎢⎢⎢
(

2B̂QS,−
V̌QS,−

)1/3

n1/3

⎤
⎥⎥⎥

and

J̌QS-μ,+,n =
⎡
⎢⎢⎢
(

2B̂QS,+
V̌QS,+

)1/3

n1/3

⎤
⎥⎥⎥ , (24)

J̌QS-ω,−,n =
⎡
⎢⎢⎢ω−

(
2B̂QS,−
V̌QS,−

)1/3

n1/3

⎤
⎥⎥⎥

and

J̌QS-ω,+,n =
⎡
⎢⎢⎢ω+

(
2B̂QS,+
V̌QS,+

)1/3

n1/3

⎤
⎥⎥⎥ , (25)

J̌QS-ϑ,−,n =
⌈

V̂−
V̌QS,−

n

log(n)2

⌉

and

J̌QS-ϑ,+,n =
⌈

V̂+
V̌QS,+

n

log(n)2

⌉
, (26)

which, as we show in the appendix, are also consistent in the
sense of Theorem 4, provided the conditions in that theorem
hold.
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6. NUMERICAL RESULTS

This section reports numerical evidence on the performance
of our proposed methods employing real data from several em-
pirical applications, and simulated data from a Monte Carlo
experiment. We also compare numerically the two partitioning
schemes studied in this article, ES and QS, in terms of their
asymptotic IMSE. All the results in this section are obtained us-
ing the R and STATA software packages described in Calonico,
Cattaneo, and Titiunik (2014a, 2015).

6.1 Empirical Applications

We illustrate our methods using data from several RD empir-
ical applications. To conserve space, we report here only results
using the data from Lee (2008), already mentioned in the Intro-
duction. The supplemental appendix includes the other empiri-
cal applications, which employ data from (i) U.S. Senate elec-
tions (see Cattaneo, Frandsen, and Titiunik 2015 for details), (ii)
Progresa/Oportunidades anti-poverty conditional cash transfer
program (see Calonico, Cattaneo, and Titiunik 2014c, sec. S.4
for details), and (iii) Head Start funding program (see Ludwig
and Miller 2007 for details). As mentioned above, Lee (2008)
studied the incumbency advantage in U.S. House elections; the
forcing variable is the margin of victory of the Democratic party
in a given U.S. House election, the threshold is x̄ = 0, and the
outcome variable is the Democratic vote share in the following
U.S. House election, which occurs 2 years later. The unit of
observation is the U.S. House district. All U.S. House elections
between 1948 and 2008 are included, with the exception of years
when district boundaries change; the dataset we employ has a
total of n = 6558 complete district-year observations.

The main goal of this empirical application is to show how
our selectors perform when applied to a realistic dataset. It is
difficult to compare our results to alternatives or benchmarks
because we are not aware of any other selectors available in the
literature to construct RD plots. The standard practice appears to
be that each researcher explores the data and selects the number
of bins in an ad hoc, nonsystematic way. Thus, we focus on
discussing the graphical properties of the resulting RD plots
when our methods are employed.

Figures 2 and 3 collect six graphs in two rows. Each graph
depicts the global fourth degree polynomial fits μ̂−,4(x) and
μ̂+,4(x) as a solid blue line. Graphs (a) and (d) are the scat-
terplot of the raw data, which we include here for visual com-
parison. The remaining four graphs in each figure are RD plots
constructed using ES bins (Figure 2) or QS bins (Figure 3)
with data-driven choices employing either spacings estimators
or series estimators. In each of these four graphs, the black dots
correspond to the sample mean within each bin when the num-
ber of bins is selected to mimic the variability of the data (graphs
(b) and (e)), while the black triangles correspond to the sam-
ple mean within each bin when the number of bins is selected
to minimize the IMSE of the underlying regression function
estimator (graphs (c) and (f)).

When analyzing each figure row-wise, we may see graph-
ically how the variability of the data is summarized by each
method. In particular, the scatterplots (graphs (a) and (d) in each
figure) give a graphical representation of the raw data and are
therefore extremely variable and arguably uninformative. Next,

the mimicking variance RD plots (graphs (b) and (e) in each
figure) reduce variability substantially when plotting the binned
sample means of the raw data, but they are still able to provide a
disciplined graphical representation of the overall variability of
the RD design. Finally, the IMSE-optimal RD plots (graphs (c)
and (f) in each figure) deliver “smoother” local (disjoint) sample
means essentially trying to trace out the underlying unknown
conditional expectation functions.

To summarize, the data-driven selectors introduced in this
article seem to perform very well in all the empirical applica-
tions we considered. Specifically, the data-driven IMSE-optimal
spacings-based selectors (ĴES-μ,−,n, ĴES-μ,+,n) and series-based
selectors (J̌ES-μ,−,n, J̌ES-μ,+,n) generate a collection of binned
sample means “tracing out” the estimated regression func-
tion (we use the polynomial fit as benchmark), which pro-
vides visual evidence in favor of continuity of the condi-
tional expectations. Furthermore, the data-driven spacings-
based selectors (ĴES-ϑ,−,n, ĴES-ϑ,+,n) and series-based selectors
(J̌ES-ϑ,−,n, J̌ES-ϑ,+,n) mimicking the underlying variability of the
data generate a disciplined scatterplot with substantial more
variability than the IMSE-optimal binned means case, but yet
less variable than the raw data, which in this case provides a
nice visual representation of the RD design. As shown in the
supplemental appendix, very similar findings emerge from the
other empirical applications mentioned previously.

6.2 Simulated Data

We briefly report an example of the results from an extensive
Monte Carlo experiment we conducted to study the finite-sample
behavior of our proposed methods. The full simulation exper-
iment considers 16 distinct data-generating processes, which
vary in the distribution of the running variable, the form of the
conditional variance, and the distribution of the unobserved er-
ror term in the regression function. To conserve space, here we
only discuss the simplest case that assumes a uniform distri-
bution for Xi and homoscedasticity, but the full set of results
is reported in the supplemental appendix. We found the same
qualitative results in all cases.

Specifically, we discuss the simulation model {(Yi,Xi)′ : i =
1, 2, . . . , n} iid with Yi = μ(Xi) + εi , Xi ∼ Uniform(−1, 1),
εi ∼ Normal(0, 1), and where

μ(x)

=

⎧⎪⎪⎨
⎪⎪⎩

0.48 + 1.27x + 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5

ifx < 0
0.52 + 0.84x − 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5

ifx ≥ 0

.

The functional form of μ(x) is obtained using the original data of
Lee (2008). All details are given in the supplemental appendix.
Table 1 reports the simulation results for this simple model. This
table includes results for both ES and QS RD plots organized in
two distinct panels. Panel A focuses attention on the IMSE of
different partitioning schemes in finite samples, as well as the
performance of the associated IMSE-optimal data-driven selec-
tors. All IMSEs are normalized relative to the IMSE evaluated
at the optimal partition-size choice to avoid any scaling issue.
Panel B reports several features of the empirical (finite-sample)
distribution of the different data-driven number of bins selectors
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Figure 2. Scatterplot and automatic data-driven ES RD plots for U.S. House elections data. (a) Scatterplot of raw data N− = 2740; N+ = 3818
(b) Mimicking variance, spacings ĴES-ϑ,−,n = 84; ĴES-ϑ,+,n = 130 (c) IMSE-optimal, spacings ĴES-μ,−,n = 20; ĴES-μ,+,n = 17 (d) Scatterplot of
raw data N− = 2740; N+ = 3818 (e) Mimicking variance, series J̌ES-ϑ,−,n = 87; J̌ES-ϑ,+,n = 145 (f) IMSE-optimal, series J̌ES-μ,−,n = 20;
J̌ES-μ,+,n = 17. Notes: (i) sample size is n = 6558; (ii) N− and N+ denote the sample sizes for control and treatment units, respectively; (iii)
solid blue lines depict fourth-order polynomial fits using control and treated units separately.

Figure 3. Scatterplot and automatic data-driven QS RD plots for U.S. House elections data. (a) Scatterplot of raw data N− = 2740; N+ = 3818
(b) Mimicking variance, spacings ĴQS-ϑ,−,n = 119; ĴQS-ϑ,+,n = 144 (c) IMSE-optimal, spacings ĴQS-μ,−,n = 48; ĴQS-μ,+,n = 19 (d) Scatterplot of
raw data N− = 2740; N+ = 3818 (e) Mimicking variance, series J̌QS-ϑ,−,n = 118; J̌QS-ϑ,+,n = 137 (f) IMSE-optimal, series J̌QS-μ,−,n = 48;
J̌QS-μ,+,n = 19. Notes: (i) sample size is n = 6558; (ii) N− and N+ denote the sample sizes for control and treatment units, respectively; (iii) solid
blue lines depict fourth-order polynomial fits using control and treated units separately.
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Table 1. Simulations results

Panel A: IMSE for grid of number of bins and estimated choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

20 1.047 11 1.148 20 1.047 11 1.148
21 1.027 12 1.081 21 1.027 12 1.081
22 1.013 13 1.039 22 1.013 13 1.039
23 1.005 14 1.014 23 1.005 14 1.014
24 1.000 15 1.002 24 1.000 15 1.002
25 1.000 16 1.000 25 1.000 16 1.000
26 1.003 17 1.006 26 1.003 17 1.006
27 1.008 18 1.017 27 1.008 18 1.017
28 1.016 19 1.033 28 1.016 19 1.033
29 1.025 20 1.053 29 1.025 20 1.053
30 1.036 21 1.076 30 1.036 21 1.076

ĴES-μ,−,n 1.033 ĴES-μ,+,n 0.9435 ĴQS-μ,−,n 1.072 ĴQS-μ,+,n 0.9351
J̌ES-μ,−,n 1.034 J̌ES-μ,+,n 0.9428 J̌QS-μ,−,n 1.073 J̌QS-μ,+,n 0.9347

Panel B: Summary statistics for the estimated number of bins

Pop. par. Min. 1st qu. Median Mean 3rd qu. Max. Std. dev.

JES-μ,−,n = 25 ĴES-μ,−,n 22 25 26 25.95 27 29 0.93
J̌ES-μ,−,n 23 25 26 25.93 26 29 0.87

JES-ϑ,−,n = 118 ĴES-ϑ,−,n 105 116 120 119.6 123 139 5.05
J̌ES-ϑ,−,n 110 117 119 119.3 121 131 2.72

JES-μ,+,n = 16 ĴES-μ,+,n 14 15 15 15.34 16 17 0.57
J̌ES-μ,+,n 14 15 15 15.34 16 17 0.55

JES-ϑ,+,n = 116 ĴES-ϑ,+,n 103 113 117 116.7 120 139 4.71
J̌ES-ϑ,+,n 107 115 117 116.7 118 128 2.65

JQS-μ,−,n = 25 ĴQS-μ,−,n 23 26 27 26.91 27 30 0.92
J̌QS-μ,−,n 23 26 27 26.89 27 30 0.90

JQS-ϑ,−,n = 118 ĴQS-ϑ,−,n 108 117 120 119.6 122 134 3.66
J̌QS-ϑ,−,n 110 117 119 119.3 121 131 2.71

JQS-μ,+,n = 16 ĴQS-μ,+,n 14 15 15 15.21 15 17 0.51
J̌QS-μ,+,n 14 15 15 15.21 15 17 0.50

JQS-ϑ,+,n = 116 ĴQS-ϑ,+,n 106 114 117 116.6 119 130 3.50
J̌QS-ϑ,+,n 107 115 117 116.7 118 128 2.65

NOTES: (i) Population quantities: JES-μ,·,n = IMSE-optimal partition size for ES RD plot (Equation (1)). JES-ϑ,·,n = Mimicking variance partition size for ES RD plot (Equation (3)).
JQS-μ,·,n = IMSE-optimal partition size for QS RD plot (Equation (4)). JQS-ϑ,·,n = Mimicking variance partition size for QS RD plot (Equation (6)). IMSE∗

ES,· = IMSEES,·(JES-μ,·,n) = ES

IMSE function evaluated at optimal choice. IMSE∗
QS,· = IMSEQS,·(JQS-μ,·,n) = QS IMSE function evaluated at optimal choice.(ii) Estimators: ĴES-μ,·,n = spacings estimator of JES-μ,·,n

(Equation (11)); J̌ES-μ,·,n = polynomial estimator of JES-μ,·,n (Equation (14)). ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n (Equation (13)); J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n
(Equation (16)). ĴQS-μ,·,n = spacings estimator of JQS-μ,·,n (Equation (21)); J̌QS-μ,·,n = polynomial estimator of JQS-μ,·,n (Equation (24)). ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n (Equation
(23)); J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n (Equation (26)).

introduced in this article: (i) spacings-based selectors for ES RD
plots (Equations (11) and (13)), (ii) polynomial-based selectors
for ES RD plots (Equations (14) and (16)), (iii) spacings-based
selectors for QS RD plots (Equations (21) and (23)), and (iv)
polynomial-based selectors for QS RD plots (Equations (24)
and (26)). Our Monte Carlo experiment is designed to (i) cap-
ture the finite-sample performance of Theorems 1 and 2 that give
an approximation to the IMSE (Panel A), and (ii) capture the
finite-sample performance of Theorems 3 and 4 as well as the
other consistency results discussed in the remarks above (Panel
B).

The numerical results are very encouraging. First, in all cases
the IMSE is minimized at the corresponding IMSE-optimal
number of bins choice derived in this article, suggesting that
the Theorems 1 and 2 do provide a good finite-sample approxi-

mation. For example, the first two columns in Panel A of Table
1 present the normalized IMSE of the binned sample means
underlying the ES RD plot for the control group, which is mini-
mized at J−,n = 25 because for other numbers of bins in the grid
the ratio of actual IMSE to the IMSE evaluated at the optimal
number of bins proposed in this article is larger than one. There-
fore, the theoretical IMSE-optimal number of bins coincide with
the simulated IMSE-optimal number of bins.

Second, in all cases our proposed data-driven implementa-
tions of the number of bins selectors perform quite well, ex-
hibiting a concentrated finite-sample distribution centered at the
target population choice introduced in this article. For example,
the first two rows in Panel B of Table 1 give summary statistics
for the data-driven implementations of the population IMSE-
optimal choice JES-μ,−,n (ES RD plot for the control group),
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when using either spacings estimators (ĴES-μ,−,n) or polyno-
mial estimators (J̌ES-μ,−,n). In this case, the target quantity is
JES-μ,−,n = 25, as mentioned above, and both data-driven im-
plementations are well centered (e.g., sample means are 25.95
and 25.93) and concentrated (e.g., standard deviation are 0.93
and 0.87). Similarly, the third and fourth rows of Panel B present
the sampling behavior of the mimicking variance estimators
ĴES-ϑ,−,n and J̌ES-ϑ,−,n, which perform equally well.

In sum, our simulation results briefly discussed here (and
available in the supplemental appendix in full) suggest that our
proposed optimal data-driven tuning parameter choices for con-
structing RD plots perform well in finite samples.

6.3 Comparison of Partitioning Schemes

We proposed two alternative ways of constructing RD plots,
one employing ES partitioning and the other employing QS par-
titioning. Our proposed selection rules for ES and QS partition-
ing coincide when the underlying distribution of Xi is uniform.
In general, however, neither partitioning approach dominates
the other in terms of asymptotic variability or IMSE. For ex-
ample, the IMSE of ES and QS sample means will depend on
the unknown density of the running variable, as well as the un-
known regression and conditional variance functional forms. In
the supplemental appendix, we derive the exact formulas for
the optimal IMSE for both ES and QS partitioning, and show
formally that neither dominates the other in general. We also
employ the 16 simulation models mentioned before to compare
the performance of the partition-size selectors for ES and QS
RD plots: according to our numerical evidence, QS RD plots
seem to perform better than ES RD plots in terms of IMSE when
the density f (x) is low in some regions of the support, although
this conclusion depends in part on the other unknown features
of the data-generating process.

7. EXTENSIONS

We discuss briefly two extensions that are practically rele-
vant. (We thank a reviewer for suggesting that we address these
issues.) The first extension discusses how our results apply to
fuzzy RD designs, while the second focuses on how other co-
variates could be incorporated in the analysis.

7.1 Fuzzy RD Designs

In the so-called fuzzy RD design, treatment assignment and
treatment status may be different for each unit (i.e., imperfect
treatment compliance). The basic RD model introduced in Sec-
tion 2 can be expanded to account for this possibility. Specifi-
cally, similarly to the potential outcomes Yi(0) and Yi(1) already
introduced, define

Ti = Ti(0) · 1(Xi < x̄) + Ti(1) · 1(Xi ≥ x̄)

=
{

Ti(0) ifXi < x̄

Ti(1) ifXi ≥ x̄
,

where Ti(0) and Ti(1) denote the potential actual treatment status
for each unit. In this more general setting, the treatment effect
of interest is defined as the ratio of the reduced form effect (i.e.,
the effect of treatment assignment on the outcome) and the first-
stage effect (i.e., the effect of treatment assignment on actual
treatment status).

Our previous results for RD plots continue to apply with-
out change to the reduced form model for Yi and Xi : that is,
for the conditional expectations E[Yi(0)|Xi = x], x < x̄, and
E[Yi(1)|Xi = x], x ≥ x̄. Furthermore, by imposing conditions
analogous to Assumption 1 but now for the conditional ex-
pectations E[Ti(0)|Xi = x] and E[Ti(1)|Xi = x], and the con-
ditional variances V [Ti(0)|Xi = x] and V [Ti(1)|Xi = x], our
results will also apply to the first-stage model. The only distinct
aspect of the first-stage model is that Ti ∈ {0, 1}, and thus one
needs to employ the data-driven selectors discussed in Remarks
1 and 2, for ES and QS RD plots, respectively.

From a practical perspective, in the fuzzy RD design, RD
plots can be used to depict both the reduced form effect as well
as the take-up effect (i.e., the first-stage effect). Our results apply
to both by simply changing the outcome variable used (either
Yi or Ti). For a related approach, see also Bertanha and Imbens
(2014).

7.2 Incorporating Covariates

In some applications, researchers may want to incorporate
covariates in the empirical analysis employing RD plots. We
briefly discuss two such approaches for sharp RD designs but,
as mentioned above, the upcoming discussion also applies to
fuzzy RD designs. Suppose Zi ∈ Rd , i = 1, 2, . . . , n, is an ob-
served covariate for each unit, and consider constructing an RD
plot for the conditional expectations E[Yi(0)|Xi = x, Zi = z],
x < x̄, and E[Yi(1)|Xi = x, Zi = z], x ≥ x̄. Two simple ap-
proaches are (i) conditioning and (ii) employing generalized
additive models (GAM).

A first conceptually straightforward approach to incorporate
covariates in RD plots is to condition on them. Handling contin-
uous covariates in this case is hard, while incorporating discrete
covariates such as gender or age is easy. Specifically, the results
in this article can be applied to the subsamples generated by the
conditioning set of interest, or an approximation thereof (when
the number of conditioning variables is large or Zi is contin-
uously distributed), provided the assumptions given above are
extended to hold conditional on the appropriate conditioning set
(and other appropriate regularity conditions hold).

A second way of incorporating covariates in the RD plots
is to employ ideas from the GAM literature (Hastie and Tib-
shirani 1990), together with some method to remove the co-
variates such as backfitting. Specifically, in this approach it is
assumed that the underlying conditional expectations take the
form E[Yi(0)|Xi = x, Zi = z] = E[Yi(0)|Xi = x] + g0(z) and
E[Yi(1)|Xi = x, Zi = z] = E[Yi(1)|Xi = x] + g1(z), for some
unknown smooth functions g0(·) and g1(·), and then a flexible
(nonparametric) method is used to remove the effect of the co-
variates. Once the covariates are removed, the RD plot can be
constructed as discussed in this article but employing the appro-
priately adjusted outcome Yi and running variable Xi .

8. CONCLUSION

This article introduced several optimal data-driven partition-
size selectors for RD plots, focusing on the commonly used
ES RD plot and also on an alternative QS RD plot. The re-
sulting selectors lead to practical RD plots that are constructed
in an automatic and objective way using the available data.
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We developed two kinds of selectors, one tailored to approxi-
mate the underlying regression function and another to repre-
sent the underlying variability of the raw data. These selectors
provide a benchmark for graphical analysis in the context of
RD designs: the optimal choices of number of bins introduced
can be interpreted as balancing variance and bias of a parti-
tioning estimator of the underlying conditional expectations,
and hence an empirical researcher may use these selectors to
construct undersmoothed (more bins) or oversmoothed (fewer
bins) RD plots or to give a formal interpretation to an ad hoc
choice.

SUPPLEMENTARY MATERIALS

The supplemental appendix contains the proofs of the main
theorems, additional methodological and technical results, more
detailed simulation evidence, and other empirical illustrations.

[Received October 2014. Revised January 2015.]
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